
c© 2005 by John Wollenburg Sias. All rights reserved.

A SYSTEMATIC APPROACH TO DELIVERING
INSTRUCTION-LEVEL PARALLELISM IN EPIC SYSTEMS

BY

JOHN WOLLENBURG SIAS

B.S.,University of Illinois at Urbana-Champaign, 1997
M.S., University of Illinois at Urbana-Champaign, 1999

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

ABSTRACT

Computer systems designed under the explicitly parallel instruction computing (EPIC)

paradigm rely extensively on compiler technology to deliver the instruction-level par-

allelism (ILP) required for them to achieve high levels of performance. While mani-

fold techniques have been proposed in the literature for delivering such parallelism, this

dissertation is unique in integrating and applying a comprehensive suite of techniques,

embodied in the IMPACT Research Compiler, to a concrete system, comprised of the

SPEC CINT2000 benchmarks and the Intel Itanium 2 platform. These techniques in-

clude advanced pointer analysis, aggressive cross-file procedure inlining, targeted region

formation, profile-guided optimizations, and, most importantly, aggressive and pervasive

use of predication and control speculation.

The collective effect of these techniques is evaluated with real-system measurements,

showing them to achieve a 1.20 average (up to 1.59) speedup relative to classically opti-

mized code and a 1.70 average (up to 2.51) speedup relative to code compiled with the

Gnu GCC compiler. Achieving these results in the real-machine environment required

advances in region formation heuristics, optimization, and speculation methods. Mod-

ern application tendencies toward decreased instruction locality and increased control-

intensiveness made finding successful (sufficient and stable) ILP transformations more

challenging, requiring adaptation and intensification of previous techniques.

As we look both to newer applications and to achieving the next level of ILP, more

sweeping program transformations are called for, but the compiler is today hard pressed

to deliver stable transformations with current techniques. High-performance compilation

of nonnumeric codes for EPIC chafes against programming style and control flow struc-

ture. This dissertation provides a thoroughgoing evaluation of the classical approach to

iii

ILP formation in an extant EPIC system, illustrating the circumstances that dictate the

success of EPIC features in achieving high performance in contemporary benchmarks.

iv

Soli Deo Gloria!

v

ACKNOWLEDGMENTS

The author is first indebted to his dissertation advisor, Prof. Wen-mei W. Hwu,

for patiently fostering this work and for providing an environment in which the author

could find his professional identity. For his patience with my admitted idiosyncrasies and

wrestlings with vocation, he deserves especial thanks.

As is typical of any dissertation involving the IMPACT compiler, the author is in-

debted to a long string of developers, both those whose work formed the seeds out of

which this work emerged, and those whose ongoing work nurtured it as it developed. A

partial listing includes especially David August, Ronald Barnes, Daniel Connors, Kevin

Crozier, Robert Kidd, Matthew Merten, Erik Nystrom, James Player, Shane Ryoo, Ian

Steiner, and Sain-zee Ueng. To his dear friends among this motley crew, who offered

timely advice, encouragement and criticism as the need arose, the author offers his pro-

found thanks.

The work presented here relied largely on the generosity and general supportiveness

of several partners in the corporate sphere. The author’s Itanium-specific efforts (and

much of the motivation for this work) began with summer projects on the (now-defunct)

IBM IA64 compiler at the Centre for Advanced Studies at the IBM Toronto Research

Lab. In addition to monetary support and technical challenges, the author appreciates

being exposed to the wide array of expertise in the TOBEY, TPO, and Java teams.

The work leading directly to this dissertation began with the donation of a prototype

Itanium compiler (based on a then-antiquated version of IMPACT), for which the efforts

of Jim Pierce must be acknowledged, and prototype Itanium systems from Intel Corpo-

ration. Throughout this work, the author has been able to rely on Carole Dulong and

vi

Daniel Lavery for technical advice and support. Also at Intel, John Crawford provided

early machines and support.

Support from Hewlett-Packard has also enabled this work. Real-machine results

would have been impossible without the outstanding Perfmon system developed for the

Linux kernel by Stephane Eranian and David Mosberger of HP Labs. On the production

side, Richard Hank and James McCormick have always been ready to lend advice on

thorny technical problems. HP has also supported this work with the generous dona-

tion of much equipment, including some rare prerelease machines. Bob Rau, Michael

Schlansker, and Vinod Kathail also contributed much to this project over the years.

The author must also acknowledge the monetary support of the National Defense

Science and Engineering Graduate Research Fellowship Program, which underwrote the

costs of my early graduate career. The author also thanks the members of his committee,

Professors Wen-mei Hwu, Michael Loui, Steven Lumetta, Matthew Frank and Craig

Zilles, for their patience, kind attention and helpful guidance.

Finally, for the patient support of his family during the several years of this work,

which often separated him from them more than either would have liked, the author

offers his deepest gratitude.

vii

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES . xvi

1 PROLEGOMENA . 1
1.1 Instruction-Level Parallelism . 2
1.2 The Explicitly Parallel Instruction Computing Paradigm 7
1.3 The State of EPIC Compilation Today . 11
1.4 What Does “Optimization” Really Mean? . 14

2 INTRODUCTION . 18
2.1 Introducing the Methodology . 22

2.1.1 The Itanium 2 microprocessor and experimental configuration . . . 23
2.1.2 The IMPACT Research Compiler . 25
2.1.3 Benchmarks and benchmarking . 29

2.2 Limitations of Scope . 31
2.3 High-Level Results . 34

2.3.1 Estimated SPEC CINT2000 performance ratios 34
2.3.2 Results in instructions per cycle . 38
2.3.3 Results from cycle accounting . 40

2.4 Introducing the Detailed Presentation . 42

3 CONTROL-FLOW-STRUCTURAL EPIC COMPILATION 43
3.1 Impediments to ILP . 43

3.1.1 Control obstacles . 44
3.1.2 False dependences . 45
3.1.3 Occasional dependences . 45
3.1.4 Nondeterminism . 46

3.2 Control-Flow-Structural Transformation in the IMPACT Compiler 46
3.2.1 Procedure inlining . 47
3.2.2 Superblock and Hyperblock formation . 48
3.2.3 Ancillary transformations and optimizations 50
3.2.4 Control speculation . 51
3.2.5 Instruction scheduling and software pipelining 52

viii

3.3 Case Studies in Complex Region Formation . 52
3.3.1 An example from gzip . 53
3.3.2 A more complex example from crafty . 59

3.4 Evaluating the CFS Approach . 62
3.4.1 Benchmarks with substantial effect . 63
3.4.2 Benchmarks seeing moderate benefit . 63
3.4.3 Benchmarks with little potential for effect 64
3.4.4 General observations and principles . 65

3.5 Specialization and Instruction Fetch Performance 66
3.6 When Compile-Time Predictions Go Awry . 73
3.7 Focusing on Particular CFS Components . 74

4 CODE SPECIALIZATION IN THE SUPERBLOCK 76
4.1 Superblock Formation . 77
4.2 Effect of Ancillary Transformations . 81

4.2.1 Branch target expansion . 81
4.2.2 Loop unrolling and/or software pipelining 85
4.2.3 Branch combining . 85
4.2.4 Postformation instruction transformations 86

4.3 Evaluation . 87

5 THE VALUE AND APPLICATION OF PREDICATION 89
5.1 This Work’s Approach to Predication . 90
5.2 Predication Benefit Example . 91
5.3 The Hyperblock Framework . 94
5.4 Hyperblock Selection Heuristics . 98

5.4.1 Loop path enumeration mode . 100
5.4.2 Nested diamond mode . 101
5.4.3 Block-based mode . 101
5.4.4 Loop peeler . 101

5.5 Optimization in the Predicated Context . 103
5.5.1 Partial dead code elimination . 103
5.5.2 Optimization of predicate definitions . 104

5.6 Predicate Relation and Data Flow Analysis . 105
5.6.1 Predicate relation analysis . 105
5.6.2 Data flow analysis in predicated code . 106
5.6.3 LED: Efficient predicate-aware data flow analysis under PAS 110
5.6.4 Evaluation of LED and comparison to previous approaches 117

5.7 Performance Effects of Predication in situ . 119
5.7.1 Effect on branches and branch prediction 121
5.7.2 Effect on instruction delivery . 124
5.7.3 Effect on planned instruction-level parallelism 127
5.7.4 Effect on the data memory subsystem . 128
5.7.5 Effect on register utilization . 129
5.7.6 Predication and control speculation . 130

ix

5.8 Predication Case Studies Across SPEC CINT2000 131
5.9 Related Work . 138

5.9.1 Wavefront scheduling with predicated hoisting 138
5.9.2 Kernel-only or counted-loop modulo scheduling 138
5.9.3 Special purpose predication . 139

6 THE VALUE AND APPLICATION OF SPECULATION 140
6.1 Control Speculation . 142
6.2 Control Speculation Schemata . 144

6.2.1 General speculation . 145
6.2.2 Sentinel speculation with recovery code 146
6.2.3 Other models proposed in the literature 147

6.3 Itanium Control Speculation: Selecting an Appropriate Schema 147
6.3.1 Performance issues: Sentinel speculation 150
6.3.2 Performance issues: general speculation 151
6.3.3 Potential difficulties with the general speculation model 152

6.4 Control Speculation in the Compiler . 154
6.4.1 Classical optimizations . 154
6.4.2 Predicate promotion . 156
6.4.3 Scheduling phases . 158

6.5 Execution Condition and Data Flow Analysis . 159
6.6 Execution Condition and Safety of Potentially-Excepting Instructions . . . 162
6.7 Minimizing Spurious Exceptions Under General Speculation 163

6.7.1 Mitigating the wild load problem . 166
6.7.2 Evaluating the wild load solution . 169
6.7.3 Speculation of floating-point operations 170

6.8 Performance Effects of Control Speculation in situ 172
6.8.1 Effects on instruction issue . 173
6.8.2 Effects on data access . 174
6.8.3 Interaction with predication . 175

6.9 Data Speculation . 176

7 PROCEDURE INLINING AND EPIC PERFORMANCE 177
7.1 Controlling the Inliner . 178
7.2 Indirect Call Site Transformation . 178
7.3 Effect of Inlining . 180
7.4 Potential for Improvements in Inlining Techniques 181

7.4.1 Inlining and register stack engine activity 182
7.4.2 Control of inlining degree . 183
7.4.3 Programming and phase ordering problems in inlining 184
7.4.4 Program structure and procedure inlining 185
7.4.5 Effect of inlining on profile accuracy . 187

x

8 THE DATA DELIVERY SUBSYSTEM AND EPIC COMPILATION 190
8.1 Effects of CFS on Data Cache Performance . 191
8.2 Effects of CFS on Data Address Translation . 193
8.3 Store-to-Load Dependence Elimination . 196
8.4 Unroll-Under-Predicate Schema . 198
8.5 Related Work and Concluding Remarks . 198

9 PERFORMANCE ANALYSIS METHODOLOGY . 200
9.1 Limitations and Challenges . 200
9.2 Opportunities . 202
9.3 Performance Monitoring Infrastructure . 203

10 RELATED WORK . 204
10.1 General VLIW and EPIC Research . 204
10.2 Historical Development of CFS and its Variants 206

10.2.1 Trace scheduling . 208
10.2.2 Superblock-based approaches . 210
10.2.3 Hyperblock-based approaches . 210
10.2.4 Optimization of Hyperblocks . 211
10.2.5 Ancillary transformations . 213
10.2.6 Trace scheduling revisited . 214
10.2.7 Bringing CFS transformation into the present 215

10.3 Inlining and Code-Expanding Transformations 216

11 CONCLUSION . 217

APPENDIX A. THE INTEL ITANIUM 2 MICROPROCESSOR 222
A.1 Instruction and Data Delivery . 223
A.2 Branch Prediction . 224
A.3 Control Speculation . 225
A.4 Predication . 225
A.5 Register Resources . 226
A.6 Performance Monitoring . 227
A.7 Conclusions . 232

APPENDIX B. THE IMPACT COMPILER . 233
B.1 Overview . 233
B.2 Pcode Generation . 234
B.3 Pcode Linking . 235
B.4 Pcode Profiling . 236
B.5 Pcode Optimization (Inlining) . 237
B.6 Pcode (Interprocedural) Analysis . 237

B.6.1 Auxiliary low-level disambiguator . 240
B.6.2 Empirical evaluation . 240
B.6.3 Indicated future work . 241

xi

B.7 Lcode Generation . 242
B.8 Lcode Optimization I: Classical Optimization . 243
B.9 Lcode Region Formation: Parallelism Cultivation 245
B.10 Lcode Optimization II: Parallelism Enhancement 246

B.10.1 Loop unrolling . 247
B.10.2 Antidependence elimination . 248

B.11 Machine Code Generation . 248
B.11.1 Fine-tuning optimizations . 249
B.11.2 Instruction scheduling . 249
B.11.3 Cyclic instruction scheduling . 250
B.11.4 Register allocation . 251
B.11.5 Postpass . 252

B.12 Machine Code Linking . 252

APPENDIX C. DETAILED BENCHMARK PERFORMANCE RESULTS . . . 253
C.1 Summary of Performance Results . 254
C.2 Cycle Accounting . 256
C.3 Analysis of Individual Benchmarks . 257

C.3.1 164.gzip . 258
C.3.2 175.vpr . 261
C.3.3 176.gcc . 263
C.3.4 181.mcf . 265
C.3.5 186.crafty . 267
C.3.6 197.parser . 270
C.3.7 252.eon . 272
C.3.8 253.perlbmk . 274
C.3.9 254.gap . 274
C.3.10 255.vortex . 278
C.3.11 256.bzip2 . 281
C.3.12 300.twolf . 283

REFERENCES . 286

AUTHOR’S BIOGRAPHY . 300

xii

LIST OF FIGURES

Figure Page

2.1 Intel Itanium 2 pipeline. 24
2.2 The IMPACT compiler: high-level phase ordering. 26
2.3 Speedup relative to O-NS baseline. 36
2.4 Instructions per cycle. 38
2.5 Effect of compiler configuration on dynamic instruction count. 39
2.6 Cycle accounting detail. 41

3.1 Code example from gzip deflate.c:397. 54
3.2 Inner loop version in gzip deflate.c:397. 55
3.3 Superblock code for innermost loop version from gzip deflate.c:397. 56
3.4 Superblock code after software pipelining (gzip deflate.c:397). 57
3.5 Hyperblock code after software pipelining (gzip deflate.c:397). 58
3.6 Outer loop versioning for gzip deflate.c:678. 60
3.7 Exploiting ILP across crafty loops. 61
3.8 Speedup relative to O-NS baseline. 62
3.9 Performance sketch for CFS transformation. 66
3.10 Touched static code growth with CFS techniques. 68
3.11 First-level instruction cache misses, relative to O-NS accesses. 69
3.12 Instruction fetch efficiency with CFS transformation. 70
3.13 Instruction cache accesses. 71
3.14 Contribution of front end stall to performance. 72

4.1 Superblock formation algorithm. 78
4.2 Superblock formation in vpr get bb from scratch(). 80
4.3 Branch target expansion in tails in vpr get bb from scratch(). 82
4.4 Effect of branch target expansion on S-CS performance. 84

5.1 Hyperblock formation in vpr get bb from scratch(). 92
5.2 The use of predication in partial dead code elimination. 104
5.3 Predicated data flow with the Predicate Flow Graph. 109
5.4 LED Instruction and arc setup phase. 111
5.5 LED live-variable gen/kill phase. 113
5.6 LED live-variable global propagation phase. 115

xiii

5.7 LED live-variable block propagation phase. 116
5.8 Cycle accounting detail. 120
5.9 Effect of CFS transformation on branch count. 121
5.10 Effect of CFS transformation on branch misprediction. 122
5.11 Effect of CFS transformation on front end stall. 125
5.12 Planned speedup comparison of I-CS and S-CS configurations. 128
5.13 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 164.gzip. 132
5.14 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 254.gap. 134
5.15 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 255.vortex. . . 136
5.16 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 256.bzip2. . . . 137

6.1 Code generation for the two Itanium speculation schemata. 148
6.2 General and Sentinel speculation models. 150
6.3 The use of speculation in partial redundancy elimination. 154
6.4 Predicate promotion, execution condition, and demotion. 160
6.5 Example illustrating a promoted load and criticality. 162
6.6 Development of a union-field wild load: (a) C source code; (b) initial ma-

chine code; (c) after speculation (promotion). 164
6.7 Union-field wild load speculation avoidance algorithm. 167
6.8 Illicit-offset wild load avoidance algorithm. 168
6.9 Effect of control speculation on performance. 173
6.10 Effect of control speculation on dynamic instruction count. 174

7.1 Conversion of indirect to direct call site for inlining. 179
7.2 Variation of I-CS performance with inlining degree. 180
7.3 Execution cycles sensitive to inlining penalties. 182
7.4 Inlining, control flow transformations, and concise program expression. 185
7.5 Code example from crafty swap.c. 186
7.6 Specialization and inlining: (a) before inlining; (b) after inlining. 188

8.1 Effect of CFS transformation on data access. 192
8.2 First-level data TLB misses (hitting in L2DTLB) per O-NS data access. . . . 194
8.3 Second-level data TLB misses (HPW accesses) per O-NS data access. 195
8.4 Estimated DTLB penalty as fraction of O-NS cycles. 195

10.1 Actual and two idealized speedup measurements. 205

A.1 Intel Itanium 2 pipeline. 223

B.1 The IMPACT compiler: high-level phase ordering. 234

C.1 Cycle accounting results: IMPACT O-NS, I-NS, I-CS, and S-CS config-
urations. 257

C.2 Execution profile for 164.gzip. 258
C.3 Execution profile for 175.vpr. 262
C.4 Execution profile for 176.gcc. 264
C.5 Execution profile for 181.mcf. 266

xiv

C.6 Execution profile for 186.crafty. 268
C.7 Execution profile for 197.parser. 271
C.8 Execution profile for 252.eon. 273
C.9 Execution profile for 253.perlbmk. 275
C.10 Execution profile for 254.gap. 277
C.11 Execution profile for 255.vortex. 279
C.12 Execution profile for 256.bzip2. 282
C.13 Execution profile for 300.twolf. 284

xv

LIST OF TABLES

Table Page

2.1 Basic configurations of the IMPACT Research Compiler 28
2.2 Estimated SPEC CINT2000 performance ratios . 35

7.1 Inlining statistics . 181
7.2 Performance loss due to omission of post-inlining profile, I-CS configuration . 189

A.1 Cycle accounting categories in terms of hardware counters 227

C.1 Estimated SPEC CINT2000 ratios for GNU GCC, Intel ICC, and IMPACT . 255
C.2 Cycle accounting data for 164.gzip . 259
C.3 Instruction accounting data for 164.gzip . 260
C.4 Cycle accounting data for 175.vpr . 262
C.5 Instruction accounting data for 175.vpr . 262
C.6 Cycle accounting data for 176.gcc . 264
C.7 Instruction accounting data for 176.gcc . 264
C.8 Cycle accounting data for 181.mcf . 267
C.9 Instruction accounting data for 181.mcf . 267
C.10 Cycle accounting data for 186.crafty . 268
C.11 Instruction accounting data for 186.crafty . 268
C.12 Cycle accounting data for 197.parser . 271
C.13 Instruction accounting data for 197.parser . 271
C.14 Cycle accounting data for 252.eon . 273
C.15 Instruction accounting data for 252.eon . 273
C.16 Cycle accounting data for 253.perlbmk . 275
C.17 Instruction accounting data for 253.perlbmk . 275
C.18 Cycle accounting data for 254.gap . 277
C.19 Instruction accounting data for 254.gap . 277
C.20 Cycle accounting data for 255.vortex . 279
C.21 Instruction accounting data for 255.vortex . 279
C.22 Cycle accounting data for 256.bzip2 . 282
C.23 Instruction accounting data for 256.bzip2 . 282
C.24 Cycle accounting data for 300.twolf . 284
C.25 Instruction accounting data for 300.twolf . 284

xvi

1 PROLEGOMENA

Parallel execution, the concurrent processing of multiple operations in a programmable

computing device, continues to increase in importance as a component of microproces-

sor performance. With physical limits (for example, the speed of electrons; minimum

designable feature size; nonidealities of conductive, semi-conductive, and resistive mate-

rials; planar circuit layout constraints; and practical limits on design complexity [1, 2])

dictating increasingly rigid limits on the maximum practicable processing speed for any

given logical operation, the only alternative for designers who need to achieve higher

computing performance is to perform more operations in parallel.

Parallel execution exists in many forms, but is most commonly described as the exe-

cution of multiple threads of control on independent processors or at least in independent

thread contexts [3]. Exploitation of such a model (multiprocessing or thread-level paral-

lelism) requires an explicitly parallel program or set of programs. Since most programs

are written in a serial fashion (popular, imperative languages such as C and C++ have no

inherent model for parallel algorithmic expression), this model often seems “unnatural”

and is generally difficult and expensive to use, except for certain classes of problems in

which parallel programs may be written conveniently or in which special compilers can

extract parallel threads of control from an essentially serial program.

1

1.1 Instruction-Level Parallelism

This dissertation is concerned with a different level, or granularity, of parallelism

that applies within a single thread of execution. Instruction-level parallelism (ILP),

meaning the contemporaneous execution of multiple machine instructions within a single

program context, using a single instruction pointer, is a more natural form of parallel

execution for traditional serial programs [4]. Opportunities for such parallelism appear

when the program is decomposed into machine instructions as groups of instructions

that are not constrained (by dependences) to be executed serially. The conventional

wisdom suggests that the approach of decomposition and instruction-parallel execution

is more easily implemented than a broader or more regular form of parallelism (e.g.,

task-level parallelism or vector parallelism; while these, and other, more regular and

less centralized forms of parallelism are ideally more efficient than ILP, there has been

little success putting most ordinary programs into a form that takes advantage of them).

ILP has thus been recognized for over 20 years to be an effective compromise between

the desire for parallel execution and the need for efficient parallelization of common

programs, not written with parallel intent [4]. When decomposed for execution into

machine instructions, programs typically exhibit at least some suitability for instruction-

level parallel execution. The degree to which this is exploitable depends on two factors:

first, the amenability of programs to instruction-level parallel execution; and, second, the

means employed in compiler, architecture, and microarchitecture to extract and exploit

available parallelism.

Typical integer programs1 exhibit some degree of inherent, latent ILP, but various

constructs interfere with exposing, enhancing, and exploiting it. Historically speaking,

there has been considerable disagreement among researchers as to what degree of ILP

is exploitable in increasing the number of instructions executed per cycle (IPC), (which

equates to an increase in performance) [6–9]. This is an important concern, as the

1In the common parlance, “integer” or “nonnumeric” programs are differentiated from “floating-
point” or “numeric” programs, the execution time of the latter being dominated by computational loops,
generally using floating-point arithmetic, on regular, matrix or vector data structures. Many forms of
parallelism, including ILP, are easy to identify in floating-point applications, so this dissertation concerns
itself primarily with the integer class, as represented by SPEC CINT2000 [5].

2

amount of ILP available bounds the success of ILP exploitation techniques, at least in

a the view of hardware (or an ILP “purist”). As will be explored shortly, ILP compiler

techniques rely on path specialization, which can enhance optimization, possibly resulting

in better performance without an increase in IPC. This does not happen in hardware.

Whether this “compiler optimization bonus” can be called a success for ILP or merely

an optimization enhancement is a possible, if abstruse, argument. Generally, though, it

is accepted that the ILP limit studies do in some way bound the potential for success of

ILP-based compiler techniques.

Practical constraints limit the accessibility of ILP in real programs, and different in-

terpretations of these constraints led to different estimates of available ILP. Lam and

Wilson explained the importance of multipath execution and control speculation in ex-

posing ILP in programs, criticizing the single-thread, VLIW approach for being unable

to effectively expose ILP in the presence of complex, data-dependent control flow [10].

Lee et al. emphasized the importance of region boundaries and register renaming in de-

termining the degree of ILP exploitable in SPEC CINT95 [11] applications on EPIC

architectures. Their work emulates an idealized, but limited, compile-time scheduler by

preventing scheduling across function and/or loop boundaries (idealized, that is, when

compared to a typical compiler, but limited with respect to the dynamic trace). Using

the unit-latency, infinite-issue machine abstraction typical of ILP limit studies, they find

an average ILP of 6.8 (without renaming) and 12.2 (with renaming). With all window

restrictions lifted, they report an IPC of 32.9 [12]. While it is simple to lift restrictions

in abstract simulation, however, it is difficult to translate this result into, for example,

useful insight for compiler work. To be useful, an estimate of available ILP must consider

the context (architecture, applications, compiler) within which the ILP is to be exploited.

ILP limit studies are encouraging, as they suggest that at least some ILP is available in

typical programs, but their predictions must be normed with real-world empirical data.

The role and nature of ILP in microprocessor performance have fluctuated over time.

This dissertation relates to one particular model of ILP exploitation, but it is instructive

to begin with a consideration of the general ILP landscape. Instruction-level parallel

3

execution itself exists in two forms, herein referred to as pipeline parallelism and instruc-

tion parallelism. Pipeline parallelism refers to the partial overlapping of the execution

times of two or more instructions, as occurs in a pipelined machine. Higher degrees of

pipelining (division of work into a larger number of finer stages) allow more instructions

to be executing at the same time, ideally achieving performance inversely proportional

to the number of stages [13, 14]. Increasing levels of pipelining (up to 31 stages in

recent Pentium 4 microprocessor implementations) have historically supported a super-

linear scaling of clock frequency with respect to improvements in process technology [15],

sustaining the long-expected doubling in computer performance each 18 months2 [16].

This improvement comes at a substantial cost, however, as increases in clock frequency

dramatically increase power consumption, both due to increased switching and to the

increased leakage currents inherent to faster transistors, and as the ratio of latch time to

compute time (pipeline overhead) steadily increases. Furthermore, longer pipelines mean

increased time spent in recovery from branch mispredictions, reducing achievable ILP.

One of the most important computing technology developments of the past few years

is that superpipelining is no longer a viable path to increasing performance. Work that

takes a more modern, power-constrained, view sets a much lower limit on the optimal

number of pipeline stages [17], at the very least casting serious doubt on the remaining

longevity of the superpipelining approach. Intel’s recent cancellation of further Pentium 4

development, short of the previously touted 4-GHz clock frequency mark, in favor of more

power-efficient design lines serves as a particularly strong case in point.

The exhaustion of pipeline parallelism leaves instruction parallelism as the subject

of examination for performance increase. Instruction parallelism focuses on the simul-

taneous issue of instructions and the reordering of instructions for more efficient issue,

rather than purely the overlapping of their execution times, as in pure pipeline paral-

lelism. While pipelining (aside from disagreements about appropriate degree) is achieved

with relatively uniform techniques, here there are two divergent approaches. The first,

dynamic scheduling, relies on sophisticated hardware features to expose parallelism.

2At its apex a few years ago, proponents of this approach projected that these principles could sustain
profitable development to 70 pipeline stages or beyond [14].

4

In a dynamically scheduled design, hardware actively seeks out parallelism among a

program’s operations, executing them out of order as necessary to avoid simply waiting

for results [18]. Operations to be executed are sought along a putative trajectory of

future operations, as divined using generally sophisticated branch prediction hardware,

within a maximum search distance called the window. Accommodating this search for

parallelism adds stages to the front of the processor pipeline, increasing the effective

penalty of bad branch predictions. Supporting this parallel execution while maintaining

correctness requires complex and expensive hardware. One important industry figure,

Fred Pollack of Intel Corporation, has proposed the principle that performance increases

in rough proportion to the square root of complexity increase in these designs (that is,

a doubling in chip features (transistors) yields only a 40% increase in performance) [19].

Already in 2000, studies suggested that the era of bi- to triennial doubling of computing

performance could not be sustained for long with with traditional pipeline and capacity

scaling techniques [15].

In recent years, then, mainstream microarchitecture development has exploited what

may be a final burst of pipeline-lengthening-based performance. Recent systems increased

performance by sharply decreasing the clock period, sacrificing (nonpipeline) instruction-

level parallelism, and adding complex and potentially inefficient replay mechanisms to

meet this goal (e.g., Pentium 4) [20]. These systems rely on essentially classical compiler

technology; in this “hectic” model of parallelism, it is the microarchitecture that attempts

to ensure in a highly dynamic manner that pipeline parallelism is effectively exploited.

Well before this approach began to show severe signs of stress, and in fact well before

it reached its apex, engineers at Hewlett-Packard Laboratories [21] and a few like-minded

academic researchers [22] worked on an alternative approach. In this second design ap-

proach, static scheduling, a much simpler hardware pipeline, having no capacity for in-

struction reordering, executes operations in-order, according to a static plan devised by

the compiler. In order to enable the compiler to express a highly parallel plan of execu-

tion [23] that will execute efficiently on the available hardware, given the control and data

flow constraints of typical applications, the architecture provides certain accommodating

5

features. These typically include the ability to demarcate groups of instruction for paral-

lel issue, the ability to predicate instructions to avoid frequent control flow redirections,

and the ability to speculate operations across potential control and data dependence arcs.

This model for static planning of instruction-level parallelism was initially referred to as

the very long instruction word (VLIW) model, in reference to the wide groups of opera-

tions it grouped for issue each cycle. Exploitation of instruction-level parallelism in this

fashion is a long-practiced art. The historical background undergirding this area of work

is immense and important, extending well before the important HP Labs work [24, 25].

These VLIW ideas culminated in what is today called the Explicitly Parallel Instruction

Computing (EPIC) paradigm. Rau and Fisher [26] provide an insightful history of this

early era in their Journal of Supercomputing article; Schlansker and Rau [27] summarize

the entire 1989–1999 development of EPIC ideas at HP Labs, as well as at the University

of Illinois at Urbana-Champaign, in another interesting technical report. Those inter-

ested in the historical development of these ideas are referred to these excellent works.

It is instructive to see how long and in how many various ways engineers and compiler

writers have wrestled with the topics to be discussed in these pages.

This dissertation, written over a decade after the proposal of the EPIC approach,

discusses the realization of these features and techniques in a second-generation hard-

ware and compiler implementation. Most of the ideas to be discussed in this work were

considered or even used in the earlier machines; the vast changes in microarchitecture

and in application development over the past 10 years merit their re-evaluation at this

juncture. As this work will go on to demonstrate, the evaluation of these techniques in

the modern context is much more complex than it once was.

Before leaving the general topic of instruction-level parallelism, it should be noted

that the ideal balance of pipeline and instruction parallelism, and the balance between

dynamic and static modes of the latter, are still matters of considerable dispute. Of

particular interest in this context is work that relies on the compiler to plan the bulk of

an effective plan of execution, and then attempts to use the minimum possible degree

of dynamism to overcome disruptions in the plan due to cache misses or other unantici-

pated events [28]. Other work has suggested that EPIC architectures need full dynamic

6

execution to overcome modern memory hierarchy obstacles [29]. Some have even pro-

posed that, due to the poor scaling of memory latency and inability of software and

microarchitectural techniques to hide it, ILP is no longer a broadly exploitable form of

parallelism [1, 30]. While this work does not even claim to address these broader issues,

the author intends that the lessons of this dissertation about the promise and limitations

of the statically planned approach will contribute to a desperately needed, erudite, and

informed discussion of these topics as they continue to evolve.

1.2 The Explicitly Parallel Instruction Computing Paradigm

In the explicitly parallel instruction computing (EPIC) paradigm [27, 31], the com-

piler takes sole responsibility for extracting the potential ILP inherent to programs and

expressing it to the hardware for execution. This section introduces the historical and

conceptual groundwork for the work presented in this dissertation, work informed by the

availability of actual Itanium hardware.

Schlansker and Rau, two prominent proponents and long-time architects of the EPIC

approach, delivered an extended presentation of the philosophy and historical events that

led to the 11 year development of EPIC that culminated in 1999 with the announcement

of the Intel Itanium processor [27]. Their primary motivation, already in the late 1980s,

was concern about the scalability of the out-of-order superscalar approach beyond the

end of the 1990s. EPIC was to be a means of continuing the superlinear growth of

computing performance within a traditional, sequential code development paradigm after

the then-still-emerging out-of-order scheme lost its way.

The motivating idea of EPIC is that using a superscalar microarchitecture to extract

instruction-level parallelism from an essentially sequential or serial architecture3 (i.e.,

having no means for the explicit expression of parallelism) is inefficient and unscalable.

As an alternative, an EPIC architecture provides a means for the compiler to express

a parallel plan of execution (POE) directly to the hardware. The hardware, then, has

3The term architecture as used here is a contract between hardware and software, as in “instruction
set architecture,” while microarchitecture refers to a particular implementation thereof.

7

simply to execute the preplanned, already-micro-parallel program. Preceding VLIW de-

signs had provided some means of instruction-level parallel expression, but with limited

degrees of success in integer and irregular code. The ideas synthesized into EPIC, includ-

ing predication, control speculation, and data speculation, were intended to extend the

applicability of these historically well-demonstrated techniques to more general classes

of programs.4 This type of architecture has implications for both hardware and com-

piler design. Most of the aspects have to do with the migration of ILP decisions from

execution-time into compile-time. In EPIC, the classical problems from dynamic ILP

exploitation may be moved out of the dynamic context, but they do not go away:

• For the compiler to produce an effective POE, run-time behavior must be pre-

dictable at compile-time. Most EPIC transformations rely on predictions about

the likely flow of program control, often derived from profiling runs [32].

• A subtler aspect of predictability is that the compiler can deal effectively only with

latencies it can predict statically. Load latency is a serious problem for EPIC in

the modern context [29].

• The POE must be communicated from the compiler to the hardware. The EPIC

architecture must contain features that allow the compiler to schedule operations

explicitly, such as instruction bundles, and effectively, including large numbers of

registers (to prevent live range constraints from becoming an obstacle to paral-

lelism).

• Transfers in control flow break up otherwise parallel sequences of execution. The

compiler must be able to schedule across branches to achieve parallel execution,

hence control speculation.

4In fact, Schlansker and Rau [27] view EPIC as “an evolution of VLIW which has absorbed many
of the best ideas of superscalar processors, albeit in a form adapted to the EPIC philosophy.” EPIC
thus aims to extend the VLIW approach to less regular applications, on which the superscalar approach
excels.

8

• Memory operations tend to serialize operations as well. The compiler needs a means

of moving loads past previous stores to increase parallelism. This is done either by

analysis (proof of transformation safety) or by data speculation.

• Control and data speculation are based on predictions of execution bias, but will of-

ten be based on faulty guesses. A means must be provided of avoiding or recovering

from misspeculation.

• Individual optimization of many interwoven execution paths can be inefficient to

the point of infeasibility, and does not address the branch prediction problem. The

ability to combine multiple paths with predication can enable a more efficient POE

in programs that have suitable tendencies.

• The plan of execution may be much larger than the original program, if many

versions of code segments are required to achieve high degrees of parallelism. Means

like kernel only modulo scheduling must be introduced to reduce this code bloat [33].

To summarize, in the EPIC model, which in contrast to the “hectic,” out-of-order

model might be termed “deliberate,” the compiler must produce explicit, static directions

for utilization of each processor issue cycle. Placing this onus on the compiler allows the

processor to provide wide issue with a minimum of execution core overhead. A simpler,

wider pipeline, executing at a comfortably lower clock frequency, has merely to march

according to the compiler’s plan-of-execution. Complexity is displaced from the chip to

the compiler, increasing efficiency so long as the compiler can “plan” sufficiently parallel

execution and the microarchitecture can execute the plan without too many expensive

dynamic anomalies. Which model, “hectic” or “deliberate,” is ultimately more efficient

for a particular application set is beyond the scope of this dissertation; the importance of

strong control-intensive,5 general-purpose application performance to the general success

of EPIC systems, however, is beyond dispute (and, in fact, as discussed in [4], the goal

of adding several features to EPIC was extending its applicability to these applications).

5A control-intensive program is one that is “branchy,” one in which decision-making frequently breaks
up the regular issue of instructions.

9

The compiler can approach the compilation of such programs for EPIC performance

in a variety of ways. One may choose an “incremental”6 approach that uses EPIC

features to enhance traditional, global-scheduling-based scheduling schemes, incremen-

tally enhancing the application of traditional compilation models, within the existing

program control structure. Contemporary production compilers operate mostly within

this model [34, 35]. Alternatively, one may take a “structural” approach, using the new

features to perform more radical program control transformations, replicating code, pred-

icating, and speculating freely to generate a vastly different and hopefully more efficient

program representation [22, 36–38]. The latter approach is more consistent with EPIC’s

research lineage. While the literature includes some real-machine evaluations of EPIC’s

features [39, 40], they are based on compilers taking primarily an incremental approach.

Other research-based evaluations [38] examined the structural interaction of predica-

tion and speculation techniques in a hypothetical EPIC architecture, but did not have

the benefit of real, implemented machines (or very large, complex benchmarks) to in-

vestigate many important considerations—instruction cache effects, microarchitectural

implementation constraints, and exception processing, to name a few. This work did

elucidate, among other important principles, that, because of the complex interaction of

different types of program dependences, the performance impact of a collaborative suite

of ILP transformations is greater than the sum of the parts applied individually. This

means that techniques must be evaluated in context, considering the effects they will

have when applied in concert with other techniques; focused studies of single transforma-

tions are likely to provide results with very limited applicability. That EPIC performance

was attainable, in varying degrees, in the control-intensive benchmarks of the day was

demonstrated with measurements of the scheduled IPC of compiled code, ignoring dy-

namic effects. This research evaluation is heretofore unreproduced on real hardware,

taking into account instruction cache and other secondary costs, and on the larger, more

complex, and more control-bound benchmarks of today (as even a passing comparison of

6To label this approach “incremental” is not to disparage it, as it is a stable and predictable means
of extending conventional compilation techniques to EPIC. It does, however, make less aggressive use of
EPIC features than the “structural” approach and therefore offers less opportunity for dramatic results.

10

SPEC92 and SPEC95 to SPEC2000 will show [5]). These developments necessitate more

transformation to achieve expected levels of instruction-level parallelism, complicating

the compilation process.

As we today look to synthesize a consistent lesson from these various artifacts, sep-

arated by the passage of time and their differing assumptions, we have the benefit of a

real, second generation, EPIC implementation, the Intel Itanium 2 microprocessor [41],

and a version of the IMPACT compiler that targets this machine [42, 43]. This disserta-

tion provides a holistic and contemporary understanding of EPIC performance from the

structural optimization perspective, explaining the benefits and costs of the more radi-

cal, structural techniques using experiments on real EPIC hardware and with modern,

control-intensive benchmarks. We demonstrate the general effectiveness of these tech-

niques in producing high performance, showing a speedup of up to 2.51 (average 1.70)

over GCC and up to 1.59 (average 1.20) relative to IMPACT’s classical optimization

level. Excluding “nondeterminisms” such as data and instruction cache misses, as most

simulation-based experiments [38] have done, IMPACT achieves an average speedup of

1.47 relative to the classically optimized baseline, a result comparable with past investi-

gations. How this was achieved, and what we can learn from the details of these results,

are the recurring topics of the following chapters.

1.3 The State of EPIC Compilation Today

The performance of EPIC systems on control-intensive, general-purpose applications

depends heavily upon the efficacy of compiler transformations for exposing ILP. Such

transformations must be both effective, producing regions of code suitable for highly

instruction-parallel execution, and efficient, working in a way that does not unduly dis-

rupt the work of other transformations or the execution of the program. While various

individual ILP enhancement techniques are well-known [22, 36, 44–47], applying them to-

gether to contemporary programs in a collectively profitable manner is far from a solved

problem.

While reasonable heuristics exist to control application of the individual techniques,

one must distinguish between tactical decision-making and strategic understanding in

11

ILP formation. Individual techniques have been proposed and demonstrated on the

basis of tactical application patterns, without necessarily taking the larger context into

account. These approaches are tactical both “spatially,” not anticipating the effects

of the transformation on the rest of the program, and “temporally,” not applying the

transformation in the light of other potential transformations on the same code segment.

In the research environment, many transformations with potentially expensive side-

effects, such as inline expansion of subroutines and Superblock and Hyperblock forma-

tion,7 are today performed very aggressively with the hope of enabling future optimiza-

tions that will turn an initial loss into a benefit. Currently this risk is difficult to mea-

sure or manage. Given today’s larger and more control-intensive programs and more

constrained processor front-ends, deleterious effects like instruction cache footprint bloat

could reduce the benefit or turn an expected benefit into a loss. In the commercial con-

text, therefore, these optimizations are sharply curtailed (or simply not performed) in

practice in an attempt to, at the very least, not make things worse. Compiler developers

are left with a difficult choice, between a conservative compiler, incapable of reaping

much benefit, or a compiler producing highly varying results. The former is more ac-

ceptable to customers, as it generally produces more consistent results, so production

compilers accept it; researchers who need cutting-edge performance have to find ways of

understanding highly volatile experimental situations to evaluate new techniques.

Because of this chaotic situation, it is today relatively easy to demonstrate subopti-

malities in EPIC compiled code, even given a competent compiler and the assumption

of accurate profile information in the compilation. Experiments with IMPACT and with

production compilers have shown substantial opportunities to improve performance even

by applying only already-implemented techniques in situations overlooked because of de-

ficiencies in tactical heuristics and compiler phase ordering. August, for example, found

opportunities in IMPACT for reversing aggressive if-conversion decisions after subsequent

optimization and instruction scheduling [48]. More recently, Triantafyllis et al. found in

7These techniques produce specialized code paths by replicating segments of code shared by different
traces (see Chapters 4 and 5)[22, 36].

12

a study of Intel’s own highly tuned Itanium compiler that feedback-driven tuning of ex-

isting compiler parameters could result in single-benchmark performance improvements

of up to 20% [40]. Comparisons of results between the Intel and IMPACT compiler, and

among differently configured compilations using IMPACT, reveal similarly pronounced

variations.

Lack of a strategic view of ILP formation leads production compiler writers to make

only relatively conservative application of the techniques with the potential to reap the

highest benefits or, just as easily, the deepest losses. Increasingly aggressive applica-

tion of such techniques would adversely impact the compiler’s stability—the property of

a compiler that small changes in an input program can be expected to produce small

changes in the compiled program’s performance. This lukewarm stance is thus not an

unjustifiable position, but it is one that obstructs further compiler research and de-

velopment and limits the potential for gain from EPIC features. This is an especially

pressing problem as EPIC processor design is still developing—experiments performed

using conservatively compiled code may impact machine design parameters, limiting fu-

ture performance. Only a few years after Itanium’s introduction, the literature contains

studies with “negative results” suggesting certain EPIC features have less value than

previously believed [39]—these results are based on a production compiler making only

a conservative application of EPIC transformations.

Finally, as we look to future EPIC generations, compiler research needs to correct the

fact that even current machines are underutilized in control-intensive code. In recent ex-

periments using SPEC CINT2000 and a 6-issue Itanium 2 microprocessor, the IMPACT

compiler, when tuned for reasonably stable performance in an aggressive configuration

(later to be identified as I-CS), schedules 3.03 non-nop8 instructions per executed cycle,

on average, and sustains execution of only around 1.29 instructions per cycle, on average.

Shockingly, this is a very competitive result. Attempting to improve on this utilization by

simply increasing the aggressiveness of transformations decreases performance stability—

possibly increasing performance noticeably on a handful of code segments but not pro-

ducing a generally useful general-purpose compiler. The aggressiveness of even currently

8A nop is a useless instruction that merely fills an empty issue slot.

13

available transformations must be restricted because of the costs of unconstrained code

specialization and speculation. Stability is thus a fundamental obstacle, not only for

production compiler writers, but also for necessary EPIC compiler research as it probes

the limits of EPIC effectiveness in in control-intensive applications.

1.4 What Does “Optimization” Really Mean?

“Optimization” for ILP in EPIC machines is of a fundamentally different character

than traditional compiler optimization. It is, however, as important to relate this work to

the larger body of classical compiler optimization techniques as it is to relate it to other

architectural styles of ILP exploitation. Program optimization9 attempts to produce a

set of instructions that will perform a given algorithm in a minimum amount of time

using given hardware resources. Within this daunting and ill-defined task, there exist

two general possibilities: either (1) reduce the amount of work (number of instructions)

required or (2) increase the rate at which work is done (increase the rate at which work

can be marshaled through the processor, even if it means more instructions). In today’s

designs, the compiler is universally responsible for the first optimization “vector” and

either the compiler or microarchitecture is responsible for the second.

One might characterize traditional compilation for now-familiar out-of-order, super-

scalar machines (such as the DEC Alpha or Intel Pentium series) as a process concerned

primarily with the first objective. Though this is in reality decreasingly the case, the sub-

strate microarchitecture can be assumed to provide a reasonably parallel, dynamically

“optimized” execution of the instruction stream as minimized by the compiler. Ideally, it

maps a simple sequential model targeted by the compiler onto a pipelined and potentially

superscalar machine. Two problems, both exacerbated by increasing processor clock fre-

quency, can militate against this activity, foisting more responsibility on the compiler; to

this point, they have apparently been of relatively little concern to the publishing com-

piler community. First, microarchitectural schedulers are forced to either do less accurate

9As Aho points out [49, p. 585], when compiler writers presume to say “optimization” we should hear
“a code-improving transformation, we hope,” as any sense of transformation optimality is almost surely
artificial, and fleeting at that. Optimizations for power, code size, etc., are also possibilities; performance
is the focus in this work.

14

or aggressive scheduling of instructions or to occupy more precious pipeline stages. Sec-

ond, and even more fundamentally, as pipeline lengths increase, a greater proportion of

cycles is wasted due to recovery from misprediction. (These are joined by a host of other

microarchitectural penalties that are becoming more difficult and expensive to tolerate.)

As a result, compiler writers for even powerful out-of-order machines are beginning to

need to think about more parallel, as well as more concise, program expressions.

In the EPIC world, on the other hand, in which the processor has no ability to

search on its own for parallelism among executing instructions, the onus for developing

an instruction-parallel expression of input program, a plan of execution, already rests

squarely on the compiler—if EPIC machines are to be competitive with out-of-order

ones for control-intensive programs, the compiler needs to carry the day. While an out-

of-order machine can exploit ILP across multiple, dynamically predicted branches with

a flexible front end and scheduler, an EPIC machine executes groups of instructions only

as laid out by the compiler, requiring it to move and sometimes replicate instructions

as necessary to utilize the width of the processor. While an out-of-order machine can

dynamically reorder loads, their consumers, and store instructions to keep the machine

busy, the EPIC machine executes each operation in its scheduled instruction group.

If all goes well, the compiler can handle these new burdens, and the unencumbered

EPIC microarchitecture can concentrate on the smooth and efficient processing of many

instructions per cycle.

As has been noted, there are two ways of approaching the EPIC compilation prob-

lem. One is to retain more-or-less traditional compilation strategies and to apply the

EPIC features of speculation and predication to improve parallelism within essentially

traditional trace scheduling models. Work like wavefront scheduling [50], relied upon pri-

marily in today’s production compilers, does essentially this. Explicit control speculation

is used to move instructions opportunistically above their controlling branches, and pred-

ication is applied, also opportunistically, where decisions can be made before the branch

point to reduce the speculativeness of hoisted instructions. This is a safe approach, as it

perturbs the norm only a little, but it applies EPIC features only to palliate some of the

15

more obvious symptoms of control dependence’s stranglehold on ILP. It limits both the

potential for loss and potential for gain.

The more adventurous approach, the one taken in IMPACT,10 is to examine program

structure, with the aid of profiling information, and restructure the program in a some-

what systematic way. This approach focuses on creating efficient program organizations

out of generally obstructive control flow rather than scheduling instructions efficiently

within the existing graph. This will become clear in the examples of Chapter 3, in which

large regions of code, even those containing nested loops, are selected for if-conversion

(the program transformation that removes internal branches from a region of code, re-

placing all internal control flow with predicate assignments and evaluations). Today this

allows a wide variety of complex transformations to take place—most to good effect, but

some not. An empirically determined set of heuristics and a fixed phase ordering control

the process. This introduces a number of deficiencies, as will be described in the next

section. Still, this framework’s bold transformations achieve good results in a number of

SPEC CINT2000 benchmarks.

This brings us back to the topic of the meaning of optimization. The compiler is

attempting to provide an efficient plan of execution for a machine, of which it has some

knowledge, with only limited predictions of run-time program characteristics (control

flow tendencies, variable-latency instruction durations,11 etc.). In no clear sense is the

program it is producing “optimal,” although the performance its program achieves is

higher than that of one produced using only the traditional target of optimization. EPIC

optimization is only optimization in Aho’s sense, but the glimmer of optimality within it is

even weaker than in the systems of which he spoke. Design of a successful EPIC compiler

is better described as a problem of meta-engineering (of producing a system to engineer

workable solutions in complicated situations) rather than one of optimization. This

situation, while regrettable in the sense of producing well-characterized and satisfying

10also to a much lesser, opportunistic extent in production compilers, which have drawn techniques
from more aggressive research but “governed” them

11These variations can have a profound effect on performance and are difficult to manage in the
compiler.

16

algorithms, is nonetheless the reality of EPIC compilation. Meaningfully describing,

evaluating, and improving such a system is the challenge this dissertation faces.

As both the demand for and the difficulty of extracting ILP increase, we believe a

more strategic and far-reaching approach—further in the direction of IMPACT’s his-

toric work—rather than an evolution of the standard techniques will be required to

make EPIC machines competitive in control-intensive programs. This dissertation aims

to evaluate the feasibility of this approach, both to point the way to more systematic

(and therefore more stable), more comprehensive (and therefore more effective) transfor-

mations for a new generation of EPIC compilation work and to guide profitable EPIC

(micro)architecture development.

17

2 INTRODUCTION

This dissertation describes the culmination of a five-year experiment that applied the

suite of ILP-enhancing transformations embodied in the IMPACT compiler to the mod-

ern, nonnumeric applications of SPEC (Standard Performance Evaluation Corporation)

CINT2000 [5] applications in the context of the Intel Itanium 2 microprocessor [51], the

first full, contemporary embodiment of the EPIC processing paradigm [27]. This work is

the first comprehensive application of code specialization, predication, and speculation

techniques developed in a research context [38] to a production microprocessor expressly

designed to target them. As such, this work closes an important feedback loop—it pro-

vides data for conclusive evaluation of compiler and architecture techniques developed

over the past two decades or more, in the light of a modern implementation and modern

benchmarks. The chief conclusions of this dissertation, which will be substantiated in

the chapters to follow, are:

• The control flow structural (CFS) ILP-enhancing transformations of the IMPACT

compiler, when taken as a whole and as adapted in the course of this dissertation

work, are effective at increasing the performance of SPEC CINT2000 applications

on the Intel Itanium 2 architecture. They achieve an average speedup of 1.20

(geometric mean), and up to 1.59, on the benchmark suite, relative to traditionally

optimized code using the same interprocedural analysis, using the same degree of

18

procedure inlining, and running on the same machine.1 Formation of Superblock

regions2 and speculation of safe operations contribute a speedup of 8% relative to

classically optimized code. Control speculation of potentially-excepting instructions

adds an additional 7% to the speedup. Finally, the aggressive use of predication in

a Hyperblock model adds an additional 5%. These benefits are shown to be unique

and compatible with each other. The effects of underlying transformations and

analyses such as procedure inlining and interprocedural pointer analysis are also

examined. Quantitative evaluation of these techniques in a real-machine context is

in itself a major contribution.

• The achieved degrees of speedup vary widely among the benchmarks. In some

cases, the speedup is much greater than the average (up to 1.59 in the case of vor-

tex). In other cases, the speedup is insignificant due to unaddressed performance

factors (e.g., in mcf). No benchmark suffered an overall decrease in performance

due to ILP-related transformations. This indicates a usable degree of stability in

these transformations and allows characterization of the problems the techniques

are presently inadequate to address. Function-level results further support this as-

sertion of practical stability, although in individual cases performance is sometimes

degraded.

Even within the relatively narrow scope of applications selected for inclusion in

SPEC CINT2000, programs exhibit a wide variety of reactions to CFS techniques.

Some benchmarks, e.g., twolf, responded well to the use of Hyperblocks (predi-

cation); others, e.g., vortex, achieved approximately the same speedup with Su-

perblock formation alone. These variations are due primarily to differences in

algorithm features, coding styles, run-time patterns of control flow, and the degree

or pattern of profile variation. These distinctions have not always been made clear

in the literature, leading to difficulty in interpreting and comparing results.3 The

1It is necessary to speak of “same machine” since in the baseline case, the machine suffers the cost
of predication (6 bits per instruction) without reaping any of its benefits.

2with ancillary transformations, such as branch target expansion
3cf. [38], [39] and [52], which convey vastly different impressions of the value of ILP region formation

techniques.

19

demonstration of a consistent application of ILP techniques that provides reason-

able performance across this suite, and documentation of the principal variations

therein, are important contributions.

In some cases, however, e.g., crafty, complex interplay among several techniques

contributed to lackluster performance. This dashed hopes of finding effective, uni-

fied techniques for ILP optimization. Literature today is lacking definitive ex-

positions of the important principles at work in compilation of these programs

for instruction-level parallelism, impeding the application of important, aggressive

techniques in production environments. The dissertation discusses these issues in

detail, providing guidance for compiler developers investigating the future use of

these techniques.

• Achieving the breadth and stability of results delivered required substantial im-

provement of various aspects of the compilation process. One of the most promi-

nent examples of this was the extensive modification to region formation necessary

to avoid an unacceptable degree of code expansion. Without these improvements,

techniques previously described in the literature and designed for simpler, more

regular programs either failed or were unable to best address the larger, more com-

plex, and less regular programs of SPEC CINT2000. After reasonable controls

were applied, only crafty and twolf exhibited substantial degrees of controllable in-

struction cache impact, and these resisted improvement within the constraints of

the experimental framework. Experimental results thus suggest the insufficiency

of traditional control mechanisms to adequately control the interaction of the ILP-

enhancing techniques in a limited number of cases. In particular, the independent

treatment of (even inlined) procedures after a brief, high-level, interprocedural op-

timization stage has the potential to provide inadequate management of instruction

cache resources in the presence of code-replicating transformations.

• Code expansion is the primary cost of the specialization applied in the CFS ap-

proach to ILP enhancement. Experiments indicate that, for the benchmarks of

SPEC CINT2000, this expansion does not result in unmanageable pressure on

20

instruction-delivery mechanisms, and thus does not unduly detract from perfor-

mance, even with aggressive levels of transformation. In fact, instruction cache

performance is improved in the typical case (always fewer accesses, and sometimes

an increased hit rate). This validates the aggressive CFS optimization approach of

the IMPACT compiler, at least for applications structured like the components of

SPEC CINT2000, and suggests it may in fact be a useful alternative to the more

conservative approaches employed in contemporary production compilers.

• The speedup achieved by IMPACT’s techniques is heavily diluted (in the Amdahl’s

Law sense) by the prominence of stalls due to the latency of loads from secondary

(and, in some cases, tertiary) levels of cache, a factor that was generally dismissed

as insignificant or as a readily solvable factor in earlier studies [4, 53]. Despite lim-

ited successes using prefetching [54] (as performed in Intel’s compiler), attempts to

manage this latency in the compiler have, in general, proved fruitless. Alternatives

are addressed in Chapter 11. The interaction of this problem with CFS transfor-

mation is described—by increasing both the number and the density of accesses to

memory, CFS can aggravate these already-significant problems.

• Phase ordering, particularly as relates to inlining and subsequent region formation,

posed continuing problems. The IMPACT compiler cultivates ILP across virtually

the entire compilation process. Inlining and region formation, for example, both

replicate code in the search of ILP; these compete for instruction cache resources,

but this competition is not effectively managed by the compiler—an example of

the “strategic versus tactical” problem described in the previous chapter. This

interaction is difficult to control to “optimality,” but current management strategies

are shown to work well in practice. Deleterious effects of code expansion were not

significant enough to allow for serious study of this problem; a different application

set would be required.

• Sophisticated analysis is necessary to support the aggressive use of EPIC features,

particularly the combination of predication and control speculation. A new method

of predicated data flow analysis was developed that builds on the strengths of the

21

Predicate Analysis System [55] to deliver faster and more accurate results, enabling

performance improvement and compile time reduction in procedures making heavy

use of predication.

• The general speculation (no recovery code) model for control speculation, as has

been employed throughout the development of EPIC [25, 56], but was supplanted in

Itanium by the more rigorous but also more costly recovery code Sentinel model [52,

57], is practical and efficient, when the mechanisms described in this dissertation

for its control are employed, and frequently dangerous to performance when they

are not.

• IMPACT assumes control flow profile data. Even within SPEC CINT2000, substan-

tial profile variation (affecting final code performance) was observed, in particular

in crafty and perlbmk. This dissertation further characterizes this problem, but

proffers no new solution.

Taken together, these conclusions present a solid evaluation of the state of the research

art in EPIC compilation. They demonstrate that the various techniques tested in the

literature, using sketchy simulation environments, indeed work together to deliver perfor-

mance in an actual machine context. In many ways, though, this dissertation describes

the end of an era. As examples throughout the document, and especially Chapter 11, will

show, it appears that radically different techniques will be required to further increase

the applicability of EPIC technologies to irregular, nonnumeric programs.

2.1 Introducing the Methodology

The goal of this dissertation’s experimental system is to evaluate the ability of a com-

piler under development (the IMPACT Research Compiler for Itanium) to extract high

levels of performance from a particular set of control-intensive, nonnumeric benchmarks

(the SPEC CINT2000 suite) on a particular instantiation of the EPIC design paradigm

(the Intel Itanium 2 microprocessor). The remainder of this introductory chapter pro-

vides the necessary overview of these elements and introduces results that will motivate

22

the discussion of the remainder of the dissertation. For this chapter, a brief overview of

the salient features of each needs to suffice; details relevant to particular aspects of the

experimental results are left to other chapters and to the appendices.

2.1.1 The Itanium 2 microprocessor and experimental configuration

This dissertation concerns itself with achieving performance on one particular EPIC

model, that of the Itanium architecture [58], as embodied in the Itanium 2 processor

microarchitecture [41]. The Itanium architecture provides the core EPIC features: control

speculation (using either the general speculation or Sentinel/recovery code schema); full

predication (64 predicate registers); large integer and floating-point register files; and

support for kernel-only modulo scheduling [57]. This design incorporates all the critical

features of the earlier HPL-PD [4] and IMPACT EPIC [38] research architectures, and

thus provides a perfect opportunity to evaluate the outcomes of these research lines in a

completed design.

One of the interesting features of the Itanium architecture is the means used by the

compiler to express issue groups. Itanium provides a compressed VLIW encoding with

unit-assumed-latency (UAL) semantics [4].4 UAL semantics eliminate the need for verti-

cal nop instructions, used in some VLIW machines to encode the latency of instructions

by filling empty issue cycles; in Itanium, score-boarding ensures the machine is stalled on

nonunit latencies. To reduce the number of horizontal nop instructions required in the

encoding (those required to position other operations in the correct slots), Itanium intro-

duces bundles and stop bits. A bundle is a group of three instructions (two, if one is long

format). The bundle specifies the instruction type (memory, instruction, floating-point,

branch) for each enclosed instruction. Only certain combinations are available, simplify-

ing the machine’s issue logic. The bundle also specifies the location of stop bits relative to

the three enclosed instructions. A stop bit indicates the end of an issue group. A bundle

may always specify a stop bit after the bundle’s instructions; some bundles may specify

an internal stop bit, as well [57]. Even with all these “compression” features, however,

4UAL refers to the presence of interlocking hardware.

23

��
�
���

�
��	
�

�
�
��

�
���
�

��� ���

�����
��� ����
���

�	����
����
�������

��	���	�
�����
!�����
��"
�##��
$�������	��

!

�
	
�%

�
�$

���

�

�&� ��� ��� �&� ��� '��

��(�� ��) ��* '��

��+
,(� ,(! ,(� ,('

, � , � , � , ! , � , � , '

,)# ,)� ,)� ,)� ,)� ,)� ,)� ,)� ��(�� ��) ��*

��-
��" "���
��"�.

�	�/ ���� ��0/ "��� ��/1�/

�2+

,
(

(

�
%
/

��
�
��

,

3
4

�
%
/

��
�
��

5
4

�
%
/

��
$
�

,
)

(

4

�
%
/

��
�
�4
�$
�

�6 �(� �6 �(

#6 #(# #) #* #3

#6 #(# #) #* #3

#6 #(# #) #* #3

#6 #(# #) #* #3

����
-�	�$

���$���7

������	���
�����

���������	�

�����

����
�	"�

!6 !(! !) �6 �(

�6 �(� �) �* �3

��������� (666
!89

	
��� � (5:�
�
(
�%/
;
(5:�
�
(
�%/

�� 35:�
3<=
�%/

��)6= :�
(4
�%/

Figure 2.1 Intel Itanium 2 pipeline.

explicit nop operations are sometimes required. In classically optimized code, one out

of four instructions is typically a nop. In aggressively optimized code, nops may be as

infrequent as every 10th instruction. The increase in instruction packing efficiency, that

is, the reduction in cache storage and fetch bandwidth used for useless nop instructions,

that comes with higher levels of ILP scheduling freedom is an important component of

performance improvement for the techniques described here.

The Itanium 2 microarchitecture implements the Itanium model in an 8-stage, in-

order pipeline, as shown in Figure 2.1. The experiments described in this dissertation were

all performed on an Itanium 2 processor, clocked at 1.0 GHz. This processor supports

the issue of up to six instructions per cycle5 on eleven issue ports (which, in turn, feed six

arithmetic/logic units, two special-purpose integer units, two load ports, two store ports,

two floating-point units, and three branch units). The machine performs no register

renaming (the REN stage of the pipeline has to do with rotating registers for modulo

scheduled code, not conventional register renaming). As indicated by the buffer shown in

Figure 2.1, instruction fetch and alignment are decoupled from the processor back end by

a small buffer (48 operations) to allow limited fetching ahead during back end stalls [51].

5In this dissertation, the term instruction refers to a single operation, and issue group refers to the
group of instructions arranged by the compiler to issue in a single cycle. This nomenclature differs from
that used in earlier VLIW work.

24

The Itanium 2 used in this work has a three-level cache hierarchy, with a 16 KB L1I

cache (1 cycle latency), 16 KB L1D cache (1 cycle), a unified 256 KB L2 cache (5 cycles)

and a 3 MB L3 cache (12 cycles). A miss in the L3 cache has a minimum latency of

110 cycles in a 1 GHz processor. The actual latency of memory operations into the L2

and lower levels varies substantially, depending on other ongoing activities in the memory

queue [51].

The experimental system consisted of a Hewlett-Packard zx6000 workstation with two

such Itanium 2 processors (all experiments are, however, single-threaded) and a memory

subsystem populated with 8 GB of DDR PC2100 memory (two 1 GB DIMMs per each

of four out of the six available banks). The system runs Red Hat Linux Advanced

Workstation release 2.1AW (Derry) with a specially modified Linux kernel of version

2.4.21 (modified to support general speculation). This implies an LP64 storage model

(long integers and pointers require 64 bits, or 8 bytes, of storage).6

Further details regarding the Itanium architecture and Itanium 2 microarchitecture

are provided in Appendix A.

2.1.2 The IMPACT Research Compiler

This dissertation’s experiments characterize the effects of aggressive ILP transforma-

tions on SPEC CINT2000 programs running on the just-described Itanium 2 microproces-

sor. The compiler is the critical part of the system under test—the experiments presented

here are intended to probe the effectiveness of the ILP exploitation techniques, some old

and some created especially for this work, in the IMPACT compiler. The IMPACT com-

piler is an interesting tool to examine because it affords a greater degree of flexibility and

more aggressive utilization of EPIC features than are available in commercial production

compilers or the popular Gnu GCC.

Retargeting the IMPACT compiler, which for several years had focused on an ab-

stract, parameterizable EPIC simulation architecture, to produce competitive code for

6It is important to note this distinction when comparing this dissertation’s results to other published
SPEC marks. HP-UX Itanium systems and code compiled, even for Linux, using Intel’s compiler (with
the -auto ilp32 flag), may use the 32-bit model, effectively doubling the pointer and long integer
capacity of the cache hierarchy.

25

����������

�
�
�
�
�

�
�
�
�
�	

�
�
�

�

�
�
��

�

�
�
�
�

�
�
�
�
�
��

�
�

�
�
�

��
�
�

�
��

��
���

�

�
�
�
�
�

�
��

�
�
�
�
��

��
���

��
�

��

�

��
��

�
�

	
��	

�	

�
	
��

�

�
�
�

�
��
�
�

�
�	

��

	
�

�
�

�
�

��
	

�
�
�

��
�

�
�

�
�

��
	

�
�
�

�
�
�
�

�
�
�
�
�	

�
�
�

�
�
�
���

	

�
�
�

�
��

	
��

���������
��������

�	����
����
����	������

���	������	
��

 !�������	�����	��

 "�
������������

����
����	���	��

�������

 ��
�	�
���
	��
����
��#

����	������
�	������
��

����

 ����������������

 ���	�	�	�����������

	���
�	��������	���������

	��

"�������������$

 ������������ %���������&

 ����������	���������������

 ������������
��	���	
�

!���������������

�����
�������	
���

 ��
�����

��
���
�����

 �����������
��

 �������

��
���
���

 ������������
��

	����	
���

Figure 2.2 The IMPACT compiler: high-level phase ordering.

Itanium 2 proved to be a daunting challenge. This work involved adding 64-bit support

to the previously 32-bit compiler, modernizing and generalizing an experimental Itanium

back end written by Intel engineers, and modifying and extending previously developed,

experimental ILP compilation techniques for success on a real hardware platform. The

use of the IMPACT compiler and the time-frame of this conversion forced certain de-

cisions (the compiler does not, for example, support Sentinel speculation with recovery

code, so general speculation had to be enabled on the experimental system).7 Today’s

IMPACT compiler, after this thoroughgoing revision, is generally competitive in compiled

code performance (but certainly not in compile time—it is a research compiler, after all)

with leading commercial compilers for Itanium 2. This demonstrates the effectiveness of

the compiler’s transformations and establishes a “validated” baseline for these studies.

(When a compiler is not operating at a performance level competitive with other compil-

ers, self-comparisons with varied parameters could reveal performance differentials that

are irrelevant to other frameworks.) Throughout all this work, it is important to add,

care was taken to ensure that IMPACT remained a flexible research compiler that could

support the breadth of the experiments presented here (as well as the work of others).

An introductory description of the IMPACT compiler’s structure is in order before

proceeding with the detailed presentation. Figure 2.2 shows the principal phases of the

7Sentinel and general speculation are models of control speculation for potentially-excepting instruc-
tions. See Chapter 6.

26

compiler. The compiler cultivates instruction-level parallelism through successive appli-

cation of various techniques, most of which operate at less than full-program, or even

less than full-function, scope. The controlling philosophy is that each phase must be suf-

ficiently aggressive to obliterate program barriers, such as control dependence, so far as

possible, within interesting code regions, creating opportunities for later phases, but not

so over-aggressive that it causes the accumulation of insurmountable secondary penal-

ties. For example, function inlining takes place well before the compiler has the ability

to gauge its instruction cache effects, so its aggressiveness must be constrained; it is,

however, relied upon to expose regions to subsequent region formation and speculation

techniques, and must therefore take some risks. Hyperblock and Superblock formation

are similarly aggressive, operating before it is understood what benefits their special-

izations will purchase. Most of the work to be discussed here occurs in two program

restructuring phases, which are most directly responsible for exposing instruction-level

parallelism. The first is the “Pcode procedure inlining” phase, which selects frequently

traversed call sites for inlining, allowing commingling of caller and callee code and elim-

ination of optimization-obstructing subroutine calls. The second, “ILP optimization,”

performs code replication and forms Superblocks and Hyperblocks, the potentially pred-

icated code regions devoid of internal control flow, as the basis for cultivation of parallel

issue through optimization and scheduling. The interesting features of the rest of the

compiler are described as they become relevant, or in Appendix B. The compiler used

in this dissertation research is available at the Gelato / OpenIMPACT world wide web

site [43].

The IMPACT compiler offers a highly configurable compilation path with dozens of

parameter switches and knobs. For the purposes of this dissertation, five basic configu-

rations will be used consistently as points of comparison. As the need arises, deviations

from these five models will be noted in the text. Table 2.1 explains configurations. Gen-

erally, the first letter of the configuration’s moniker indicates the structural approach (O

means classical control flow optimization only; S indicates Superblock or single-path opti-

mization; I indicates full ILP, including predication) and the latter part indicates whether

27

Table 2.1 Basic configurations of the IMPACT Research Compiler

included
in all
configu-
rations

Profile-guided (using SPEC training inputs), cross-file procedure inlin-
ing is performed, up to a 2.0× touched-code expansion limit. (See
Chapter 7.) Control flow profile information is annotated for sub-
sequent use. FULCRA interprocedural pointer analysis (a field- and
context-sensitive, Andersen’s formulation with heap cloning) [59] and
Omega test [60] are applied. Profile-guided optimization is used (with
the SPEC CINT2000 training inputs).

O-NS

Classical optimizations [49, 61] are performed (copy propagation,
common-subexpression elimination, partial redundancy and partial
dead code elimination, register promotion, etc.). Local, acyclic instruc-
tion scheduling is performed, but without control speculation. Basic
blocks are laid out according to available profile information, but no
trace formation, tail duplication, loop peeling, or loop unrolling are
performed. Predication is used only incidentally in performing opti-
mizations, but no if-conversion is performed.

I-NS

In addition to the optimizations of the O-NS configuration, ILP-
cultivating transformations are applied. Trace formation (Chapter 4),
tail duplication, if-conversion (Chapter 5), loop peeling, and loop un-
rolling, as well as ancillary transformations such as expression height
reduction, are performed. Modulo scheduling is applied where appro-
priate. Still, no control speculation is performed.

I-CS

All the optimizations performed in the I-NS configuration are per-
formed, but control speculation (Chapter 6) is added (both in terms
of scheduling across branches and of predicate promotion). This is
the “peak” or “best” configuration of the IMPACT compiler presented
here.

S-NS

This configuration is identical to I-NS, except that the use of if-
conversion (and with it, loop peeling) is eliminated. Because if-
conversion is not applied, this is a Superblock-based framework. This
configuration is presented to help differentiate between the benefits of
region formation in general and if-conversion in particular.

S-CS

All the optimizations performed in the S-NS configuration are per-
formed, but control speculation (Chapter 6) is added (in terms of
scheduling across branches). A comparison of S-CS to I-CS indicates
the benefit of predication in the presence of control speculation.

28

(CS) or not (NS) control speculation of potentially-excepting instructions is enabled.8

Benchmark and function-level performance and cycle accounting differences among these

models are used to point out the benefits and costs of the various techniques applied.

2.1.3 Benchmarks and benchmarking

This dissertation uses the C and C++ programs of the SPEC CINT2000 benchmark

suite [5, 62] in its experiments. These benchmarks can be classified as compute-intensive,

tending to emphasize CPU performance (including, to a minor extent, the performance of

nearby cache structures) rather than other system components; control-intensive, char-

acterized by frequent, relatively difficult-to-predict branches; integer (or nonnumeric),

not dominated by either long-latency floating-point operations or by easy-to-parallelize,

large, regular numerical computations. Within these general parameters, each of the

12 component benchmarks offers a unique sample point for measurement of optimiza-

tion effectiveness. The benchmarks respond in individual ways to EPIC optimization

efforts—each can be seen as representative of a class of typical programs. The intention

here is not to provide simply a tuning guide for SPEC CINT2000 on Itanium 2; rather

the SPEC CINT2000 suite is used to show concrete examples of certain general problems

in EPIC compilation, as an accepted means of evaluating the fitness of the described

techniques in a nonnumerical code environment.

Given the complex nature of ILP transformation, it is impossible to characterize

a compiler’s effectiveness for all programs in general, and difficult to understand even

concrete compiler-derived speedups, without detailed knowledge of both the techniques

applied and the programs manipulated. This detailed evaluation of the IMPACT com-

piler’s effectiveness in optimizing well-known, readily available benchmarks on an easily

characterizable, readily available system is intended to allow the reader to assess con-

cretely the results of this dissertation.

8Even in the NS configurations, those instructions that are not potentially excepting or are provably
safe (such as loads to known-valid addresses) may be scheduled (and promoted, in the case of predicated
instructions) without regard to their control dependence. Without allowing this, the benefit of trace
formation is minimal. See Section 6.1.

29

This dissertation relied primarily on in situ performance assessment—the use of com-

plete runs of reference inputs for full-sized benchmarks, on real systems. Except for

estimated SPEC CINT2000 ratios, obtained using the provided runtime measurement

scripts, all performance results presented here were obtained using the Itanium 2’s hard-

ware performance monitoring features as supported by Perfmon kernel support and the

Pfmon interface developed by Hewlett-Packard Laboratories [63]. This combination al-

lows over 400 events to be either counted or sampled (correlating events to instruction

or data addresses), up to four at a time, in a low-overhead, per-process measurement

environment. These tools were extended by the author to provide the high-resolution,

low-overhead sampling features required to provide measurements of event frequencies

localized to particular regions of code. Benchmark-level numerical results are based on

event counting, not sampling. Useful event counts are available and reliable on Itanium

2, much more so than on out-of-order processors, which have to deal with much more

complex execution state. Function-level results are based on a sampling approach that,

while not guaranteed to be totally accurate, has served well in practice. This informa-

tion has proven invaluable, not only in demonstrating performance benefits, but also in

localizing performance problems.

In addition to providing results for discussion, these tools have proven invaluable in

the compiler tuning process. When combined with some analysis skill they provide a rea-

sonable level of understanding across an entire program execution without the substantial

overhead of simulation. The tools can both identify the magnitude of perturbation by

various microarchitectural sources and localize the causes of these problems. Chapter 9

describes further details of the measurement tools and procedures used in this effort.

One of the underlying themes of this dissertation will be the analysis of the suitability

of the benchmarks themselves for EPIC exploitation. In this dissertation’s prolegomena

(Chapter 1) it was observed that instruction-level parallelism was a convenient means of

extracting parallelism from typical, sequentially programmed code. Most programs are

written sequentially, and it is arguably much more natural for programmers to express

most programs in this manner [4]. Programming for parallel systems often assumes a

30

particular target system, with assumptions being made about the degree of parallel exe-

cution to be achieved, the cost of communicating among the nodes, etc. It has generally

been assumed that code written for uniprocessor execution is more performance-portable.

This is true to some extent for out-of-order machines, which can rearrange instructions

locally and at execution time (having perfect information) for more parallel execution.

For an EPIC compiler/processor system, however, it is less clear that there is a good

match between typical program construction and efficient optimization and execution.

Schlansker and Rau opine in a 1999 HP Labs Technical Report:

“Continuing this trend, of ever-increasing levels of performance without

re-writing the applications, is the topic of discussion of this report. ... ILP

systems are given a conventional, high-level programming language program

written for sequential processors and use compiler technology and hardware

to automatically exploit program parallelism. Thus an important feature of

these techniques is ... they are largely transparent to application program-

mers.” [27]

While the author agrees with Schlansker and Rau that a compiler can expose some

degree of parallelism from programs without their being rewritten, programming prac-

tice and program structure in many cases, even in SPEC CINT2000, militate against the

most effective patterns of ILP development. This will be indicated especially in Chap-

ter 5, dealing with predication, and Chapter 7, dealing with inlining. The application of

these two EPIC compilation stand-bys often conflicts with program idioms selected by

developers. Programs written with the possibility of EPIC optimization in mind stand a

better chance of successful transformation. In reality, this situation may be approaching

the complexity of writing some parallellizable programs.

2.2 Limitations of Scope

This dissertation is intended to deal primarily with the problems of extracting ILP

from nonnumeric (SPEC CINT2000 and similar) programs on EPIC architectures like

31

Intel’s Itanium. Numerical applications have unique problems, such as loop transfor-

mation for cache blocking, which are outside the scope of this work. Likewise, to limit

the scope of the problem, certain orthogonal techniques such as program augmentation

for data cache prefetching, though profitable for some nonnumeric applications, will be

left unaddressed. Data cache latency, for example, a critical element of performance on

Itanium, receives a regrettably brief treatment in Chapter 8.

Preferring to explore general limits and interactions, rather than necessarily fast and

cheap algorithms, the dissertation will not concern itself with compilation time and space

constraints. IMPACT is notoriously slow, taking more than a day to compile SPEC

CINT2000 on a single machine at the highest level of optimization. Much of this time is

due to optimizations being written in a simple, easily extensible fashion.

Itanium 2 performance in control-intensive, general-purpose programs depends heav-

ily on the compiler’s ILP-exposing transformations, which IA-64 supports with predica-

tion, explicit control speculation, data speculation, and modulo scheduling aids [57]. The

IMPACT compiler currently makes use of all these features except for data speculation.

Although IMPACT’s aggressive pointer analysis reduces the benefit IMPACT-compiled

code could derive from data speculation (perhaps in contrast to production compilers),

many potentially fruitful opportunities for data speculation can be observed. In gap, for

example, pointer analysis is unable to resolve critical spurious dependences in otherwise

highly parallel loops. A limited initial application developed by Ian Steiner provided a 5%

speedup in gap; much more is attainable. Aside from mitigating deficiencies in alias anal-

ysis, data speculation can also allow the compiler to manage even “known-sometimes”

dependences. Other researchers have shown opportunities to exist for profitable integra-

tion of data speculation into optimizations [64].

Since recovery code generation is not available in IMPACT at this time, the gen-

eral speculation model, as described in Chapter 6, or briefly as the immediate execu-

tion of control-speculative, potentially-excepting instructions, with the ability to ignore

program-terminal exceptions, is used to implement control speculation. As that chapter

will explain, general speculation is a viable and sensible choice of control speculation

schema, being potentially more efficient and easier to implement than the alternatives.

32

Briefly, in the general speculation model, the operating system is instructed to ignore

any program-terminal exception on instructions marked control-speculative. Under this

model, speculative instructions are executed fully and immediately, rather than deferring

prosecution of faults until the instruction’s original execution condition is satisfied (as in

the recovery code schema). Since the recovery code schema is currently the more popular

in production environments, however, all efforts have been made to ensure that either

the conclusions drawn here are applicable to the other model or that the differences can

be characterized in a useful way.

The dissertation will deal exclusively with code in the presence of profile data, as

provided for under SPEC CINT2000 rules. The IMPACT compiler depends on pro-

file in several ways: (1) in procedure inlining; (2) in optimization, particularly block

layout, partial redundancy elimination and loop optimizations; (3) in Superblock and

Hyperblock region formation [22, 36]; and (4) in control-speculative acyclic and modulo

scheduling [65]. In the first, call graph profile information (including indirect procedure

call edges) is required. For the latter three, control flow weight and loop (iterations-

per-invocation histogram) are obtained. This profile data is today crucial to effective

performance for EPIC machines. Practically speaking, representative profiles are often

difficult to obtain.9 Transformations also corrupt control flow information throughout

the compilation. However, we anticipate that as the techniques proposed will improve

the compiler’s general stability, the effects of input variation will actually be reduced as

a side-benefit of this work. Additionally, researchers have proposed profile-gathering [66]

and optimization [67] models that support profile-based techniques in a more generally

applicable manner than that available today. As the opportunity presents itself, the effect

of profile variation within the benchmarks is explored, yielding insights for the proper

use of bias in the application of ILP techniques. We revisit these issues in more detail in

Chapter 7.

9Also, SPEC CINT2005, the next generation of integer benchmarks, is understood to forbid control
flow profiling, at least for the base configuration.

33

2.3 High-Level Results

This dissertation work attempted to be driven as much as possible by examination of

empirical data from the studied benchmark set, running on the target machine. This led

to various interesting investigations in the course of the work that were not encountered

in the abstracted simulation approach typical of previous EPIC work. A representa-

tive example of the abstracted approach is the critical path reduction (CPR) work of

Schlansker, et al. When performance results for these techniques were published in 1999,

they were based on compiler estimations of schedule height, weighted by the control flow

profile [68]. They thus included no dynamic effects whatsoever. This made for a clean

experimental environment, but makes the application to real hardware questionable. The

same could be said of [38]. This being the case, it is appropriate to begin with a summary

of the performance results achieved by the techniques to be described in the following

chapters.

2.3.1 Estimated SPEC CINT2000 performance ratios

Table 2.2 shows estimated SPEC CINT2000 performance ratios10 (higher is better)

for GNU and IMPACT compilers on the system described in Section 2.1.1. The first

numerical column indicates the score for Gnu GCC version 3.2, a commonly used, free,

easily retargetable compiler.11 The second indicates scores for Intel icc version 8.1.12 The

remaining columns show scores for codes compiled with the various configurations of the

IMPACT compiler shown in Table 2.1.

The classically optimized O-NS baseline already shows a commanding lead (a 42%

increase in performance) over GCC, without applying the ILP exploitation techniques

10A SPEC ratio, or score, for a given benchmark is computed as 100tr/ts, where tr is the reference
execution time and ts is the measured execution time of the system under test. The suite-level score is
the geometric mean of the individual benchmark scores [5].

11Command: gcc -O3 -fomit-frame-pointer. GCC is run without profile feedback, as it is not yet
generally supported.

12Command: icc -O2 -ipo -static -prof gen|prof use. Scores for -O3 are indicated in Ap-
pendix C. -O3 enables data prefetching and high-level loop optimizations, orthogonal to CFS techniques
and not available in the IMPACT compiler, so -O2 provides a better comparison point.

34

Table 2.2 Estimated SPEC CINT2000 performance ratios

Benchmark GCC icc O-NS S-NS S-CS I-NS I-CS
gzip 374 629 588 624 696 657 751
vpr 497 666 616 659 719 692 756
gcc 521 988 833 955 1066 977 1030
mcf 333 335 330 335 323 331 338
crafty 489 801 657 695 709 715 745
parser 410 567 532 549 560 546 559
eon 273 895 462 494 530 578 611
perlbmk 472 676 733 728 775 738 772
gap 375 601 569 607 651 597 630
vortex 550 1080 867 1220 1393 1193 1382
bzip2 414 662 610 624 654 737 763
twolf 557 798 738 755 816 812 884
GEOMEAN 430 697 609 656 699 682 730

enabled by Itanium’s EPIC architecture.13 The reasons for this are several: even in this

configuration, IMPACT performs aggressive cross-file inlining, interprocedural pointer

analysis, careful instruction scheduling, and significant peephole optimizations for the

Itanium platform. While GCC performs a very competent level of traditional optimiza-

tions, it is not equipped to deliver even minimal levels of ILP on Itanium 2. GCC

lacks interprocedural optimization entirely and, because its developers choose to focus

on language features and retargetability over single-machine performance, has little ILP

cultivation or peephole optimization for Itanium. IMPACT’s success here reflects careful

tuning and optimization of the baseline configuration to ensure, first, that subsequent

stages will have the best possible quality initial code to work with, and, just as impor-

tantly, that the results of ILP transformation will not inadvertently be overstated. The

importance of performing compiler work such as this within a “validated” performance

domain, one comparable with other compilers in use, cannot be overstated, since it is

very easy to misattribute performance gains without a solid frame of reference.

13For a comparison of IMPACT to Intel’s commercial compiler on the Itanium platform [35], see
Appendix C.

35

��� ���
��� ���
��� ���
��� ���
��� ���
	�� ���
	�� 	
�
	�� ���
	�� ���
	�� ��
	�� ���
	�� ���
	�� ���
	�� ���
	�� ���
��� ���

� �
��� �
�
� ��
� ��� �
�� �
��
��
�
!#"$
�%

&(')'+*-, .0/213*
4 565879, :;, <=.-:(/>1).
? @BA9CD'FEHGI/KJLG
? @BA9CD'FEHGI/>'MG
? @BA9CD'FEN? /KJFG
? @BA9CD'FEN? />'DG

OPQ R SRT OUU VUW
UT
XW Y Z

RXT
[\T \]

^

R\T
_`
Va OXR S]T

Y \b ` P
Q R
c

Y d]
_W

ef
ghf
ij

Figure 2.3 Speedup relative to O-NS baseline.

Returning to the results of Table 2.2 and adding Figure 2.3 to indicate the relative per-

formance among the various configurations, I-NS applies predication and ILP-formation

techniques, but not support for control speculation of potentially-excepting instructions,

achieving an average speedup of 1.12 relative to the O-NS baseline. I-CS, finally, adds

control speculation, achieving a cumulative average speedup of 1.20 (maximum 1.59)

relative to the O-NS baseline, and 1.70 on average (maximum 2.51) relative to GCC.14

To allow evaluation of if-conversion as a component of the CFS strategy, two inter-

mediate columns, S-NS and S-CS, are provided. These columns reflect a configuration

of IMPACT that does not perform if-conversion (S stands for the use of the Superblock,

as opposed to Hyperblock, framework). The S-CS configuration achieves, on average, a

speedup of 1.14 (maximum 1.61) relative to baseline code.

Finally, the I-CS configuration is the “peak” configuration for IMPACT, the one

proposed as indicating the current pinnacle of IMPACT’s performance. (I-NS reflects the

same configuration, without control speculation of potentially-excepting instructions.)

The I-CS configuration achieves a 1.20 average speedup relative to O-NS code and a

14These results are generated in real SPEC evaluation runs, on real hardware, in the spirit of SPEC’s
run rules (training/reference inputs, compilation setting consistency, etc.) but are “experimental” in
nature. In keeping with SPEC’s policy on research use, we therefore label our results “estimated.”
These results reflect 64-bit pointers, in contrast to most published Itanium 2 results. See Table 2.1 and
Appendix B for details on IMPACT’s configurations.

36

1.70 average speedup relative to GCC. It also achieves substantial gains (frequently 10-

20%) relative to icc, the best commercial compiler on the Itanium linux platform (when

the latter is configured as described previously).

The high-level performance results indicate that IMPACT’s optimizations are meet-

ing with varying degrees of success in the different benchmarks. Benchmark results may

be categorized in several ways. First, in mcf, ILP optimization appears generally un-

fruitful, yielding practically no benefit. The benchmarks parser and perlbmk are not

much better off, each garnering about a 5% improvement from transformation. There

are several benchmarks for which ILP optimization is successful, but for which I-CS and

S-CS configurations have approximately the same performance (or for which S-CS even

outpaces I-CS). These include gcc, gap, and vortex. Finally, there are those benchmarks

for which an I-CS configuration (with if-conversion) provides superior performance: gzip,

vpr, crafty, eon, perlbmk, bzip2, and twolf.

While the value of predication varied from benchmark to benchmark, sometimes be-

coming quite substantial, when we compare speculative (CS) to nonspeculative (NS)

configurations, we find that control speculation relatively uniformly magnifies the effect

of CFS transformation. The interactivity and, to some degree, orthogonality, of these

techniques deserve to be pointed out. For benchmarks such as gzip, bzip2, and twolf, the

greatest benefits require both predication and speculation (available only in the I-CS

configuration). Predication and speculation are not interchangeable means to the same

end. Neither universally achieves the greater benefit. The diverse nonnumeric applica-

tions of SPEC CINT2000 provide a variety of case studies for the various EPIC techniques

(and their combinations). This result, while perhaps not surprising in light of previous

studies such as [38], underscores the intent of EPIC developers in including these features

in combination—none a “silver bullet” solution, they together and in a piecemeal fashion

extend the benefits of VLIW execution to various new classes of applications.

Aside from categorizing benchmarks with different properties, there is little more to

be learned from the speedup numbers. We will, however, return to explore the reasons

behind these results later in the presentation. Let us therefore delve deeper.

37

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

In
st

ru
ct

io
n

s
p

er
 c

yc
le

 (
IP

C
)

Useful Pred Sq. NOP

Figure 2.4 Instructions per cycle.

2.3.2 Results in instructions per cycle

The most commonly used metric for effectiveness of software and hardware techniques

for ILP exploitation is the ratio of instructions executed to the number of cycles required

to execute them, or “instructions per cycle” (IPC). The preference for this measure

corresponds more to the dynamic ILP extraction techniques than to those applied in the

compiler. In the context of hardware (microarchitectural) optimizations, the number of

instructions to be executed is constant. This is not the case for a view that includes

the compiler (and we are about to explore the extent to which this is true for these

benchmarks). Nonetheless, IPC results are often expected and are useful for explaining

some phenomena, as we shall see.

Figure 2.4 shows the IPC results for the various benchmarks across the four compiler

configurations. The segments of each bar represent the numbers of particular classes of

instruction instances executed per cycle. The bottom segment of the bar reflects non-nop

instructions that executed with their predicates set to 1. This category is referred to as

useful IPC. It should be noted that useful is a slight misnomer, as off-path, speculative

instruction instances are included in this count. In general (and particularly in hardware

measurement) there is no good way to distinguish between on-path and off-path specu-

lative instructions. The next segment reflects non-nop instructions that were issued but

kept from execution because their predicates evaluated to 0. Finally, the top segment

indicates nop instructions, which serve no purpose but to fill empty issue slots in bun-

dles. Aside from mcf, which performs abysmally, IMPACT/Itanium achieves a useful

38

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

D
yn

am
ic

 in
st

ru
ct

io
n

 c
o

u
n

t
(r

el
at

iv
e

to
 O

-N
S

)

Useful Pred Sq. NOP

Figure 2.5 Effect of compiler configuration on dynamic instruction count.

instruction execution rate greater than 1 IPC across the benchmark suite, and in some

cases up to 2 IPC. The number of predicate-squashed operations issued per cycle is small,

and the number of nop instructions issued is noticeably reduced in the CFS-optimized

configurations. These are all satisfying results, although one might hope to achieve more

than 1-2 IPC in a nominally 6-issue machine (more is to be said on this later).

IPC can be a misleading metric for understanding the total performance effects of

ILP compiler transformations. The same path specialization (code replication) that al-

lows ILP transformations can also enable optimizations that can have a profound effect

on the number of instructions executed. Figure 2.5 shows the number of dynamic in-

structions executed in each benchmark for each compiler configuration. IPC can mislead

in two directions. First, it can understate the benefit of transformations, since special-

ization can allow greater optimization opportunity, reducing the number of instructions

executed. This is the case with vortex under S-CS optimization, in which the number

of useful instructions executed is decreased by 32% and IPC is increased by a factor

of 10%, compounding to the observed 62% increase in performance. IPC can also sug-

gest more benefit than is actually being derived, since ILP transformations, and control

speculation in particular, can uselessly increase the number of operations executed if

compile-time predictions about program bias were wrong. This is the case in perlbmk,15

in which the number of useful (hence the misnomer) operations is increased by 2% while

15This benchmark is one of the more egregious cases of profile variation in SPEC CINT2000. Rampant
misspeculation and poor spill code placement explain much of this bloat.

39

IPC is increased by 8%, working out a low 6% benefit for ILP techniques (in the I-CS

configuration—when speculation is disabled, the number of instructions issued is reduced,

but the performance result is also degraded slightly).

One of the unique points of this work is the use of real hardware measurement.

This approach has certain disadvantages, as the observation and especially correlation

of events in the hardware (not to mention, variation of characteristics such as usable

cache size) is much more difficult than in a software-based simulation environment. The

insufficiency of IPC as a metric for the effectiveness of compiler-based ILP techniques,

though, demonstrates a decided advantage of real-hardware measurement. Real hard-

ware execution is orders of magnitude faster than detailed microarchitectural simulation,

allowing the execution of entire benchmarks with their full reference data sets, something

almost unthinkable on a simulator. The sampling solutions typical for accelerating sim-

ulation work to a usable point have very dubious meaning when the code being sampled

exists in and is being evaluated across different compiled versions. The inability of these

IPC results to provide reliable performance predictions is thus another validation of the

decision, however painful, to pursue this work on a real hardware platform.

2.3.3 Results from cycle accounting

To conclude the introductory examination of the high-level results, we consider the

accounting of execution cycles to particular machine activities. This accounting is sup-

ported by the performance monitoring infrastructure of the Itanium 2, and is reliable

because the machine is in-order. This allows a clear definition of what specific activity

is preventing forward progress at any given time. Figure 2.6 shows these results. The

total height of each bar is the execution time of the indicated configuration, relative to

the baseline configuration. The segments within each bar reflect the breaking down of

benchmark execution time into the various categories of progress or stall conditions. Ap-

pendix Section C.2 gives a complete explanation of the cycle accounting categories and

some necessary caveats. For now, we concern ourselves only with a few prominent issues.

First, only the bottom two bars, unstalled execution (meaning instructions are being

retired) and floating-point scoreboard (meaning the machine is stalled waiting for a result

40

0.00

0.20

0.40

0.60

0.80

1.00

1.20

O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Ex
eu

ct
io
n
tim

e
re
la
tiv

e
to
 O

-N
S
 kernel

misc. user

register stack
engine
branch mis-
prediction flush
front end bubble
L1D/FPU micro-
pipeline stall
integer load bubble

floating-point
scoreboard
unstalled execution

Figure 2.6 Cycle accounting detail.

from a floating-point operation),16 reflect cycles of activity that are anticipated by the

compiler. These generally account for fewer than half the total cycles accounted, posing

a significant challenge for an EPIC compiler. A visual inspection of Figure 2.6 reveals

that most of the benefit yielded by CFS transformations (particularly with respect to

S-CS) comes from compacting these anticipated cycles. (Predication in I-CS also has a

beneficial effect on branch misprediction and front end bubble cycles.)

By far the most important observation from these data is the preeminence of data

memory stall time, practically across the board. On average, in one third of cycles (in the

O-NS configuration) and two-fifths of cycles (in the I-CS configuration), the processor

is stalled on a value requested from the data cache hierarchy. This can be due to either

latency (integer load bubble and, to some extent, floating-point scoreboard) or collisions

in data access (L1D/FPU micropipeline stall).17 In some cases, the domination is quite

extreme. 95% of cycles are spent in such a state in mcf and 58% in vortex, after aggressive

optimization. This latency is not generally exposed to the compiler, and is thus immune

from optimization by typical ILP techniques. Results show (this will be discussed in

more detail later) that the ILP techniques, and specifically control speculation, at least

do not generally increase the memory latency stall time, as might have been assumed

from previous results [38] which suggested that spurious cache misses contributed up to

16The Itanium architecture implements some integer mathematical operations in floating-point units.
17L1D micropipeline stalls result from events such as memory request recirculations, data TLB misses,

queue and store buffer overflows, and other irregularities in the memory subsystem.

41

half the misses in several applications. The application of these observations in relating

this work to previous, simulation-based evaluations is dealt with more fully in Chapter 10.

Another important observation has to do with the role of predication in delivering

performance in EPIC systems. Generally, in those applications where I-CS outperforms

S-CS, the benefit from the I-CS framework only narrowly exceeds the difference observed

in branch misprediction flush and front-end stall categories. In addition to eliminating the

effects of mispredicted branches removed, it does succeed to some extent in overlapping

independent control constructs, achieving higher ILP even while the machine would not

have been otherwise stalled. These instances are not, unfortunately, very obvious at the

benchmark level.

More specific observations from these data will be discussed as they become relevant,

later in the presentation.

2.4 Introducing the Detailed Presentation

Operating within this experimental context, the next six chapters address specific

components of the compiler framework and their roles in producing the indicated levels

of performance. Chapter 3 discusses control flow structural optimization at a high level.

Chapter 4 introduces more specifics on the implementation and implications of code spe-

cialization, something that has not previously been characterized in this level of detail

in the modern context. Chapter 5 discusses the predication apparatus of the IMPACT

compiler, and the adaptations it required to make it a productive element on Itanium.

Chapter 6 discuss control speculation, the area of the compiler that required the most

adaptation to render it generally safe and useful in the real-machine context. Chapter 7

discusses procedure inlining, which is generally a necessary fertilizer for subsequent ILP

transformations. Chapter 8 covers special topics in implementation and results. Chap-

ters 9 and 10 describe the performance analysis framework that delivered the presented

results and some selected related work, respectively. Chapter 11, finally, presents some

concluding thoughts.

42

3 CONTROL-FLOW-STRUCTURAL EPIC COMPILATION

This dissertation refers to the IMPACT compiler’s approach to cultivation of instruction-

level parallelism as the control-flow-structural (CFS) approach. In this approach, a pro-

gram’s control flow is first radically restructured into cohesive regions; parallelism is then

cultivated within these regions by means of predication, speculation, acyclic and cyclic

(modulo) scheduling, height reduction, and specialization-dependent optimizations. The

formation of appropriate regions is thus foundational to the CFS approach. This disser-

tation’s experimental results, to be detailed later, show this region-based1 approach to be

highly effective, with the assumption that representative control flow profile information

is made available to the compiler. This chapter lays out the techniques used to develop

these basic regions, describing the important features of the heuristics controlling this

process and the prominent pitfalls that can decrease its effectiveness.

3.1 Impediments to ILP

Any discussion of ILP cultivation techniques must begin with the obstacles that must

be surmounted to expose it effectively. These obstacles form the problem statement, not

only for this chapter, but also for the chapters to come. While these barriers fall into

1The use of the term “region-based” here is to be distinguished from the use in the work of Hank
et al. [69, 70]. In that work, the term referred to a selection of optimization regions across function
boundaries, a generalization of procedure inlining, rather than the techniques used to form extended,
potentially predicated basic blocks.

43

four broad categories, we devote the most attention here to the first category, control,

which has the most basic connection to the problem of region formation:

3.1.1 Control obstacles

By definition, in control-intensive programs, control operations are frequent (one out

of seven instructions is a branch in O-NS code). CFS optimization is designed primarily

to eliminate them (one out of twelve instructions is a branch in I-CS code) or to mitigate

their effects. In imperative programs, branches serve two purposes: first, they form the

decision-making apparatus of the program, deciding how the control flow graph will be

traversed; second, they delimit groups of instructions having the same execution condi-

tion. Like any modern architecture, an EPIC microarchitecture usually succeeds for the

most part in hiding the latency of the decision-making aspect with branch prediction.

Unlike other microarchitectures, however, EPIC does not provide for the runtime inter-

mingling of operations across a branch. Lam and Wilson [10] emphasized the importance

of this obstacle to extracting useful amounts of ILP, especially for VLIW machines.

The previous paragraph looked at branches from the perspective of the hardware.

Formally, from the compiler’s perspective, branches constrain the execution of later op-

erations by control dependence relations.2 Within the context of a (single-entry) trace,

the hardware and software views of control dependence are identical. If one considers

prior tail duplication, however, the motion of an instruction above a side-exit branch in a

trace may not in fact have the effect of executing the instruction in a new control domain

(that is, its copy will surely execute in the tail, so it is not, strictly speaking, control

speculative). The IMPACT compiler ignores this possibility, treating any instruction as

control-speculative that it moves above a branch.

2Control dependence here is used in the same sense as in [61, pp. 267 ff.], in which an operation
is control dependent on a branch if the branch may determine the number of times the operation may
execute.

44

Predication, as it converts control into data dependence and allows instruction-

granularity execution control, enables the compiler to attack both these aspects, sim-

plifying the program control apparatus, removing branches that might otherwise mispre-

dict, and permitting the general intermingling of instructions having different execution

conditions. Control speculation allows likely-to-execute instructions to move above their

controlling branches. Compile-time, structural code transformations to eliminate control

inefficiency are a primary enabler of EPIC performance and the central focus of this study.

These compile-time solutions to control obstacles, however, generally require predictions

about runtime conditions, leading to the general problem of profile dependence.

3.1.2 False dependences

Memory accesses and subroutine calls can pose artificial barriers to both optimization

and scheduling, if their dependences are resolved only conservatively. Alias and array

dependence analysis aim to determine the true, minimal set of dependences needing to

be drawn among these operations to preserve program correctness. IMPACT applies so-

phisticated interprocedural pointer analysis algorithms [59] and Pugh’s Omega Test [71]

to reduce spurious dependences. Informal studies of the highest-execution-frequency,

unresolved store-to-load dependences across the studied benchmarks suite indicate that

these are usually due to array indirection, manual allocation pooling, or other very dif-

ficult cases, and not to unintentional shortcomings in these analysis algorithms. Data

speculation support may be useful in addressing these cases, but requires another center

of speculative decision-making in the compiler [72].

3.1.3 Occasional dependences

Out-of-order processors today successfully reorder loads and stores, checking for run-

time dependences and stalling, buffering, or replaying operations as necessary to preserve

program correctness [20]. This allows them usually to reorder “mostly independent” oper-

ations, something the compiler cannot do statically without additional hardware support

for data speculation [57, 73]. The IMPACT compiler does not currently make use of this

feature on IA-64, although it holds promise. Since the frequency of actual dependence

45

dictates the recovery burden, compile time guesswork similar in concept (but different in

substance) to that applied in eliminating control dependence must be applied.

3.1.4 Nondeterminism

Finally, variable-latency and potentially-excepting instructions, such as loads, pose a

challenge for statically scheduled machines, as is evident from the fraction of machine

stall cycles due to data cache misses. The compiler can manage only those latencies

it can anticipate. The dampening effect of data cache stalls on any ILP-oriented op-

timization technique was noted already in Superblock research [22]. Complicating the

basic scheduling problem, when speculated, each off-path instance of these operations

becomes a potential performance “landmine.” This is of particular concern because the

ILP techniques themselves tend to increase the effect, rather than simply be diluted by

it, and became a topic of later EPIC research [38]. This dissertation improves on the un-

derstanding of this problem. As Chapter 8 will discuss, region formation can have either

positive or negative effects on nondeterministic behavior. For example, while Hyperblock

formation generally reduces the number of cycles stalled recovering from branch mispre-

diction, experimentation shows that a Superblock-centered formation strategy sometimes

increases these penalties. Various software prefetching schemes [54] and microarchitec-

tural additions [28, 29] have been proposed to help “smooth over” these troublesome

exposures of latency.

3.2 Control-Flow-Structural Transformation in the IMPACT Compiler

As was just noted, CFS techniques focus primarily on mitigating control barriers to

ILP. Like an out-of-order machine, EPIC compilers exploit ILP across branches by relying

on the notion that program execution is comprised mostly of a composition of stable,

predictable traces through the control flow graph [32]. Compiler-based trace selection

and EPIC features together allow for improved region selection, region customization,

and decision interleaving difficult or impossible to conceive in the traditional instruction-

set architecture. First, by using predication to control the execution of instructions

46

individually, the compiler may incorporate multiple program paths into a single trace,

or Hyperblock [36]. This increases the scalability of trace formation, as it counters the

(in the worst case exponential) code growth entailed in expanding each path into its own

Superblock trace. Furthermore, because the execution of instructions is no longer solely

determined by the position of instructions relative to branches, ILP may be exploited

more freely among groups of instructions with independent execution conditions. The

example of Figure 3.7, to be discussed in detail shortly, illustrates this effect. Finally, the

selection of these large, stable, traces at compile-time allows for extensive and efficient

optimization of enclosed computation. Code sequences can be specialized for their path

context, and speculation can be performed easily and efficiently within the trace by

moving instructions up past branches or weakening operations’ predicates, allowing them

to bypass their predicate definitions in the schedule but permitting them to execute more

frequently. This is the essence of control-flow-structural transformation.

Various CFS transformations are employed together in the IMPACT compiler. The

techniques are introduced briefly here, with detailed explanations saved for the chapters

specific to them. Some recurring themes bear mentioning: CFS transformation specializes

code for the purpose of enhanced instruction-level parallel issue. As a side-effect, CFS

introduces opportunities for specialization-based optimization. The primary costs of CFS

transformation are code expansion and costs of off-path speculative or off-path predicated

operations.

We need to introduce briefly the various aspects of CFS transformation in the IM-

PACT compiler before proceeding to some illustrative examples. In the course of this

survey, the important characteristics of the approach are exposed—chief among these is

the degree to which each transformation is speculative, hedging that subsequent trans-

formations will leverage its aggressiveness to yield a benefit.

3.2.1 Procedure inlining

The boundaries between procedures are often put in place for reasons other than

code compilability: code readability, modularity, etc. [69] The IMPACT compiler uses

profile-guided procedure inlining (including inlining of indirect call sites) to create larger

47

regions within which to apply ILP development and specialization techniques [74]. This

is an a priori approach, meaning that the inlining of procedure calls is performed before

it is known what ILP transformations and optimizations could be performed across the

inlined interface. Furthermore, the code specialization effected by inlining of a procedure

called from multiple call sites creates uncertainty in the profile used to guide subsequent

transformations.

In this dissertation’s experiments, inlining delivered an average 13% performance im-

provement (up to 40% in eon) when applied in combination with full ILP optimizations

(I-CS). Although extensive inlining was performed (resulting in approximately a 1.5×

increase in the number of static instructions touched across the suite), performance was

not noticeably degraded by code footprint growth. This salutary result has to do both

with benchmark code structure, which does not present many opportunities for footprint

growth to overburden the instruction cache hierarchy, and also with the fetch efficiency-

improving effects of inlining and subsequent CFS transformation. (Transformations re-

duce fetched nop count by 38% across the suite, in both Superblock and Hyperblock

configurations). This means more useful instructions are fetched per instruction cache

access, combating the footprint growth that ordinarily accompanies inlining and other

CFS transformations.

These effects, and other interesting facets of inlining for CFS, are described in detail

in Chapter 7.

3.2.2 Superblock and Hyperblock formation

The fundamental element of CFS transformation is a region of code specialized for

optimization. The Superblock, a single-entry, potentially multiple-exit region, is the first

conception of this type of region that we will consider [22].3 A Superblock is formed

by selecting a single, frequently executed path through a control flow subgraph, then

removing all of the trace’s side entrances by duplicating all subsequent code in the trace

(a process called tail duplication), and, finally, rendering all blocks on the trace into

3A detailed historical discussion, which provides some useful insights from earlier trace scheduling
work, is deferred to Chapter 10.

48

a single, extended basic block. Within this trace, instructions are free to be speculated

without concern for side entrances (contrary to the more complicated case in earlier trace

scheduling models that did not replicate code [44]). Superblocks also facilitate increased

on-trace optimization, as will be discussed later. The costs of this transformation include

the code replication due to tail duplication (generally less than a 10% increase in touched

code size with reasonable parameters) and the penalization of execution that does not

follow the expected trace. Further details are described in Chapter 4. Superblocks aim

to fulfill the apocryphal computing maxim, “Make the common case fast.”

If Superblocks make the common case fast, a natural question is how one might

make the common case more common. In some program segments there is no single,

clearly dominant path. With predication, the Hyperblock [36] introduces the possibility

of incorporating multiple traces into a single specialized region. The Hyperblock is simply

a single-entrance, potentially multiple-exit region in which individual operations may be

predicated. The if-conversion algorithm [75, 76] allows a collection of traces sharing a

single entry point to be converted to such a predicated, extended basic block. The use

of predication in Hyperblocks has two primary, salutary effects: first, mispredictions

attributed to branches eliminated in the if-conversion process are eliminated; second,

control-independent instructions may be interscheduled freely within the Hyperblock

without code replication or introduction of burdensome control flow. The second effect

is rarely mentioned but extremely useful when it occurs. One good example is in modulo

scheduling (software pipelining). Pipelining a single predicated, extended basic block loop

is much easier than pipelining the corresponding loop implemented with control flow [77].

The details of Hyperblock formation and optimization are reserved for Chapter 5.

The decision-making process of which and how many paths to incorporate into each

specialized region is complex and not thoroughly explored. Making regions too spe-

cialized (tending toward the single-trace Superblock, for example) may fragment code,

generating excessive tail duplications and increased complexity. Incorporating too many

paths, on the other hand, may penalize the common case or impede certain optimizations.

Heuristics in this area rely heavily on control profile information and, in the case of Hy-

perblock formation, in which multiple traces of instructions must compete for resources

49

and co-exist in a single path of execution, on estimates of path dependence height and

instruction count. In some cases, compiled-code performance is very sensitive to varia-

tions in the parameters controlling this process. Decision-making is complicated by the

fact that formation, like inlining, is done prior to the optimization and scheduling that

will determine the final characteristics of the code segment.

3.2.3 Ancillary transformations and optimizations

A variety of other transformations assist the region former in including more code

into traces. These include loop unrolling and loop peeling (tail duplication is considered

an integral part of the region former).

Loop unrolling is applied less frequently in this experimentation than in previous

work with the IMPACT compiler. The full-featured support for software pipelining

on Itanium has rendered iterative modulo scheduling generally a better solution. The

massive unrolling traditionally performed after region formation, in some contexts, al-

lows both overlap of iterations and significant cross-iteration optimization. In SPEC

CINT2000, however, experiments show that this optimization has little opportunity to

buy performance, and modulo scheduling achieves a better overlap with much less code

expansion.4 Limited unrolling is still performed on single-block loops not marked for

software pipelining, and a new schema of unrolling (unrolling under a predicate) has

been added to address specific issues in software pipelining loops with specific patterns

of memory access. This technique accelerates bzip2 significantly by reducing spurious

store forwarding stalls.

Hyperblocks must have single points of entry; this precludes their incorporating loop

bodies. In many cases, it is beneficial, though, to include the first or the first few iterations

of an inner loop in a Hyperblock region. This is accomplished by loop peeling, a code

replicating transformation that pulls iterations out of loops into the preheader. Chapter 5

addresses the loop peeler, since it is operative only in the Hyperblock framework.

4Less than a 1% difference in performance was observed between the unrolled and modulo scheduled
versions of these applications in the I-CS configuration.

50

After region formation, additional optimizations continue to increase region size. The

most notable of these is branch target expansion. Superblock and Hyperblock formation

are limited, in many applications, in their ability to by themselves generate large execu-

tion regions, even when aided by loop peeling and unrolling. Branch target expansion

finds control flow arcs from the end of one “source” extended basic block to another (the

“target”) that are frequently occurring and likely to be taken (relative to a given execu-

tion of the block). Provided that certain other criteria are satisfied, the target block is

expanded (copied) into the source block. If the target block had multiple predecessors,

this involves code expansion. In past experiments, this code growth was not meaningfully

constrained, with the intent of producing execution regions of at least a minimum size

(around 256 operations), if accommodable within the control structure of the program

after Superblock and Hyperblock formation. This approach caused unacceptable levels of

code expansion in several benchmarks. This occurred most notably in crafty, in which a

2.4× expansion in static, executed operations caused most of the Superblock approaches

gains to be offset by increased instruction cache miss-related stall time. The controlling of

this process, described in Chapter 4, eliminated these degradations without substantially

decreasing the gains achievable from this approach, even in an ideal-cache sense.

Finally, the developed regions are exploited to perform enhanced optimization and

scheduling. Registers are renamed to eliminate anti- and output-dependences. Induction

variables are manipulated to increase parallelism, especially in unrolled loops. Com-

mon optimizations, such as copy propagation and common subexpression elimination,

observe increased opportunities because of path specialization. Control-height reduction

techniques such as branch combining attack control in the more manipulable form it is

rendered into within Superblock and Hyperblock regions. These further optimizations

can have a substantial effect on total code performance (up to a speedup of 1.12 in vortex),

although their effectiveness is reduced in this context, relative to previous experiments.

3.2.4 Control speculation

The ability to schedule operations easily with respect to control flow transfers was

the primary motivation behind the development of CFS techniques. Mechanisms for

51

performing and controlling such speculation are thus implied. A general speculation

schema for control speculation is provided in the IMPACT compiler. This is employed

both during optimization and during instruction scheduling to move even potentially-

excepting instructions across branches. Predicate dependences are removed via predicate

promotion (the weakening or removal of guard predicates on predicated operations, in

effect a control speculation), allowing increased scheduling and optimization freedom and

permitting reduction of predicate computation networks. General speculation delivered

substantial performance gains in this work, but had to be rendered safe with special

compiler techniques. Chapter 6 discusses these speculation mechanisms in detail. Control

speculation contributes an average speedup of 1.07 across the suite.

3.2.5 Instruction scheduling and software pipelining

Finally, we return to the topic that motivated the initial development of CFS trans-

formation (that is, in its development from trace-based work)—instruction scheduling.

In keeping with the original Superblock philosophy, in the IMPACT compiler, instruc-

tion scheduling is a local (per predicated extended basic block) operation. This renders

the potential for beneficial instruction scheduling entirely dependent on the formation

of appropriate regions, unlike in other compilers that generally employ forms of global

scheduling. The IMPACT compiler also performs iterative modulo scheduling [33] on the

same PEBB regions. Modulo scheduling delivers occasional benefits in SPEC CINT2000,

with the greatest being a speedup of 1.12 in gcc.

3.3 Case Studies in Complex Region Formation

As much as any ILP compiler, IMPACT is much more at home in “loopy” programs—

programs whose execution time is dominated by manageably sized, high-trip-count loops.

A benchmark dominated by these kernels is easy to optimize for ILP because they make

the necessary region formation decisions rather obvious and because the secondary effects

of intensive optimization generally fall upon unimportant, infrequently traversed code

outside the loops. Large, complex programs less dominated by small, high-trip-count

52

loops make for much more of a challenge. Anyone with experience compiling SPEC

CINT92, CINT95, and CINT2000 can easily identify the trend away from kernel-bound

programs toward more complex cases, and the author believes this accurately reflects the

trends in important nonnumeric applications in general-purpose computing today.

Region formation in control flow structural compilation gets complicated in the pres-

ence of intense and irregular (not “loopy” in the classical sense) control. To illustrate the

dramatic nature of transformations applied, some examples from the benchmark suite are

employed. These examples demonstrate how the various techniques, such as Hyperblock

and Superblock formation, loop peeling, and other ancillary transformations unite to

produce highly tuned, special versions of code for efficient execution of common cases. In

the gzip example, in particular, these transformations are crucial for achieving outstand-

ing performance. (IMPACT achieves a SPEC CINT2000 ratio 20% higher than the best

commercial compiler on the Itanium Linux platform.5) In the success of these techniques,

however, there lurks a danger, as well, as the specialization of the assumed-to-be-common

paths comes at the cost of a sometimes substantial penalty in code expansion or in direct

penalization of those paths adjudged to be less important.

3.3.1 An example from gzip

Figure 3.1 shows the main deflation matching loop (originally included in the function

longest match(), but considered here in the context of deflate(), into which it is

inlined) of the SPEC CINT2000 benchmark gzip. This loop consumes the majority of

the application’s processing time, is highly control intensive,6 and will require extensive

transformation to achieve peak performance on an EPIC machine. A control flow profile

indicates, fortunately, that not all paths through the loop are equally likely. This bias

presents an opportunity for specialization of the common case(s).

There are two factors in selecting and specializing cases: optimization potential and

execution frequency. Clearly, if the optimization of a specific path or set of paths is to be

5Intel icc version 8.1 with -O3 -ipo -prof gen|prof use.
6For those unfamiliar with the C language, the operators “&&” and “||” short-circuit; that is, if the

result of the expression is evaluable without evaluating the second operand, the second operand is not
evaluated. This therefore implies additional control flow [78].

53

1 do {

2 match = window + cur_match; // b l o c k A
3 if (match[best_len] != scan_end || // b l o c k A
4 match[best_len -1] != scan_end1 || // b l o c k B
5 *match != *scan || // b l o c k C
6 *++match != scan[1])

7 continue;

8
9 scan += 2 , match++;

10
11 do {} while (*++scan == *++match && *++scan == *++match &&

12 *++scan == *++match && *++scan == *++match &&

13 *++scan == *++match && *++scan == *++match &&

14 *++scan == *++match && *++scan == *++match &&

15 scan < strend);

16
17 len = MAX_MATCH - (int)(strend - scan);

18 scan = strend - MAX_MATCH;

19
20 if (len > best_len) {

21 match_start = cur_match;

22 best_len = len;

23 if (len >= nice_match) break;

24 scan_end1 = scan[best_len -1];

25 scan_end = scan[best_len];

26 }

27 } while ((cur_match = prev[cur_match & WMASK]) > limit // b l o c k X
28 && --chain_length != 0); // b l o c k Y
29 ... // b l o c k Z

gzip is public domain software distributed under the GNU General Public License.

Figure 3.1 Code example from gzip deflate.c:397.

profitable, it must offer some improvement over the generic execution afforded all paths.

Simultaneously, however, since optimizing a particular path implies the imposition of a

penalty on other, less likely paths, the path(s) to be optimized must dominate the region

in terms of execution frequency. The inclusion of more paths in the specialized version

increases the version’s coverage but may decrease its optimization potential. The latter

effect may be difficult to observe at the time of region formation.

The gzip example illustrates these principles. Figure 3.2(a) shows a stylized concep-

tion of the control flow graph for the loop shown in Figure 3.1. More frequently executed

blocks are indicated in darker shades of gray, and control flow is considered to enter

the top of the discs, representing basic blocks, and flow out the bottom. The cloud in

the center of the inner loop contains additional, irrelevant blocks of code. The “block”

54

�
�

�

�����	��
��������� �������������� ��� � ������� ��

�
�

!
"

#$ %&
'()
*+ %,
(-(&
./+ 0%
1 '(2
.(%&
3

�

�
�

�
�

�4���65879����:��� �����;�������� ��� � ������� ��

!
"

#

!
"
�

�
�

#
�4���=<>�?� @�� ��	�A@��4����B

!C�;� DFEHG G
I JLKNM

OP�RQ=S T�UV�
WX6Y
Z[!P"

�\�] ER^ I`_ K M
Oa�bQ=Sdc�UV�

eZ Y
e[

�f
��9��4��� ����� 5f7��9��4��� �����

Figure 3.2 Inner loop version in gzip deflate.c:397.

comments in Figure 3.1 show the correspondence of the key lettered control blocks to

lines of code in the original example.

The CFS transformation engine examines this loop for specialization opportunities.

We first consider single-path (Superblock) opportunities. Here, we find that the most

common path through the loop is A→ X→ Y. Figure 3.2(b) shows the effect of spe-

cializing this path as a Superblock. Since a Superblock must have only a single point of

entry, and since block X is entered not only from A but also from other blocks, blocks

X and Y must be tail-duplicated to include them in the Superblock region. The upward

arrow indicates this copying of these two blocks into the transformation region.

The inset in Figure 3.2(b) shows the control flow profile of the resulting Superblock.

86.3% of block traversals end with a continuation to the next iteration of the specialized

55

1 .deflate_AXY:

2 dep.z loc10 = loc1 ,1,15 ;;

3
4 add loc0 = loc10 ,loc21

5 adds loc2 = -1,loc3

6 add loc8 = [loc8] ;; // match [b e s t l e n]
7
8 cmp4.eq.unc p18 ,p0 = loc8 ,loc13

9 (p18) br.cond.dpnt .deflate_B ;; // 11 .2%
10
11 ad2 loc1 = [loc0] ;; // p r e v [c u r ma t ch&WMASK]
12
13 cmp4.leu.unc p17 ,p0 = loc1 ,loc12

14 (p17) br.cond.dpnt .deflate_Z# ;; // 2.5%
15
16 cmp4.ne.unc p16 ,p0 = r0,loc2

17 (p16) br.wtop.dptk .deflate_AXY# ;; // 86 .3%
18 .deflate_Z:

Figure 3.3 Superblock code for innermost loop version from gzip deflate.c:397.

version. 11.2% require traversal of paths excluded from the Superblock, so these proceed

to the nonspecialized remainder of the loop body. 2.5% of traversals, finally, end with an

immediate exit from the loop. The Itanium assembly code generated for this specialized

version (with nop operations removed for simplification) is shown in Figure 3.3.

To maximize performance of this specialized case, this “hot,” extracted loop is modulo-

scheduled, producing the result shown in Figure 3.4. Control speculation is applied to

the potentially-excepting load from the prev array (line 8), freeing it from its previous

position of control dependence under the branch to block B. This particular schedule

achieves the target initiation interval [33], achieving the highest possible performance, at

least within this special version. This is not, however, the final solution for this loop nest.

Having seen how the common case can be made fast, can it be made more common? A

loop continuation ratio of only 83.5% does not likely result in many successive iterations

of the loop, making this potentially not a particularly useful version.

Fortunately, predication provides the option of incorporating multiple traces into spe-

cialized regions. Figure 3.2(c) shows such an alternative. Referring back to Figure 3.2(a),

one may note block B, which follows block A and implements the test on line 4 of the

code shown in Figure 3.1. This test is required in 11.2% of the loop body traversals

56

1 .deflate_AXY:

2 // I I =3 , 2 s t a g e s , l o c 0 −> l o c 3 r o t a t e
3 add loc0 = loc10 ,loc21

4 add loc8 = loc1 ,loc11

5 adds loc2 = -1,loc3 ;;

6
7 ld1 loc8 = [loc8] // match [b e s t l e n]
8 ld2.s loc0 = [loc0] // p r e v [c u r ma t ch&WMASK]
9 cmp4.ne.unc p16 ,p0 = r0,loc2 ;;

10
11 cmp4.leu.unc p17 ,p0 = loc0 ,loc12

12 dep.z loc10 = loc0 ,1,15 // (f rom i t e r a t i o n i +1)
13 cmp4.eq.unc p18 ,p0 = loc8 ,loc13

14 (p18) br.cond.dpnt .deflate_B# // 11 . 2% tak en
15 (p17) br.cond.dpnt .deflate_Z# // 2 .5% tak en
16 (p16) br.wtop.dptk .deflate_AXY# ;; // 86 . 3% tak en
17 .deflate_Z:

Figure 3.4 Superblock code after software pipelining (gzip deflate.c:397).

(whenever the test on line 3 fails). Its exclusion from the specialized Superblock case

is primarily responsible for early exits from the specialized, single-block AXY loop. The

ability to include multiple paths under predication permits the inclusion of this additional

test, increasing the coverage of the specialized case. Figure 3.5 shows the assembly code

resulting from inclusion of this block, after predicate promotion and modulo scheduling.

Even in this simple example, several factors regarding the performance of Hyperblock-

transformed code can be elicited:

• While Superblock formation (and its follow-on partner, branch target expansion)

merely synthesize common path traces, controlling Hyperblock growth involves fac-

tors in addition to control flow weights, some of which can be difficult to anticipate

at formation time. These include the dependence height and instruction count of

paths to be included in the parallel structure of the Hyperblock.

• The performance of Hyperblock code depends on control speculation in the form of

predicate promotion. The inclusion of the less-common A → B path increases the

dependence height of the loop, unless the control dependence from the predicate

57

1 .deflate_ABXY:

2 // I I =3 , 2 s t a g e s , l o c 0 −> l o c 5 r o t a t e
3 ld1 loc8 = [loc11] // match [b e s t l e n]
4 ld2.s loc0 = [loc10] // p r e v [c u r ma t ch&WMASK]
5 add loc4 = loc5 ,loc17

6 adds loc2 = -1,loc3 ;;

7
8 ld1.s loc9 = [loc4] // match [b e s t l e n −1]
9 cmp4.eq.unc p16 ,p0 = loc8 ,loc18

10 dep.z loc8 = loc0 ,1,15 // (f rom s t a g e 0)
11 add loc4 = loc0 ,loc14

12 cmp4.leu.unc p17 ,p0 = loc0 ,loc15

13 cmp4.ne.unc p18 ,p0 = r0,loc2 ;;

14
15 (p16) cmp4.eq.unc p19 ,p0 = loc9 ,loc16

16 add loc11 = loc4 ,loc12

17 add loc10 = loc8 ,loc13

18 (p19) br.cond.dpnt .deflate_C# // 3.4%
19 (p17) br.cond.dpnt .deflate_Z# // 2.7%
20 (p18) br.wtop.dptk .deflate_ABXY# ;; // 93 .9%
21 .deflate_Z:

Figure 3.5 Hyperblock code after software pipelining (gzip deflate.c:397).

definition in line 13 to the load in line 8 is broken by predicate promotion, as is the

case in Figure 3.5.7

• Speculation in the form of Superblocks allows the advance execution of operations

along one predicted future control path. In Hyperblocks, however, speculation is

multipath in nature. This can result in riskier control speculation than the single-

path model. Here, the load operation from the relatively infrequently traversed

block B (line 8 of Figure 3.5) is executed even on the more frequently taken path

A → X. This does not occur in the Superblock model, so the reliance of the

Hyperblock model on appropriate speculation control mechanisms is greater.

Due to these and other, related concerns that will be made apparent in Chapter 5,

the use of if-conversion must be carefully regulated. The sensitivity of gzip and the other

7As it turns out, it is still possible, at least with human effort, to schedule the loop with the same
initiation interval without predicate promotion, but increased control speculation of other operations
(specifically, the loads in lines 1 and 2) is required to accommodate the longer dependence chain. A
good schedule is definitely easier to achieve with predicate promotion.

58

benchmarks to variations in the heuristics used to select regions for if-conversion is an

important aspect of the results of this dissertation.

The transformation of the loop structure in gzip deflate() is not complete with

the versioning of the inner matching loop. An outer loop also offers opportunity for

specialization. Figure 3.6(a) shows the stylized control flow graph for this outer loop,

in which the inner loop dealt with in the example of Figure 3.2 is highlighted. Control

flow profile information identifies a set of hot paths through this loop body, which are

summarized by the trace drawn through the control flow graph. This hot path involves

only a portion of the control flow of the outer loop, but includes a (single) traversal of the

specialized inner loop version ABXY just produced. To create a Hyperblock from these

hot paths, a single-entry version of the hot region must be produced, but this cannot

be achieved with an inner loop contained in the trace. Fortunately, loop peeling allows

a copy of the inner loop body to be pulled out into the new Hyperblock. Figure 3.6

shows the formation of the hot path Hyperblock. This transformation, enabled by the

peeling of the inner loop version ABXY, and ones like it purchase a 5% improvement in

benchmark performance for gzip, the strongest example of gain from loop peeling in these

experiments.

3.3.2 A more complex example from crafty

Crafty, a chess program, serves as one of the most control-intensive of the SPEC

CINT2000 benchmarks [5]. It includes not only intensively “branchy” code segments

but also many reasonably serial and low-iteration-count loops. Exposing ILP requires

finding ways both to eliminate branches (by creating efficient predicated regions) and to

interleave execution from different loop bodies in an efficient way. These are common

features of SPEC CINT2000 programs, but their necessity is particularly pronounced in

crafty. Complicating the problem is crafty’s large instruction footprint, which threatens

to erode the benefit of any transformations that result in increased code size, and its

extensive use of large lookup tables, which pose problems for speculative execution of

loads and their dependent successors.

59

��������� 	�
�� �	���� �������
� ������	�� ����� � ��
 � �
��� �������
 �!��"

#

$

%

&

')(
$*%

#

$

%

&

')(
$+%

&

')(
$,%

#

$

%

&

')(
$+%

-!.0/

1 ��������23� � �4
 �!�0�
���!��
 ���5�6�7����	���
 �

��89�6���:
 �!�;�
� ���;��� 	�
<� �	���� ���

=>�!�!�;? � 	�@!�A��B
�����C
 � � � ��23	

���6�!	��6� �
�D27���E�0���;�
�A�;�F�0�:
 �!�;�

G 	�HJI+8��K�0�:
 ����� ��� �9L5�A��B
� ��� GM-�.0/ HC��	�� � G �!H � ������	�� �3� ���;��� 	�
N� �	���� ���OL7� � � ���!��
N�D��B

� � B �
N� B � �P�!�
�����Q��� ���R� � �D�!���!�

 �!�0�+���M��2
���M��@!� ��8 �
�FS�	�27��
 �

� ������	�� �

Figure 3.6 Outer loop versioning for gzip deflate.c:678.

60

�

�

�

�

�

�

��	
�����	���	�������	���������

����������	��� ����

�����!"����	����	�����#���

�

�$

�

�

�$

�

� �

��	%���	�������

������� ����

�

�$

�$

�$

�$

�$

�

�

�

�&�

��	'���	����

�(�������

#� ����	��� �����	�����
%)

������

Figure 3.7 Exploiting ILP across crafty loops. Code is presented (a) with intraloop Hy-
perblock formation only, (b) after application of loop peeling, and (c) after
trace formation.

The crafty function Evaluate(), which evaluates the strength of each player’s position

on a chess board, provides an example of sophisticated region formation. This function

contains several sequential while loops, two of which are shown in Figure 3.7(a). Both

loops contain substantial internal control flow, each loop has little inherent, intraloop

ILP due to serial data dependences, and each loop body typically executes exactly once.8

Simply forming Hyperblocks for each of the loop bodies, as indicated by the enclosing

boxes 2 and 5 in (a), prevents misprediction and streamlines instruction issue but does

not help develop additional planned ILP (each loop is inherently serial due to data

dependences). More aggressive transformations, however, can exploit this situation. The

code in (b) has been transformed using peeling; one iteration of each loop has been pulled

out. Now, the ordinarily taken path (1 2’ 3 4 5’ 6) traverses the peeled iterations only; the

original loops are left to “clean up” any unlikely remaining iterations. Finally, (c) shows

the result of trace formation through the transformed region. The two Hyperblocks, once

trapped inside loop back edges, are merged to form a single scheduling region. Predication

8These particular loops evaluate the position of the two players’ queens; typically, each has a single
queen.

61

��� ���
��� ���
��� ���
��� ���
��� ���
	�� ���
	�� 	
�
	�� ���
	�� ���
	�� ��
	�� ���
	�� ���
	�� ���
	�� ���
	�� ���
��� ���

� �
��� �
�
� ��
� ��� �
�� �
��
��
�
!#"$
�%

&(')'+*-, .0/213*
4 565879, :;, <=.-:(/>1).
? @BA9CD'FEHGI/KJLG
? @BA9CD'FEHGI/>'MG
? @BA9CD'FEN? /KJFG
? @BA9CD'FEN? />'DG

OPQ R SRT OUU VUW
UT
XW Y Z

RXT
[\T \]

^

R\T
_`
Va OXR S]T

Y \b ` P
Q R
c

Y d]
_W

ef
ghf
ij

Figure 3.8 Speedup relative to O-NS baseline.

allows independent decisions (cf. the original control flow within the two loop bodies in

(a)) to be made in parallel, and useful ILP is increased.

This example, representative of transformations applied throughout SPEC CINT2000

by the IMPACT compiler, typifies the “structural” approach to EPIC compilation, by

which EPIC features enable radical transformation of program control structures in the

search for more ILP. The costs of these transformations include an increased reliance on

profile information (if the case in which neither loop executed any iterations becomes fre-

quent, many useless, predicate-squashed instructions would be issued) and an increase in

code size due to region-related code replication (this becomes significant if the remainder

loops are traversed; otherwise, there is no negative impact on instruction cache footprint,

and the untouched excess code can be placed harmlessly in a cold location).

3.4 Evaluating the CFS Approach

Now that we have developed a basic idea of the CFS techniques applied in the IM-

PACT compiler, we recall the speedup figure used in the previous chapter to motivate a

discussion of the collective impact of these techniques on particular applications. SPEC

CINT2000 provides a variety of sample cases for CFS transformation. For the reader’s

convenience, the performance comparison figure from the previous chapter, Figure 2.3,

is reproduced in Figure 3.8. The two leftmost bars for each benchmark reflect results

from gcc and icc, two other compilers on the Itanium platform. Icc, developed by Intel,

62

is the strongest commercial compiler available. These are added to indicate IMPACT’s

performance relative to other compilers.

3.4.1 Benchmarks with substantial effect

For four of the benchmarks, Superblock-based CFS transformation (S-CS) was re-

markably effective, and if-conversion had little to add (and sometimes allowed degrada-

tion). These include gcc, gap, and vortex. Chapter 4 discusses the detailed results for

this class of applications, as it evaluates single-path specialization.

Another subset of the benchmarks required if-conversion (I-CS framework) to achieve

the greatest benefit. These include gzip, vpr, eon,9 and twolf. Examples from these

benchmarks will drive Chapter 5’s discussion of multipath specialization. It should be

noted that those benchmarks that do not appear to benefit from predication do often

contain individual procedures with substantial benefit, but these gains are often offset by

other losses in other procedures. These finer-grain results will be examined in Chapter 5.

Finally, the Burrows-Wheeler compressor bzip2 benefited substantially from a special

loop unrolling technique requiring both predication and speculation, as will be described

in Section 8.4. This is an outstanding example of using the CFS techniques in a spe-

cially targeted way to mitigate compile-time recognizable microarchitectural penalties.

Without this technique, bzip2 benefits little from CFS transformation, as shown by the

unimpressive S-CS result.

3.4.2 Benchmarks seeing moderate benefit

The benchmark crafty proved a challenge for CFS transformation. The Superblock-

based S-CS approach achieved a relatively meager speedup of 1.08 relative to classical

optimization. I-NS delivered a similar result. The I-CS configuration fared better, but

still not spectacularly, delivering speedup of 1.10. This might suggest that specialization,

predication, and speculation are doing little, and doing similar things, in this benchmark.

9It must be noted that IMPACT’s performance on eon is well short of that achieved by production
compilers, due to a lack of C++-specific optimizations and poor treatment of structure assignments
containing floating-point values. Performance results for this application must, therefore, be scrutinized
carefully.

63

This is, however, far from the truth. In fact, the transformations achieve several different

victories but, in the end, surrender many gains to secondary penalties of CFS trans-

formation. These include deleterious instruction cache effects, register oversubscription,

and increased data load penalties due to multipath speculation. Profile variation, the

effects of excessive code expansion, and nondeterministic behaviors also play important

roles here (when compiled with the reference input, crafty achieves a 1.18 speedup rather

than 1.10 in I-CS).

The benchmark perlbmk showed only a 5% improvement in performance due to ap-

plication of CFS techniques (in the I-CS and S-CS configurations), but still delivers a

respectable result when compared to the production compiler icc. Experiments showed

that more aggressive application of if-conversion can increase perlbmk’s performance by

another 3%, yielding a total speedup of 1.08 for CFS with predication. The biggest

problem for perlbmk, though, is that its training profile input is not very representative

of its evaluation input behavior. When compiled with the reference input, instead of the

training input, perlbmk reaps a speedup of 1.21 in the I-CS configuration, underscoring

the highly bias-dependent nature of CFS transformation.

Parser also gained only approximately 5% from CFS transformation. In its case,

though, the training profile is reasonably representative; it seems simply to be a rather

serial application at the instruction level.

3.4.3 Benchmarks with little potential for effect

The execution time of the benchmark mcf (on Itanium 2) is is totally dominated by

data cache miss stall time. Wu described a stride-detecting prefetching scheme, employed

in the Intel production compiler, that allows mcf’s data references to be prefetched effec-

tively, even though they are concentrated in linked data structures [54]. This roughly dou-

bles mcf’s performance. Even with these techniques, 88% of mcf’s execution time would

be spent waiting for memory (a remarkable 95% is spent in this fashion in IMPACT-

compiled code today), so little benefit from CFS is to be expected here.

64

3.4.4 General observations and principles

Let us conclude this topic with a brief summary of the challenges to be addressed in

the chapters to follow.

• Inlining, region selection, and transformation all depend on the availability and

knowability of run-time program biases. In a multipath model (with if-conversion)

decisions must also consider path compatibility (issue width and dependence height).

Control speculation is assumed in managing these issues, but its effects cannot be

fully appreciated at the time regions are formed. The distribution of these decisions

throughout the compiler can cause negative interactions.

• Code-replicating CFS optimizations tend actually to improve instruction fetch ef-

ficiency. This effect can offset the expected cache-thrashing effect of massive code

replication, often yielding net benefits in instruction cache behavior. In some cases,

however, clearly excessive replication is performed and instruction cache perfor-

mance suffers greatly.

• Just as CFS can as a side-effect improve instruction cache performance, it can

enable substantial side-effect optimizations. While one would expect to see a typical

increase in instructions executed with speculation-laden CFS compilation, one often

finds a decrease in total instructions executed due to the success of optimizations in

specialized regions. The benefits due to these optimizations are difficult to isolate

from “pure ILP” benefits.

• Selection of the desired degree of path multiplicity in specialization regions is a

difficult problem. As noted in the above example from gzip, there is a fundamental

tension in performing CFS transformations between optimizing with the greatest

intensity on minimal sets of paths through a region (ultimately, on single paths

in Superblocks), running the risk of achieving insufficient coverage, or trying to

balance multiple paths in a single Hyperblock region, running the risk of impeding

component paths. The remaining chapters will shed more light on this difficult

topic.

65

�����
�����
��� �
���	�
���

���	�
��� �
���	
���	�
���	�

� �
��
��� �
���
��

����� �"!$#&%'�"()*�,+"-.�/%10
�2�&�'�3!$#�%4�3()*�5-16.-7%8#&�"()9�
:;-&�9-867-.%1#8�"()*�<�3(=5-

�>��%&!3-7?.�1(�&@A��B&-.%1(?*(C (D&?��3()*�

E�FHG FHI J K LNM IJ G4OQP FSR L FHT FHI I J O J FSG4OVU W*X4Y[Z Y X]\'^ _4`]a�bHc Y b4d
\ X X Zfe a ^ _ Z[g \ a c4hHi b _ Z c

Z ^ X _

j�k l k m k nSo k mHprq2s4t2u q m n

vxwzy�{ |~}4|wH�'�	�2�'��|x�'�H���

Figure 3.9 Performance sketch for CFS transformation.

• As already seen, CFS transformation depends intensely on control profile informa-

tion. As increasingly aggressive transformations are employed, achieving higher

performance for program executions similar to the one used in compiler training,

paths used in unforeseen executions are necessarily neglected or even penalized.

This can have performance consequences, even within the controlled environment

of SPEC CINT2000.

3.5 Specialization and Instruction Fetch Performance

This chapter concludes with one important, cross-configuration observation regarding

the effect of specialization on instruction fetch as a component of total performance. A

good perspective on this issue is necessary for understanding the other results, and to

justify the approach taken toward achieving them in this dissertation. Figure 3.9 shows a

much simplified, stylized representation of the effects of specialization (including inlining,

Superblock, Hyperblock and ancillary transformations) on application performance, as

the degree of specialization is varied. Two components of end performance are represented

66

individually: instruction fetch and instruction execution. Instruction fetch represents

those cycles wasted because instructions could not be delivered fast enough to keep

execution units busy every cycle (and, secondarily, the time spent adjusting the register

stack for new procedure contexts). Instruction execution denotes the portion of time

that instructions have been delivered and are actually executing. Net execution time is

the sum of these two quantities.

As specialization is increased,10 three interacting processes occur. First, specializa-

tion increases the efficiency of instruction fetch and issue by producing customized code

for particular, important paths and, in the case of predicated specialization, by removing

branch mispredictions. Initially, this beneficial process dominates the effect of special-

ization on instruction fetch overhead. Gradually, however, the penalties associated with

an expanding code footprint of ever more diluted specialized versions begin to dominate,

and instruction fetch overhead is penalized. This interaction is indicated by the dotted

line in Figure 3.9. At the same time, specialization provides opportunities for efficient

instruction speculation and optimization, reducing instruction execution time (as indi-

cated by the dashed line in Figure 3.9). These three processes and two performance

components combine to yield the net execution time (the solid line).

These effects can be examined concretely in comparison of code expansion and in-

struction cache performance data. Figure 3.10 shows the increase in static, touched

instruction counts with various types of CFS transformations. In this figure, the central,

black column represents the growth of I-CS code (relative to the O-NS configuration).

A typical case allows for approximately a 1.5× expansion in the number of touched op-

erations. Approximately half this increase comes from the tail duplication and peeling

involved in predicated region formation (as indicated by the gray bar to the left); the

other half comes from subsequent Superblock, branch target expansion, and ancillary

transformations (such as unrolling). The white bar on the right indicates the code ex-

pansion due to Superblock, branch target expansion, and ancillary transformations in

10As will be detailed elsewhere, “specialization” is not a simple, one-dimensional variable, but consists
of several interrelated techniques. This chart is simplified for purposes of illustration.

67

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

S
ta

ti
c

to
u

ch
ed

 c
o

d
e

g
ro

w
th

Hyperblock only
Hyperblock + Superblock + Ancillary
Superblock + Ancillary

Figure 3.10 Touched static code growth with CFS techniques.

the non-predicated (S-CS) framework. The details behind the generation of all this ad-

ditional code, and the controls over it in the various individual cases, will be discussed in

later chapters, as appropriate. The main point here is that a great deal of code expansion

is applied to create opportunities for specialization. One might expect this degree of code

expansion to have universally negative instruction cache effects. As will soon be demon-

strated, however, this is not the case. Although CFS transformations do not directly

target instruction cache performance as an optimization objective, they tend either to

be neutral with respect to it, or actually to improve it in some cases.

Figure 3.11 shows the number of first-level instruction cache misses as a fraction of

the number of instruction cache accesses in the O-NS code.11 Even with the exten-

sive code replication performed in IMPACT-compiled code (recall that even the O-NS

configuration reflects approximately a 1.40× growth in touched code size due to inlin-

ing), the SPEC CINT2000 benchmark suite places little stress on the instruction cache

hierarchy of the Itanium 2 processor. A variety of behaviors can be observed. In five

benchmarks, instruction cache performance is so good as to be uninteresting. In gcc, eon,

perlbmk, and gap, the number of misses is only barely affected by CFS transformation. In

11For the O-NS configuration, this is the L1I miss rate; for other configurations, this represents a
normalization of the number of misses to render it comparable to the number for the O-NS configura-
tion. Since the numbers of useful instructions and lines fetched vary across the various configurations,
comparing the miss rates across all the configurations is not as meaningful. The same general trends,
however, are observed in raw miss rates.

68

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

L
1I

 c
ac

h
e

m
is

se
s

(a
s

fr
ac

tio
n

 o
f O

-N
S

 a
cc

es
se

s)

Figure 3.11 First-level instruction cache misses, relative to O-NS accesses.

crafty, the number of misses is decreased by predicated instances of CFS and increased

by the Superblock-only S-CS approach. In twolf, all transformations severely impact

instruction cache performance, and, finally, in vortex, instruction cache performance is

dramatically improved by CFS transformation. That being said, the instruction cache

is not generally a primary limiter of performance in most SPEC CINT2000 benchmarks

on Itanium 2; the instruction translation lookaside hierarchy is so effective as to render

changes in its load totally insignificant.

Considering Figures 3.10 and 3.11 together, some paradoxical comparisons emerge.

Three benchmarks with noticeable instruction cache miss activity, gcc, eon, perlbmk,

and gap, incurred pronounced touched, static code expansion in the I-CS and S-CS

configurations, but did not incur a commensurate increase in instruction cache pressure.

Vortex, though it increases modestly in size, incurs a dramatic reduction in cache misses.

Crafty in the I-CS configuration behaves likewise, but less dramatically so. Only twolf

(and, to a lesser extent, the S-CS configuration of crafty) displays the expected behavior,

in which increased replication noticeably impacts the occurrence of instruction cache

misses. This is indeed good news for instruction-replicating transformations in SPEC

CINT2000.12

12Conversely, though, it means that the SPEC CINT2000 benchmarks may not be a good set for mea-
suring the effect of new techniques for controlling the degree of code replication in CFS transformations.

69

0.0

1.0

2.0

3.0

4.0

5.0

6.0

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

U
se

fu
l i

n
st

ru
ct

io
n

s
p

er
 L

1I
 c

ac
h

e
re

ad

Figure 3.12 Instruction fetch efficiency with CFS transformation.

Several factors offset the expected, negative effects of code replication on instruction

cache performance. The foremost of these is that CFS transformations increase the

general efficiency of the instruction fetch process in the Itanium architecture; that is,

CFS causes more useful instructions to be delivered to the execution core per instruction

cache access. Figure 3.12 shows the number of useful instructions obtained per L1I cache

read for the various compiler configurations. The theoretical maximum is 6, the number of

instructions that fit in an L1I cache line. As indicated by the difference between the height

of bars for the O-NS and I-CS configurations, CFS transformation often allows more

useful instructions to be packed into each cache line fetched. Although CFS potentially

creates several specialized versions, increasing overall code size, the versions created are

more compact, potentially even improving instruction cache performance. This is a result

of better instruction packing (more available ILP means fewer explicit nop instructions

in the program) and improved instruction layout (more straight-line code means fewer

fetch redirections and hence fewer partially-used lines). The benchmark vortex receives

special treatment in Section 4.3.

Figure 3.13 shows one tangible effect of this compaction—CFS typically reduces the

number of instruction cache accesses by 18%. As we shall see shortly, this sometimes

contributes to the net performance benefit of CFS transformation, and is a larger than

expected offsetting factor for the potentially grave performance cost of widespread code

replication.

70

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

L
1I

 c
ac

h
e

re
ad

s
(r

el
at

iv
e

to
 O

-N
S

)

Figure 3.13 Instruction cache accesses.

Code expansion due to EPIC compilation techniques is tolerable if it causes no in-

struction cache footprint in the program to be spread beyond the capacity of the enclosing

cache. Code replicating transformations that condense “hot” segments by ejecting “cold”

copies (e.g., by excluding never-visited paths from a Hyperblock, creating zero-weight

tails), therefore, generally improve performance, since the cold copies only infrequently

enter the cache. Replicating transformations that generate volumes of “lukewarm” code

(code that is traversed with some frequency), however, can cause instruction cache thrash-

ing when these copies compete with each other and with other nominally resident code

in their enclosing footprint. This can offset or reverse any gains from specialization, par-

allelism, or misprediction elimination. This is the case with twolf, as will be described,

together with the finer points of I-CS instruction cache performance, in Section 5.7.2. In

the aggregate, first-level instruction cache misses are reduced 5% by I-CS transformation

and 1% by S-CS transformation, both relative to O-NS.

Given this perspective on the various components of this problem, let us return to con-

sideration of the simplified Figure 3.9. Generally, the combination of continuing (though

diminishing) returns in decreased instruction execution time places the point of opti-

mum performance somewhere beyond the point at which instruction fetch performance

has begun to be degraded due to increased footprint. Since the processes that perform

the specialization and those that perform the subsequent optimization and scheduling

occur at diverse points throughout the compiler, the control of this process for optimum

71

0.00

0.20

0.40

0.60

0.80

1.00

1.20

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

E
xe

u
ct

io
n

 t
im

e
re

la
ti

ve
 t

o
 O

-N
S

front end bubble All other categories

Figure 3.14 Contribution of front end stall to performance.

performance is a difficult problem. A fundamental understanding of the interaction of

the mechanisms underlying these performance-producing processes is a first step on the

path to better control of CFS compilation.

Some initial steps were taken in this dissertation work to rein in the more egregious

examples of excessive code replication. Two examples include a re-engineering of loop

peeling, to be discussed in Chapter 5, that replicates much less code in many cases,

and a priority-driven, bounded branch target expansion module that limits the degree

to which this ancillary transformation can explode code size. Prior to these techniques,

instruction cache performance was often (needlessly) injured by out-of-control code repli-

cation processes. Crafty, for example, in S-CS mode, incurred a 2.65× code growth ratio

(compared to 1.3×, as indicated in Figure 3.10). This doubled the number of front end

stalls and caused S-CS to render a net loss of performance relative to O-NS. With these

modifications, S-CS has been rendered a reasonable transformation model, and the I-CS

model has been stabilized.

To conclude this topic, Figure 3.14 shows the contribution of front end stalls to

total benchmark execution time. (This graph reflects the same data as Figure 2.6, but

has been reformatted to emphasize the front end stall component.) Front end stall

cycles, as reported here, generally are dominated by instruction cache miss latency.13

13In gzip, vpr, parser, and bzip2, front end stalls are dominated instead by branch retirement queue
and branch resteer stalls (but are also insignificant as a component of total performance).

72

Given the improvements due to the relatively straightforward changes just described,

the performance effect of instruction cache is generally small and relatively insensitive

to CFS transformation. The I-CS configuration, though it actually involves more code

size growth due to lax regulation of code expansion in Hyperblock formation, actually

generally performs slightly better than S-CS due to the fact that, since predication allows

the co-optimization of compatible paths, it spreads execution weight across fewer code

versions than does a Superblock-based approach.

3.6 When Compile-Time Predictions Go Awry

Given the heavy bias of CFS transformations towards the anticipated-common paths

(and the utter reliance of EPIC system performance on these transformations), the prob-

lem of run-time deviance from the biases exploited in the compiler is of particular concern

to EPIC compiler developers.14 Profile variation is a significant real-world problem for

any application in which it is difficult to anticipate use-time execution biases from a

“representative profile.” SPEC attempts to model this problem slightly by providing

“training” and “reference” inputs. Although these inputs are generally quite similar in

terms of their execution biases, a few notable variations occur.

Measuring the resiliency of CFS transformations to use-time variation in execution

bias (as well as variations in data cache latency brought on by changes in data set size)

is a difficult-to-define problem. The practical effect of these variations, however, can

be assessed in a limited way by compiling benchmarks using their reference inputs for

training, and then measuring their performance on the same inputs. Such an experiment

resulted in substantial changes in performance for only two benchmarks: perlbmk, the

performance of which improved by 15%, and crafty, for which the improvement was 7%.

The pronounced effect of input variations on these programs is not difficult to anticipate.

The exercise of perlbmk, as an interpreter, will vary widely, depending on the script used

as input. (Perlbmk is also very sensitive to accuracy of profile information after inlining;

14EPIC compiler writers will identify with the words of the great Scottish poet, Robert Burns: “But
Mousie, thou are no thy-lane, In proving foresight may be vain: The best laid schemes o’ Mice an’ Men,
Gang aft agley, An’ lea’e us nought but grief an’ pain, For promis’d joy!”

73

IMPACT currently uses two profiling runs to address this. See Section 7.4.5.) Likewise,

the biases of crafty, a chess program, will depend on the style and progression of the

game being played.

Even programs that could be assumed to have highly anticipable behavior, such as

compressors and decompressors, may have subtle susceptibilities to profile variation. This

behavior does not seem to be prevalent in SPEC CINT2000. SPEC CINT95, on the other

hand, contained a prominent case in the benchmark compress. This benchmark relied on

an internal-chaining hash table. In the training input, the table is relatively empty, so

collisions are infrequent. Peeling a single iteration of the loop body is therefore sufficient

to keep execution within a specialized Hyperblock on well over 90% of loop iterations.

In the reference input, however, the table is relatively full, so the inner loop checking the

internal chains frequently iterates many times. The specialized Hyperblock created with

reference to the training input is no longer very profitable.

Historically, these distinctions (such as profiling with a meaningfully different training

input than that used to evaluate execution time) have been ignored in most previous EPIC

work, which often used the same inputs for both training and reference, and even often

used further-shortened input sets to reduce simulation time. This can contribute a host

of inaccuracies to modeling, if the goal is to predict SPEC performance of compiler or

microarchitectural techniques. In keeping with the real-world flavor of this dissertation,

they have been used appropriately in this work. This dissertation points out in bold

relief the degree to which successful EPIC transformation relies on execution bias, even in

common benchmarks. Profile variation is thus a very serious problem for EPIC compiler

writers, but is unfortunately one that a study of only SPEC CINT2000 has limited ability

to illuminate.

3.7 Focusing on Particular CFS Components

The following three chapters, “Chapter 4: Code specialization in the Superblock,”

“Chapter 5: The value and application of predication,” and “Chapter 6: The value and

application of speculation,” present a detailed explanation of the methods and effects of

the elements of the CFS outlined in the foregoing overview. The order of the following

74

chapters is designed with pedagogical intent, and does not necessarily reflect the phase

ordering or physical dependence among the described techniques (for such a view, see

Appendix B). The chapters build on each other as follows: The formation of optimization

and scheduling regions enables the exposure of ILP through CFS compilation. Chapter 4

focuses on procedure inlining and Superblock formation, two fundamental specialization

techniques. Chapter 5 explains the use of predication in Hyperblock formation as an

extension of the Superblock techniques (and, incidentally, in other optimizations and

techniques). Finally, Chapter 6 presents control speculation as a technique that miti-

gates the effect of control dependence within Superblock and Hyperblock regions. The

presentation of methods in these chapters is interspersed with examples from the SPEC

CINT2000 benchmarks.

75

4 CODE SPECIALIZATION IN THE SUPERBLOCK

One of the important innovations of the control-flow-structural model (the historical de-

velopment of which is described in Section 10.2) is the specialization of common code

paths for aggressive optimization. Specialization occurs in two primary ways: through

procedure inlining and through Superblock / Hyperblock formation. Inlining and Hy-

perblock techniques will be treated in their own chapters (Chapter 7 and Chapter 5,

respectively). This chapter will focus on Superblock formation and its ancillary trans-

formations and their behavior in the experimental context. As will be seen, Hyperblock

formation is most easily understood as an extension of the Superblock approach.

Earlier presentations have not always distinguished between the performance of the

Superblock (single-trace) and Hyperblock (predicated) models of CFS-optimized code, or

between the effects of the basic Superblock algorithm and those of subsequent or ancillary

transformations. The author’s earlier work, for example, showed only the performance of

CFS-optimized code relative to basic block code, lumping the effects of Superblock-style

and Hyperblock-style optimization [52]. The work of this dissertation showed that, for

a subset of the SPEC CINT2000 codes, Hyperblock formation has little to add to the

performance of the older Superblock techniques. Furthermore, this set of benchmarks

that are relatively unresponsive to if-conversion is a much more substantial subset than

might have been expected from [38] and other previous work. This chapter explains this

result.

76

One important facet in understanding the performance of Superblock (and, to some

extent, Hyperblock) optimized code is the effect of specialization on the effectiveness of

subsequent optimizations. Superblock formation does not simply create an opportunity

for improved scheduling, as trace and wavefront scheduling do. It creates specialized code

traces which then may be optimized individually, potentially to great benefit. This effect

plays an important role in some of the results presented, most notably in the dramatic

speedup achieved in vortex. It should be noted, however, that the contribution of these

effects is diminished relative to that observed in older works [79].

4.1 Superblock Formation

The IMPACT compiler’s Superblock formation algorithm remains essentially as de-

scribed in [22]. It is summarized in the pseudocode of Figure 4.1. Mutually exclusive

traces through the control flow graph are first selected. Then, they are ranked by exe-

cution frequency and greedily converted into Superblocks until either the specified code

expansion ratio is exhausted or no further opportunities exist. There are several factors

involved in selecting valid trace successors and predecessors. The two most influential of

these are the predecessor and successor execution ratios. The predecessor ratio1 specifies

the minimum fraction of execution frequency of a block that must be directed to the

trace for it to be prepended to the trace. The successor ratio2 is the symmetric condition

for forward trace growth. The settings of these parameters, within reasonable bounds,

were not found to have a substantial effect on total code performance (largely due to

a subsequent transformation, branch target expansion, which we will shortly describe).

Code structure, these two factors, and the maximum tail duplication code growth budget

(1.50 in the experiments presented here) define the degree to which Superblock traces

will be constructed.

The tail duplication cost of Superblock generation is strictly limited to a factor of

two, as each block may participate in only a single Superblock trace and, therefore, may

be tail duplicated at most once. In practice, the code expansion ratio is much lower, as

1the Lblock parameter trace min cb ratio, here set to 0.50
2the Lblock parameter min branch ratio, here set to 0.70

77

1: procedure Form-Superblocks(G = {B, E}, expansion-factor)
. G = {B, E} = procedure control flow graph

2: T ← {} . Set of Superblock candidate traces
3: size← Procedure-Code-Size(G)
4: max-size← size× expansion-factor
5: for all b ∈ B do
6: visited[b]← 0
7: end for
8: while b← Get-Highest-Weight-Unvisited-Block(B) do
9: T ← T ∪Grow-Superblock-Trace(b)

10: end while
. Manufacture Superblocks greedily as tail duplication budget permits

11: while t← Get-Highest-Weight-Trace(T) do
12: cost← Tail-Duplication-Cost(t)
13: if size + cost ≤ max-size then
14: Construct-Superblock(t)
15: size← size + cost
16: end if
17: T ← T − t
18: end while
19: end procedure
20: procedure Grow-Superblock-Trace(b) . Grow from seed block b
21: trace← (b)
22: head← tail ← b
23: while next← Best-Valid-Trace-Predecessor(head) do
24: trace← Prepend(trace, next)
25: visited[next]← 1
26: head← next
27: end while
28: while next← Best-Valid-Trace-Successor(tail) do
29: trace← Append(trace, next)
30: visited[next]← 1
31: tail ← next
32: end whilereturn trace
33: end procedure

Figure 4.1 Superblock formation algorithm.

78

determined by the expansion parameters and code characteristics. In the experiments

reported here, the ratio was generally less than 1.10 and, on average, only 1.06. As

will be seen in Section 4.2.1, this simple transformation alone (without branch target

expansion) often garners most of the benefits of the S-CS framework. Where this is the

case, execution through important code segments is strongly dominated by single, promi-

nent execution paths, which easily turn into successful Superblocks. This is consistent

with the goal of Superblock formation—selecting these heavily biased, primary paths for

subsequent specialization.

Other benchmarks benefit from more extensive specialization through a subsequent

transformation known as branch target expansion. And, as we will see in the next

chapter, still others require the multipath optimization available only with the use of

predication. For an example of how this can take place, consider the control flow graph

of Figure 4.2(a). Shown is the control flow graph of a loop that constitutes approximately

5% of vpr’s execution time. Except for the loop header and footer, the blocks are colored

white and light gray. The two colors indicate that two distinct data structures are being

manipulated, the gray blocks manipulating structure x and the white blocks manipulating

structure y. The control flow and computation of the two sets of blocks are entirely

independent. (This will become of chief importance in the next chapter.) Control flow

frequencies are indicated by three styles of control flow arc. The heavy, solid lines are

most frequent, followed by the heavy, dashed lines (at approximately half the solid lines’

weight), followed by the light solid lines, which are relatively insignificant. The loop

is dominated by the unbroken heavy path marked as the dominant path in the figure

(slightly more than half of loop iterations progress along it), but the marked secondary

paths are, taken together, equally significant.

We consider the Superblock framework’s approach to this loop. The Superblock

former can select a single path to exploit through this loop. It, of course, selects the path

marked as dominant. Figure 4.2(b) shows the Superblock formed, together with the tail

duplicated region making up the remainder of the loop. While the Superblock succeeds in

capturing about half the control flow through the loop, there are some problems with this

approach. Where secondary paths depart from the course of the main path (indicated by

79

���������
	����

�
��
� ��� ���

� 	����

� �� ���
��	����
�����
� ��� ���

� 	�� �

!"	�#%$ ��� �&� ���'������$)(*$ �,+.-��"	 � �

��/

� /

�'0

� 0

12	3�4$
� ��� $4� � 	��

� ���' ��5�$ � �
6

!�5�# � ���' �758$ � ��6 +9� ���:��	;�4$

Figure 4.2 Superblock formation in vpr get bb from scratch().

80

the heavy, dashed lines), control flow weight is “lost” to the tail duplicated region. Since

the Superblock is single-entry, this flow cannot re-enter the specialized trace. This renders

the Superblock loop not a good candidate for software pipelining, since it is unlikely to

retain execution for more than a single iteration. Furthermore, any operations speculated

above one of the frequently taken exit points perform extra work that is wasted, even

if these operations were from a point in the control flow graph where the excluded,

secondary path would have already rejoined the main path. Finally, the code in the

tail is left unimproved with respect to ILP opportunities. As was just mentioned, branch

target expansion will seek to improve on the last problem, but the remainder of the issues

cannot be addressed generally without the multiple-path specialization of Hyperblocks.

4.2 Effect of Ancillary Transformations

The effect of ancillary transformations, in particular branch target expansion, in de-

livering performance in the Superblock framework is of some importance. An under-

standing of S-CS performance is not complete without a description of at least a few of

these techniques.

4.2.1 Branch target expansion

As we have seen in the example, branch target expansion allows ILP transformation of

code left out of the program’s original Superblocks, a concession to the fact that code often

has more than one important path. It also allows replication and concatenation of existing

Superblocks to create even larger exploitation regions. In branch target expansion, the

code in a target block at the end of a control flow arc emanating from the end of a (source)

block is expanded into the source block. If the target block had multiple predecessors, this

entails code expansion. The goal of branch target expansion is to create larger regions for

subsequent optimization. It goes beyond (performs transformations beyond what would

be achieved in) the Superblock algorithm, in that it may allow multiple replications of a

single piece of code (in the Superblock scheme, code may only be tail-duplicated once).

81

���������
	 ��	 ���������	�����������������

�

�

�

!

"#

$

�%������&���'��(�*)+�,�������-��.���/����'�
'10/�����2	 �����

!

"#

$

�

�
�43 �

�65

!

"#

$

�

�
�43 �

�65
 45

 73

��-����2&8��'���&9���(�:�������-��.�;������'�
'10/�����	 �����

Figure 4.3 Branch target expansion in tails in vpr get bb from scratch().

Figure 4.3 shows the early activity of branch target expansion in the code from the

previous example. Figure 4.3(a) shows the tail portion of the control flow graph that

resulted from the formation of the dominant loop Superblock. Blocks A through H are

marked for clarity. Arc weights are as indicated before. Figure 4.3(b) shows the effect of

two branch target expansions, of the control flow arcs A→ C and B→ C. Here we note

that block C is replicated into each source block, extending the number of operations

among which ILP can be sought in the two extended basic blocks. This also, however,

makes for a total of four copies of C (one in the original Superblock). Three of these copies

are “lukewarm”; that is, all three are occasionally executed; one of the copies (labeled C)

is cold; this is of less concern. Figure 4.3(c) shows a subsequent two instances of branch

target expansion. This process can be continued indefinitely, potentially causing an

exponential increase in code size, even in lukewarm code. Lukewarm code expansion is one

of the primary problems with the Superblock framework. Over-expansion of lukewarm

code can substantially increase the active instruction footprint, causing increased misses

82

and degrading performance. This effect was visible in the increased front end stalls noted

in Figure 3.14 for crafty, eon, and twolf in the previous chapter.

Before the work of this dissertation, branch target expansion was applied with only

the following important restrictions:3 (1) it explored candidate arcs in six linear passes

through the control flow graph in the course of CFS optimization. This potentially

limited the growth of a given trace, no matter how heavyweight it was or how likely it

was to complete, and allowed essentially all blocks an equal opportunity to expand (up

to a maximum size of 256 instructions). No limit was imposed on code growth from

branch target expansion. (2) Expansion was not permitted through Hyperblocks (due to

inadequacies in an old predicate analysis mechanism).

The combination of these effects resulted in varied results. Increased Hyperblock for-

mation, even of benign Hyperblocks, could prevent important branch target expansion

later. Variations in Superblock parameters could, likewise, indirectly affect opportunities

for branch target expansion. The most serious problem was the opportunity for explosive

code growth in applications with complex control flow. An example of this behavior oc-

curred in crafty, in which explosive code growth deriving from essentially unconstrained

branch target expansion degraded Superblock results by nearly 10%, actually delivering

a result worse than that for classically optimized code. The frequent Hyperblocks created

in crafty artificially curtailed this growth, so the I-CS configuration did not suffer from

this problem to the same extent. This resulted in an “unrealistically good” showing of

Hyperblock code relative to Superblock in this application. Opposite results occurred

elsewhere, where profitable expansion had been blocked by Hyperblocks. (This misadven-

ture underscores the importance of thoroughly investigating differences in performance

to determine their root causes.)

To rectify this situation, branch target expansion was reimplemented to eliminate the

more arbitrary restrictions (per-block transformation count and prohibition of Hyper-

block expansion) and to install a prioritized expansion of the most important edges, up

3Other restrictions, including branch and block frequency and probability limits were applied, but
these often played little role in limiting code growth. Similar limits are applied in the new approach, as
well.

83

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

G
E

O
M

E
A

N

S
p

ee
d

u
p

 d
u

e
to

 b
ra

n
ch

 t
ar

g
et

 e
xp

an
si

o
n

1.1x br. tgt. expn. ratio

1.2x br. tgt. expn. ratio

1.3x br. tgt. expn. ratio

Figure 4.4 Effect of branch target expansion on S-CS performance.

to a fixed code expansion limit. Until this code expansion limit is reached,4 dominant,

block-ending control flow arcs are expanded in priority order, where the priority function

is flow-weight/
√

sizesource + sizetarget. This experimentally determined priority function

tends to expand those branches that are more likely to be executed, while also preferring

to equalize the size of regions to a certain degree (rather than creating only a few, very

large regions, and leaving many, very small but still relatively important blocks).

Figure 4.4 shows the effect (on S-CS performance) of varying the expansion ratio

between 1.00 (no expansion) and 1.30 (aggressive expansion). A branch target expansion

ratio of 1.10 delivered necessary gains for I-CS code without unduly admitting penalties;

a higher ratio of 1.20 was necessary to deliver peak performance in S-CS code, due to

the more stringent limitations on specialization in the original Superblock construction

phase. These ratios are applied in the I-CS and S-CS results reported here. The data

of Figure 4.4 provide a concrete example of the behavior described using the abstracted

Figure 3.9. The front end stall results presented previously in Figure 3.14 revealed that

only gcc, crafty, eon, and twolf exhibited significant instruction cache miss behavior. In

gcc and crafty, further increasing specialization (beyond the 1.20 mark) increases harmful

footprint effects more than it improves performance in other respects. In eon and twolf,

however, increased specialization purchases continued (although slight) improvements,

4Expansion of arcs that lead to single-predecessor blocks is not counted against the limit, since such
transformations do not actually replicate code.

84

although to do so does increase the instruction cache penalty component of execution

time. These constitute nice examples of the behavior described in Figure 3.9 in the

previous chapter—with CFS transformation, total performance may continue to increase

beyond the point where the instruction cache begins to be seriously penalized.

4.2.2 Loop unrolling and/or software pipelining

Loop unrolling, the replication of a loop body inside a loop, has long been associated

with Superblock techniques [22]. Unrolling has three benefits: it reduces the frequency of

likely-taken control flow (or potentially eliminates some branches in certain counted-loop

situations); it provides for overlap in scheduling across a given number of loop iterations;

and, finally, it allows for cross-iteration optimizations, such as induction variable expan-

sion, which can reduce effective dependence height. Loop unrolling does, however, incur

a degree of code expansion and cannot by itself achieve steady-state overlap between suc-

cessive loop iterations in the manner of software pipelining (it only approaches this limit).

Software pipelining, on the other hand, does not admit the possibility of cross-iteration

optimizations, since it does not, in the rotating register schema employed on Itanium 2,

actually replicate the body of the loop. For this reason, the performance of an unrolling-

based approach was compared (in the I-CS configuration) to that of a modulo-scheduled

approach that used unrolling only for loops that were not modulo-schedulable, and then

only to a small degree. This study found that no benchmark performed better in the

unrolling-based approach than in the modulo scheduling approach, indicating that the

improved overlap and code size efficiency of the modulo scheduling approach outweighed

the effectiveness of unrolling-based optimization in delivering net performance.5

4.2.3 Branch combining

In previous work, a transformation known as branch combining has proved effective.

This transformation collects adjacent side exit branches in a Superblock (or Hyperblock)

trace for combination into a single summary branch, whose condition is computed with

5In Chapter 5 an application of unrolling to software-pipelined loops will be described. This achieves
a significant speedup in specific situations, but not because of traditional unrolling-based optimizations.

85

a predicate definition network constructed from the branches to be summarized. Spec-

ulable instructions among the branches are pushed above the summary branch; other

operations (such as stores) are either guarded with a predicate reflective of their control

dependence position among the branches or are pushed down below the summary branch.

The summary branch leads to a “decoding” block containing the original branches and

any extruded, nonspeculable operations. The benefit of branch combining is that it re-

duces the number of branches executed and can allow a degree of height reduction if the

predicate network can be compressed. This technique is described in [79].

Passing experimentation with this technique found it to be only occasionally effective,

and then only slightly. In perlbmk it degraded performance by 5%; other benchmarks had

smaller, varied gains and losses. Given the variability of these results, and the fact that

it requires predication, branch combining was applied only in the I-CS configuration.

Those instances where branch combining, and not if-conversion, is primarily responsible

for the I-CS configuration’s performance gain (i.e., eon) will be pointed out as they arise.

It should be noted that Itanium’s ability to retire three branches in a cycle reduces

the appeal of this technique. Furthermore, branch combining uses parallel (or- and and-

type) predicate definitions, which are not available for all comparison operations in the

Itanium architecture (they support only equality, inequality, and comparison to zero) [80].

When a parallel compare must be generated for another comparison operation, more than

a single instruction is required. This considerably increases the overhead of the branch

combining technique.

Critical path reduction [68], a later generalization and systematization of branch

combining, was not implemented but seems worthy of future investigation in light of

these results.

4.2.4 Postformation instruction transformations

In IMPACT, the Lsuperscalar module attempts at length to perform specialization-

enabled optimizations after region formation. In previous works, these optimizations

have contributed significantly to final code performance. In these experiments, however,

their role has been dramatically reduced. Omission of this phase of optimizations reduces

86

performance by 11% in vortex and by 2-3% in parser, bzip2, and vpr. The profound effect

of post-formation optimization in vortex is due to the optimization of many store-to-load

forwarding opportunities (and subsequent, enabled optimizations) in the most critical

loops of the application. Exclusion of paths with aliasing stores permits many more

applications of this transformation in key Superblock loops.6

4.3 Evaluation

One exceptional case deserves special note. The benchmark vortex shows spectacular

benefit from CFS transformation. This benefit reflects the formation of very large, stable,

single-path execution paths which provide effective coverage of all common benchmark

execution patterns. The specialization inherent to formation of these regions provides

opportunities for removal of loads and stores (due to elimination of aliased accesses),

branches (due to control redundancy), and other operations (hence the importance of

post-specialization optimization to vortex mentioned previously). The number of useful

operations executed is reduced by nearly a third. The total number of operations exe-

cuted is decreased by 40%, owing to a reduction in nops due to improved scheduling in

Superblock regions. This results in a substantial reduction in front end stalls (as indi-

cated in Figure 3.14) in addition to a large, overall performance benefit. In the most

prominent case, the dominant loop of the procedure SaFindIn() and all its common

callees (which accounts for 25% of vortex’s execution time) are optimized together to

produce a Superblock loop. Within this loop, substantial specialization is performed.

The execution time of this function is reduced by over 60% relative to the O-NS code

version. As will be discussed in Chapter 7, substantial inlining is required to enable this

effect in vortex. A substantial investment must be made to enable reaping the benefits

of specialization.

6An adaptation of partial redundancy elimination could arguably perform these optimizations apart
from the formation of regions, performing the on-trace store-to-load forwarding and adding compensation
code to the off-trace paths.

87

Superblock-based optimization S-CS transformation, without predication, achieves

an average performance increase of 1.15 relative to a classically optimized baseline (O-

NS). (A limited degree of Superblock and branch target expansion subsequent to Hy-

perblock formation also measurably aids the performance of I-CS code.) In gcc, parser,

perlbmk, gap, and vortex, the S-CS configuration provides results approximately the

same as those achieved when the I-CS configuration is applied. Superblock performance

relies substantially on some subsequent, ancillary transformations, such as branch target

expansion, that create more versions of code than the Superblock algorithm itself would

generate. These subsequent transformations must, however, be controlled to keep the

code footprint penalties of this model from outstripping gains from increased planned

instruction-level parallelism. Relatively straightforward controls are usually effective in

preventing noticeably negative performance implications, as program structure tends not

to lend itself to explosive lukewarm code growth. This is an encouraging result for CFS

transformation. As we will see in the next chapter, multipath optimization, where pro-

gram structure accommodates it, is better able to support ILP without deleterious cache

effects.

88

5 THE VALUE AND APPLICATION OF PREDICATION

Explicitly parallel instruction computing systems provide support for predication, the

addition of a Boolean operand to instructions that controls whether or not the instruction

executes and commits its result. The Intel Itanium architecture provides a full predication

model [81], in which the vast majority of instructions have a guard operand, which may

be set to reference one of 64 architected, single-bit predicate registers.1 Predicates are

defined using dedicated predicate define instructions (with mnemonics based on cmp)

and are fully bypassed to be available in the cycle after their computation.2 The Itanium

architecture’s predicate defining instructions are modeled after those of the HPL-PD

architecture [4] and are described in detail in [80].

Most would consider predication to be a topic secondary to speculation. Since pred-

icated code is subject to control speculation (via promotion), since predication is an

integral part of the control-structural approach to ILP formation foundational to this

work, and since many of the interesting and important cases of speculation involve pred-

ication, this dissertation places predication first.

This chapter presents IMPACT’s Hyperblock-based predication framework, as im-

proved to support the class of programs used in this dissertation’s experiments, and

explains the performance results it provides. This dissertation improved peeling heuris-

tics, improved heuristics to include relatively infrequent paths into Hyperblocks to reduce

1Predicate register p0 has a constant value 1, or true.
2Floating-point compares take two cycles instead of one to execute. Branches may consume a predi-

cate computed previously in their same instruction group.

89

lukewarm (and sometimes even cold) tail duplication, and added a new form of loop un-

rolling that increases the applicability of predication. Additional work directed by the

author during this dissertation work in the IMPACT group by Shane Ryoo extended its

use in general optimization. Still, predication is found to be useful to Itanium 2 perfor-

mance in only a subset of benchmarks having particular types of control structure, as

will be explained in this chapter. These benchmarks include gzip, vpr, crafty, eon, bzip2,

and twolf, half the SPEC CINT2000 benchmarks. After a brief introduction to methods

of predicated region formation employed in the IMPACT compiler, these results will be

considered in detail.

5.1 This Work’s Approach to Predication

IMPACT’s approach to predication must be positioned relative to two bodies of work.

First, the Hyperblock approach applies the idea of path selectivity (from the Superblock

approach) to the procedure of if-conversion. Before Hyperblocks, if-conversion was ap-

plied to all paths of nested code diamond or hammock regions [76, 82]. This was useful

only in situations where the paths were well-balanced in path length and compatible

in instruction content—not a situation generally available in nonnumeric applications.

Hyperblocks are somewhat less structured than the complete if-conversion approach, and

therefore applicable in a broader range of programs. On the other hand, some compiler

frameworks ordinarily use predication to guard operations percolated above branches, as

an alternative to control speculation [50]. Hyperblocks are more structured than this ad

hoc application of predication, and provide for a wider range of benefits. The percola-

tion approach, for example, merely moves instructions relative to control flow; it does

not eliminate branches. Some attempts at characterizing the performance of predication

in real hardware contexts, most notably [39], have considered the minimally profitable

(or even injurious) endpoints of this predication spectrum without examining the fertile

middle ground in which IMPACT seeks to apply predication.

This dissertation work treats predication in a manner typical of other, previous IM-

PACT work, in that predication is used early and extensively in the compilation frame-

work to implement both control flow restructuring and optimizations. This work advances

90

on previous IMPACT studies in three primary ways: it provides a concrete evaluation

of predication in the presence of real-machine constraints; it reflects both generalization

and stabilization of IMPACT’s predication techniques to deliver more practical, more

consistent, and more far-reaching applications of predicated execution, particularly in

the presence of low-trip-count loops; and, finally, it explores the interactions of predica-

tion with other compiler phases, such as control flow profiling and procedure inlining,

and with common programming styles.

As mentioned in the introduction to CFS transformation, predication has two primary,

positive performance effects: first, the removal of branch and misprediction penalties

and, second, the enabling of overlap between independent blocks of control. To these,

this dissertation adds a third, minor benefit—an easing of instruction cache pressure

(relative to similarly aggressive Superblock formation) due to the ability to perform multi-

path specialization in the Hyperblock context. The IMPACT compiler strives to take

advantage of all these aspects with aggressive transformation that does not specifically

target only presumably hard-to-predict (relatively unbiased) branches.

5.2 Predication Benefit Example

Figure 5.1 shows an example to illustrate both the complexity of Hyperblock forma-

tion decision-making and the potential benefit of choosing the right region. The loop

indicated in (a) is the same one employed in the example of the previous chapter (Fig-

ure 4.2). Recall that the desired goal of CFS optimization for this loop body was allowing

the overlap between the distinct dependence chains of the regions manipulating “x” val-

ues and those manipulating “y” values. This parallelism having been exploited, it would

also be desirable to software-pipeline the loop.3

In the Superblock version, only a single path through the loop could be turned into a

monolithic scheduling region. The control structure of the loop, however, with prominent

3Incidentally, modulo scheduling of this loop reduces benefit relative to a nonpipelined Hyperblock
approach (increasing loop execution time by 15% relative to the I-NS approach) due to the scheduling
of two loads likely to be serviced in L2 from the same L2 cache bank in the same cycle. This problem
does not detract from the example, but is illustrative of the complex, and often unfortunate, interplay
of CFS transformation and dynamic events. See Appendix C.3.2 for details.

91

������� �	����

��	�����
�� ���

� ��
��

� ��� ���	�	�����
��	�����
�� ���

� ��
��

�� � �

! �

" ��� �
� � ��# � � ��$	% �

$�� �&� � % � ' � �)(!�
� ���!
���� %

��	�����
 ��$ � �
� ����� %*% ��%

+���, % ��� �-� ���!
���� %/.&% �1032���� � � + � ,54 ��%6% � � ��% �!$ � ���)78� �	� ��(% � �!9+�(�,;:<���=
>� � % � � �	% ��$ � ����7?� �	� �>(% � ��9

�� � �

! �

��

� �

!

�

@<�A� %
� ����% � � �	
 �

:5����
B� � %
� � �	% �	$ � ���
7?� �!� ��(% � ��9

Figure 5.1 Hyperblock formation in vpr get bb from scratch().

92

secondary control paths, prevented the formation of a Superblock that captured even a

simple majority of total loop iterations. Subsequent branch target expansion provided

some opportunity for combination of blocks in the Superblock tail, but this came at the

cost of extensive lukewarm code dilution and left potentially difficult-to-predict branches.

Furthermore, single-path speculation from below control flow merge points could have

caused work to be performed twice when the predicted, primary path was not taken.

Figure 5.1(b) shows the result of incorporating the primary and secondary paths into

a partial inclusion Hyperblock region. In this version, all typically executed paths are

incorporated into the Hyperblock. As in the Superblock, included instructions are able

to interschedule as their dependences permit, but in this case, all common paths are

covered, rendering speculation more efficient. A strategy that included common paths

was the original heuristic conceived for Hyperblock formation [36]. Since uncommon

paths are still excluded, however, a large amount of code is tail-duplicated. Fortunately,

this code is infrequently traversed, so it is unlikely to significantly impact instruction

cache performance. Furthermore, the decision and branching overhead necessary to di-

vert execution to this region in the case that an unlikely path is traversed (with all

these branches’ associated dependences) remains. If this code is ever traversed with any

frequency, performance may be negatively impacted.

Another option, shown in Figure 5.1(c), is to include some or even all uncommon

paths to reduce the code replication overhead and to improve resiliency to changes in

execution bias. In many cases (actually in all cases, in this example) low-frequency paths

have negligible instruction count and dependence height impact on the common-path

Hyperblock, and can be incorporated without negatively impacting performance. One of

the key extensions of the Hyperblock heuristics in the work leading to this dissertation was

the addition of mechanisms to include low-cost, infrequent paths into Hyperblock regions.

This provides the stated benefits, but poses new opportunities for problematic behavior.

Since control speculation of infrequent paths must generally be allowed to minimize

their impact on dependence height, misspeculation of these only infrequently on-path

instructions can have catastrophic performance implications if any misspeculation cannot

93

be handled efficiently. This problem will be revisited in Chapter 6, in the discussion of

efficient control speculation mechanisms.

The I-CS configuration of IMPACT studied here in fact renders a Hyperblock very

similar to that shown in Figure 5.1(c), one that includes the vast majority of paths

through the loop. This version, when modulo-scheduled, achieves a speedup of 1.30

relative to the Superblock (S-CS) version of the loop (and, if the previously mentioned

bank conflict is averted, a speedup of 1.58). This example has demonstrated the primary

goals and pointed to some of the pitfalls of predicated region formation. Let us now turn

to consideration of the mechanisms involved.

5.3 The Hyperblock Framework

Predicated region selection, the collection of basic blocks into Hyperblocks using

predication, is perhaps both the most performance-dictating4 and least understood part

of the ILP compilation process. While the basic concepts have been presented [36] and

some techniques for improving the accessibility of code to Hyperblock formation have

been described [83], little has been said in the literature regarding supporting the process

with effective decision-making mechanisms. The compiler is confronted with a virtually

infinite number of choices in transforming code into predicated regions, all of which have

potential benefits and costs, and some of which do not become apparent until a much

later compilation phase. Today this process relies on somewhat fickle heuristics which

often make suboptimal decisions (but, in practice, rarely terrible ones). So bad was the

situation (at one time) that some means have been proposed to allow the compiler to

make up for bad decisions later in the compilation process, within some limited scope [48].

The basic predicated region selection algorithm outlined in [36] remains today, though

it has been adjusted in some ways. The basic heuristic considers blocks in regions natu-

rally bounded by loop back edges or single-entry/single-entry points as candidate blocks

for Hyperblock formation. Each path through such a candidate region is examined for de-

pendence height, resource utilization, and execution frequency. Compatible paths (paths

4in programs with inherent structure presenting interesting options for the application of predication

94

that do not unduly slow down other important paths and which are estimated to co-

habitate peacefully within available resources) are selected for inclusion; blocks not on

these paths are excluded and tail duplication is performed to remove resulting side en-

trances into the region. This heuristic has been modified to improve its scalability (the

number of region paths increases exponentially with serial branches included in a region)

and to reduce the amount of tail duplication-related code expansion incurred (by includ-

ing some decidedly unimportant but relatively “inoffensive” paths into the Hyperblock).

These heuristic improvements have reduced compile time cost and run-time transforma-

tion overhead, and were an important part of making IMPACT’s Hyperblock mechanism

practical for Itanium 2.

Since optimizations subsequent to Hyperblock formation have a tendency to reduce

resource pressure and dependence height within the predicated region, heuristics have

been set to “over-predicate” (i.e., include more paths than might be obviously advisable)

on the assumption that subsequent optimization would be able to achieve a beneficial

result in the end; in other words, predication allows crossing a sort of energy barrier.

Sometimes subsequent optimizations are not as successful as was hoped; Partial Reverse

If-Conversion (PRIC) was proposed to “undo” Hyperblock formation to some extent,

cleaning up at least the path-penalization aspect of this problem [48]. This model was

shown to be effective in the presence of very aggressive if-conversion, though perhaps

not as elegant as one might hope. Today, however, profitably predicatable regions are

more difficult to identify, and often require preliminary transformations such as loop

peeling. These transformations are not easy to perform efficiently, and are not easy to

undo completely once done, rendering PRIC a less complete solution.

Much of the work done to make IMPACT a useful compiler for modern general-

purpose benchmarks on Itanium involved massaging these region selection routines. This

work has reduced the fickleness of the heuristics to some degree and has added new, less

code-size-expensive options for cultivating large regions, but it has not fundamentally

changed the approach to the problem. Fortunately, it has yielded an understanding of

the problem that will be useful in developing future solutions. To summarize:

95

• The applicability of if-conversion (in a productive way) depends significantly on

program control structure and bias. Not all programs exhibit a structure amenable

to this kind of transformation. Predication must be viewed as a feature that ex-

tends EPIC benefits to a certain class of applications, not as a technique applicable

to the optimization of all programs. In doing this it is quite successful, but the

scope of programs enabled is limited. Relative to competent Superblock special-

ization, the benefit of predication is generally associated with reductions in branch

misprediction and front end penalties.

• In programs suited to it, Hyperblock formation tends to provide increased planned

ILP with less impact on instruction cache structures than similarly aggressive Su-

perblock approaches, although this is not one of its explicit goals (i.e., heuristics

do not attempt to optimize for this). More effective control of code specialization

in region selection requires knowledge of the enclosing instruction cache footprint.

Within a given working set, the creation of excessive “lukewarm” code as a side

effect of specializing hot paths can negatively impact cache performance.

• If-conversion practically demands predicate promotion in nonnumeric programs,

and stands to benefit strongly from the speculation of potentially excepting oper-

ations. Since predicated regions include a “main path” (if one is even prominent)

and potentially several “secondary paths,” speculated operations will often be off-

path. This creates opportunities for frequent and unforeseen penalties, necessitat-

ing a new approach to control of potentially expensive speculations, as described

in Chapter 6; given these new safeguards, in practice, this seems not to detract

significantly from the benefit of Hyperblock formation.

• The heuristics established over the years for selecting Hyperblock regions, when ap-

propriately configured and extended in ways explained in this chapter, are generally

effective at making good formation decisions for the SPEC CINT2000 benchmarks

(they capture apparent opportunities and do not often form performance-injurious

regions). The fact that, in many cases, the minority of program latency cycles are

directly visible to the compiler, however, is a serious cause for concern.

96

• Results are reasonably insensitive to reasonable changes in parameters, more due

to limitations in program control structure (lack of compatible paths) than due to

easily solved limitations in implementation of the algorithms. While the heuristics

generally work well, there is no single setting of today’s parameters that results

in the best performance for all programs. A more systematic approach might be

able to produce better results, but would require much more information than is

available to the compiler today. Furthermore, extensive experimentation suggests

that, in SPEC CINT2000 and the current microarchitectural context, the head

room for improvement is too low to enable meaningful experimentation along these

lines.

• Effective control also requires more understanding of the interaction between re-

gion formation and what are today separate, previous, and subsequent optimiza-

tions. Formation of regions is by no means the end of the interesting part of

the compilation process. In addition to traditional optimization and height reduc-

tion techniques applicable to Hyperblock regions, there is a developing body of

work that performs specific optimizations within Hyperblocks, attacking predicate

computations, predicate dependences, dependence merging penalties, etc. [84–86].

Predication also offers opportunities for instruction merging (sharing common op-

erations between predicate paths), a largely unexplored and potentially profitable

technique. These transformations can have a substantial impact on the quality

of a selected region, but their effects are not anticipated in today’s region selec-

tion algorithms. Programs appear natively to contain many such opportunities, as

programmers appear to favor blocks of near-replicated straight-line code to control

flow designed to optimize the number of program statements (as in the crafty source

example). Perhaps this is an artifact of the perception that branching is expensive

and to be avoided.

• Small changes in the predicate network created during region selection can have

a large impact on final code performance (for example, the ordering of branches

and other instructions in a Hyperblock can be significant). Today, only superficial

97

changes are practical after regions have been formed. As indicated in the second ex-

ample of the previous section, speculation (in the form of predicate promotion, the

weakening or removal of predicates guarding the execution of operations) reduces

critical path length but introduces additional instruction executions and affects

register usage and scheduling. It is only one of a number of path height reduction

techniques that can affect the benefit of predication.

• The analysis and optimization of heavily predicated code continued to pose com-

piler scalability and accuracy problems. A promising new Boolean-expression-based

approach to data flow in predicated programs has been developed and shown to

provide an accurate and efficient solution.

Having pointed out the central threads of the description to follow, let us briefly

survey the techniques employed in forming Hyperblocks before proceeding to examine

performance results in detail. The Hyperblock formation procedure, as embodied in the

module Lblock, engages in two rounds of Hyperblock formation. The first focuses on

loop and diamond regions, also performing loop peeling as necessary to allow inclusion

of selected iterations of nested loops. The second repeats diamond formation and adds

general formation to clean up any blocks that did not have the opportunity to be in-

cluded in the first round (including some tail duplicated regions from the first round of

formation). The relevant details, and problems with, this approach are as follows:

5.4 Hyperblock Selection Heuristics

Existing predication heuristics are essentially extrapolated from Superblock heuris-

tics, in that they still largely focus on selecting a main path and adding alternative

paths to it. In addition to execution bias, though, multipath optimization must be

concerned with the compatibility of paths in terms of resource utilization and depen-

dence height [36]. Hyperblock selection heuristics operate in three fundamental modes:

the path enumerative, nested diamond,5 and block-based (also known as general) modes.

5In the typical IMPACT nomenclature, this has been referred to as hammock mode. In more con-
ventional nomenclature, a diamond may have two conditional blocks (if ... then ... else) and a
hammock is a degenerate diamond with only one conditional block (an if ... then).

98

These three approaches are used in different program contexts to select those regions of

code to be included in Hyperblocks. This section documents these heuristics and the

modifications made to them in support of this dissertation work. While the experiments

in some programs suggest an opportunity to improve or generalize on these heuristics,

they also show that SPEC CINT2000, particularly in the context of Itanium 2, offers

inherently little opportunity for dramatically more productive Hyperblock optimization.

In the work leading to this dissertation, Hyperblock formation heuristics were in

general improved in two relatively obvious ways to improve the stability6 and their man-

agement of code replication. First, a large degree of reconvergent control flow within an

if-conversion candidate region has historically proved problematic for path-based region

selection techniques. Such control flow can lead to an explosion of paths (n sequential

diamonds, for example, may generate 2n paths that need to be examined for compatibil-

ity). In the past, when an unmanageable number of paths arose, a simpler block-based

region former was invoked, but this often generated poor results. Setting the number of

acceptable paths very high reduced this problem, but caused region formation to take an

unreasonable amount of time. The path-based elements of Hyperblock selection heuris-

tics were therefore given the ability to identify “choke points” that are control-equivalent

to the beginning or end of Hyperblock regions.7 A complex region can be split into sub-

regions at these points, dramatically reducing the degree of path explosion. While this

generates slightly more conservative Hyperblocks (since it constrains growth based on

dependence height point(s) in the middle of paths as well as at the end) than a full path

enumeration, it renders the problem of Hyperblock selection much more practical. With

this practicality comes increased stability, since the relatively unsatisfactory block-based

selection mechanism is avoided.

The second problem had to do with relatively low-weight paths. These in the past were

uniformly excluded from the formation of Hyperblock regions. Often these low-weight

6For our purposes, stability is loosely defined as the resilience of transformations to changes in coding.
For example, a loop containing sequential diamonds should experience the same type and quality of path
selection no matter how many times it is unrolled. Stability is important to drawing generalizable lessons
from compiler work.

7Whether the choke point is with reference to the beginning or the end depends on the mode in use.

99

paths, however, involved only a few additional instructions (relative to the important

paths) and had no impact on dependence height. In this case, it is actually more cost-

effective to include the path than to include a branch and, often, significant tail-duplicated

code, to support its exclusion. Heuristics have been extended to include these relatively

infrequently-taken but harmless paths. This has reduced the degree of code expansion

incurred in a typical Hyperblock formation pass without, in general, negatively impacting

specialization. Such practices do increase the importance of controlling the negative

effects of off-path speculation.

5.4.1 Loop path enumeration mode

The first formation mode, path enumerative, is the most obvious derivative of the

Superblock model. In this mode, all paths through a single-entry, multiple-exit region

that terminate with the selected exit point8 are enumerated and evaluated with reference

to the main path (that which would have been the Superblock) for inclusion into the

region.

This model assumes that most loop iterations conclude with traversal of the loop

back-edge (or at least reaching the loop-back branch). The Hyperblock formed will fo-

cus explicitly on this goal (to allow, for example, for efficient software pipelining). If

the loop tends to have only one or a handful of iterations, however, and especially if

it tends to terminate with a side exit (one that does not involve the loop-back branch)

such iteration-focused transformation will be unprofitable. SPEC CINT2000 (and other

common programs) abound with infrequently iterated loops. Loop selection heuristics

were therefore modified to avoid treating such “unloopy” loops, since peeling can gener-

ally be employed to incorporate commonly executed iterations into surrounding blocks,

increasing the overlapping of loop latency with surrounding code (as in the example of

Figure 3.7).

8The region may have multiple exits, but only one exit is considered the terminus of the region. This
point, which in loops corresponds to the tail of the (single permitted) loop back edge, is required to be
the terminus of all candidate paths.

100

5.4.2 Nested diamond mode

In nonloop code, Hyperblock formation relies on the assembly of candidate regions

from nested and sequential arrangements of diamonds (and hammocks). Such regions

may potentially have side exits, but must have a single entry point. Within these regions,

paths are evaluated for profile importance, dependence height, and resource utilization,

just as in the loop selection mode.

5.4.3 Block-based mode

A final mode assembles irregular predicated regions from blocks not included in other

Hyperblocks. It starts with a seed block and iteratively includes successor blocks, poten-

tially along multiple paths, if they meet certain execution weight and other requirements.

General formation is useful but unstructured. It can result in parallel, but not cotermi-

nous, paths coexisting for a duration of at least several cycles. This is often of dubious

benefit if resource pressure or dynamic effects contribute to the region’s execution time.

5.4.4 Loop peeler

The three formation modes are aided simultaneously by one important ancillary tech-

nique (in addition to tail duplication). With profiling information it is possible to trans-

form small, short-trip-count loops so they can be parallelized with surrounding code.

This transformation is called “loop peeling.” In loop peeling, a loop body is replicated

in the loop preheader, surrounded by appropriate control flow, to make it possible to

include a given number of loop iterations into a Hyperblock. The benefit is that ILP

may be sought between these now-straight-lined loop iterations and surrounding code.

The costs include the effects of the requisite code replication and the potential inclusion

of loop iterations that will be squashed away via predication at run time. Allan, et al.

documented the ability of loop peeling, at least in concept, to increase the degree of

available parallelism in the immediate neighborhood of loops, in the context of a pro-

gram dependence graph [87]. The original implementation of loop peeling in IMPACT is

described in [83], in which it was shown to produce occasional benefit.

101

Loop peeling required two important changes to make it a practical and reliable tool

in this work. The first was with respect to the code replication performed in peeling. As

we have seen in previous examples, loop bodies often disproportionately favor particular

included paths, often to the extent that the majority of the code in the loop body is either

not executed at all, or is very infrequently invoked. The original loop peeling algorithm,

when it went to peel a loop, replicated the entire body of the loop, not just the “hot”

blocks to be incorporated into the outer region. This led to a substantial amount of

code expansion when the peeler was used aggressively, but had one salutary effect—it

avoided making the remainder loop improper.9 Improper loops have not historically been

supported by the IMPACT region formation system.

To reduce the code expansion associated with loop peeling and allow its more frequent

use, the region formation techniques were enhanced to operate on improper loops and the

loop peeler was modified to replicate only the loop paths actually to be peeled into the

outer region. This delivers the same degree of loop peeling effectiveness without creating

unneeded copies of loop code.

The second modification to the peeler was in the heuristic used to control the peeling

decision. Originally, the loop peeler focused on totally peeling inner loops—if a vast

majority of loop invocations could not be totally subsumed in the surrounding region

with a given degree of peeling, the peel would not be performed. Furthermore, rarely

used iterations could be peeled into an outer region if this increased the number of

invocations totally subsumed [83]. Analysis (of SPEC CINT2000 and other benchmarks)

revealed that a different set of objectives yielded better typical performance. New loop

peeling heuristics peel iterations that are likely to be used on more than a given fraction

of invocations. A lower bound is retained on the fraction of invocations the peeled loop

must cover, but this bound is substantially reduced from that in the previous approach

(it exists only to prevent pointless peeling of many-iteration loops).

9An improper loop is one that has more than one entry point, or header. Peeling a partial region
and connecting outgoing flows to the successor blocks in the original loop body would render the loop
body improper.

102

Extensive peeling (like unrolling) within predicated regions tends to generate many

independent predicate domains. This causes serious problems for IMPACT’s traditional

approach to data flow analysis, as will be detailed in Section 5.6.2. The improvements

to data flow analysis techniques suggested there will allow more general experimentation

with peeling.

5.5 Optimization in the Predicated Context

The incorporation of predication into the compiler’s internal representation offers

unique challenges and opportunities for subsequent optimization passes. Much work has

been done in IMPACT to ensure that predication does not hamper subsequent transfor-

mations and that it is itself optimizable. Please note that discussion of one of the most

important post-if-conversion transformations, predicate promotion (the predicate-domain

equivalent of control speculation), is deferred to the next chapter. The use of predication

in unrolling for modulo-scheduled loops, undertaken to provide temporal separation for

interfering loads and stores, is deferred to Section 8.4.

5.5.1 Partial dead code elimination

Specialization of hot paths in loop bodies often entails promoting variables stored in

memory to registers for the duration of a loop. When said variables are live outside the

loop exit, it is necessary to store the temporary value back to memory after the loop

has completed. If the store was conditional within the loop, simply pushing the store

out the loop exits causes speculation of a store—an illegitimate transformation if the

store is not to a known-safe location. Furthermore, when cold paths (excluded from the

specialized loop body) contain potentially aliased uses and definitions of these variables,

it is necessary to insert compensatory stores and loads around these operations. To

allow this transformation without speculating stores, IMPACT makes use of generalized

predication, predicate defines, and guards that are (1) not generated by if-conversion and

(2) live across control block boundaries and loop back edges. IMPACT’s sophisticated

predicate analysis system transparently handles analysis and some optimization of these

103

��� � �����	�
�	� �
��� ���� �����	�
��� �����	����������� � ������� �
��� �! "�#�%$
���"&	�����#' � �	�(� ���

)+*

,�*

-!*/.%021 3�� ���
45021 3�� �
6�6
�
.%0�."624
798 � ����0�.

:�*

; .	1 1<� ����� �

=+*

>+*

,�)

>,�)�)#)�>

,�)
))�> >

,�)

?@@
@@

)!* ."0�1 3+A 7 � ���

,	*

-�*B.%021 3�� ���
45021 3�� �#6�6	�
.%0�.%624
7�8 � ���	0(.
.%021 3!A 7 � ���

:!*

; .�1 1C� ���	� �
.%021 3�A 7 � ���

=!*

>!*

)!*/.%021 3�A 7 � ���
D 0�)

,	*

-!*
450E1 3(� �
6�6
�
.%0(.%624
798 � ����0�.
D 0F,

:�* G �+� D � 798 � ����0�.
D 0�)
; .�1 1<� �	��� �
.%021 3!A 7 � ���

=!*

>!* G �+� D � 798 � ���	0�.

,�)

>,�)#)�)	>

,�))�)#> >

,�)

?@@
@@

,�)

>,�)�)#)�>

,�)#)�)	> >

,�)

?@@
@@

� .��IH5J G K	G L#.�1 ; ��L 8 J ��1C� 1 �9MNK�J . D�O
M%G 8 O5P 3#K P�D J ��� G 1 P M P G K O98 7

� 4���QI� 8 P J 7
D�P�;#R 1 . 8 G S P�D .	J 8 G .�1�J P 3 R L#3�.	L ; �
P 1 G T%G L#. 8 G ��L%� M(G 8 O57�8 U 1 3 ; ��.�1 P	7�; G L
K��

� ; ��QV� 8 P J D J �
� G 1 P
W 3�G J P
;�8 P 3 D J P 3�G ; . 8 P 3
D .�J 8 G .�193 P .	3 ; �#3 P%P 1 G T%G L�. 8 G ��L

1 ��.	3 ; ��T%4	G L P�7
M(G 8 OX7�8 ��J P

Figure 5.2 The use of predication in partial dead code elimination.

unusual predicates. This technique has been integrated into systematic optimizations

such as partial dead code elimination. Figure 5.2 shows an example of the application

of this optimization. Figure 5.2(a) shows an initial code segment; Figure 5.2(b) shows

the application of partial redundancy elimination to remove a load instruction from the

indicated loop body. The corresponding store is removed with the help of predication, as

shown in Figure 5.2(c). Predication allows the conditional store instruction to be sunk

out of the loop, where a nonpredicated implementation would require insertion of control

flow or speculation of a store. Details are given in [88].

5.5.2 Optimization of predicate definitions

Several works have targeted the optimization of predicate definition networks them-

selves [84, 86, 89]. This work incorporates some lightweight predicate optimization tech-

niques that remove redundancies and enable parallel compares (to a limited degree) in

the predicate network generated by if-conversion. These techniques do not, under the

circumstances studied here, appear to be very important to performance. With more

aggressive use of predication they might have some significance. It should be noted

that the limited (relative to that available in the IMPACT EPIC or HPL-PD environ-

ments, and in particular to that employed in [84]) predicate define structure of Itanium

to some extent hampers optimization of predicate definition networks. This irregularity

104

also caused problems for branch combining, another predication technique once shown

to have substantial benefit (See Section 4.2.3).

5.6 Predicate Relation and Data Flow Analysis

Many elements of the compiler that operate subsequent to the formation of predicated

regions (through if-conversion or by some other means) require accurate resolution of

control relations such as dominance and postdominance and data flow analyses such as

live-variable and reaching-definition [49]. The classical approaches to the analyses that

provide this information must be revised in predicated code.

5.6.1 Predicate relation analysis

Analysis of control relations in predicated code is useful in its own right (for notions of

dominance and post-dominance) as well as being foundational to the derivation of local

and global data flow analyses. The IMPACT compiler uses an approach to predicate

control relations, referred to as the Predicate Analysis System (PAS), developed by David

August and this dissertation’s author, as documented in [55]. This framework, based on

the canonical representation of predicate define networks in binary decision diagrams

(BDD) [90], performs fully accurate analysis of the control relations among a procedure’s

predicates. It provides a convenient interface through which the rest of the compiler,

including the data flow analysis module, can pose queries about predicate relationships

to the analysis BDD it has constructed. Such queries indicate whether, for example, a

pair of predicates are disjoint (never simultaneously true), complementary (disjoint, but

together subsuming all possible execution conditions), etc. The author extended this

system to include relations among the conditions used to define predicates (that is, if

p1 = (r1 > 5) and p2 = (r1 < 5), assuming both comparisons referenced the same

assignment to r1, the system would acknowledge that p1 and p2 are disjoint. This work

is documented in the author’s master’s thesis [91].

Aside from minor extensions to improve the scalability of this system (modifications

were made to allow automatic, sifting BDD variable reordering to be enabled, preventing

105

undesirable BDD growth in a few cases), the Predicate Analysis System very competently

supported the experiments of this work, even with predication very aggressively employed.

5.6.2 Data flow analysis in predicated code

One of the compiler’s primary consumers of predicate analysis information is the

data flow analysis engine. Data flow analysis is employed in optimization, scheduling,

and register allocation phases of the compiler. In its most commonly used application,

live-variable analysis, it indicates whether, at a given point in a program, a particular

register contains a value that may be used in the future [49]. For an analysis consumer

such as register allocation, which must determine the extent of live ranges of values

throughout a procedure so it can arrange them, without conflicting with each other, into

available machine registers, this analysis is required to be computed for every point in

the program, for all machine registers.

The classical formulation of live variable analysis performs the parallel computation

of liveness for all procedure registers10 across the entire extent of the procedure. To

accommodate rapid, parallel computation, a single bit in a bit-vector (or variable-sized

set in the IMPACT implementation) is assigned to each register, to indicate its liveness.

A bit-vector is assigned to each relevant program point (one or two per control block and

one or two per instruction) to hold the final result.

Live-variable analysis is monotonic (it can be computed iteratively in a straightfor-

ward way) and backward (liveness propagates from later instructions to earlier ones).

The effect of each instruction is to generate liveness “upward” toward previous opera-

tions for the registers it reads and to kill livenesses, rising from subsequent operations, for

those registers it defines. The analysis is typically accelerated by the observation that the

process can be split into a local and a global phase, with the global phase processing only

summaries of the liveness generation and killing behavior for entire control-equivalent

regions (basic blocks). The procedure thus has three phases: First, a linear pass over

10These may be virtual registers, which are practically unlimited in number (typically hundreds or a
few thousand), rather than machine registers, which are generally fewer in number.

106

instructions to generate block summaries; second, an iterative global phase to deter-

mine liveness at block boundaries; and, third, another linear pass over instructions to

propagate liveness locally, within blocks (if instruction-granularity results are desired).

The basic equation for live-variable analysis, which may be applied to either a single

instruction or to a control-equivalent region, is

LIVEin[i]← GEN[i] ∪ (LIVEout[i]−KILL[i]) (5.1)

In straight-line code, the LIVEout of one instruction receives the LIVEin of the

subsequent one. When this equation is applied iteratively to all instructions until no

further changes occur, liveness has been computed. Where control flow splits and merges

exist, however, confluence operations (conservative combinations of multiple paths of

liveness) must be performed. If a register is live-out on one path (potentially consumed

by some operation later in a program path), it is considered to be generally live-out.

Considering a basic block b with multiple successors (perhaps ending in a conditional

branch), its iteration equation is modified to be

LIVEin[b]← GEN[b] ∪

⋃

s∈succ(b)

LIVEin[s]−KILL[b]

 (5.2)

This equation still does not apply directly to IMPACT’s internal representation, once

CFS transformations have been applied. First, IMPACT treats code in predicated ex-

tended basic blocks (PEBB), the contents of which are not all control-equivalent (due

to their potentially containing predicated instructions as well as side-exits). Thus, the

merge over all successors is unacceptable, since the exact KILL set for each successor

may depend on its arc’s point of exit from the PEBB. Furthermore, since IMPACT’s

representation may include predication, individual instructions within a block may have

different control conditions. Whereas the extension to Superblocks is, as we shall see,

straightforward, the extension of data flow analysis to predicated code is anything but.

While control flow arcs among basic blocks determine the necessary paths of propagation

for data flow information (via the successor relation), no such arcs exist among predicated

operations.

107

There have been a number of approaches to data flow in predicated code. IMPACT

has taken a reverse-if-conversion-based approach, first based on the Predicate Hierar-

chy Graph (PHG) [79], and later on the predicate analysis system (PAS) [92]. In this

approach, referred to as the Predicate Flow Graph (PFG), the analysis attempts to gen-

erate, from the instructions in a Hyperblock and from knowledge derived from predicate

analysis, a control flow graph that emulates the data flow behavior of the predicated

code. The goal is to generate a “stand-in” control flow graph on which standard bit-

vector data flow can be run without conservatism. In doing so, two relations must be

maintained: instruction ordering and control faithfulness. First, in any traversal of the

generated graph, instructions must be visited in the order in which they occur in the

actual code. Second, the generated graph must be faithful to the execution conditions

of the instructions in the original predicated code segment. If it is not, data flow will be

incorrect. A third property is desirable—that this conversion of predication to control

flow is complete and free of spurious paths. If the analysis graph contains any remaining

predication, the analysis will be conservative (predicated definitions will not kill prop-

erly). If spurious paths exist (a spurious path is a traversal of the control flow graph

that includes two instructions that could not have executed together in a single traversal

of the original predicated block due to their predicate relations), data flow will also be

conservative. When this final criterion is not achieved, the analysis allows leakage of data

flow (in the case of liveness, spuriously long live ranges).

Figure 5.3 shows two applications of the PFG approach to data flow analysis of pred-

icated code. Figure 5.3(a) and (b) show a straightforward example.11 The numbers in

the PFG of (b) indicate the location of instructions from (a). Instruction ordering and

control faithfulness are maintained, and the resulting graph need contain no predication.

No replication of instructions or control flow is necessary to do so. For simple, directly

if-converted code, in which predicated instructions are grouped according to their orig-

inal control blocks, the PFG generally works well. Figure 5.3(c) shows the same code

11The Itanium predicate compare instruction cmp.lt.unc sets the two destination predicates to com-
plementary values.

108

 cmp.lt.unc p1, p2 = r1, 0

(p2) add r3 = r2, r1
(p1) sub r3 = r2, r1

 st8 [r4] = r3
 cmp.lt.unc p3, p4 = r4, 0

(p4) add r6 = r5, r1
(p3) sub r6 = r5, r1

 st8 [r7] = r6

1:
2:
3:
4:
5:
6:
7:
8:

 cmp.lt.unc p1, p2 = r1, 0

(p2) add r3 = r2, r1

(p1) sub r3 = r2, r1

 st8 [r4] = r3

 cmp.lt.unc p3, p4 = r4, 0

(p4) add r6 = r5, r1

(p3) sub r6 = r5, r1

 st8 [r7] = r6

1:

2:

3:

4:

5:

6:

7:

8:

1,5

2

6

3

7

4,8

3'

T p1 F

T p3 F
6'
T p3 F

7'

1

2 3

4,5

6 7

8

T p1 F

T p3 F

(a) Code segment before scheduling

(b) Prescheduling
predicate data flow graph

(c) Code segment after scheduling

(d) Postscheduling
predicate data flow graph

Figure 5.3 Predicated data flow with the Predicate Flow Graph.

after scheduling has occurred. The two sets (1-4 and 5-8) of instructions with indepen-

dent control flow, implemented as predication, have been interleaved. This is a desired

effect of the predicated representation, as has been described. To maintain ordering and

control faithfulness in this case, however, the analysis PFG must be more complex. Fig-

ure 5.3(d) shows an accurate PFG for this code. On any given traversal of the region,

instructions must occur in the order 1, 5, 2, 6, 3, 7, 8, but when 2 executes, 3 should not

execute (as these instructions are on opposite predicates). Reproducing this behavior,

which is quite simple in predicated form, is not entirely natural in a standard control

flow graph. Spurious confluences, as described above, must be avoided, as these will lead

to conservatism. Here, four paths must be materialized. In general, in a region of code

that meaningfully overlaps n independent predicates, 2n paths must be enumerated to

maintain an exact result. At some point, this growth is unacceptable, and growth must

109

be curtailed, introducing conservatism.12 In the case of live-variable analysis, such con-

servatism can result in a register live range escaping a Hyperblock, potentially causing a

register to be wasted for most of a procedure body. This situation occurred frequently in

the SPEC CINT2000 benchmarks with the aggressive application of predication (partic-

ularly with extensive loop peeling). This resulted in noticeable increases in register stack

engine time in crafty and other more subtle problems in other benchmarks (for example,

it was impossible to experiment with more than a very limited degree of peeling in twolf

due to an unacceptable degree of path explosion in data flow).

Clearly a different approach is now necessary. Johnson and Schlansker [93] and Gillies

et al. [94] addressed the problem of data flow analysis in the presence of predication.

They presented a new, predicate-aware data flow framework based on the Predicate

Query System (PQS), a predicate analysis representation based on a structured tree of

logical domains. By representing the liveness of registers in the nodes of this tree, they

could perform accurate data flow in predicated regions without the costly reverse if-

conversion and forced approximation of the PFG approach. The PQS, while it provides

an orderly structure for such analysis, is not as flexible as the PAS in representing a

variety of predicate defining structures accurately [55]. The PAS, on the other hand, lacks

an orderly and convenient tree on which to maintain such information. For derivative

Boolean manipulations to be performed effectively under PAS, they must take place in

the BDD itself.

5.6.3 LED: Efficient predicate-aware data flow analysis under PAS

The author developed a new system of live-variable analysis (initially for register

allocation, but extensible to all traditional bit-vector analyses) which operates on pred-

icated, extended basic blocks and requires no reverse if-conversion. It uses the BDD

locally (within a PEBB) and standard, bit-vector propagation globally, for efficiency.

12This limit is fixed at 256 enumerated paths. Even at this seemingly benign setting, live-variable
data flow analysis can consume hundreds of megabytes and take several minutes (and live-variable is
run at least dozens of times on a typical procedure). Nonetheless, this bound is frequently exceeded.

110

1: procedure LED-Block-Setup(B = {I, A})
. B: PEBB with instructions I and successor arcs A.

2: fr ← 1 . fr: reachability
3: for all i ∈ I in forward order do
4: fr[i]← fr . fr[i]: instruction reachability
5: fe[i]← fr ∧Get-Predicate-Function(i) . fe[i]: instruction execution
6: if Is-Control-Operation(i) then
7: a← Get-Associated-Arc(A, i)
8: fa[a]← fr ∧Get-Predicate-Function(i)
9: if Is-Jump-Instruction(i) then

10: fr ← fr ∧ ¬fe

11: end if
12: end if
13: srcs[i]← Summarize-Sources(i)
14: dsts [i]← Summarize-Destinations(i)
15: end for
16: for all a ∈ remaining flows in A do
17: fa[a]← fr

18: end for
19: end procedure

Figure 5.4 LED Instruction and arc setup phase.

This approach thus delivers accurate results, provided that data flow need not be sensi-

tive to predicate relations in an interblock sense.13 This framework will be referred to as

Locally Expression-based Data Flow (LED).

Figure 5.4 shows the generic instruction and arc setup procedure for a PEBB. This

setup procedure applies not only to live-variable analysis, but to all data flow analyses.

Variables specified as f represent nodes, or functions, in the BDD. They can be thought

of as generic Boolean expressions, consisting of literals 0 and 1 and (hidden) underly-

ing variables. The function Get-Predicate-Function references the aforementioned

Predicate Analysis System (PAS) to acquire such a function for a given predicate. Logical

manipulations of these functions, as in line 8, generate new nodes and functions inside

13Accuracy will be lost (conservatively) if a register is defined under a predicate in one block and read
under a subsumed predicate in another block, and the condition of definition is stronger than (is strictly
a subset of) the condition of transit to the block with the use. This limitation could be removed with
some degree of effort.

111

the BDD.14 Each instruction is annotated with two Boolean functions, fr and fe. The

former is the reachability condition, the function that most narrowly determines if the

instruction will be reached from the top of the PEBB. (The reachability condition fr is

updated in line 10, at the processing of a jump instruction. If the jump is taken (fe = 1),

flow leaves the block.15) The latter, fe, is the execution condition, the combination of

fr with the function of the instruction’s predicate, as determined by the PAS. For each

instruction, summarized lists of sources and destinations are prepared, which express all

register uses and definitions. Each listed source and definition is marked with two bits

of information: uncond and trans. The uncond flag indicates that the operand is used

or defined unconditionally, that is, without regard to the instruction’s guarding predi-

cate. This is true of the predicate source itself, as well as the predicate destinations of

unconditional-type predicate defining instructions. Such an operand will operate with

respect to fr instead of fe. The second flag, trans, indicates that a definition is trans-

parent; that is, it does not kill liveness; and- or or-type predicate definitions receive this

flag.

Figure 5.5 shows the construction of block GEN and KILL sets (bit-vectors) in the

LED framework. Since the block under examination is a PEBB (potentially having side

exit arcs), a distinct KILL set must be generated for each exit path, as opposed to

the one per block in a classical, basic-block based framework. In the pseudocode, Fg

and Fk are maps from register names to BDD functions (expressions) representing the

condition under which registers are generated (used before definition) or killed (defined),

respectively, for the PEBB being processed. For each source register of an instruction, Fg

is updated with the disjunction of the current generation expression and an expression

representing the condition under which the register is both read by the instruction (fr

or fe) and not already defined (Fk(r)) (lines 5-10). The corresponding operation is

14A reference-counting garbage collection mechanism ensures that these expressions are freed when
no longer necessary. The tedious code necessary to ensure that this happens has been omitted from the
pseudocode examples, for clarity.

15In addition to jumps, control operations may be conditional branches (but only early in the compiler).
Since a conditional branch only conditionally causes control flow to leave the block, fr cannot be updated
for these operations. In the latter stages of the compiler, all conditional branches have been converted
to predicated jumps, so fr is always updated.

112

1: procedure LED-Liveness-Gen-Kill(B = {I, A})
. B: PEBB with instructions I and successor arcs A.

2: Fg = {r → fg} ← {?→ 0} . Fg: register GEN functions
3: Fk = {r → fk} ← {?→ 0} . Fk: register KILL functions
4: for all i ∈ I in forward order do
5: for all r ∈ srcs[i] do
6: if uncond [r] then
7: Fg(r)← Fg(r) ∨ (fr[i] ∧ ¬Fk(r))
8: else
9: Fg(r)← Fg(r) ∨ (fe[i] ∧ ¬Fk(r))

10: end if
11: end for
12: for all r ∈ dsts[i] do
13: if ¬trans [r] then
14: if uncond [r] then
15: Fk(r)← Fk(r) ∧ fr[i]
16: else
17: Fk(r)← Fk(r) ∧ fe[i]
18: end if
19: end if
20: end for
21: if Is-Control-Operation(i) then
22: a← Get-Associated-Arc(A, i)
23: KILL[b, a]← {∀r | fa[a] ∧ ¬Fk(r) = 0}
24: end if
25: end for
26: for all a ∈ remaining flows in A do
27: KILL[b, a]← {∀r | fa[a] ∧ ¬Fk(r) = 0}
28: end for
29: LIVEin[b]← GEN[b]← {∀r | Fg(r) 6= 0}
30: end procedure

Figure 5.5 LED live-variable gen/kill phase.

113

performed for all destination registers (lines 13-19). These maps (hash tables in the

actual implementation) are updated as each instruction is processed in forward order.

The KILL sets used in global propagation are generated as outgoing control flow arcs are

encountered (lines 23 and 27). Here, all registers having a kill expression that subsumes

the arc’s condition of reachability are added to the KILL set for the arc. Finally, the

GEN set for the block is generated in a similar manner (line 29) after all instructions have

been processed. Here, though, a satisfiable liveness generation expression (any expression

Fg(r) not a literal 0 in the canonical BDD representation) is sufficient to merit inclusion

of a register in the GEN set.

It should be noted here that there are two opportunities for conservatism in the

LED gen/kill phase. The first is with respect to the GEN set. If a register is not

completely live (Fg(r) = 1), its inclusion in the GEN set is conservative with respect to

the condition ¬Fg(r), since the bit-vector representation is incapable of representing the

partial nature of this liveness across a PEBB boundary. Fortunately, this conservatism

only manifests itself as a difference in live-variable results if predecessors only define

the register r under related predicates. Furthermore, this situation is detectable and,

perhaps, even correctable with some additional analysis effort. In practice, given the

IMPACT compiler’s usage of predication, this potential conservatism does not appear to

present a problem at this time.

The second potential conservatism is even less a concern. If conditional branches are

included in the PEBB, fr is not updated to reflect the exit of the taken path from the

block. If registers are defined, prior to the branch, under predicates logically related to the

condition of the branch, and then used in a control-dependent manner subsequent to the

branch, their liveness may escape. This conservatism is easily rectified by the conversion

of conditional branches to predicate compare / predicated unconditional jump sequences,

as happens in the machine code generation phase of the compiler. Condition analysis [91]

can then relate these predicate definitions and remove the potential for conservatism.16

In practice this second potential form of conservatism is also not a frequent problem.

16The same could be done with intact conditional branches, if their conditions were exposed to the
predicate and condition analysis.

114

1: procedure LED-Global-Propagation(P = {B})
. P : procedure with blocks B.

2: repeat
3: change← 0
4: for all B = {I, A} ∈ P do

. B: PEBB with instructions I and successor arcs A.
5: L← LIVEin[b]
6: for all a ∈ A do
7: L← L ∪ (LIVEin[s]−KILL[b, a])
8: end for
9: if L 6= LIVEin[b] then

10: LIVEin[b]← L
11: change ← 1
12: end if
13: end for
14: until change = 0
15: end procedure

Figure 5.6 LED live-variable global propagation phase.

It should be noted that the prior PFG approach suffered from these same modes of

conservatism, in addition to its far more serious path limitation problem.

Figure 5.6 shows the global propagation phase of the LED algorithm. This phase is

identical to the global propagation phase of classical bit-vector live-variable analysis, with

the exception that it has been generalized to handle the multiple, differently located block

exits of the PEBB. As shown in Figure 5.5, LED computes a distinct KILL set for each

exit from a given block, since such exits may depart before the end of the EBB. Otherwise,

the algorithm is a straightforward, iterative implementation of Equation (5.2). The global

phase can be accelerated by using a work-list, rather than iterating over all blocks, and

by processing the blocks in reverse topological order. In such an implementation, the

number of iterations of the outer loop is bounded by the degree of loop nesting in the

procedure being analyzed [61, pp. 231–235].

Figure 5.7 shows the concluding intrablock propagation phase of the LED algorithm

for live-variable analysis (conducted only if instruction-level live-variable results are de-

sired). Here, the PEBB is processed in reverse order, and a liveness map Fv, similar to

115

1: procedure LED-Live-Variable-Block-Propagation(B = {I, A})
. B: PEBB with instructions I and successor arcs A.

2: Fv = {r → fv} ← {?→ 0} . Fv: register LIVE functions
3: if a← Get-Fall-Through-Arc(A) then

. A fall-through arc, if it exists, is not associated with any instruction.
4: for all r ∈ LIVEin[dest[a]] do
5: Fv(r)← Fv(r) ∨ fa[a]
6: end for
7: end if
8: for all i ∈ I in reverse order do
9: for all a ∈ Get-Associated-Arcs(A, i) do

10: for all r ∈ LIVEin[dest[a]] do
11: Fv(r)← Fv(r) ∨ fa[a]
12: end for
13: end for
14: LIVEout[i]← {∀r | Fv(r) ∧ fe[i] 6= 0}
15: for all r ∈ dsts[i] do
16: if ¬trans [r] then
17: if uncond [r] then
18: Fv(r)← Fv(r) ∧ ¬fr[i]
19: else
20: Fv(r)← Fv(r) ∧ ¬fe[i]
21: end if
22: end if
23: end for
24: for all r ∈ srcs[i] do
25: if uncond [r] then
26: Fv(r)← Fv(r) ∨ fr[i]
27: else
28: Fv(r)← Fv(r) ∨ fe[i]
29: end if
30: end for
31: LIVEin[i]← {∀r | Fv(r) ∧ fe[i] 6= 0}
32: end for
33: end procedure

Figure 5.7 LED live-variable block propagation phase.

116

the Fg and Fk maps of the gen/kill phase, is maintained and updated with respect to

each encountered outgoing arc and instruction. At a flow arc, the map is updated to

reflect liveness of all live-out registers17 under the reachability condition of the arc (fa[a])

(lines 4-6 and 10-12). An instruction’s LIVEout set is computed as containing those reg-

isters whose liveness expressions intersect with the instruction’s execution condition (line

14).18 Then, the instruction’s destinations kill liveness (lines 16-21) and sources generate

it (lines 25-29), and the corresponding LIVEin set is generated (line 31). Instead of

relying on the next instruction’s LIVEin set for an instruction’s LIVEout, both sets are

provided for each instruction. This is a requirement when the two instructions are on

different predicates, because of the intersection performed in line 14, or where the first

instruction is a branch or jump. A potential optimization to the algorithm would share

some of these sets, which often have identical contents.

A further optimization of the presented algorithm would eliminate the Fg map from

the live-variable gen/kill phase indicated in Figure 5.5. Rather than accumulating the

generation function in the BDD for each register, the algorithm could instead simply

add the register to the GEN set in the event of discovering a nonzero intersection. This

would accelerate the algorithm somewhat, but the Fg set is useful for determining if the

generation is total or partial (to find potential conservatisms).

This concludes the presentation of the LED framework. The algorithms presented

generalize readily to other forms of data flow analysis, including reaching-definitions,

available-expressions, etc. This generalization is left as an exercise for the reader.

5.6.4 Evaluation of LED and comparison to previous approaches

The LED approach to predicated data flow is clearly superior to the older, predicate

flow graph (PFG) approach used previously in IMPACT. It uses less memory, runs faster,

and computes more accurate results procedures making complex use of predication. A

single run of live-variable analysis across the SPEC CINT2000 suite took 512 s under the

17The live-out set of an arc is the live-in set of the destination block.
18This is a generally useful, but somewhat arbitrary intersection. In a special mode of live-variable for

interference graph construction, this intersection is computed with respect to fr[i] for predicate-defining
instructions with unconditional destinations.

117

old, reverse if-conversion framework. With LED, the same analysis took only 324 s. LED

reduced the size of 1721 live ranges in 91 (out of 7474) procedures. Conservatism spanning

more than one PEBB was eliminated in 192 of these live ranges. Such conservatism was

resulting in the consumption of excess registers, in a few cases impacting performance

(crafty was accelerated by 2.7% in the I-CS configuration due to the removal of these

false live ranges in the register allocator) and in other cases constraining compilation

options (e.g., in twolf). Considering only those procedures with reduced live ranges,

those in which the PFG system suffered reduced precision due to the limitation of path

enumeration to 256 paths, LED finished in 90 s the analysis that the PFG approach took

197 s to complete.19 It should be noted that both the local and global phases of the LED

approach could be accelerated substantially with minor algorithmic changes, such as the

use of a work-list and topological traversal order in the global phase and a bypassing of

the BDD manipulation for blocks containing no interesting predication.20 These results

indicate the LED approach to be a suitable replacement for the PFG method, which

frequently lost accuracy and ran slowly in the presence of involved use of predication.

The relation of LED to a few items of previous work merits discussion. Gillies et al.

describe a method of global liveness analysis for predicated code using the Predicate

Query System (PQS), as noted previously. Their system, within small regions of code,

treats control flow and predication identically by representing both in Boolean domains.

They then explicitly perform bitwise manipulations on these domains to perform data

flow. These manipulations can involve approximations due to the structure of the PQS

graph [94, 95]. In PAS/LED, on the other hand, these domains are hidden in and managed

by the BDD, so the data flow user manipulates only abstract expressions and never even

encounters the underlying Boolean variables. This allows arbitrary improvement in the

accuracy or scope of PAS to be translated directly to the data flow analysis, and does

not impose the structural requirements on the predicate analysis that constrain PQS so

it can build useful domains [55, 91].

19The indicated times were measured on a 900-MHz Itanium 2 processor, with IMPACT compiled
using the Intel platform compiler, with optimization.

20As the vast majority of time is spent in the BDD manipulation phases, such bypassing or optimization
of the expression computation routines would be most productive.

118

Gillies et al. mention the combination of their PQS-based techniques with bit-vector

data flow in [94], including methods of extending the useful interaction of predicate

functions with the data flow across basic block boundaries. This would, in the author’s

estimation, result in a system with function similar to the one described here (except

that it is constrained by the use of PQS instead of PAS).

In other related work, Eichenberger and Davidson described an expression-based inter-

ference graph generation technique for predicated code. Their approach uses a symbolic

solver to evaluate the extent of live ranges, but implementation details and indications

of efficiency are not presented [96].

5.7 Performance Effects of Predication in situ

There are no clear, settled conclusions in the literature on the intrinsic value, best

implementation style or preferred means of application of predication, at least for integer

applications in general-purpose systems. Different papers offer different viewpoints, often

derived in totally different hardware and code generation environments, and often either

based on anecdotal examples or incomplete or inconsistent benchmark suites. August,

et al. concluded, in a 1998 paper based on the flexible, simulation-only IMPACT VLIW

environment and the aggressive IMPACT compiler, that predication offered unique ben-

efits (distinct from those achievable with control speculation alone) but was particularly

powerful in most cases only when combined with control speculation [38].

The potential benefits of predication in the abstract are clear. From an instruction

issue perspective, predication avoids branch misprediction and fetch redirection. It may

also allow co-optimization of compatible paths, rather than creation of different versions,

potentially easing instruction cache pressure. From a height reduction or static ILP

optimization standpoint, predication allows the overlapping of independent control con-

structs in a way not possible without significant replication in branching control. Finally,

predication renders new, general optimizations more applicable and/or effective. Con-

sidering the cycle accounting results of Figure 5.8, where I-CS is successful, we should

see reductions in branch misprediction flush, front end bubbles, and general dependence

height. In this context, the S-CS result is also important. Since the I-CS framework

119

0.00

0.20

0.40

0.60

0.80

1.00

1.20

O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Ex
eu

ct
io
n
tim

e
re
la
tiv

e
to
 O

-N
S
 kernel

misc. user

register stack
engine
branch mis-
prediction flush
front end bubble
L1D/FPU micro-
pipeline stall
integer load bubble

floating-point
scoreboard
unstalled execution

Figure 5.8 Cycle accounting detail.

reflects the effects of both single- and multipath specialization, as it found to be appro-

priate in different code contexts, comparison with the S-CS results allows one to isolate,

to some extent, the benefit of predication.

Among the benchmarks in which predication delivers added performance relative to

the Superblock approach at the benchmark level (gzip, vpr, crafty, eon, bzip2, and twolf),

the difference generally comes chiefly from a reduction in branch misprediction stall

cycles and front end bubbles, the former because predication eliminates branches and

the latter because multipath specialization creates fewer specialized versions that must

compete for instruction cache resources. The benchmark bzip2 is a special case; its benefit

derives from elimination of spurious store-to-load forwarding stalls due to the predicated

unrolling technique described in Section 8.4. The following presentation details these

positive outcomes and then moves on to consider some of the negative side-effects of

predication’s application in these experiments.

The constructive interaction of predication and speculation (in the form of predicate

promotion) needs to be pointed out. As can be seen in Figure 5.8, the I-NS configuration,

which has predication but lacks control speculation support, delivers performance that is,

except for eon, generally inferior to that delivered by a Superblock implementation with

120

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

C
o

u
n

t
re

la
ti

ve
 t

o
 O

-N
S

conditional direct unconditional direct indirect

Figure 5.9 Effect of CFS transformation on branch count.

control speculation (S-CS).21 Predication and control speculation have complementary

benefits.

5.7.1 Effect on branches and branch prediction

The elimination of branches and branch mispredictions is one area in which if-conversion-

based I-CS configuration shines relative to the S-CS approach. Figure 5.9 shows the

effect of if-conversion on branch count. The I-CS configuration reduces the number of

dynamically encountered conditional branches by an average of 36%, and unconditional

branches by 66%. This effect is particularly pronounced in vpr, eon, vortex, and twolf,

in which fully half of branches are eliminated. These results reveal IMPACT to be an

aggressive user of predication. Choi et al. presented a study of if-conversion on the Ita-

nium processor, in which they explored two predicated code generation configurations in

the Intel compiler, the default mode and a “maximum” mode. The “maximum” mode

if-converts maximally, without regard to profitability expectations—generally with dis-

astrous performance outcomes [39]. IMPACT, on the other hand, even when observing

21The victories of I-NS in mcf and bzip2 are ignored because of their sensitivity to memory-related
events, to which the compiler is oblivious—in a less noisy environment, these distinctions would likely
disappear.

121

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

M
is

p
re

d
ic

ti
o

n
s

as
 f

ra
ct

io
n

 o
f

O
-N

S
 b

ra
n

ch
es

branch path mispred branch target mispred

Figure 5.10 Effect of CFS transformation on branch misprediction.

salutary limitations on if-conversion, generally removes a greater proportion of branches

than their “maximum” configuration. IMPACT is relatively much more willing to repli-

cate code (by tail duplication and peeling, for example), to create effective predicated

regions.

It must be noted that not all of these reductions are due to traditional if-conversion

of compatible, comparable paths. In the case of those benchmarks with comparable

I-CS and S-CS performance (gcc, parser, perlbmk, gap, and vortex), this reduction is

largely (but not entirely) due to two factors: (1) the effect of branch combining in

Superblock traces, and (2) the incorporation of infrequently executed paths to reduce tail

duplication. Branch combining, while it is not traditional if-conversion, uses predication

and is therefore not available in the S-CS configuration. When applied in the S-CS

configuration, it was observed not to have significant benefit, although it did substantially

reduce the number of branches encountered (see Section 4.2.3).

Formation of predicated regions has a less-pronounced but still significant effect on the

number of branch mispredictions encountered (given that the correct prediction rate is

generally in excess of 95%). These data are shown in Figure 5.10. The Itanium 2 processor

implements a two-level Yeh-Patt branch predictor [97] in a manner tightly integrated into

the first-level instruction cache. A secondary history table stores prediction data for lines

122

evicted from the first-level cache, extending the accuracy of the predictor across large

spans of code. This approach results in low misprediction rates, as indicated in the graph,

leaving little head room for elimination of misprediction penalties. Nonetheless, in vpr,

eon, and twolf, the number of mispredictions is reduced by more than half. Across the

benchmark suite, mispredictions are reduced by an average of 35%. Since the contribution

of branch misprediction flush to execution time is in no case greater than 10% of execution

time, however, even such dramatic reductions typically have only a small influence on

net performance.

IMPACT currently does not make use of the exact counted loop prediction available

on IA-64, and does not unroll loops to be modulo-scheduled. Enabling either of these

features would further improve compiled code control flow efficiency. It should be pointed

out that branch misprediction accounts for relatively few cycles on Itanium 2, so its

avoidance is not the primary motivation for forming if-converted regions; rather, the

regions enable powerful ILP-enhancing transformations.

The effect of if-conversion on branch misprediction has been studied extensively,

though many of the studies are becoming somewhat dated. Comparing to the work

of Choi et al. on the Itanium processor [39], the only published study on in a real

hardware / real compiler setting, we find the I-CS configuration to have similar lev-

els of reduction in branch misprediction stall cycles to their “maximum” configuration

(and much greater reductions in eon and twolf). It should be noted again that their

“maximum” configuration was undesirable in many other respects; without concerning

itself with path dependence height or resource compatibility it often formed Hyperblocks

whose only appealing characteristic was the elimination of branches. The results of this

dissertation show that similar rates of branch misprediction elimination can be performed

in a performance-beneficial context.

As the results of [39] show static code size to decrease uniformly with increasing

aggressiveness of predication, it appears no code-replicating transformations (such as

loop peeling or tail duplication) were performed to cultivate opportunities for region

formation in their experiments. This limited possible transformations and potential for

gain, resulting in a total reduction in execution cycles by only 2% (tied largely to a 20%

123

reduction in branch misprediction stall cycles), compared to the 10% reported for our

ILP-NS configuration.

Other simulation-based studies in various contexts suggested potential improvements

in branch prediction accuracy, but are less directly comparable to this work. Mahlke et

al. [98] showed for a few Unix utilities and SPEC92 applications that predication (by

general if-conversion) dramatically improved branch prediction accuracy by eliminating

difficult-to-predict branches. In this study, though, only two-bit counter, BTB-based

branch prediction was employed. Another study, performed by Tyson in the context

of a variety of dynamically scheduled microarchitectures, showed that predicating only

short hammocks removed 30% of program branches and between 30% and 50% of mis-

predictions [99]. Pnevmatikatos and Sohi showed a similar partial predication scheme to

be capable of removing a similar proportion of program branches and characterized the

excess issue of predicated-off instructions incurred in doing so [100].

5.7.2 Effect on instruction delivery

One might assume such aggressive predication to dramatically increase the number

of instructions issued. In fact, the number of non-nop instructions issued in a predicated

version of a program (including those squashed) is often no greater than the number

issued in the O-NS version. Data to be presented in detail in Figure 6.10 in the next

chapter will show that, typically, 2-7% of instructions are predicate-squashed in I-CS

versions of programs, and that the total number of dynamic non-nop, non-predicate-

squashed instructions is generally increased by only 2-4%. Generally these increases

are comparable to or less than the number of instructions removed by optimizations

enabled by region specialization, so CFS transformation rarely meaningfully increases

stress on processor instruction delivery mechanisms. Not surprisingly, it is in those

benchmarks where predication is the most active that it adds the greatest number of

dynamic operations. In gzip, vpr, crafty, and twolf, predication increases the number

of non-nop operations (including both useful and predicate-squashed instructions) by

between 7% and 14% relative to Superblock-optimized code. These levels of increase

generally mean that, even taking into account nop instructions which, as we have seen,

124

0.00

0.05

0.10

0.15

0.20

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

F
ro

n
t

en
d

 b
u

b
b

le
s

as
 f

ra
ct

io
n

 o
f

O
-N

S
 e

xe
cu

ti
o

n
 t

im
e

Figure 5.11 Effect of CFS transformation on front end stall.

tend to be less numerous in code with higher ILP, predicated versions of code fetch a

slightly greater number of total instructions than nonpredicated versions. Fortunately

it is able to maintain a higher level of instruction fetch efficiency, however, due to fewer

control redirections (as was shown in Figure 3.12), so this increase in fetched instructions

does not translate into worse instruction cache performance.

Choi et al., in published work describing the effect of if-conversion in the SPEC

CINT2000 benchmarks on the Itanium processor, demonstrated two levels of if-conversion,

one the default mode of the Intel production compiler (at the time), and the other a “max-

imum” level. At the “maximum” level, which essentially indiscriminately included paths

into Hyperblocks, if-conversion dramatically (by more than 50%) increased instruction

cache misses in crafty, perlbmk, and gap, with an average increase in misses (across SPEC

CINT2000) of 22%, while their much less aggressive “default” level decreased misses by

9% [39]. Their default level removed only 7% of dynamic program branches, so is much

less aggressive than the I-CS configuration detailed here.22

As was noted in Chapter 3, with reference to the data of Figure 3.14, in most cases

the I-CS configuration improves on, or is at least comparable to, both O-NS and S-CS

22One perhaps significant factor should be mentioned in the relation of this work to that of Choi
et al., at least with respect to instruction fetch behavior. That is that their work was on Itanium which,
in contrast to Itanium 2, lacked decoupling between the front and back ends. This may impact the
cost-effectiveness of if-conversion, since increased back-end interactions may prevent the front-end from
progressing.

125

in its generation of front end stalls. Figure 5.11 shows the number of front end bubble

cycles in each configuration, relative to the number of execution cycles in the O-NS

configuration. In general, I-CS reduces on the number of front end bubble cycles in both

the O-NS and S-CS configurations. By treating multiple paths together in a single code

region, predicated execution can reduce front end overhead. This improvement does not

necessarily come from a reduction in the number of instruction cache misses. In the case

of crafty, I-CS indeed exhibits fewer instruction cache misses than S-CS, though slightly

more than O-NS. Multipath specialization is indeed more cache-efficient than single-path

in the context of dynamic, reconvergent control flow. In other benchmarks, however, I-

CS and S-CS exhibit similar levels of instruction cache misses; it appears that other

factors are responsible for I-CS’s advantage in eon. By increasing scheduling freedom

in the presence of unbiased branches and by reducing fetch redirection, predication can

achieve improved instruction fetch efficiency. The combination of these effects with the

increased reliability of prediction in many cases allows the I-CS configuration to function

with fewer front end stall cycles than other approaches. In two benchmarks, crafty and

twolf, I-CS increases the number of front end bubble cycles relative to O-NS, in crafty by

a small margin and in twolf, quite substantially. In both these cases, however, it exhibits

a reduced number of these cycles relative to the best-performing S-CS configuration,

which it also outperforms.

Let us briefly consider the behavior of crafty and twolf. As was noted in Section 3.5,

when the code replication due to CFS transformation is largely limited to ejection of

“cold” regions, its effect on instruction cache performance is generally favorable. When

lukewarm code is expanded, however, there exists a potential for degradation. One such

transformation, which is applied only in I-CS mode, is loop peeling.

Although twolf’s instruction reads are reduced by 21% in the I-CS configuration,

relative to O-NS, due to increased fetch efficiency in densely packed regions, the pro-

liferation of lukewarm code makes the active footprint too large for the cache, causing

more misses. In twolf, a loop is peeled and the remainder loop, which is itself lukewarm,

is then specialized, creating two new, lukewarm regions. Here, front-end stall time is in-

creased roughly 50% by these transformations. In an unconstrained environment, these

126

would have been appropriate transformations; here, however, some may sacrifice poten-

tial performance because they cause the footprint of their enclosing loops to exceed the

capacity of the L1I cache. While twolf benefited extensively in the net from aggressive

transformation, achieving a speedup of 1.20, its gains would have been larger apart from

these code bloat effects.

The benchmark crafty exhibits similar peeling-related behavior. In both cases, how-

ever, peeling proved a net benefit—performance is lost if it is disabled, even though doing

so eases instruction cache pressure.

In the aggregate, it is important to note that IMPACT’s I-CS instruction cache

effects are positive, delivering an aggregate 5% reduction in first-level instruction cache

misses across the SPEC CINT2000 suite (where S-CS achieves only a 1% reduction).

This contributes, together with generally decreased branch overhead, to a 17% reduction

in front-end stall time in I-CS code, relative to O-NS code. This contrasts with an 8%

increase due to the S-CS configuration—a substantial distinction between the predicated

and single-path models.

5.7.3 Effect on planned instruction-level parallelism

In the example of Figure 5.1 it was demonstrated how, in certain circumstances,

predication could allow a degree of overlap between independent control constructs that

would be impractical to achieve without predication. Such contributions increase planned

instruction-level parallelism—relative to Superblock, they do not simply eliminate branch

misprediction cycles. This type of behavior can be distinguished by finding cases in which

the planned performance increase23 for I-CS exceeds that for S-CS. Figure 5.12 shows

these data, which are computed from cycle accounting results by subtracting out cycles

due to dynamic effects not considered by the compiler. From these it is observed that I-

CS transformation sometimes makes a shorter, and sometimes a longer, plan of execution

than S-CS. In gzip, vpr, crafty, and eon, the I-CS speedup neglecting all dynamic effects

23Planned performance takes into account only those cycles the expenditure of which the compiler
anticipated, excluding all branch misprediction, cache miss, and other dynamic events. See Section 10.1
for full results.

127

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.400

2.600

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

P
la

n
n

ed
 s

p
ee

u
p

 (
re

la
ti

ve
 t

o
 O

-N
S

)

S-CS

I-CS

Figure 5.12 Planned speedup comparison of I-CS and S-CS configurations.

is greater than that achieved by S-CS. This is consistent with the generation of a more

efficient static plan. In other cases, such as bzip2 and twolf, in which the I-CS strategy

results in performance increase, its static plan is in fact slower than that for S-CS, but

it produces a larger reduction in dynamic effects, increasing net performance.

While I-CS sometimes produces a more compact plan of execution than S-CS, con-

firming the assertion that predication allows the kind of control structure interleaving

shown in the vpr example and in previous work [38], this improvement is in the Itanium

2 context dominated by improvements in dynamic behavior, relative to code compiled

using the Superblock approach.

5.7.4 Effect on the data memory subsystem

One of the prominent fears with instruction speculation, and particularly the multi-

path speculation that occurs in Hyperblocks (in which not only the most commonly

executed instruction paths, but also less-frequently executed instructions may be spec-

ulated), is that off-path, speculative memory operations will negatively impact perfor-

mance. They might suffer additional cache misses, cause other loads to suffer misses

by polluting the cache, cause extra translation events, or incite costly collisions in the

memory substructure. Since this issue emerges most prominently once predicated code

is control-speculated, this topic is deferred to Section 8.1.

128

5.7.5 Effect on register utilization

Exploitation of ILP by overlapping independent strands of computation requires al-

location of many register names, even given predicate-aware data flow and register al-

location techniques [55, 94] that reduce the number of live range conflicts in predicated

code. This cost increases with the promotion of instructions. In certain benchmarks (e.g.,

crafty and parser) IMPACT transformations consume many registers in an attempt to

expose parallelism. The cost of allocating these registers appears as register stack engine

(RSE) activity (register stack engine in Figure 5.8) and as an increased number of

register spills and fills.

Let us deal with explicit spills and fills first. Integer register spills are dynamically

identifiable because of their use of the special st8.spill instruction.24 Spills and fills

are tightly correlated to each other, so this gives a good measure of the amount of spill

and fill activity in code. A simple counting experiment showed that the effect of CFS

transformation and the I-CS configuration in particular had a widely variable effect on

the absolute number of spills issued, ranging from a dramatic reduction in spills to a

dramatic increase. Gzip’s spills increased by a factor of 58× in the predicated configu-

rations, and by only 3× in Superblock code. Twolf, an aggressive user of predication,

suffered 1739× more spills in the predicated configurations and virtually no extra spills

in Superblock. Vortex suffers a 30-fold increase. Fortunately, however, the amount of

this activity relative to total execution of instructions is very small. In the worst case

(twolf under I-CS), spills accounted for less than a half-percent of instructions issued.

RSE activity is a more prominent contributor to execution time in a handful of bench-

marks (in most cases, the calls that might instigate RSE activity have been rendered very

infrequent by procedure inlining). RSE activity generally increases with CFS transforma-

tion. Excluding those benchmarks in which RSE activity always accounted for less than

1% of execution time (and generally much less), gzip, mcf, gap, and bzip2, the I-NS con-

figuration increased RSE activity by an average of 27%, the I-CS configuration by 48%,

and the S-CS configuration by 16%. These changes are due to the increased overlapping

24This is due to the need to preserve NaT bits for Sentinel speculation (Chapter 6).

129

of live ranges in code with higher ILP and, in the case of the predicated configurations,

the effects of the inclusion of multiple paths into predicated regions. In crafty, in par-

ticular, I-CS has a profound effect on RSE activity. Recursive functions in crafty are

extensively inlined, and the inlined regions include predicated, promoted regions that use

many registers. This increased utilization, in the context of a recursive function, causes

a dramatic increase in spill and fill activity.25 Thus, this is not inherently a problem with

predication, but a problem that emerges as the result of specific inlining and predication

decisions in a given code context. These decisions are spread throughout the compiler,

making the control of such situations nearly impossible. To conclude, especially when

combined with predicate promotion (control speculation), multipath CFS specialization

can increase register utilization to an injurious degree, but better holistic management

of register resources can likely mitigate this effect in future implementations.

5.7.6 Predication and control speculation

The constructive interaction of predication and control speculation (in the form of

predicate promotion) has been pointed out in the literature [38]. This work found pred-

icate promotion of exception-safe operations to be essential to the performance of predi-

cated code. With promotion entirely disabled, performance of predicated code is abysmal,

often worse than that of classically optimized code. Hyperblock formation assumes that

the dependence height of paths to be included will be absorbed via at least the promotion

of the safe included operations; when this does not happen, the main path is penalized.

It is apparent that formation without promotion could only generally deliver benefits in

machines with much greater misprediction penalties than the one considered here, and

then only in applications with secondary paths very compatible with the main paths.

The I-NS configuration for this reason allows promotion of safe operations by the same

promotion mechanism to be discussed in Section 6.4.2. The I-CS configuration supports

the speculation of potentially-excepting instructions, vastly increasing opportunities for

promotion.

25See Chapter 7 for further discussion of this issue as it relates to inlining.

130

Although they interact well to produce gains they could not independently expose,

predication and speculation, when combined, have the potential to increase the harmful

secondary effects of CFS transformation. The mechanisms behind these effects, while

relatively intuitive, have not been described in depth. Given the importance of data

delivery latency in an in-order Itanium implementation, it is important to consider the

performance effect of off-path loads in the multipath speculation allowed by predicated

regions. A discussion of this topic, however, is deferred to Section 6.4.2, which deals with

the interaction of control speculation and predication.

5.8 Predication Case Studies Across SPEC CINT2000

To isolate the benefit of the use of predication in if-conversion from the effects of

other CFS transformations, we present benchmark- and function-level comparisons of

code compiled with the S-CS and I-CS configurations. The goal is to evoke, at least

from this admittedly small sample set of examples, the common cases of benefit from

the CFS application of predication, either by conventional if-conversion or otherwise.

Examination of function-level results26 reveals more variation than the benchmark-level

results, as some of the benchmarks contain a variety of different behaviors.

Linux kernel support and the Pfmon performance monitoring tool allow binning of

sampled events by instruction address. Using these, approximate27 per-function per-

formance comparisons can be performed between two versions of compiled code. This

capability was employed to find the examples presented here and to diagnose performance

effects of transformations, as benchmark-level performance changes often aggregate too

many effects to be useful guides. As an example, Figure 5.13 shows a comparison of S-

CS code to I-CS code for the benchmark gzip. The horizontal space taken by a function

is its contribution to S-CS execution time; the height of each is the ratio of I-CS time

to S-CS execution time (so that the area under the divider represents the run time of

26The reader is warned that IMPACT heavily inlines procedure calls, even across files. The results
shown for various procedures may be in large part due to optimization of inlined procedure bodies.

27See Chapter 9 for details.

131

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 S
-C

S
 c

od
e)

164.gzip execution time distribution for S-CS code

de
fla

te

de
fla

te
_f

as
t

in
fla

te
_c

od
es

co
m

pr
es

s_
bl

oc
k

hu
ge

_l
oo

p

(R
E

M
A

IN
D

E
R

)

I-CS

Figure 5.13 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 164.gzip.

the I-CS version). The arrow on the left indicates the total benchmark run time in the

I-CS configuration, relative to S-CS.

We have already examined an example (Section 3.3.1) of gzip’s benefit from predica-

tion. Figure 5.13 shows the relative performance of Superblock and Hyperblock strategies

across the benchmark. The two most important functions abound with small, versionable

loops in which the incorporation of small hammocks or diamonds of a few instructions

improve region coverage, providing relatively easy wins for predication. In some cases,

the incorporation of these paths allows for effective modulo schedules with high loop flow

retention rates.

Although even without control speculation, Hyperblock formation is more effective

than Superblock in extracting performance from gzip, control speculation widens the gap

between the two approaches, delivering a 1.14× speedup for the predicated approach,

compared to a 1.11× speedup for the Superblock code. This increased benefit is due to the

improved dependence height and resource accommodation of the incorporated secondary

paths. The loads speculated (loads are increased by 19% over a nonspeculative version)

tend to hit in cache, causing little increase in load stalls. (The speculative operations from

minor paths can cause major disruptions in predicated code, since they are usually “off-

path.”) Predicate promotion is thus a very important part of a predicated compilation

strategy, and works out well in gzip.

132

The inflation algorithm inflate codes() tends to have fewer opportunities for multi-

path specialization, so the I-CS configuration makes what may as well be Superblocks;

hence, little performance difference.

In a few cases across the suite, reasonable variation of Hyperblock formation param-

eters influenced benchmark performance in positive ways, suggesting that better control

of region formation could yield improvements, while confirming that the room for im-

provement in these benchmarks is relatively small. In gzip, the example of Figure 3.2

showed how the inclusion of another path in a key loop Hyperblock could improve the

balance of coverage and execution cost for this instance of specialization.

A minor example from the benchmark vpr has already been examined. Predication

achieves a nearly uniform 5% reduction in execution time for functions accounting for

92% of the program duration. As was seen in Figure 5.12, vpr exhibits one of the highest

rates of planned speedup for predication, relative to that achieved by S-CS. This is

consistent with the behavior shown in the previous example.

While gcc exhibits examples of procedures in which I-CS improves performance by

up to 20% (i.e., regclass() and propagate block()) largely by enhancing modulo

scheduling of important loops containing some control flow, these benefits are outweighed

by losses in other procedures. In the cases examined, accounting for a total of 2%

performance loss relative to S-CS (approximately 1/3 the total deficit), minor scheduling

differences in key modulo-scheduled loops, leading to increases in scheduled height or

sensitivity to data cache miss, were generally to blame—not systemic losses, but minor

perturbations that happened to occur in important places.

Of all the benchmarks, crafty posed the most opportunities and most difficulties for

predication. This chess program is written in a way that exposes a vast number of con-

trol paths, often of roughly equivalent weight, throughout many of its phases. The I-CS

configuration is in fact able to reduce the number of cycles spent in branch misprediction

flush in the S-CS configuration by a third, while still reducing the number of planned

execution cycles, through an extensive use of predication and predicate promotion. The

former removes one-third of branches relative to the S-CS code; the latter aids dramat-

ically in reducing the dependence height of if-converted regions, which otherwise proves

133

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 S
-C

S
 c

od
e)

254.gap execution time distribution for S-CS code

P
ro

d

C
ol

le
ct

G
ar

b

P
ow

S
um

In
t

E
vF

or

F
un

B
lis

tL
is

t

E
vE

lm
Li

st
E

vF
un

cc
al

l
Q

uo

(R
E

M
A

IN
D

E
R

)

I-CS

Figure 5.14 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 254.gap.

problematic (cf. the I-NS result, which is only roughly as effective in terms of net perfor-

mance as the S-NS configuration). As with twolf, however, the I-CS approach increases

front end stall (though not as much as S-CS does). As can be seen in Figure 2.6, however,

most of the potential of I-CS relative to S-CS is eroded by an increase in register stack

engine overhead, as discussed in Section 5.7.5. Solving this problem would substantially

increase the gains of the if-converted code.

Although eon’s execution time is spread across a relatively large amount of code,

leaving no very prominent examples of highly successful predicated regions, it is clear

that if-conversion is extensively employed to remove relatively unbiased branches and

to allow path specialization with a lower instruction cache footprint than competitive

levels of Superblock-based optimization. While S-CS increases instruction cache stalls

by 39%, I-CS decreases the same category of cycles by 12% (relative to O-NS code).28

The latter also eliminates 70% of eon’s branch mispredictions.

The benchmark gap includes one of the most prominent examples of degradation due

to if-conversion, as indicated for the procedure EvFor() in Figure 5.14. As in crafty,

this problem is due partly to profile variation and partly to an unfortunate assumption

in region formation. The predicated region former selects a loop for formation that

28Observe the caveat noted in the introduction, that eon’s performance under IMPACT optimization
is not comparable with production compiler results. This substantial improvement may be eliminated
with more effective baseline code optimization.

134

contains a hammock followed by a side-exit branch, followed by a great deal of other

code. The code-bearing side of the hammock contains instructions with a dependence

height of at least six cycles, a small fraction of the total dependence height of any loop-

carried dependence path, but more than twice the dependence height of the path that

leads to the side exit branch. Since the region is a loop, decisions are made relative to the

main path that starts at the loop header and ends with the loop continuation branch, so

the hammock code is included in the Hyperblock region. Unbeknownst to the compiler,

however, the loop frequently exits (more than 90% of the time) early in the first iteration

(at the before-mentioned side exit branch). The inclusion of this hammock, which due to

the total dependence height of the enclosing region seemed reasonable, heavily penalizes

the now-important side exit path. Gap is also unfortunate enough to have frequently

imbalanced diamonds (or hammocks) in the context of larger candidate regions. Current

formation heuristics consider paths through these regions independently, but, in formed

Hyperblocks, instructions shared among different paths “bind” the paths together at

particular points in the schedule. Without node splitting transformation to remove these

binding points, there is a potential for underestimation of expected dependence height

for the region to be formed. This is a slightly more general case of the hammock problem

just mentioned, and it does not require a profile mismatch for it to impact performance.

These cases (and similar ones) occasionally degrade gap’s I-CS performance. Problems

such as this underscore the problem EPIC compilers have with profile variation, first

of all, and the unlikelihood of developing static profile estimation techniques that will

deliver generally good results in irregular applications—loops in SPEC CINT2000 often

are not very “loopy.”

Vortex, as shown in Figure 5.15, has component functions that benefit from pred-

ication, but these benefits are more than offset by losses in the most prominent func-

tion, SaFindIn(). If these losses were mitigated, predication would deliver a 2% overall

speedup for vortex. The loss in this critical function, however, does not seem to be the

direct fault of the Hyperblock former. Aggressive loop optimization techniques extract

a dramatic amount of loop-invariant or partially redundant code from the main loop in

this function, consuming a large number of registers with loop-carried data. A small

135

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 S
-C

S
 c

od
e)

255.vortex execution time distribution for S-CS code

S
aF

in
dI

n

ch
un

k_
fr

ee

ch
un

k_
al

lo
c

P
ar

t_
D

el
et

e

O
aG

et

m
em

cp
y

Q
ue

ry
_A

ss
er

tO
nD

b

O
aP

ut
S

aD
el

et
eN

od
e

C
_R

eF
ax

T
oD

b
O

aD
el

et
eF

ie
ld

s
G

rp
_G

et
E

nt
ry

T
re

e_
R

ec
ur

se
S

ea
rc

h
D

bm
N

ew
V

ch
un

k

(R
E

M
A

IN
D

E
R

)

I-CS

Figure 5.15 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 255.vortex.

increase in registers utilized in the predicated version of the code, however, overloads the

available registers and causes performance-detrimental spill and fill code to be inserted

into important locations in the function. This problem is compounded by the fact that

inclusion of rarely or never-executed paths in the I-CS version (to reduce tail duplica-

tion) limits the effectiveness of some optimizations in this key loop. Improved predicated

code optimization could alleviate this effect; otherwise, the incorporation of these paths

needs to be reconsidered.

Bzip2, when compiled with predication, shows a 10% improvement in execution time

over the Superblock version. This is not, however, mostly a consequence of standard

if-conversion techniques. Rather, this difference is due to the predicated unrolling of

critical loops in the function generateMTFvalues() to avoid costly, spurious store-load

dependence events. The pronounced effect on this important function is indicated in

Figure 5.16. Without this technique, I-CS performance is closer to S-CS performance.

A subsequent section will fully describe this transformation. Other, less performance-

influencing, functions do exhibit good Hyperblock examples. Generally, these are tight

loop versions with multiple paths, in which predication has allowed an efficiently special-

ized modulo scheduled loop with a very high iteration capture ratio.

Twolf exhibits a near-doubling in CFS benefit with the addition of predication. This

gain comes from an increased ability to interleave control-laden paths of computation

with surrounding long-latency floating-point operations. In a relatively unusual turn of

136

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 S
-C

S
 c

od
e)

256.bzip2 execution time distribution for S-CS code

ge
ne

ra
te

M
T

F
V

al
ue

s

ge
tA

nd
M

ov
eT

oF
ro

nt
D

ec
od

e

un
do

R
ev

er
si

bl
eT

ra
ns

fo
rm

at
io

n_
fa

st

so
rt

It

qS
or

t3

si
m

pl
eS

or
t

se
nd

M
T

F
V

al
ue

s

lo
ad

A
nd

R
LE

so
ur

ce
(R

E
M

A
IN

D
E

R
)

I-CS

Figure 5.16 Comparison of Superblock (S-CS) and Hyperblock (I-CS) for 256.bzip2.

events, the formation of these regions increased dependence height, even with extensive

control speculation, as Figure 5.8 shows (notice the increase in I-CS’ unstalled execution

and floating-point scoreboard categories relative to S-CS, where successfully predicated

benchmarks generally have a decrease). This difference, though, is more than offset by

reductions in branch misprediction flush and in front-end stall cycles.

To round out the discussion of the benchmark suite, predication had little to offer

mcf, due to its domination by data cache stall time, and parser and perlbmk, due to their

tendency not to have exploitable patterns of control flow. These benchmarks show small

variation in performance with the application of predication for important procedures

(though less-important procedures are often accelerated or decelerated by 10-20%). The

performance of predication on SPEC CINT2000 defies summary description. The bench-

marks present a variety of contexts, or idioms, as defined by local program structure,

execution bias, observable and unobservable dependence height, and surrounding con-

text. Clear examples were presented of how predication extends the benefits of EPIC to

less-regular programs by reducing plan height and dynamic effects, but it is clear these

situations are not to be found in all programs. While these results show IMPACT’s

approach to CFS transformation using predication to be generally useful and reasonably

stable, in a few cases, general gains from predication were offset or even overwhelmed by

losses from lack of generality in the framework or poor decision-making elsewhere. Since

137

these degradations often result from effects unobservable by the region former, a more

holistic approach would be required to generate more consistent and/or effective results.

5.9 Related Work

A few other applications of predication should be noted here.

5.9.1 Wavefront scheduling with predicated hoisting

Predication is used as an alternative to control speculation in wavefront schedul-

ing [34, 50], which is a generalization and adaptation of the trace scheduling technique [44]

(as described in Section 10.2.1). IMPACT performs this transformation only opportunis-

tically, through partial dead code elimination after prepass scheduling. Unfortunately,

however, the speculative attribute on a load so repredicated cannot be removed, as there

remains, in the general speculation model, no record of the load’s original execution

condition. In a recovery-code based approach, however, this would be possible. It is

important to note that the use of predication in wavefront scheduling only schedules

around, and does not eliminate, control flow, so it cannot, in general, elicit the branch

misprediction flush reduction evidenced here.

5.9.2 Kernel-only or counted-loop modulo scheduling

Specialized, rotating and automatically set stage predicates are used to control the

execution of modulo scheduled loops in the kernel-only and counted-loop schemata. Pred-

ication in this context prevents unnecessary control speculation and saves code size by

avoiding the generation of explicit prologue and epilogue code sequences [24, 57]. The

IMPACT compiler does not, however, make use of these features, which are more appro-

priate for typical floating-point codes than for the control-intensive integer benchmarks

studied in this dissertation. Loop iterations-per-invocation are generally lower for integer

benchmarks than for the floating point class, making overlapping of prologue and epilogue

with surrounding code structures relatively more important to performance. The use of

explicit prologue and epilogue, which allow this overlap, as opposed to the kernel-only

138

schema, which does not, causes a small degree of code size increase (since modulo sched-

uled loops in integer code typically have a small number of stages, this increase is not

as dramatic as it might be in floating-point codes). The counted-loop schema [57] may

occasionally prove useful for avoiding performance-injurious instances of misspeculation,

as described in Section 6.7.

5.9.3 Special purpose predication

The experiments presented here point to two generally useful aspects of predicated

code generation: first, a simplification of control flow and, second, an enabling of path-

specialization-based optimizations without the degree of lukewarm code expansion some-

times rendered in Superblock-based optimization. Limited studies have adapted predi-

cation to maximize its behavior in these directions, either creating programs with very

simple control flow to make better use of loop buffers [101] or using predication in a very

aggressive sense (excluding almost no paths) to reduce the code size of embedded ap-

plications [102]. Finally, various schemes of partial predication [81] have been proposed

to let architectures take advantage of some benefits of predication without the cost of

implementing a predicate guard on each instruction.

139

6 THE VALUE AND APPLICATION OF SPECULATION

Speculative execution means the (potentially partial) execution of an operation before

it is certain that all potentially-constraining, incoming dependences are resolved. The

dependences broken could be of a control nature (i.e., an instruction is executed that a

nonspeculative version of the program would not have executed) or a data nature (i.e.,

a load instruction executes before a logically preceding store that might write to its

address).

Virtually all pipelined microprocessors, and especially out-of-order processors, exploit

speculation as a means of increasing the number of instructions available for simultaneous

execution. They do this implicitly, generally with respect to both control (branch reso-

lution) and data (store/load address generation) dependences. Hardware features ensure

that the effects of these operations, should they begin to execute in a context prohibited

by a valid, late-resolved dependence, do not pollute the architectural state with invalid

execution results [103–106].

EPIC systems are unique in providing explicit architectural mechanisms for com-

piler management of speculation, an essential feature for extracting performance from

control-intensive programs on a machine that cannot itself reorder operations for issue.

This chapter discusses two such forms of speculation, the one, control speculation, dealing

with control dependences and the other, data speculation, with data flow dependences

(the former at length and the latter in passing) [38]. Effective use of explicit (or static)

speculation is critical to achieving high performance in EPIC systems. As discussed

140

elsewhere in the detailed benchmark results, control speculation is responsible for a 7%

average increase in performance (in both the S-CS and the I-CS configuration), approx-

imately one third the average 20% improvement due to IMPACT’s ILP techniques. It

contributes a 10% or higher performance improvement in gzip, vpr, and vortex. Data

speculation, while not implemented in the IMPACT framework, has been shown in a

very limited initial implementation to deliver up at least 5% additional performance im-

provement for gap. (Due to the successful disambiguation of most critical load / store

pairs by IMPACT’s sophisticated pointer analysis techniques, data speculation shows less

widespread benefits.)

Because in EPIC systems control and data speculation are explicit and may (in fact,

frequently do) involve potentially-excepting instructions, architectural, compiler, and

operating system accommodations are required to enable speculation. Both forms of

speculation entail substantial performance risks, which easily become of great significance

if mechanisms are not in place to manage them. Control speculation, when operated using

the general speculation schema applied in the IMPACT compiler, can incur spurious page

faults on speculative loads, requiring an invocation of the operating system to traverse

page tables. In one prominent example, rampant control misspeculation of loads caused

a 25% performance degradation in gcc (and smaller losses in parser, perlbmk, and gap)

before the technique described in Section 6.7 was implemented. This technique turned

this degradation into a respectable 5.4% performance increase for control speculation.

This approach proved applicable across the suite, making the general speculation schema

a useful alternative on the Itanium platform.

Other effects, such as the increased load on the data-side translation lookaside buffer

(See Appendix A.1 for details on the DTLB) due to the increase in loads executed in

control-speculative code, have more subtle, but also measurable and occasionally signifi-

cant, effects. This chapter describes the application (or potential for application, in the

case of data speculation) of these techniques in the IMPACT compiler, the work that

was required to render explicit (general) control speculation a safe and useful technique

within the IMPACT environment, design alternatives, and the performance evaluation

of speculative execution on Itanium 2.

141

6.1 Control Speculation

The execution condition of an instruction, the set of circumstances under which the

instruction will execute and have its results committed to machine state, is determined

by its position relative to control instructions, such as conditional and unconditional

branches, and, in a system supporting predication (see Chapter 5), by the value of its

Boolean guard operand. The evaluation of the execution condition and its means of influ-

encing instruction execution impose certain constraints on the in-order plan of execution.

These are the tangible effects of control dependence. If an instruction is executed before

a branch that could have caused control flow to proceed down a different path (that led

away from the instruction), the operation’s execution condition is altered; likewise, if the

Boolean predicate guarding the operation is weakened.1 The former reflects the breaking

of a control dependence and the latter a data dependence;2 in either case, however, the

result is that the instruction is rendered control speculative. Control speculation is the

alteration of either instruction position or instruction predicate in such a way that the

instruction is allowed to execute in cases where it previously did not [107, 108].

It should be noted that when this chapter refers to control speculation, it is always

speaking of control speculation of potentially-excepting instructions. “Safe” instructions,

those that have no possibility of causing spurious, program-terminal exceptions, can

be control-speculated without regard for these techniques, instruction set or hardware

support for speculation. Safe instructions include all instructions that cannot generate

program-terminal exceptions and those that can, but can be shown not to do so in the

context of the speculation [109]. One example would be a load from a known global or

automatic variable. Since the location is known to exist and to be safe to access, such

an operation may be speculated without special care. These safe speculations are not

subject to the procedures described in this chapter.

1The weakening of an execution condition allows the controlled instruction freer execution.
2In the nomenclature used here, if-conversion [76] converts control dependences into data dependences

(unlike, for example, in [75]). Breaking predicate dependences through weakening, however, is control

and not data speculation.

142

To ensure the clarity of the later material, some terms need to be defined precisely.

In the common parlance one might say that control speculation causes instructions to

“execute more frequently.” Since control speculation is, however, often used to relocate

instructions to locations of lesser execution weight (out of a loop, for example, as in

Figure 6.3, below), this is a misleading definition. The proper understanding requires

a more formal approach. Consider an instruction instance to be the execution of a

given instruction with a given set of operand values, producing a particular durable

transformation in machine state. The existence of an instruction instance implies that it

is reached by control flow and that its guard predicate is found to be true. Now consider a

program path as the dynamic sequence of instruction instances that occur in the course of

executing a program. Finally, consider the abstract notion of all program paths, the set of

all possible traversals of a program. For the purposes of this dissertation, a transformation

is control-speculative if it causes, in any program path, a new instruction instance to

appear (when compared to the instances on the program path of the nonspeculative

version). A new instruction instance is one that appears in a location where it is not, to

use the language of partial redundancy elimination [110], anticipable from any other non-

speculative instruction instance. Such an instruction, when executed, if it has observable

effects (like program terminal exceptions, for example) may change the outcome of the

program.

This path-based definition yields some useful derivatives. An on-path speculative

instance is one that is not “new”; that is, it would have been reached in the nonspeculative

program. An off-path speculative instance is one that is “new”; that is, it did not

simply exist in another position in the nonspeculative traversal. It is these off-path

instruction instances that complicate the problem of control speculation, as they can

affect both performance and correctness. If an off-path instance is merely a copy of (i.e.,

has the same basic effect on architectural state as) another on-path instance, then the

speculation may have performance but not correctness consequences.3 If, on the other

hand, the off-path instance is unique, that is, it is not a copy of some other instance or

has a different effect (e.g., it is a load from an address not loaded from by an existing,

3This assumes, of course, that dependences other than the control dependence are not broken.

143

nonspeculative instruction), then it has the potential to generate a program-terminal

exception, such as a segmentation violation. It is this latter class of control-speculative

instances that requires exceptional care. We therefore consider correctness first, and the

various elements of performance later. As will be demonstrated, various techniques of

converting the correctness problem into a minimized performance problem have been

explored.

In order to maintain program correctness, the off-path instruction instances due to

control speculation must not affect the eventual outcome of the program. For some

instructions, such as stores and subroutine calls, control speculation is untenable, as

these instructions have the potential to modify machine state in such a way that it would

be difficult to determine which subsequent results would be affected. We focus instead on

one particular class of instructions, potentially-excepting instructions (PEI), which may

be speculated, but only with hardware support and some care. A PEI is an instruction,

such as a load or floating-point operation, which has the potential to raise an exception.

Should the execution condition of a PEI be relaxed, additional, spurious, exceptions

may be encountered in execution of off-path instances, which could irreparably alter

program state (possibly even terminating the program, in the case of a page fault). It

is thus necessary to provide in both hardware and operating system implementations for

suppression or deferral of these spurious events, if PEI are to be speculable. Special care

is required if precise interrupts [111] are to be maintained.

6.2 Control Speculation Schemata

Bringmann [109] categorizes PEI speculation mechanisms by their handling of er-

rors (meaning potential, spurious, program-terminal exceptions): they alternately avoid,

ignore, or resolve errors. Errors are avoided if only provably “safe” instructions are spec-

ulated. A safe operation is one guaranteed not to produce spurious program-terminal

exceptions, such as a load from a known-valid, fixed address. This speculation model

requires no hardware support, but does entail a notion of “safety” within the compiler.

144

The IMPACT compiler uses such a simple notion of safety for accesses to known, stati-

cally allocated and automatic variables.4 In the second approach, errors are ignored, the

assumption being that errors occur infrequently. A nonexcepting, or silent, version of an

instruction is used in control-speculative situations. Any non-program-terminal excep-

tion on a silent operation, such as page faults that resolve to a valid page, are completed

immediately. Any potential program-terminal exception generated by such an instruc-

tion, on the other hand, is simply ignored. This prevents the manifestation of spurious

errors but does not avoid any performance consequences of these events. Finally, in the

error resolution approach, speculative instructions can trigger exceptions, including those

that are potentially program-terminal, but these are suppressed until a point in the pro-

gram where the speculation can be checked; that is, until it is possible to determine if the

speculative, faulting instance would have occurred in the nonspeculative version of the

program. This model requires the most sophisticated hardware and software support.

Given this introductory taxonomy, we can consider various schemata for supporting

the speculative execution of PEI, each of which has its own cost-benefit trade-offs. Two

of these models, Sentinel speculation with explicit recovery blocks and general speculation,

are available in the Itanium architecture; it is the prerogative of compiler and operating

system developers (working in concert) to support either or both of these models [57].

The remaining models are described because of their prominence in the literature and

so that the relevance of ideas described in this dissertation to future architectures with

features other than those provided in Itanium may be made clear. In each case, the effect

of speculating load operations will be described. Generalization to other types of PEI, a

straightforward affair, is left to the reader.

6.2.1 General speculation

The general speculation model (also known as the silent speculative operation model)

is the oldest and most obvious approach, employed to some extent by Multiflow [56],

Cydra 5 [82], HP PA-RISC, and Sun SPARC architectures [109]. Full general speculation

4Other means of demonstrating safety, including operation identity and constraint-based systems, are
briefly summarized in [109].

145

support has also long been assumed in experimental work in academia, particularly in

that involving predication [81]. In Bringmann’s taxonomy, this approach falls into the

“ignore errors” category. A potential exception on a speculative operation is investigated

immediately. If it is program-terminal, it is assumed to be spurious (off-path) and is

simply ignored. If it is resolvable in a non-program-terminal fashion (for example, if it is

a page fault to an existing page), it is resolved. This model is available in the Itanium

architecture, but is not enabled in current Linux distributions5 or commercial operating

systems.6

6.2.2 Sentinel speculation with recovery code

The Sentinel speculation model [47, 107] is the most prominent representative of the

“resolve” model of control speculation. Under this model, all exceptions occurring on

speculative instructions are deferred. An instruction to be control-speculated is split into

two parts: a speculative part, which attempts to perform the operation but stops short of

causing any exceptions; and a “sentinel” instruction, a check operation in contemporary

parlance, which remains under the instruction’s original execution condition and pursues

exceptions only as they are proven necessary. An “exception” tag (called NaT, or “not

a thing” in Itanium) on each register propagates potential exception conditions from

speculative operations to sentinels.

In the original Sentinel model, the address of the speculative, latent-faulting instruc-

tion is also propagated to the check, so that re-execution can be performed using the

original instructions (an extension of this model, to support predication and eliminate

most explicit check operations, was used in the IMPACT EPIC work that led to the de-

velopment of this dissertation work [38]). This requires that no dependent, “irreversible”

operations be placed between the speculative operation and its check, and that all source

operands needed to perform recovery be preserved to the point of the check. The details

5The kernel patch and associated utilities necessary to enable this model in Linux, as prepared by
the author are, at printing, maintained by the Gelato Initiative and available for download [43].

6The ability to silence NULL pointer dereferences [112], a limited form of general speculation, is
present for purposes of HP PA-RISC [112] compatibility in contemporary versions of HP-UX for Itanium.

146

of the eventually resulting inline recovery model are described in detail in [113]. This is

the model assumed in the previous evaluation of EPIC using the IMPACT compiler [38].

Instead of performing inline recovery, Itanium designers opted to use the Sentinel

model, but with explicit recovery code instead of a potentially complex re-execution of

the original, speculated code region, for recovery from deferred exceptions. This comes

at the cost of some code expansion, but it is hoped that the recovery code would be

very infrequently executed. Explicit recovery code allows some additional freedom in

combining check operations and / or rematerializing values required in recovery code

that may not be afforded by the inline recovery model. The details of the Itanium

architecture’s control speculation model can be found in [57, pp. 139 ff.].

6.2.3 Other models proposed in the literature

A variety of other approaches to explicit control speculation have been proposed in

the literature, but are now of largely historic interest. One such approach, write-back

suppression, was adapted from the Sentinel approach to prevent destruction of source

values needed for recovery, after exception deferral [114]. This increased the complexity

of the compilation model, but reduced the run-time live range overhead for speculation.

Some earlier approaches settled on a great deal of hardware support to avoid potential

compiler complexity. Boosting [115] relies on examining the chain of nonspeculative

branch resolutions between speculative location and the nonspeculative “home block”

of an operation to alternately suppress or recover from speculative exceptions. This

requires a potentially costly modification to the ISA and is not trivially extended to

allow for speculation in the predicate domain. This approach also requires one or more

shadow register files (unless speculation is to be limited to branch shadows) [116].

6.3 Itanium Control Speculation: Selecting an Appropriate Schema

The Itanium architecture supports two basic control speculation schemata: Sentinel

speculation (with explicit recovery code) and general speculation. Figure 6.1(a) shows a

simple code example that will be used to illustrate the basic features of the two models.

147

���������
	����������������������������� �
!���"#	 $&%('�	�)+*,� �
- � �.	�)/%.	�),01	 $2� �

!���"��43#	 $&%('�	�)
*
�5�����6�+	������� �������������7���������

8:9�;=<7>@?�ACB,<ED
F�G
- � ��	�)@%�	�)#0H	 $�� �

I�J+K ?�AMLONP? Q+RTS S
U J J ? Q@LH? Q@VH?�A
W ?�<�8�X�Y J <�>[Z
\];^<7_�F�G�S�S

��`a�
b

��c��
b

dPe�f�g
hji kli m�e�n]o g+p+q

!���"���3,	 $M%r'�	�)+*
���������
	���������������������������2� �

- � �.	�)/%.	�),01	 $2� �

dtsaf�k+q
m�q+hPeln]u�v�q�o�w�n e�xti g�m

!��a"���3#	�$M%('j	�)+*
�5�������+	l������ �y���������z�������2� �

I�J
K <�8#?�AML{NE? Q+R
- ���.	�)/%.	�),01	 $2� �

d|o�fC}�q�m�x~i m�q�n:u�v�q+o�w�n e�xti g�m
� i xE��o���q+o���n g+e+p

d�p�fC}�q�m xti m�qln]u�v�qao�w
n e�x~i g�m � i xE��q��av+n i o�i x�hEqao�g���q
h���o g+p+q

Figure 6.1 Code generation for the two Itanium speculation schemata.

As noted previously, general speculation requires less compiler and run-time effort than

the alternative approach. Figure 6.1(b) shows the result of speculating the load operation

above the conditional branch. (To simplify the figure, nop operations are omitted.) Here,

the load is simply converted to its speculative, or “silent,” version. Should an exception

occur on execution of the load, the exception will be resolved to completion, with the

caveat that, if the exception is program-terminal (the requested page is not found, for

example), the exception will simply be ignored and the load will set the NaT bit in

its destination register, r3. No bookkeeping is required, and no run-time checking or

recovery overhead is incurred. The primary cost of this model is the expense of examining

potentially spurious exception conditions. Subsequent discussion will evaluate this cost.

Figures 6.1(c) and (d) show the alternative Sentinel speculation model. Figure 6.1(c)

shows the load speculated above the branch, with a load-check instruction left in its

original position, to execute under its nonspeculative execution condition. At run time,

if the speculative load excepts, the check-load will detect the resulting NaT in register r2

and initiate a trap. The trap will execute the load nonspeculatively and resume execution

(assuming the fault was not program-terminal) with the subsequent addition. The load-

check mechanism is a relatively low-overhead means of speculating load operations, by

themselves (with no dependent operations). Nonetheless, it is not without cost—the

load-check is an additional operation to schedule; furthermore, the load address in r2

148

must be preserved to the point of the check. In addition to potentially increasing register

pressure, this may constrain the scheduling of other operations and also will prevent the

use of speculative postincrement loads.

The check-load schema is only a special case. Figure 6.1(d) shows the more typical

and more general recovery code pattern. Here, a dedicated check instruction takes the

place of the original load, maintaining its execution condition. On a deferred exception,

the check received the NaT value in register r3 and branches to a specially prepared re-

covery code segment at label R1. Since, at the completion of recovery, control cannot

branch to the instruction immediately following the check, the rest of the check’s bundle

is replicated. As in the check-load case, values such as the load address must be main-

tained to the point of the check (or regenerated inside recovery code from other values).

Optimization and instruction scheduling are complicated by the need to generate the nec-

essary recovery code while minimizing impact on the common-case path length. A good

summary of one system for performing control (and data) speculation in a production

compiler environment is given in [72].

While the inline-recovery model [38] has a certain degree of attractiveness relative

to the traditional recovery model, it shares with the baseline Sentinel approach some

of the same costs relative to the general speculation approach. It requires extension of

register live ranges to preserve values necessary for re-execution into the recovery code

and requires preservation of a certain degree of the program’s original control structure to

guard check operations. In some cases, especially where the removal of control structure

through predicate promotion is essential to optimization [84], this is burdensome. At the

very least, it leaves check instructions trapped after branches, where they may cause a

break in issue.7

Typically, PEI are load operations. In either schema, control-speculative load instruc-

tions are marked “speculative” when relocated by the compiler to a program position (or

promoted to a predicate) in which they execute more frequently than in the original pro-

gram. Every such operation must be treated specially; otherwise, in one of its “off-path”

7The Itanium architecture does not allow instructions to issue in slots following a branch instruction.

149

����
����	

��

���	

����

����	

����

�����

����

����

�������

����
����	

��

��	��

���
��

���

����

���

��

�����

���������

����	

��

���	

����

����	

����

�����

����

����

�������

���

����

���

��

�����

���������

��������� ��!������

���������� ��!������

���������!��"����#�������

����������"����#�������
$%�� ����

����!& ����

���������

������!�

"���

#�������

���������!��"����#�������

$%�� �

"��% ����'�

��������

$% ����'�

#��!��

Figure 6.2 General and Sentinel speculation models.

executions (one not dictated by the original program) it might trigger a spurious page

fault to a nonexistent page, inappropriately terminating the program.

Control speculation, while it beneficially reduces the dependence height of code, also

bears a number of potential negative performance consequences. The IMPACT compiler

capably manages these issues, but only after substantial modifications performed in the

process of producing this dissertation. It is worthwhile to begin by discussing the trade-

offs between the two models available on Itanium.

6.3.1 Performance issues: Sentinel speculation

Figure 6.2 shows the events entailed in completing a speculative load in the two

schemata supported on IA-64. In the general speculation model, any speculative load

that can be completed successfully (in a non-program-terminating way) is completed

at the time the speculative load is executed. A speculative load to an invalid location

returns the value NaT (not a thing) and does not terminate the program (though doing

so may involve an expensive query of the O/S page table). Since nothing remains at

the original load site, a predicate used to guard the load, for example, may no longer be

necessary, allowing a further optimization. In the Sentinel model (early deferral mode),

a speculative load checks only the data translation look-aside buffer (DTLB) for an

entry. If one is not found, the load returns a NaT. This model defers execution of an

150

expensive page search (which occurs speculatively under general speculation) but requires

additional overhead: a “check” instruction needs to be left at the original load location,

to complete execution of speculative loads that missed in DTLB when it is determined

that their execution was required. Some state must also be preserved to the point of this

check, to support the initiation of recovery code. One study [72] reported that, for the

SPEC CINT95 benchmarks, one third the potential gain due to control speculation of

potentially-excepting operations is eroded by the overhead of the Sentinel model (when

compared to a recovery-code-free general speculation implementation).

6.3.2 Performance issues: general speculation

While general speculation avoids the expense of recovery blocks and state preser-

vation, it incurs a more subtle cost, the magnitude of which becomes evident only in

real-machine experimentation. This is that speculative loads may occasionally attempt,

for example in the case of programs using pointer/integer union types, to access nonsen-

sical addresses (non-NULL and not in a mapped page). These wild loads traverse the

page mapping hierarchy and can thus be very expensive (a typical resolution is measured

to take at least 500 cycles in a system using the Linux 2.4 kernel, with virtual hashed

page table (VHPT) [117] enabled).8 Since these accesses resolve to nonexistent pages,

they result in no update to the virtual memory map hierarchy, so each event causes the

same substantial penalty, even if the same bogus address was just probed.

Before implementation of the mechanism described in Section 6.7, there was a danger

of this phenomenon occurring in four of the benchmarks (gcc in a prominent way, causing

it to spend a full 25% of its execution time chasing spurious page faults, and less so

in parser, perlbmk, and gap). These costs substantially detracted from and sometimes

overwhelmed the benefit of performing control speculation, even at the application level.

The literature is peppered with abstract concerns about these potential problems, but

this was the first concrete, in situ examination of the performance of general control

8Common NULL dereferences are handled using a special, architected, 4 kilobyte page at address
0x0000000000000000; these typically execute (returning a NaT value in the load’s destination register)
with only a 2-cycle penalty in either model.

151

speculation on nonnumeric applications. If this problem could not have been addressed,

the general speculation model could not very well be recommended as a viable alternative

to the Sentinel / recovery code model. With the implementation of the techniques to be

described shortly, however, this danger is effectively alleviated.

6.3.3 Potential difficulties with the general speculation model

There are three problems with the general, or silent, speculation model, beyond its

sometimes undesirable (but manageable) performance implications: debuggability, ex-

plicit signal handling, and platform fragmentation. A productization of this technology

would have to deal with these issues, in addition to potentially “hardening” the wild load

avoidance techniques described below.

Program errors involving pointers often manifest themselves as segmentation violation

(SIGSEGV) events. In a nonspeculative or Sentinel-speculative system, this event occurs

at the offending load operation, speculative or not. This is the idea of the painstakingly

preserved notion of precise interrupts [111]. Under the general speculation schema, gen-

uine segmentation violations, such as a NULL dereference, on an on-path speculative load

operation may be suppressed. The programmer is provided with no clear indication that

a NULL deference occurred at the offending load, and the program may continue beyond

the point of the dereference. If this generally converted program-terminal faults to silent

ones, this would be a serious problem.9

The situation, however, is not quite so bad on Itanium. Recall that the Sentinel

speculation model relies on NaT bits being propagated from excepting, speculative oper-

ations to consumers (and eventually a check). The Itanium architecture specifies that

if these values flow to certain operations (generally stores or nonspeculative loads) at

which the NaT can no longer be propagated without error, a program-terminal exception

is raised. In the author’s experience, most NULL dereferences due to programming errors

9In fact, as mentioned earlier, HP PA-RISC systems supported silent NULL dereferences, and this
caused many debugging headaches and portability problems. A NULL dereference on HP PA-RISC
returns the value 0.

152

(or, more commonly, compiler bugs) rapidly propagate to a nearby NaT-intolerant oper-

ation, facilitating a slightly more complicated debugging process than usual. Whether

this is appreciably worse than the usually imperfect ability to debug optimized code [118]

probably depends on the specific development context.10

A silent exception model will clearly fail if the offending load operation was intended

to invoke an activity outside the kernel, since only the kernel page translation routine is

explored on a speculative load. Software occasionally is intended to generate a SIGSEGV

(the segmentation violation signal generated by the kernel on a failed page mapping),

which could be suppressed in the general speculation model in a case where it actually

was intended to occurred. This might occur in the case of code running under a virtual

machine, or code in a dynamically linked environment, in which a SIGSEGV is sometimes

caught by an explicit handler and used to initiate mapping or remapping of some desired

region of the virtual memory address space. Code that relies on this functionality could

be broken by a compiler that uses the general speculation schema. At the present time,

this is an unsolved problem. It is possible, however, that a set of tests could be developed

(particularly in the context of interprocedural or especially whole-program analysis) to

identify risk factors such as the presence of signal handlers and setjmp()/longjmp() or

try...catch constructs.

Finally, the general speculation model requires a special mode of execution based on

a modification to the Linux kernel. Linux for Itanium has been distributed for some time

without these features. Vendors would thus likely have to provide different versions of

their software for customers with and without these features installed. The desire not

to fragment an already modest Linux-ia64 community appears to be the primary reason

that, as of this dissertation’s printing, general speculation is not supported in the default

kernel build.

10Since speculative values may occasionally need to be spilled for register allocation purposes, the
architecture provides a special st8.spill instruction and a complicated mechanism called the UNaT for
preserving the NaT bits on registers that are spilled to memory [57]. The IMPACT compiler, since it
does not rely on recovery of these values, does not bother with the UNaT mechanism, so spilled NaT bits
are simply lost. This could prevent detection of some silenced, genuine page faults.

153

��� � �����	�
�	� �
��� ���� �����	�
��� �����	����������� � ������� �
��� �! "�#�%$
���"&	�����#' � �	�(� ���

)+*

,�*

-!*/.%021 3�� ���
45021 3�� �
6�6
�
.%0�."624
798 � ����0�.

:�*

; .	1 1<� ����� �

=+*

>+*

,�)

>,�)�)#)�>

,�)
))�> >

,�)

?@@
@@

)!* ."0�1 3+A 7 � ���

,	*

-�*B.%021 3�� ���
45021 3�� �#6�6	�
.%0�.%624
7�8 � ���	0(.
.%021 3!A 7 � ���

:!*

; .�1 1C� ���	� �
.%021 3�A 7 � ���

=!*

>!*

)!*/.%021 3�A 7 � ���
D 0�)

,	*

-!*
450E1 3(� �
6�6
�
.%0(.%624
798 � ����0�.
D 0F,

:�* G �+� D � 798 � ����0�.
D 0�)
; .�1 1<� �	��� �
.%021 3!A 7 � ���

=!*

>!* G �+� D � 798 � ���	0�.

,�)

>,�)#)�)	>

,�))�)#> >

,�)

?@@
@@

,�)

>,�)�)#)�>

,�)#)�)	> >

,�)

?@@
@@

� .��IH5J G K	G L#.�1 ; ��L 8 J ��1C� 1 �9MNK�J . D�O
M%G 8 O5P 3#K P�D J ��� G 1 P M P G K O98 7

� 4���QI� 8 P J 7
D�P�;#R 1 . 8 G S P�D .	J 8 G .�1�J P 3 R L#3�.	L ; �
P 1 G T%G L#. 8 G ��L%� M(G 8 O57�8 U 1 3 ; ��.�1 P	7�; G L
K��

� ; ��QV� 8 P J D J �
� G 1 P
W 3�G J P
;�8 P 3 D J P 3�G ; . 8 P 3
D .�J 8 G .�193 P .	3 ; �#3 P%P 1 G T%G L�. 8 G ��L

1 ��.	3 ; ��T%4	G L P�7
M(G 8 OX7�8 ��J P

Figure 6.3 The use of speculation in partial redundancy elimination.

6.4 Control Speculation in the Compiler

Control speculation proves an effective tool for ILP enhancement in the EPIC ma-

chine. The IMPACT compiler uses speculation in optimization, to reduce predicate con-

trol networks, and in instruction scheduling. This section describes the nuances involved

in these approaches.

6.4.1 Classical optimizations

As was indicated in the example in Section 3.3.1, the specialization and optimization

of prevailing loop paths is critical to achieving high performance in the EPIC machine.

Control speculation aids the compiler substantially in performing this difficult chore. The

IMPACT compiler has a relatively sophisticated suite of partial redundancy elimination

(PRE) and partial dead code elimination (PDE) routines which are applied in the classical

code optimization phase (the IMPACT module Lopti). This class includes the less

general, but still useful, loop invariant code motion and loop global variable migration

routines [119], as well as a modern implementation of PRE and PDE [88]. Section 5.5

described the application of predication to extend these techniques; control speculation

is also applied to increase their applicability. Figure 6.3 shows an application of partial

code elimination to a simple loop. Figure 6.3(a) shows the code prior to optimization.

The left-hand path through the loop dominates, and it will presumably be specialized

154

into a Superblock region in a subsequent optimization stage. Figure 6.3(b) shows an

application of partial redundancy elimination that moves the load from the hot path to

the header of the loop and the cold path, reducing its execution weight from 10 005

to 15. (Section 5.5 described the additional transformation shown in (c).) This partial

redundancy optimization is described in detail in [88].

Although the migrated loads execute much less frequently than before the optimiza-

tion, there exists a path (0 → 1 → 3 → 4 → 5) along which the load is executed only

in the transformed version of the code; the load is therefore control-speculative. If the

load cannot be proven safe (that is, it cannot be ruled out that it could cause a spurious,

program-terminal exception) it must be marked as control speculative.

Here the economy of the general speculation model relative to the recovery code

model stands out in particular relief. If this transformation were to be performed using

Sentinel with recovery code, a check would have to be placed at the original load location.

This check would execute 10 005 times. Although a check has zero latency, a slot still

must be found in the schedule to accommodate it. This bookkeeping seems to almost

negate the benefit of performing the optimization. As usual, however, there is a potential

escape for the recovery code model: one could envision a subsequent transformation that

would create a second version of the loop, not containing the check. This version could

be used after the first traversal through the checked control block 2. This approach,

however, could easily become quite complex. (It is, nonetheless, the approach applied

by Intel’s production compiler [72].) The generality of IMPACT’s optimization (and the

simplicity of the compiler) is aided by the availability of such a cost-effective form of

control speculation.

There is another, more subtle cost of optimization using a recovery-code based schema

for control speculation, and that is the difficulty of generating and maintaining recovery

code associated with speculative operations (as opposed to for scheduling, which is rela-

tively self-contained and straightforward). Initial experiments with this in the IMPACT

environment proved very difficult. An effective solution would require invasive changes

to the optimizer infrastructure. As far as the author is aware, furthermore, there has

been little work published on the minimization of check infrastructure, which could easily

155

become quite burdensome. The general speculation model is certainly much more eco-

nomical to add to a compiler infrastructure than the recovery code tracking approach.

6.4.2 Predicate promotion

As was quite prominent in [38] and as indicated in Chapter 5, achieving maximal ben-

efit from predication usually requires the application of control speculation, in the form of

predicate promotion. Predicate promotion is the weakening or removal of the guard pred-

icate on a predicated operation, where weakening means the replacement of one predicate

with another that allows the instruction to execute more freely. Promotion removes or

relaxes the dependence of the operation being promoted on its controlling operations, al-

lowing it more scheduling freedom and, potentially, the freedom to be optimized together

with a broader range of other instructions. Since, however, the instruction is caused to

execute more freely than before, it can increase register pressure, cause additional stalls

(if one of its source operands’ producer instruction is variable- or long-latency), or even

cause spurious exceptions.

Since Hyperblocks include multiple paths, and since control dependence is often an

important contributor to dependence height, speculation in the form of promotion tends

to allow compression of longer paths and, hence, more compatibility among the paths

included in regions. This benefit is in addition to the single-path benefit, also achieved,

associated with hoisting individual operations above their controlling instructions. These

effects were noted early in Hyperblock research [36], but the consequences of promotion

in the original form became clear only in real-machine work. This chapter describes the

problems introduced into the compiler by this intrusion of control speculation into the

predicate domain and the solutions employed in this dissertation work. This work falls

into two areas: first, that of predicate promotion itself, and second, dealing with the

complex interaction of execution condition and data flow in code using predication and

speculation.

Predicate promotion, as described in [36] and as used in [38, 84], has historically

been applied very aggressively. Any control speculable instruction was promoted to

156

the weakest of its predicate ancestors11 (including to p0, the always-true predicate, the

degenerate ancestor of all predicates) for which its destination did not overwrite a live

value. Finally, for those operations whose destination registers were live under other

predicates, preventing their promotion, register renaming was attempted in the hope of

exposing an opportunity. Such aggressiveness dramatically reduced the control structure

of Hyperblocks, as was its goal. It was applied early in the compilation process to simplify

the design of subsequent optimizations, which could work within Hyperblocks mainly as

they did in Superblocks—on mostly unpredicated code.

In the real-machine context, however, this aggressive approach causes two problems:

First, rampant predicate promotion increases the number of overlapping live ranges (since

predicate-aware data flow is able to use a single register to contain two live ranges, as

long as the live ranges are mutually exclusive in the control sense [94]). Second, it creates

false-escaping live ranges. If an instruction is promoted to a predicate weaker than that

of one of the instructions providing its source operands, predicate-aware data flow will

detect that the definition does not cover the use. The resulting spurious live range may, in

the worst case, be projected throughout the function. Finally, it may allow unprofitable

“wild load” speculations, as described in Section 6.7.

These issues caused tangible performance problems in real-machine execution. The

author refined predicate promotion to eliminate cases of unsafety (for example, the pro-

motion of loads in such a way that their address operands receive unrelated values) and

extended subsequent analyses to make safe judgments regarding the execution condition

of speculative operations (more will be said about this later). Additionally, predicate

promotion was delayed to the machine code generation stage of the compiler, just be-

fore scheduling (and optimizations were enhanced to accommodate this without loss of

performance) in preparation for integrating the management of instruction execution con-

dition into scheduling, where more information about dependence and live range count

is available to guide it. These changes returned predicate promotion to its status as a

11Generally, an ancestor is a predicate guarding one of the instructions in the chain that defines the
predicate of the instruction to be promoted. For or and and type predicates, the only usable ancestor
is generally p0.

157

safe and effective (and necessary) partner to predicated region formation and prepared

the compiler for a more integrated future implementation, in case that should prove

warranted.

6.4.3 Scheduling phases

Finally, control speculation is available to the IMPACT compiler in the scheduling

phase. Since IMPACT uses the low-overhead, general speculation model, only minimal

constraints are placed on control speculation during scheduling. In fact, instructions are

scheduled without regard to control dependence (with respect to branches). Potentially-

excepting instructions are marked speculative at the end of the scheduling phase if they

have reordered with respect to branches.

The IMPACT scheduler prevents speculation of instructions to a point where they

are very unlikely to be on-path (in the documented experiments, to where control flow

profile information suggests there is less than a 5% probability that the operation will be

on-path). Before the development of the more specific technique described in Section 6.7,

this prevented particularly bad cases of wild load creation in perlbmk. Since the intro-

duction of those techniques, however, this limit has been retained, as it does not degrade

performance in practice and seems a reasonable constraint. The potential importance of

curtailing very aggressive (unlikely to be profitable) operation speculation is increased

by the sometimes unwarranted aggressiveness of the IMPACT compiler’s scheduler.

One might expect that, as control speculation often generates considerable freedom

in the scheduling of load operations, the amount of data stall time might be reduced

in code compiled with control speculation. In general, though, this is not observed in

the experimental data. The reason for this is that, even if slack exists, the compiler is

uninformed as to how to distribute that slack along a chain of dependent instructions to

achieve the maximal benefit; that is, if two loads are connected in series by dependence

and share a certain amount of slack, the compiler does not know which is more likely to

miss and therefore should get the more slack. Simple heuristics inserted into the sched-

uler to employ a portion of available slack for each load operation to hide unanticipated

158

latencies have not been able to make a very substantial difference in total code perfor-

mance. This is just part of a larger problem in which the DHASY List scheduler often

does not make best use of freedom purchased with speculation (slack distribution) to

reduce register live ranges or hide potential latencies.

Software pipelining (using the iterative modulo scheduling technique [120]) relies es-

pecially on control speculation to achieve effective overlap among different loop iterations.

IMPACT’s modulo scheduler uses only a general while loop schema (no special accom-

modations are made for for loops or loops with counted, known-in-advance durations.

Again, the decision to make this simplification is justified by the generality and simplicity

of the general control speculation model (speculation is cheaper than implementing the

loops in a less-speculative manner).12

6.5 Execution Condition and Data Flow Analysis

Much work has been expended on the IMPACT infrastructure to provide for the

derivation of accurate instruction execution conditions in predicated code. As has been

well-documented in work by the IMPACT group and others [93, 94, 96], determining

the relationships among instruction execution conditions is an important and nontrivial

problem. In IMPACT, which uses predication early and extensively in the compilation

process, both in structured (if-conversion) and unstructured (optimization, such as the

PDE technique described in Chapter 5) ways, this is even more the case than in most

compilers. When control speculation is performed, in addition to predication, the situa-

tion becomes more complicated, as the effective execution condition of an operation may

be different than its necessary execution condition, the condition under which its results

are eventually used. This section briefly describes the operation of the predicate analysis

and data flow frameworks of the IMPACT compiler (previously described in Section 5.6)

in the context of predicate promotion.

12Again, this is a consequence of selecting the general speculation model. Intel’s production compiler
even uses increased predication (if available) to guard instructions moved above branches to avoid control
speculation, due to the cost of check operations [50].

159

1 cmp.gt.unc p1,p2 = r1 , 0

2 (p1) add r3 = r1 , r2

3 (p1) add r5 = r3 , r4

4 (p1) st [r5] = r6

(a) before promotion

1 cmp.gt.unc p1,p2 = r1 , 0

2 add r3 = r1 , r2

3 add r5 = r3 , r4

4 (p1) st [r5] = r6

(b) after promotion

Figure 6.4 Predicate promotion, execution condition, and demotion.

This chapter, at its outset, has defined the concepts of execution condition and con-

trol speculation. The previous chapter showed how execution condition is determined for

predicated operations, and how this knowledge is applied in adapting traditional data

flow algorithms to predicated code; now the impact of control speculation on these analy-

ses must be considered. Classical compiler analyses and optimizations are free to assume

that the position and predicate of an instruction stipulate its condition-of-execution in

the original program. Transformations are generally considered with respect to this exe-

cution condition. This is a fundamental assumption. Live-variable analysis, for example,

assumes that whenever an instruction is executed, the values of its operands are impor-

tant and must be preserved to it. If an instruction has been speculated, however, this is

not necessarily the case. Ideally, we would like to minimize the effect of promotion on

subsequent optimization, scheduling, and register allocation. For this to happen, instruc-

tions must be demotable (that is, able to be repredicated with a predicate more narrowly

approximating their original condition of execution).

Figure 6.4(b) shows the result of applying predicate promotion to the code in Fig-

ure 6.4(a). Such promotion could allow the instructions in lines 2 and 3 to be scheduled

with or above the predicate definition in line 1. Since, after promotion, these opera-

tions are unpredicated, conventional concepts of liveness indicate that r1, r2, and r4

are always live before instructions 2 and 3. In reality, however, the value computed by

these instructions is only used under predicate p1. If scheduling should happen to locate

instructions 2 and 3 after their original predicate definition, we should like to repredicate

them to free additional live ranges for the register allocator to use (assuming, of course,

that it has a use for live ranges limited to the condition of p2, which is disjoint from the

160

condition of p1). This reduces the net cost of promotion in those cases where it turned

out to be unprofitable. Conventional live-variable analysis will not give us this result.

This problem necessitated an analysis called predicate partial dead code elimination

(PPDE). This analysis uses predicated live-variable analysis to discover the strongest

possible predicate that can limit the execution of each program instruction, without

changing program outcome.13 This analysis was developed by August and is described

in his dissertation [92]. At its completion, each instruction is marked with, in addition to

its actual predicate, a demotable predicate expressing this tightest allowable condition

of execution.

PPDE was originally based on live-variable analysis. This had the limitation that it

could only resolve one “generation” of dead code in a given invocation of the analysis. In

Figure 6.4(b), for example, one run of PPDE would identify instruction 3 as demotable

to p1, but since instruction 3 actually executes whether p1 is 1 or not, instruction 2

would not be considered demotable unless instruction 3 were actually demoted and the

analysis were run again.

To improve on this, creating a single-step analysis that would annotate all instruc-

tions with their strongest-possible predicate, regardless of their dependence relation to

already-promoted instructions, this dissertation’s author developed critical-variable anal-

ysis (CVA), an enhancement of live-variable analysis. Under CVA, certain instructions

which have indisputable or undetectable effect on machine state (stores, subroutine calls,

returns, control operations, fill loads, register allocations, and instructions with unsafe

macro-register destination operands) are considered to be live and to generate liveness in-

herently, regardless of their dependent operations or lack thereof. Other operations only

become live when liveness propagates to them. In the context of iterative analysis on the

predicate flow graph, this generates the desired result—the minimum condition under

which the execution of an operation is really necessary. This analysis will also remove

dead induction variables, a task of which traditional live variable analysis is incapable.

The cost of this approach is that local and global phases of CVA are not separable as in

13The predicate derived need not necessarily be defined at the program point where the instruction is
located at the time the analysis is performed.

161

1 cmp.ge.unc p1,p2 = r1 , 0

2 add r3 = r1 , r2 // promoted f rom (p1)
3 ld.s r5 = [r3] // promoted f rom (p1)
4 (p1) st [r5] = r6

Figure 6.5 Example illustrating a promoted load and criticality.

live variable analysis. In practice, the analysis is reasonably fast, though, in a work list

implementation with proper processing order (and a great improvement over running the

previous analysis until no further demotions occurred).

This minimum condition having been determined, it is possible to “abuse” registers

that are “live” but not really “critical.” For example, in Figure 6.4(b), an instruction

under a predicate disjoint with p1 that defines r3 could be scheduled between instruc-

tions 2 and 3.14 This reduces the impact of promotion on live range overlap, improving

scheduling and register allocation in predicated regions.

6.6 Execution Condition and Safety of Potentially-Excepting Instructions

A subtle danger lurks here, however. Figure 6.5 shows another example code segment

like the one of Figure 6.4 except that instruction 3 has been replaced with a load. The

load is marked speculative, since it has been promoted from p1. Critical variable analysis

would determine, as before, that the register r3 may be abused between instructions 2

and 3 under the condition that p1 is not 1. This could lead to the load accessing a

nonsensical address, depending on the value stored in the conflicting live range. Since

general speculation silences spurious exceptions, this will not alter the program outcome,

but it will cause a serious performance loss—a wild load. This would be a legal but not a

wise transformation. Even worse, if the load was from a provably safe location, it would

not have been marked for silencing of its exceptions when it was speculated. In this case,

an abuse of its incoming live range would cause a program error.

14Dependence-drawing routines in the IMPACT scheduler know how to use the minimum execution
condition of each operation appropriately in this regard.

162

Thus the notion of execution condition had to be modified again to account for the

performance-safety of speculative operations. To do this without losing the advantages

of the critical variable model (including the potential demotion of potentially-excepting

instructions), a modification was made to CVA. Potentially-excepting instructions not

included in the list of those with indisputable effect on machine state (mainly loads) are

marked “critical” at the start of the analysis. That is, they generate liveness under their

full execution condition but are not of themselves automatically live. This allows them

to be demoted without assuming that they will be, restoring a correct meaning to the

execution condition derived in CVA.

This extension, in combination with the modification to promotion mentioned pre-

viously, eliminated a substantial number of spurious exceptions which had not been

identified or dealt with before the real-machine work of this dissertation uncovered their

deleterious performance effects. The techniques and examples presented here illustrate

as perhaps never before the extreme complexity of maintaining proper and performance-

salutary concepts of execution condition in an environment with predication and control

speculation.

6.7 Minimizing Spurious Exceptions Under General Speculation

One of the most significant challenges in achieving high performance on the Itanium

architecture using the IMPACT compiler was the problem of the wild load, a speculative

load that accesses an unmappable address. A careful study of the incidences of these

wild loads in SPEC CINT2000, as originally compiled using the IMPACT approach,

revealed their two dominant causes. First, a chain of operation promotion and demotion

(speculation and sinking) events could lead to a load being issued with inappropriate

operands. This issue has already been discussed in detail in Section 6.5, so there is no

need to belabor it here.

The second mode of wild load creation involves the speculation of operations that

load from an inherently unsafe address (that is, the “wildness” of the load is purely

due to the speculation of the load itself and not in part to the demotion or sinking of

operations on which it depends). Of this mode, there are three identified subtypes: the

163

���������	��
�����	���������������
���������������	���

�	��
 �!�	��
 � �
�	��"��	���

"����#�	����$ �	���
��%�&	�#'	�����	"��	()�

�+* &	,��
���

������������-��	�.���
/	/�/"�-102� / �	��
 �43	3��	���65

* &�,738� / * &�, / ������$ �	����	,��	�
* &�,7390:"��	�;5<� / * &�, / �����	"��	(>=2?�@��

ACBED

AGFHD

ACI6D

JLK ,�M�NO" �	P439=Q� J @ R�RS� J 38T��ULK ,�M�N V �	W439=Q� J�X Y @S���
W K ,�M�NO" �	Z439=Q� J�X Y @ R�R7*�&	,43��	����$ �	�
Z K ,�M�NO� � U 39=Q�	W�@ R�RS[]\�^�_�`	a�b�c d
P K ���	
 U / ��V / �����
 J �C
 P43.�	P��e?��	�4R�Rf� / �	��
 �g)K 0h
 Pi5E��j���N)� �	Z43.� U �	� R�R7*�&	,43.������"��	(>=2?�@

JLK ,�M�NO" �	P439=Q� J @#�	� R�RS� J 38T��
P K ���	
 U / ��V / �����
 J �C
 P43.�	P��e?��	�4R�Rf� / �	��
 �W K 0h
 J 5E,�M�NO" �	Z439=Q� J�X Y @ R�R7*�&	,43��	����$ �	�
ULK 0h
 Pi5E,�M�N V �	W439=Q� J�X Y @S���
Z K 0h
 Pi5E,�M�NO� � U 39=Q�	W�@#�	� R�RS[]\�^�_�`	a�b�c d
g)K 0h
 Pi5E��j���N)� �	Z43.� U �	� R�R7*�&	,43.������"��	(>=2?�@

Figure 6.6 Development of a union-field wild load: (a) C source code; (b) initial machine
code; (c) after speculation (promotion).

union-field type, the illicit-offset type, and the operational type. These three dominate

in gcc, parser, and gap, respectively.

Figure 6.6 shows an example of the union-field form of wild load development. Fig-

ure 6.6(a) shows a contrived but representative snippet of source code, consisting of a

structure definition and an operation on the structure. The structure is designed to carry

two payloads, one an integer value (number) and the other a pointer to a character array

(string). The program determines the type of the structure from the type field and ac-

cesses either the integer value or the first character of the character string, as appropriate.

This snippet is representative of a common case from gcc (in the ubiquitous rtx structure)

and similar cases in other benchmarks. Assuming this section of code is if-converted,15

the compiler initially generates the machine code shown in Figure 6.6(b).16 This initial

piece of code has a dependence height of five cycles, as indicated by bundle stop bits

(;;). Operation 3 implements the assignment “val = F.val.number,” while operations

4, 5, and 6 together implement the assignment “val = (int)F.val.string[0].”

15This assumption simplifies the example, but ordinary control speculation (the motion of loads across
branches rather than the weakening of guard predicates) is also quite capable of manifesting wild loads,
and was observed to do so in the experiments.

16Loads are shown as having an index, which is not available in Itanium machine code, to simplify
the diagram. The address-generating add is free of dependence and has no impact on the performance
outcome here.

164

Figure 6.6(c) shows the code after control speculation (in the form of predicate pro-

motion) has been applied and the instructions have been scheduled. The dependence

height of the code segment is reduced from 5 to 3, which is appealing. A dangerous

situation, however, has been created with respect to instruction 5. This load should be

dereferencing a char pointer, but the location it accesses contains a pointer only under

the condition (F.type == num). The removal of predicate p2 from instruction 5 has al-

lowed the dereference to occur when the field contains an integer instead. This generates

an address translation activity for a nonsensical address, incurring a whopping penalty

if the nonsensical address does not happen to fall within a valid, mapped page or the

special 4 kilobyte NaT page at address 0x0000000000000000. This mode is referred to

as the “union-field” wild load type.

Another common mode of wild load creation is due to the use of computed offsets of

a pointer, particularly negative ones.17 If the pointer is NULL and this offset is applied,

causing a subsequent dereference to fall outside the mapped NaT page, the arduous page

hierarchy traversal will ensue. This is referred to as the “illicit-offset” type.

A related problem occurs with respect to unaligned accesses, which also trigger ex-

pensive exceptional handling. Programmers sometimes use the least-significant bits of a

pointer value to store Boolean flags. One prominent example is in a common implemen-

tation of binary decision diagrams (BDD), the Colorado University Decision Diagram

(CUDD) package [121]. In this application, pointers are used to reference BDD nodes.

If a reference is to the inversion of the node, the lowest-order bit is set to 1. A related

construct is used in the benchmark 254.gap (there, though, a 1 in the low-order bit de-

notes a value that is not a pointer at all). A dereference of one of these fields, apart

from the guard condition that checks the low-order bit and adjusts the pointer or con-

trol flow appropriately, will cause either an unaligned access or an address translation.

This and other related modes constitute the “operational” wild load type, in which local

operations can yield clues that a load speculation is potentially harmful.

17Negative offsets are commonly used in memory allocation routines. Information pertaining to the
managed block of memory is stored at a negative offset from the pointer used by the rest of the program
to access the stored data.

165

These modes occurred to varying degrees in gcc, parser, perlbmk, and gap, in which

they caused between 5% and 25% of execution cycles to be spent in the kernel handling

spurious page faults before they were mitigated. Although the speculation of these loads

causes a severe problem within the general speculation schema, they may also degrade

performance in a recovery code-based approach. Wild loads could also be a problem for

compilers using the recovery code model, though not as serious a problem as for general

speculation, due to misses in the L1TLB incurring L2TLB searches and, depending on

the operating system configuration, walks of the VHPT.

The next section describes a means of preventing these injurious loads that, at least

for these benchmarks, solves the problem. It should be pointed out, however, that these

methods are only heuristics, and these events are not totally avoidable in a weakly typed

language like C. It should not, however, be difficult to instruct programmers how to avoid

conditions that are not detectable by the described techniques, and the author sees these

constraints as placing no real and injurious limits on the programmer’s freedom.

6.7.1 Mitigating the wild load problem

Careful study of the wild loads in these cases, together with the source code that

generated them, led to a set of simple heuristic analyses that could mark these loads to

prevent their highly unprofitable control speculation. The solution developed occurs in

two phases (PtoL, the lowering phase between the high- and low-level representations,

and Lssaopti, the SSA-enabled portion of the compiler back-end), due to practical con-

straints in the IMPACT compiler infrastructure, but it would not have to be implemented

this way. The description here, therefore, abstracts away the details of this two-stage

implementation.

Figure 6.7 shows a pseudocode representation of the algorithm for identifying loads

that have the potential to be wild due to dereferences of a union field. The algorithm is

conducted in two linear passes over a procedure’s operations in an already-constructed

SSA def/use graph [122]. In the first pass, SSA definitions resulting from those loads

identified syntactically by the front end as accessing union fields are collected into a work

list. Second, this property is propagated along use-arcs throughout the SSA graph. The

166

1: procedure Mark-Union-Field-Wild-Loads(S) . S: the procedure SSA graph
2: U ← V ← {}
3: for all o ∈ S do . Search all operations in the SSA graph
4: if Is-Load(o) and Load-From-Union-Field(o) then
5: U ← U ∪ dest[o]
6: end if
7: end for . U contains all SSAs defined by loads from union fields.
8: for all u ∈ U do . Forward-propagation on SSA use links
9: for all v ∈ (use-ops[u]− V) do

10: if Is-Move(v) or Is-Phi(v) or Is-Arithmetic(v) then
11: U = U ∪ dest[v]
12: else if Is-Load(v) then
13: Prevent-Speculation(v)
14: end if
15: V = V ∪ v
16: end for
17: U = U − u
18: end for
19: end procedure

Figure 6.7 Union-field wild load speculation avoidance algorithm.

propagation is only through move, phi (SSA merge), and arithmetic/logical operators,

not, for example, through loads. When such a propagated value reaches a load, the load

is marked to prevent its speculation.

Propagation is to but not through load (memory dereference) operations. The reason-

ing behind this is as follows: loads that immediately dereference the union field, or an

offset thereof, are in danger of dereferencing an illicit pointer on an off-path execution

instance. It is thus critical that these loads not be speculated. Since these loads will thus

be “trapped” under their original execution condition, any subsequent dereferences of the

values they produce are protected by flow dependence from being speculated dangerously

(at least with respect to the indicated union field). To avoid an overbroad restriction of

speculation (recall that all speculation is prevented by the antispeculation attribute, not

just that relative to a particular condition), propagation stops at load operations.

Figure 6.8 shows the algorithm for marking those loads susceptible to the illicit-offset

pattern of wild load. This algorithm is stated as three passes: one that prepares the lists

167

1: procedure Mark-Illicit-Offset-Wild-Loads(S) . S: the procedure SSA
graph

2: W ← L← N ← {}
3: for all o ∈ S do . Search all operations in the SSA graph
4: if Is-Branch(o) and Null-Comparison(o) then
5: W ←W ∪Variable-Operand(o)
6: else if Is-Load(o) then
7: L← L ∪ o
8: end if
9: end for . L contains loads; W contains NULL-checked SSAs

10: for all w ∈ W do . Back-propagation on SSA def links
11: d← def-op[w]
12: if Is-Move(d) or Is-Phi(d) then
13: W ←W ∪ source-SSAs[d]− V . No node visited more than once
14: V ← V ∪ source-SSAs[d]
15: else if Is-Load(d) then
16: N ← N ∪ dest-SSA[d]
17: end if
18: W ←W − w
19: end for . N contains all NULL-checked, loaded SSAs
20: for all l ∈ L do . Back-trace address generation of all loads
21: if Illicit-Offset-Address(l, N, S) then
22: Prevent-Speculation(l)
23: end if
24: end for
25: end procedure

Figure 6.8 Illicit-offset wild load avoidance algorithm.

of loads and NULL-check branches, one that propagates the “NULL-checked” property up

the SSA graph, and, finally, one that back-traces the address calculation of each load

and finds the possibility of an illicit adjustment of a NULL-checked value. This back-

tracing is essentially similar to that commonly used in low-level memory disambiguation

and dependence testing, so it is not detailed here. In the experimental configuration, it

simply detects negative constant offsets of NULL-checked values. This ignores potential

accesses beyond the 4 kilobyte NaT page in the positive direction, but these seem to be

an infrequent problem. A more complete solution should address this.

168

The algorithm for detecting the third mode of wild load, the operational form, would

be substantially similar to that shown in Figure 6.8, so it need not be included here.

6.7.2 Evaluating the wild load solution

A practical evaluation of the wild load solution described in the previous section

indicates that it functions quite well. The excessive time spent managing spurious page

faults, especially in gcc, perlbmk, and gap, is curtailed. Only gcc and gap indicate an

increase in kernel time with speculation, and this increase contributes less than 2% to

benchmark execution time in each case. The remaining cases in gap could be removed

with an implementation of the operational wild load detection algorithm; those in gcc

appear to require more information than is conveniently propagated to the phases of the

compiler in which the current algorithms act. Nonetheless, this relatively simple solution

solved the vast majority of the wild load-related performance problems without rendering

control speculation ineffective.

A theoretical evaluation of the wild load mitigation heuristics, however, shows points

for improvement both in the direction of safety and in the direction of relaxing conser-

vatism. With respect to safety, these heuristics could be deceived in a number of ways. In

the present ad hoc implementation, for example, union field references are detected in a

purely syntactic manner. If the address of a union field were taken, and this pointer were

dereferenced elsewhere, the heuristic would be oblivious to the fact that a “dangerous”

location is being dereferenced. Furthermore, programmers often use “void *” fields,

which are not explicitly unions, to hold mixed pointer/integer data. A more general

solution, therefore, would possess the ability to detect union-like behavior in nonunion

fields. Likewise, since the SSA graph is constructed on register-promoted communica-

tions only, propagation of any of the interesting properties through any address-taken

or structure-field variables is ignored. Means exist for dealing with these issues in the

construction of a more resilient SSA graph, but are inaccessible in the current IMPACT

implementation.

The approach is potentially overrestrictive in two ways. First, it may detect innocent

loads and mark them as “wild candidates.” If the approach marked all the loads in

169

offending benchmarks, it would certainly curtail the wild load problem, but it would also

render control speculation impotent to improve performance. Empirical results, however,

show that the technique described marks only a small minority of dynamic load instances

as potentially wild. Across the suite, only 1% of dynamic loads are marked to prevent

speculation. The only benchmarks with significant numbers (greater than 0.1% marked)

are: gcc (29%), gzip (4%), parser (2%), vpr (1%), and perlbmk (0.5%). The large number

of loads marked in gcc are expected, due to the prevalence of the rtx data structure,

which contains many involved unions.

Second, this approach is conservative in marking potentially wild loads for no control

speculation whatsoever. It is likely that there is some specific control dependence, and

not all control dependences on which the load depends, that enforces the salutariness of

the address to be dereferenced. In the “operational” and “illicit offset” cases, it is likely

possible to identify this specific control dependence. In the “union-field” case, one might

make some good guesses about the meaning of control dependent on fields in the same

or related data structures. This conservatism, however, was not addressed here, as it did

not seem to cause serious performance limitations in practice.

It is the author’s opinion that these wild load avoidance techniques, and simple adap-

tations of them, are fit for practical use and have demonstrated that means can be found

of rendering general speculation safe to use without rendering it ineffectual. It is this

a viable alternative for the Itanium platform that offers both compiler simplicity (aside

from the problem of detecting potential wild loads) and a potential reduction in run-time

speculation overhead.

6.7.3 Speculation of floating-point operations

Control speculation of floating-point operations such as multiply-accumulate (fma)

operations is supported on the Itanium architecture. A detailed description of the pro-

vided mechanisms is given in [123], so this treatment is confined to a brief presentation.

The support for floating-point speculation is by the provision of four floating-point con-

trol and status registers. Aside from the first, sf0, which is inherently nonspeculative,

the other three can be set to disable various forms of exceptions. Each floating-point

170

operation specifies the status register with which it interacts. Those that report to

registers with traps disabled may be control-speculated without fear of generating spu-

rious software-visible floating-point exceptions. For programs that use such exceptions,

control-speculative floating-point operations must be followed up with a floating point

status check operation and re-execution code, not unlike the recovery blocks associated

with complex load speculation patterns. For programs that do not concern themselves

with floating-point exceptions, this check is unnecessary.

In the IMPACT environment, floating-point speculation is enabled by a flag in the

microarchitectural machine description file (See Section B.11.2). Due to the nature of

common usage, speculation of these operations most frequently occurs in scheduling. If

floating-point speculation is enabled, IMPACT assumes that the program is unconcerned

with floating-point exceptions and therefore generates no floating-point check-recovery

sequences. For SPEC CINT2000 benchmarks, control speculation of floating-point opera-

tions was found to have little positive performance impact (only vpr and vortex appeared

to benefit, and those by less than 2%). For eon, control speculation of floating-point

had a disastrous performance effect, causing a 33% reduction in performance. This is

a consequence of the speculation model for floating-point operations, which fundamen-

tally adopts the general speculation approach. The various status registers allow for the

deferral of software-visible floating-point exceptions, preventing undesired program ter-

mination or interruption from these events. They do not, however, permit the deferral

of floating-point software-assist (FPSWA) events. These events, which require a trap

to kernel code, supply complex corner cases in floating point computations which were

adjudged too difficult and infrequently used to be put into the hardware units [57, 117].

The problems in 252.eon occur when a loop containing a multiply-accumulate operation

(fma) is modulo-scheduled. In the three-stage schedule, speculative loads (stage one)

wind up feeding a speculative fma (stage two). As the last iteration of the loop is coming

to an end, the fma tries to add values loaded from beyond the end of the array originally

intended to be accessed; the result of this operation will never be used. Adding the values

stored at these locations happens to require software assistance. Since the FPSWA is

171

slow (hundreds or thousands of cycles), even these relatively infrequent events carry a

substantial performance penalty.

It should be pointed out that the particular problematic code sequences encountered

in eon could have been handled without control speculation by using a counted-loop mod-

ulo scheduling schema with stage predicates. The IMPACT compiler does not support

this mode at the present time; other compilers, such as Intel’s, do. For true “while”

(noncounted) loops, however, control speculation of floating point operations bears un-

resolved performance risk because of an inability to defer FPSWA events. For now,

IMPACT’s speculation of floating-point operations was disabled for eon. A dramatic in-

crease in kernel time with control speculation, accompanied by an increase in SIR stalls

in performance monitoring data [51], is a sure indicator of this problem.

The need for a “fast,” “silent,” or “flush-to-zero,” mode has been noted at least since

the implementation of speculation in the Multiflow system [56]. Colwell pointed out cases

such as “if (q != 0) r = d/q;” that call for silencing of exceptions if speculation is

to be allowed. This dissertation’s experiments have simply shown that such a mode does

not allow totally general speculation of floating point operations (without potentially

substantial performance penalty) in a software-assisted floating-point architecture like

Itanium’s.

6.8 Performance Effects of Control Speculation in situ

Having explained the modes of control speculation applied in the IMPACT compiler,

let us consider some empirical results. Control speculation is very effective in reducing

the execution time of most of the SPEC CINT2000 applications, in both predicated and

nonpredicated contexts, as shown in Figure 6.9. This is not a surprising result, as the

primary motivation for creating Superblock and Hyperblock regions is to enable enhanced

instruction scheduling. Such improvements in scheduling are much less prevalent without

control speculation, since branches (on average, one out of seven instructions in O-NS

code and one out of ten in I-CS) and potentially-excepting (not provably safe) loads

abound in these applications.

172

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

G
E

O
M

E
A

N

S
p

ee
d

u
p

 (
re

la
ti

ve
 t

o
 IM

P
A

C
T

 O
-N

S
)

IMPACT I-NS

IMPACT I-CS

IMPACT S-NS

IMPACT S-CS

Figure 6.9 Effect of control speculation on performance.

S-NS and I-NS appear on average to receive approximately equivalent gains in

performance when control speculation is added. Despite this, it is important to note

that single-path and multipath specialization present somewhat different contexts within

which control speculation can do its work. In single-path regions, generally only the

path anticipated to be the most commonly executed is present, so speculative opera-

tions are generally very likely to be on-path. In multipath (Hyperblock) code, however,

less-prevalent paths are also included. This poses the opportunity for increased issue of

off-path speculative operation, and therefore greater potential side-effects, or penalties,

from control speculation. Nonetheless, these effects are not materialized unless control

speculation actually occurs, so this chapter on control speculation is the appropriate

place to have this discussion.18

6.8.1 Effects on instruction issue

Figure 6.10 shows the effect of control speculation on the number of operations issued

in the single-path (S-NS/S-CS) and multipath (I-NS/I-CS) contexts. While control

speculation causes operations to execute more frequently than in the original program,

these results show that IMPACT’s speculation benefits reflect only a fairly selective

18Provably safe loads, as well as other nonexcepting operations, are control-speculated in the I-NS
configuration. These could conceivably, but are unlikely to, have some performance effect.

173

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

O
-N

S
S

-N
S

S
-C

S
I-

N
S

I-
C

S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

D
yn

am
ic

 in
st

ru
ct

io
n

 c
o

u
n

t
(r

el
at

iv
e

to
 O

-N
S

)

Useful Pred Sq. NOP

Figure 6.10 Effect of control speculation on dynamic instruction count.

speculation of operations (a pronounced rise in executed operations is not observed in

the speculation-enabled, S-CS and I-CS versions). Likewise, relatively few operations

wind up being predicated-off (p = 0), even though the Hyperblock formation being

performed is much more proactive than typical commercial approaches. The number of

“useful” instructions increases by an average of 2.7% (never more than 6.2%) between

S-NS and S-CS and an average of 3.7% (never more than 6.4%) between I-NS and I-CS

because of operation speculation, since in this context “useful” means “non-nop, p = 1”

operations. This margin can be considered misspeculation, since on-path speculative

operations would have executed in the nonspeculative version.19 The speedups attained

with this small degree of misspeculation reflect selective region formation and a careful

use of execution bias.

6.8.2 Effects on data access

Some of the most interesting (and confounding) interactions of CFS transformation

are with the data delivery infrastructure of the Itanium 2. Given the prominence of

data cache and data access-related latency in cycle accounting results for this processor,

the significance of this interaction is not a surprise. Interestingly, although the compiler

19Of course, this coarse measurement discounts those opportunities for optimization exposed by control
speculation which may have somewhat reduced the number of operations in the control-speculative
versions.

174

fails to make a concerted effort to use the slack it purchases to schedule loads to miss,

free control speculation of loads and their dependents does not (at least as a first-order

performance characteristic) increase the time spent in data-related stalls. This is in itself

an interesting result, as previous work [38] predicted that a substantial proportion of

cache misses would be due to off-path speculative operations. Chapter 8 describes these

issues in detail.

6.8.3 Interaction with predication

As noted earlier, control speculation can interact positively and negatively with pred-

ication. It can reduce the dependence height of paths enclosed in a predicated region by

relaxing control dependences, rendering paths more compatible than in a non-control-

speculative version, but it can also expose commonly off-path instructions as sources of

execution scoreboard stalls, spurious cache and address translation misses, or even spuri-

ous page faults. An evaluation of the data shows the positive effect to predominate, and

strongly so. This is clear at the benchmark level, as the application of control speculation

to predicated code (comparing I-NS to I-CS configurations) tends to improve, and not

degrade, performance, and it generally delivers performance equal to or better than the

nonpredicated S-CS configuration.

Sampling data collection allows the gathering of finer-grained, function-level data.

This provides an expanded number of distinct samples, within which to compare the

performance effects of, and evaluate the interactions of, the various techniques.20 Within

this set, comparing S-NS to I-NS execution time, 13 prominent examples appear in

which the application of predication alone (without control speculation) degrades per-

formance by 5-20%. With the application of control speculation (to both Superblock

and Hyperblock code), seven of these deficits are eliminated, and one prominent one

(accounting for 3% of vortex’s execution time) is cut in half. This demonstrates con-

trol speculation’s ability to reduce the dependence height and improve the scheduling

compatibility of predicated regions.

20Although radical procedure inlining reduces this number of samples, it still consists of 99 distin-
guishable samples, each representing more than 1% of program execution time, instead of 12.

175

There are also examples of procedures whose performance is degraded with the ap-

plication of control speculation, including Swap() in crafty, the performance of which

is 5% worse in I-CS than in I-NS. This results from two factors: first, the number of

registers used is increased due to increasing ILP, and the extra allocation causes more

RSE activity. Second, the scheduler, with increased freedom purchased by control spec-

ulation, delays important branches to improve the predicted main path. Situations like

this are rare (only this function and one in vpr are retarded by control speculation, and

the vpr example is only incidentally related to control speculation). Given the ability to

avoid wild loads, general control speculation is a stable and predictably beneficial tool in

enhancing ILP, especially in predicated code.

6.9 Data Speculation

The Itanium architecture [57] and EPIC systems in general [73, 124, 125] support a

second type of explicit speculation, data speculation, the speculative placement of loads

before potentially aliasing, logically previous stores. The IMPACT compiler does not

currently make use of this feature, although its potential has been studied in the context

of IMPACT’s optimizer, both in initial EPIC research [38] and in limited experiments

on Itanium. Its implications will therefore be considered only briefly here. Since, unlike

control speculation, data speculation requires recovery code and since, like control spec-

ulation, there is a tangible cost to misspeculation in the application of data speculation,

such use would require careful analysis of profitability and risk in the compiler.

Although IMPACT’s aggressive pointer analysis reduces the benefit IMPACT-compiled

code could derive from data speculation (perhaps in contrast to production compilers),

the authors do observe many opportunities for data speculation. The benchmark gap,

in which pointer analysis is unable to resolve critical spurious dependences in otherwise

highly parallel loops, appears particularly promising. A limited initial application, cur-

rently in progress, is providing a 5% speedup; much more is attainable. Aside from

mitigating deficiencies in alias analysis, data speculation can also allow the compiler to

manage even “known-sometimes” dependences. Other researchers have shown opportu-

nities to exist for profitable integration of data speculation into optimizations [64].

176

7 PROCEDURE INLINING AND EPIC PERFORMANCE

Procedure inlining is generally an important prerequisite for achieving useful levels of

instruction-level parallelism in the SPEC CINT2000 benchmarks. Relative to a compiler

that performs only basic-block instruction scheduling and classical optimization, an ILP

compiler like IMPACT is far more reliant on procedure inlining to achieve high perfor-

mance. This was documented using SPEC95 benchmarks in [74]. Procedure inlining

provides three basic benefits: (1) elimination of call mechanism overhead; (2) specializa-

tion (optimization) of the inlined body for its calling context (the classical benefit); and,

(3) the effective formation of instruction-level parallelism across call sites (a benefit par-

ticularly required for EPIC machines). This chapter documents the inlining performed

in the described experiments, as well as the modifications made to the IMPACT Pcode

profiler and inliner [46, 74] to make them capable of delivering satisfactory results across

in SPEC CINT2000 suite.

IMPACT, in this experimental context, is used as a whole-program optimizer, with

profile-guided optimization. This bears two important implications for the inliner: first,

it is able to inline calls across file boundaries without distinction;1 second, it is able to

use control profile information to bias inlining in favor of more frequently executed call

sites.

1Intel’s compiler for Itanium has this capability if run with -ipo; GCC presently does not.

177

7.1 Controlling the Inliner

Since phase ordering considerations generally constrain inlining to be done early in

the course of compilation, well before the needs and consequences of subsequent trans-

formations can be evaluated, control of inlining can pose a challenge. Procedure inlining

in the IMPACT compiler depends on profile information to expand call sites in priority

order (priority = execution weight√
callee size

), at most until the amount of touched code is doubled (the

expansion ratio of 2.0 is an empirically determined value; because this transformation is

performed at the high level, this is only approximate).

For a given application there is some degree of permitted inlining, assuming that

it does not become fully inlined before such a point, at which further inlining causes

more degradation (due to instruction cache effects relating to the application’s increasing

footprint) than benefit (due to additional, enabled CFS transformations or specialization-

based optimizations). At this point, performance begins to suffer. This effect was just

beginning in one application, crafty, at the inlining ratio selected. Beyond this ratio,

only one application, namely vortex, appears to continue to benefit from inlining. This

ratio, therefore, was selected because it tended to provide enough inlining to achieve

good levels of ILP while not unduly impacting instruction cache performance across the

suite. All benchmarks except for vortex and perlbmk, however, achieved approximately

equivalent results with half this inlining code growth threshold. Reducing the ratio did

not substantially aid those benchmarks, such as crafty, in which instruction cache miss

is a significant performance component.

7.2 Indirect Call Site Transformation

In the past, only direct call sites (those calls to specific, named procedures, rather

than through function pointers) were accessible to IMPACT’s inliner, since callees were

known only at direct call sites and since multiple callees might be invoked from a given,

single direct call site. This limitation proved unsatisfactory for the C++ benchmark

eon, for which indirect function invocations are frequent (but each call site usually has

one or a few typical callees). This is typical of C++ and also of some object-oriented

178

1 fptr = farray[i];

2 (*fptr)(arg1,arg2); // C a l l f r e q u e n c i e s : f o o () : 6 6% ba r () : 34%

(a) Initial code with profile information

1 fptr = farray[i];

2 if (fptr == foo) // P r o f i l e : 6 6% tak en
3 foo(arg1 ,arg2); // D i r e c t c a l l s i t e r e a d y f o r i n l i n i n g
4 else

5 (*fptr)(arg1 ,arg2); // C a l l f r e q u e n c i e s : ba r () : 100%

(b) Transformed code, ready for inlining

Figure 7.1 Conversion of indirect to direct call site for inlining.

programming styles in C. To remedy this deficiency, first, profiling of indirect function

invocations was added to the Pcode control flow profiling stage. Then, once information

was available about which were the frequent callees at a particular indirect function

invocation, a transformation was made available to the inliner to extract direct call sites

from indirect ones. This transformation is shown in Figure 7.1. It is highly effective in

allowing inlining across indirect function invocations (removing 88% of dynamic indirect

function calls) for eon, enabling one of the highest rates of call removal in the benchmark

suite. The interpreter perlbmk also benefits substantially from this indirect call site

inlining transformation, as does the compiler gcc.

This approach to indirect function call inlining is relatively general and easy to im-

plement, but does come with the overhead of runtime function pointer comparisons,

which may include accesses to the linkage table (the address of foo in Figure 7.1 may

not be a link-time constant). It is a better solution, though applicable only in certain

instances, to avoid the function pointer comparison by using other mechanisms to de-

termine whether the specialized, inlined version is appropriate in a certain instance. In

C++, for example, there are several well-developed algorithms for fast static analysis of

virtual invocations [126]. These techniques can prove that a certain call site is limited to

one or a handful of callees and identify the prerequisite values that dictate which callee

should be invoked, eliminating the need to handle function pointers.

179

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

G
E

O
M

E
A

N

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 n
o

 in
lin

in
g 1.125

1.250

1.500

2.000

Figure 7.2 Variation of I-CS performance with inlining degree.

7.3 Effect of Inlining

Procedure inlining contributes handsomely to the performance of applications com-

piled with IMPACT. Figure 7.2 shows the speedup that results from I-CS compilation

with various degrees of inlining ranging from none to 2.0, the ratio used in the experi-

ments reported here. (Recall that the same degree of procedure inlining is applied in all

configurations of the compiler, but that inlining may disproportionately benefit code with

CFS transformation.) Increasing inlining generally continues to increase performance for

a perhaps unexpectedly large range of code size increase. Only in crafty do instruction

cache limitations start to detract meaningfully from performance at an expansion ratio

of 2.0. The consistently unimpressive gains in mcf are due to its domination by data

cache stall time; perlbmk has one anomalous result of unknown origin. Inlining is clearly

of great importance to achieving substantial gains from CFS transformation.

The effect of inlining on the benchmarks is briefly summarized in Table 7.1. The (dy-

namic) number of instructions per subroutine call instruction, before and after inlining,

is indicated in the first two columns of data. The third column indicates the propor-

tion of dynamic subroutine calls removed by inlining, and the final columns indicate the

degree of total and touched (instructions executed at least once) static code expansion

associated with the inlining decisions applied.

One may note that the code expansion ratios indicated in Table 7.1 vary, but are

significantly smaller than the 2.0× target ratio indicated above. This is for two reasons:

180

Table 7.1 Inlining statistics

instr. per call % calls code expansion
benchmark pre-inlining postinlining inlined all touched
gzip 175 3567 95.1% 1.45 1.41
vpr 69 2708 97.5% 1.43 1.21
gcc 127 245 51.7% 1.56 1.36
mcf 34 4556 99.3% 1.76 1.48
crafty 82 384 78.7% 1.51 1.57
parser 38 232 83.5% 1.44 1.46
eon 53 755 93.0% 1.50 1.61
perlbmk 77 260 70.3% 1.49 1.22
gap 56 322 82.6% 1.49 1.49
vortex 35 502 93.8% 1.54 1.34
bzip2 95 4243 99.1% 1.57 1.41
twolf 160 11446 98.6% 1.34 1.37

First, the inliner, which operates at the Pcode level, only estimates code size expansion,

while these numbers reflect actual instruction counts (in Lcode, after classical optimiza-

tion). Second, the inliner does not account for a reduction in touched code size for

procedure bodies when said bodies have no remaining (non-inlined) call sites. This is an

intentional behavior, in deference to the possibility of deviation from the training profile

that results in new call sites becoming active.

7.4 Potential for Improvements in Inlining Techniques

Despite its seeming good behavior here, inlining does present some interesting prob-

lems for the EPIC compiler. At the outset of this dissertation work, the interaction

between inliner and ILP transformations seemed like a potentially fruitful, if also po-

tentially challenging, field of study. As it turned out, however, practical applications

of this style of technique are limited, at least within the body of SPEC CINT2000, and

pressures on instruction cache resources are not sufficiently high or dependent on inlining

to render interesting experimentation possible. As indicated in Section 3.5, the first-level

instruction cache hit rate only once, in crafty, drops below 90% and only twice below

181

0.00

0.20

0.40

0.60

0.80

1.00

1.20

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

E
xe

u
ct

io
n

 ti
m

e
re

la
tiv

e
to

 O
-N

S
 front end bubble register stack engine All other categories

Figure 7.3 Execution cycles sensitive to inlining penalties.

95%, in eon and twolf, even with the aggressive and only lightly constrained approach

applied here.

Figure 7.3 shows the contribution to performance of the two stall categories that can

be attributed to the negative side-effects of inlining, front end bubbles (mainly instruction

cache misses) and register stack engine activity. In few benchmarks are these cycles major

components of the performance equation. Nonetheless, it is important to consider a few

problems or opportunities in inlining that were exposed by this work.

7.4.1 Inlining and register stack engine activity

First, let us deal with the register stack engine, which plays a prominent role in crafty

and eon.2 Inlining has mixed effects on register stack engine (and register spill/fill)

activity. By rendering procedure invocations less frequent, it can tend to reduce the

activity of the register stack. It does, however, tend to increase the size of register stack

activation records due to the inclusion of more code in each function, since IMPACT

performs a single allocation for the entire function body. This can in some cases increase

the amount of register stack activity. In crafty, for example, the procedure Quiesce(),

2Comparing with icc results, IMPACT usually spends less time in RSE activity, due to much more
aggressive inlining. (icc also supports partial inlining, which enables it to amortize inlining costs
differently.) IMPACT causes substantially more RSE activity than the production compiler in crafty,
parser, and eon.

182

which has low register allocation needs, calls Evaluate(), a procedure with heavy register

utilization, and then recurs on itself. When inlining heuristics cause Evaluate() to be

inlined into Quiesce(), the size of the register stack allocation performed in the recursion

is greatly increased, leading to increased activity. A similar case occurs in parser.

Since inlining is performed long before the register utilization needs of a function are

understood, it is difficult to control this kind of behavior in inlining heuristics. Cur-

tailing inlining in strongly connected components of the call graph (even by applying

the global code expansion limit locally) sharply curtails this effect, cutting the number

of cycles spent in register stack engine activity by half in crafty and by three-fifths in

parser. In the case of crafty and parser, this improves performance slightly (2%). In eon,

performance is degraded by 2% due to an increase in register stack engine activity (prof-

itable opportunities for activation record combination are being squandered). Finally,

the performance of vortex is severely degraded (loss of 16%), as the reduction in inlining

performed decreases subsequent scheduling and optimization freedom. These difficulties

suggest an opportunity for solutions, such as partial inlining, that do not require inlining

decisions to be made only at the procedure granularity, and suggest that inlining should

for best results be performed in the context of knowledge of subsequent, potential ILP

transformations.

7.4.2 Control of inlining degree

Inlining takes account only of the desire to eliminate calls in its decisions about the

desirability of inlining functions, subject to some total code size expansion limitations

and constraints on function size to prevent optimizer overload. These are totally artificial

guidelines, designed to prevent inlining disasters—not to carefully craft good decisions.

Inlining does not consider whether the available instruction level parallelism will actually

be improved by the inlining transformation or to what degree a function body may be

specialized for a particular call site; thus, inlining may be expanding code size for no

gain.

183

Inlining considers only static code expansion to be a detriment to performance—not

“dynamic footprint” code expansion. The latter is actually the better metric. For ex-

ample, the inlining of a callee function at several call sites in a loop will impact the

loop’s instruction cache footprint, potentially endangering processor front-end perfor-

mance, while inlining a function at several call sites “far apart” in the course of program

execution will have a lesser effect. Inlining should consider the interprocedural control

flow graph of the program in performing its transformations to trade cost and benefit

more effectively. McFarling noted this limitation, provided a useful summary of previous

work on inlining, and proposed a new heuristic solution [127]. This solution takes into ac-

count the instruction-count cost of performing the call and return and the expected cache

miss cost of the required code expansion. Today, in the context of ILP optimization, the

problem is more complex, but the basic idea of this work, that making better inlining

decisions requires knowledge of program context, remains valid. Work like McFarling’s

may become relevant for larger programs with less inherent instruction locality.

Finally, inlining considers a procedure as a unit rather than supporting the partial

inlining of hot paths of a procedure only. Partial inlining could achieve the same benefits

with reduced cost, both statically and in the “dynamic footprint” sense, if it produces

code with less lukewarm code expansion. It could also reduce the potential negative

impact of inlining on register stack utilization in procedures with inlined callees, if the

partial nature of the inlining allows infrequently used regions of the callee that nonetheless

use many registers to be excluded.

7.4.3 Programming and phase ordering problems in inlining

EPIC provides both unique motivations and unique accommodations for unusually

aggressive control flow transformations. An example clarifies this point. Figure 7.4(a)

shows a stylized representation of the procedure inlining transformation. On the left, a

subroutine call is invoked from within a loop. The compiler decides to inline the subrou-

tine body into the loop. Such inlining may, for example, allow the loop to be modulo-

scheduled, extracting instruction-level parallelism by executing multiple loop iterations

in a pipelined fashion. Figure 7.4(b) is similar, except that here the loop’s control flow

184

��������	
���	������������	���

������	�����������		���
�����
���

�������

�������
���������	��	�����������������		�����
�
���

�
���
�����

Figure 7.4 Inlining, control flow transformations, and concise program expression.

contains two calls to the same subroutine. If both paths are frequent, and if a sufficient

inlining budget is available, IMPACT will inline them both, creating two copies of the

callee code inside the loop. Inlining both, however, may be inferior to the solution in

Figure 7.4(c), in which a control flow transformation is applied to inline a single version of

the callee. This approach inserts new control flow to reduce code size, ordinarily a risky

proposition. Since EPIC provides if-conversion as an option for subsequently removing

the added control flow, however, this may be a profitable approach.

7.4.4 Program structure and procedure inlining

As the control flow structures selected by the programmer do not always lend them-

selves in the best way to ILP creation by function inlining, transformations to reduce the

number of active call sites should take place prior to inlining. The example of Figure 7.5,

taken from the benchmark crafty, demonstrates this point. Here, within the body of a

single, simple loop, are 10 calls to the function FirstOne(), of which at most one will

be invoked on any given traversal of the loop. Trying to accelerate the loop by inlining

all, or even some, of these calls will result in massive code replication for arguably little

185

1 while (attacks) {

2 if (color) {

3 if (And(WhitePawns ,attacks))

4 square=FirstOne(And(WhitePawns ,attacks));

5 else if (And(WhiteKnights ,attacks))

6 square=FirstOne(And(WhiteKnights ,attacks));

7 else if (And(WhiteBishops ,attacks))

8 square=FirstOne(And(WhiteBishops ,attacks));

9 else if (And(WhiteRooks ,attacks))

10 square=FirstOne(And(WhiteRooks ,attacks));

11 else if (And(WhiteQueens ,attacks))

12 square=FirstOne(And(WhiteQueens ,attacks));

13 else if (And(WhiteKing ,attacks))

14 square=WhiteKingSQ;

15 else break;

16 }

17 else {

18 /∗ R e p e t i t i o n o f above , but f o r b l a c k p i e c e s ∗/
19 }

20 ...

21 }

crafty is c©1996 by Robert M. Hyatt. Unrestricted non-commercial use is permitted.

Figure 7.5 Code example from crafty swap.c.

benefit. A simple control transformation could reduce this loop so that it contains a

single call to FirstOne(), shared among the mutually exclusive cases. In theory, then,

this single instance could be partially or wholly specialized for a subset of the different

cases, if necessary. Attempts by the author to make such profitable transformations by

hand have, however, been unsuccessful, for two reasons. First, performance relies on

specialization for particular cases, and combination of call sites destroys context-specific

execution bias. Second, the combination of paths to a single call site adds dependence

height because of the need to select and arrange input operands. This dependence height

is not successfully hidden because the loop is serially dependent on the value produced by

FirstOne(). It appears that these optimization-hampering effects reverse gains achieved

through a reduction in inlining overhead. These difficulties, though, do not detract from

the point of the example, which is to show the awkwardness of CFS transformation when

applied to some common programming idioms.

To summarize, inlining should take place later, when more knowledge is available

about the context of call sites, and should be guided by new heuristics that take into

186

account the primary benefits and primary costs of the transformation. The importance

of getting this right is indicated by the fact that variation of inlining parameters today

results in wide and difficult to anticipate performance deflections. Problems with inlining

have so confounded some compiler researchers that they have proposed radical alternative

models for thinking about interprocedural optimization. One approach [128] advocates

the elimination of procedural boundaries, effectively allowing the compiler to treat an

entire program as one function containing some unorthodox control flow elements. The

compiler then would operate on this representation, specializing and forming regions

as if forming Hyperblock regions in a normal control flow graph. Though the same

fundamental questions are still not answered in this work—namely, when specialization

is truly advisable—it at least presents an optimization model in which the high and

difficult-to-manage cost of inlining is not incurred speculatively, early in the compilation

process.

7.4.5 Effect of inlining on profile accuracy

IMPACT currently performs two profiling runs; one in the Pcode intermediate rep-

resentation, prior to inlining, to guide inlining decisions and classical optimization; and

the second in the Lcode IR, after classical optimization. This second phase guides region

formation, ILP optimizations, register allocation, and instruction scheduling. The Pcode

profiler provides control flow, loop profile, and call graph (call edge weights, including

indirect procedure calls) profile information; the latter provides the first two categories

of profile information only (since interprocedural optimizations are performed prior to

the Lcode phase, there is no need for improved call graph profiling). Profile information

is context-insensitive; that is, profile weights resulting from different invocations of a

particular procedure are not distinguished. This can have an effect both during inlining

and subsequent to inlining.

Given context-insensitive profile information, inlining decisions require arbitrary re-

distribution of call weight across newly created call arcs. Figure 7.6 shows a contrived,

but representative, example. Figure 7.6(a) shows a small call subgraph, with procedures

187

�

� �

�

����� 	�
��

��� � 	�
 �

 �

�

� �

����� 	�
��

������

 �

��� � �

��� � �

�����

�����

��� � �

�����

��� � �

?

��� � �"!#�

��� � �

Figure 7.6 Specialization and inlining: (a) before inlining; (b) after inlining.

marked with execution weight. Procedures A and D each contain a single indirect func-

tion call which, 80% of the time calls B or E, and 20% of the time calls C or F, respectively.

B and C each directly invoke D. Now suppose that D is inlined into both B and C. The

effect of this transformation is shown in Figure 7.6(b). The compiler lacks contextual

information about the callee successors of D, and so must arbitrarily assign weights to

the arcs from D’ and D” to E and F. With respect to the less-frequently traversed D”,

there is no guarantee that the compiler’s uniform distribution of weight will even indicate

the correct majority callee. This behavior is frequent in gap, an arithmetic interpreter

that recursively evaluates input expressions. Inlined callees thus frequently execute in a

different, higher “level” of input expression trees and have vastly different biases than

their lower-level parents.3 No context information is available to counter this effect, so

later inlining decisions are often based on poor estimates of program bias.

The effect of using the profile estimated during inlining, rather than a correct one,

for subsequent stages was measured. Table 7.2 shows the net (percentage) degradation

in performance that results from skipping the second profiling stage. The data indicate

that the code versioning inherent to procedure inlining (where multiple inlinable call sites

3Stating the problem in these terms causes one to wonder if such specialization is appropriate in
a static compilation environment—interpreting programs like perlbmk and gap are truly specialized for
specific input scripts.

188

Table 7.2 Performance loss due to omission of post-inlining profile, I-CS configuration

benchmark Pct. perf. loss
gzip 5.2%
vpr 0.0%
gcc 0.0%
mcf 0.0%
crafty 8.6%
parser 1.6%

benchmark Pct. perf. loss
eon 5.0%
perlbmk 18.5%
gap 2.8%
vortex 0.7%
bzip2 1.5%
twolf 0.0%

exist for a particular procedure) occasionally creates significantly disparate versions. In

one or more of these versions, the estimated profile does not accurately reflect execution

bias.

These issues suggest that more attention needs to be focused on context in profiling.

Profile maintenance is a difficult problem, not only for the inliner, but also for other

code-specializing techniques (such as the tail duplication inherent to Superblock and Hy-

perblock formation). The author has encountered situations similar to those indicated in

Figure 7.6 in Superblock formation. Ideally, if path-sensitive4 information were available

to the region former, it could aid in region formation decisions as well as subsequent

profile maintenance.

Some recent work in the just-in-time compilation community has addressed these

issues [129], but static compilation as yet has no access to context-sensitive profile infor-

mation. Efficient path profiling techniques [130–132] may offer some means of obtaining

this type of information.

4Path profile information on the intraprocedural control flow graph is analogous to context informa-
tion in the call graph.

189

8 THE DATA DELIVERY SUBSYSTEM AND EPIC COMPILATION

The “EPIC fundamentals” studied in this dissertation did not occur in a vacuum, but

rather in the context of a complicated, modern microprocessor and a complete com-

pilation environment. Experiments in which a better theoretical use of speculation or

predication was made often ended in performance degradation. This chapter documents

a few of the microarchitectural and compiler phenomena that interacted with the use of

EPIC features in interesting ways. One is tempted to believe that these issues are relevant

only to the Itanium 2 microarchitecture, and that this chapter is therefore superfluous.

The point, however, is that the seemingly benign irregularities of a microarchitecture

or compiler system can easily disrupt an apparently good plan of execution. This is a

serious problem for EPIC performance in general, and EPIC compiler experimentation in

particular. Without the benefit of a statistically significant experimental data set (results

from many different code segments with genuinely different behavior), these effects can

easily taint results and lead to false conclusions about approaches to fundamental issues.

Some of these complexities (such as the exposure of latencies due to interaction of loads

and stores in the memory subsystem) are probably unavoidable in a modern architecture.

EPIC compiler writers will have to continue to wrestle with these issues, some of which

are difficult to anticipate at compile time.

Schlansker et al., in their seminal pre-Itanium evaluation of the prospects for EPIC

system performance, made the following hopeful pronouncement: “Our analysis indicates

190

that the behavior of individual load operations in integer as well as floating-point bench-

marks is favorable to compiler-directed cache management.” They note the bimodal

behavior of loads, by which certain loads rarely miss, while others do with some regular-

ity, and the typically small number of loads responsible for a large majority of stall time.

This optimistic assessment was based in part on work, such as [53], that suggested that

loads that were likely to miss could be identified, and that they could either be prefetched

effectively or simply scheduled to accommodate miss latencies. They do admit “though

our work indicates that miss-sensitive scheduling can be an effective compiler technology,

there are still issues left to be resolved. First, missing loads need to be identified prior

to or during compilation... Secondly, it is not clear whether adequate parallelism and

scheduling flexibility is present to schedule missing loads with the cache-miss latency in

integer applications” [4].

The work presented here confirms these concerns. The following brief sections docu-

ment the general problem with the magnitude and predictability of data access latency

for CFS transformation and the various means undertaken to mitigate it in the compiler.

Casual, performance analysis-guided experiments with scheduling loads to miss generally

met with very little success, but several other problems yielded to a combination of anal-

ysis and transformation. The most difficult problem, the management of varying data

access latency, however, is likely to require a microarchitectural solution for nonnumeric

applications. Examples of these approaches are briefly surveyed in Chapter 11.

8.1 Effects of CFS on Data Cache Performance

CFS transformation has the potential to increase pressure on the data cache and

translation hierarchy. Control speculation results in more loads being issued. Speculation

and region formation collaborate to bring this increase number of loads into a condensed

number of cycles. Simply because of the increased temporal proximity and increased

number of memory access events, one would expect to observe some degree of problems,

as queues become more full and as accesses become more collision-prone. It is, in fact,

possible to observe in the data evidence of these effects, although the magnitudes of

change in load number and distance seem small.

191

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

A
cc

es
s

(h
it

)
co

u
n

t
re

la
ti

ve
 t

o
 O

-N
S

L1D

L2D

L3D

MM

Figure 8.1 Effect of CFS transformation on data access.

In the Itanium 2, while the first-level data cache is fully dual-ported, the second-level

cache is arranged into sixteen, 16-byte-wide banks. A second access to a bank in a given

cycle incurs a penalty of up to several cycles, as the second load must be recirculated

in the access queue. The fact that the first-level cache’s four-bank-wide fill requests

also cause access conflicts further complicates the problem. The Itanium 2 Processor

Reference Manual documents these and other related memory subsystem interactions

that can impact performance, many of which are beyond the compiler’s purview [51].

The effect of increased load density due to CFS was found to be small and sometimes

reducible. The juxtaposition of stores and loads turned out to be a much more serious

matter, a multipartite solution to which was necessary to make the CFS techniques

profitable for most benchmarks.

Figure 8.1 shows the number of loads executed in the O-NS and CFS configurations,

normalized to the O-NS value. In addition, within each bar, the proportion of accesses

satisfied in each level of the data cache hierarchy is indicated. Control speculation results

in an average increase of 8% in the number of loads executed (comparing I-NS and I-CS

results). Off-path control speculative loads are therefore relatively infrequent. When the

number of accesses satisfied below the L1 cache is considered, the increase in these likely-

to-degrade-performance events is 11%. Control speculation causes, however, almost no

effect on accesses to the L3 level or to main memory.

192

When the number of cycles spent stalled on memory access is considered, however,

only a 1% average increase can be detected in the difference of I-NS and I-CS results.

The benchmarks crafty, gap, vortex, and twolf exhibit net reductions in integer load stall

time in the speculative configuration, presumably due to schedule slack incorporated

between loads and consumers, given the better scheduling freedom control speculation

provides.

Other benchmarks suffer. Gzip, mcf, parser, eon, and bzip2 suffer a few percent

increase in integer load stall time each; vpr suffers a whopping 15%. Detailed results

appear to show that increased conflicts in the memory subsystem (bank conflicts in the

L2, cache fills conflicting with new requests, memory access queue interactions, etc.) are

more often the cause of degradation than the access of data not in the cache, or the

pollution of cache data, by speculative loads. More loads in fewer cycles implies a higher

level of interaction among the loads, and this interaction comes with a performance

penalty. Vpr, for instance, in the control-speculative version, has two loads to adjacent

fields, both likely to be serviced in the L2, juxtaposed in the same cycle. This leads to a

bank conflict and several cycles of penalty. Mcf suffers from the compaction of spatially

nearby loads and stores in a modulo-scheduled loop. Although measures are taken to

counteract the performance degradation due to spurious store forwarding, they are not

completely effective in this case.

Some of these penalties are reflected as cache misses; others as L1D micropipeline

stalls. These are conflict-related cycles detailed in Appendix A.6. These cycles are

difficult to anticipate and manage in the compiler.

8.2 Effects of CFS on Data Address Translation

Data address translation latency is frequently a prominent contributor to performance

loss in this dissertation’s experiments. Figure 8.2 shows the rate of first-level data TLB

misses (including only accesses that hit in the L2 TLB) for the various configurations,

193

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

L
1D

T
L

B
 m

is
se

s
p

er
 O

-N
S

 r
ea

d

Figure 8.2 First-level data TLB misses (hitting in L2DTLB) per O-NS data access.

normalized to the number of data accesses in the O-NS configuration.1 Since each first-

level DTLB miss equates to at least a 9-cycle data access latency (4 cycles for the L2

TLB access and 5 cycles for the L2 cache data access), these rates sometimes substantially

increase the expected latency of loads. Figure 8.3 shows the corresponding rate for those

accesses that proceed to miss in the L2 TLB and require operation of the hardware page

walker (HPW). These accesses are more costly, involving at least a 25 cycle penalty.

Pages not found by the HPW are referred to the kernel. These very expensive operations

are, fortunately, also very infrequent.2 Details of Itanium 2’s data address translation

hierarchy are provided in Appendix A.1.

Control speculation causes freer execution of load operations. We can observe, in the

data of Figure 8.2, small increases can be observed in the number of data TLB misses with

speculation in gzip, vpr, gcc, crafty, and parser. There is generally much less change in the

number of accesses required to the more expensive HPW mechanism. Figure 8.4 shows

the estimated contribution of these events to benchmark execution time, as a fraction of

O-NS execution cycles.3 Control speculation indeed increases the occurrence of these

1With the exception of crafty, in which speculation disproportionately increases the number of “hit”
accesses, and vortex, in which optimization disproportionately removes them, this is approximately
the data TLB miss rate for all the configurations. In crafty, the I-CS rate is 0.04 and the S-CS rate
approaches 0.06; in vortex the two control-speculative configurations have a rate of 0.04 data TLB misses
per data access.

2Without wild load mitigation measures (Section 6.7), however, these effects are quite substantial,
for example, increasing the execution time of 176.gcc by 25%.

3In other cycle accounting graphs, such as Figure 2.6, these cycles are distributed among the
L1D/FPU micropipeline stall and load bubble categories.

194

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

H
P

W
 a

cc
es

se
s

p
er

 O
-N

S
 r

ea
d

Figure 8.3 Second-level data TLB misses (HPW accesses) per O-NS data access.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

O
-N

S
I-

N
S

I-
C

S
S

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

E
st

im
at

ed
 D

T
L

B
 p

en
al

ty
 (

as
 f

ra
ct

io
n

 o
f

O
-N

S
 c

yc
le

s)

Figure 8.4 Estimated DTLB penalty as fraction of O-NS cycles.

events, but generally only by a small degree. The largest change (a 20% increase in

DTLB penalties) is in crafty, in which random accesses to large (64 KB) constant tables

(in FirstOne(), LastOne(), and PopCnt()) are frequently speculated. Assuming 4 KB

pages, the 32 entries of the L1DTLB can address only 128 KB of data, so these large,

randomly accessed tables pose a risk to virtual memory performance. Control speculation

substantially increases the number of loads into these tables, increasing pressure on the

already-strained virtual memory system. One would expect the impact for I-CS, with

its multipath speculation, to be higher than for S-CS. This is the case everywhere but

in crafty.

195

8.3 Store-to-Load Dependence Elimination

Like many other machines, Itanium 2 suffers a performance penalty when a store

operation is followed within a few cycles by a load operation accessing a similar address.4

Being an in-order machine, Itanium 2 exposes these penalties directly as stalls varying

between 1 and 17 cycles, depending on the number of cycles separating the offending

store/load pair [51].5 Further exacerbating this problem is the fact that optimization

for instruction-level parallelism tends to generate these conditions quite handily. Simple

schedule compression accounts for part of the problem; more instructions in fewer cycles

means a greater likelihood of higher penalties. Worse is the fact that load operations

tend to move up in schedules (aided by control speculation and memory disambiguation)

until they encounter a barrier to their further upward code motion—often a store with

respect to which they cannot be disambiguated. This store is sometimes to the location

of the load—creating a substantial penalty. Thus, while one might consider the store-load

dependence problem to be entirely orthogonal to the core issues of this dissertation, it

at the very least poses a vexing problem when one purposes to measure the effect of ILP

transformations on real hardware. It is one more good example of a real hardware issue

that militates against the ILP production means proposed in the literature.

There are four problematic, meaning liable to cause performance degradation, cases of

store-load juxtaposition. The problems all occur when a store and a nearby, subsequent

load both access the same 8-byte, aligned region of memory. The four subcases: First, the

store may be provably (by the compiler, using local pointer value analysis) accessing the

same location as to the load. This is a detectable problem, solvable with a memory copy

propagation (local register promotion) technique. Second, the store may be provably (by

the compiler, using local pointer value analysis and/or loop dependence information such

as omega test) accessing a different location from that accessed by the load, meaning no

true dependence exists, but the load and store are determinable to sometimes access the

4Due to its often surprising and devastating mode of attack, this event is appropriately dubbed a
“whammo” in the EPIC compiler writer’s vernacular.

5These stalls are accounted both to the L1D micropipeline and to load latency, making their total
performance effect nontrivial to derive.

196

same 8-byte aligned segment of memory. The detection of “nearness” may be through

examination of data structures or through induction variable analysis. This is also a

detectable problem, but may be more difficult to solve. Third, the store and load are

in a known potentially alias relationship, but the compiler cannot determine if the load

and store are necessarily (always) to the same (or nearby) locations. Fourth, and finally,

the load and store happen to access the same 8-byte aligned segment of memory, but the

compiler has no information that this is liable to occur (perhaps the two accesses are to

adjacent char variables). The first two of these cases were found both to be particularly

problematic and to have relatively cost-effective solutions, so these two were dealt with

in the work underlying this dissertation. The other two cases appear to occur only very

infrequently in the studied suite of benchmarks (after other optimizations have occurred)

and thus were not addressed.

The first case, that of a store writing a given location followed by a load from the

same location, is the most straightforward. Ordinarily, one of a number of optimizations

would eliminate this case by converting the load instruction into a copy (or subword

extraction or sign extension, as appropriate) from the value source register of the store

instruction. In the IMPACT compiler, this transformation is called memory copy propa-

gation. A similar technique was employed in Hewlett-Packard’s compiler for the PA-8000

superscalar RISC machine [133]. Traditionally, this transformation was only applied if

the store’s execution condition subsumed that of the load. Experimentation revealed

that with aggressive use of predication, however, predicated stores of stronger or inde-

pendent execution condition than subsequent aliased loads were frequent enough to cause

substantial store-load forwarding penalties. This necessitated the extension of memory

copy propagation to include a partial copy pattern. In this pattern, the load instruc-

tion is moved before the store (avoiding the forwarding penalty) and a predicated move

operation is added after the store, to update the loaded value if the accessed location

should have been updated by the store instruction. This enhancement was necessary to

eliminate some “spuriously negative” results of increasing levels of predication.

197

8.4 Unroll-Under-Predicate Schema

In software pipelined loops, unrolling is sometimes desirable. It can allow better

scheduling of loops with fractional minimum initiation intervals and sometimes admit

improved optimization [134]. On Itanium 2, one factor demanded the unrolling of soft-

ware pipelined loops, that being the problem of spurious store-to-load forwarding penal-

ties. Modulo scheduling of loops that, for example, shift the contents of a character

array by a byte, tends to move nearby (but always independent) loads and stores into

very close temporal proximity, incurring heavy penalties. If the load and store can be

disambiguated successfully from the store and can be control-speculated, loop unrolling

can provide an opportunity to separate nearby loads and stores from each other (eight

loads can be performed, followed by eight stores). Among SPEC CINT2000 benchmarks,

in bzip2 this achieves a dramatic increase in performance.

The while loop modulo scheduling schema employed in IMPACT, however, does not

permit scheduling of loop side exit branches in any but the last loop stage.6 For this

reason, a new unrolling schema was introduced to allow the unrolling of loops under pred-

icates (copies of the loop body are subjugated under a loop continuation predicate rather

than being guarded by a side-exit branch). In addition, such unrolled loop bodies are

converted simultaneously to fully resolved predication (FRP) form to allow all remaining

side-exit branches to sink to the bottom of the schedule.7 Appendix B.10.1 describes the

IMPACT compiler’s loop unrolling schemata (and alternatives to these approaches) in

more detail.

8.5 Related Work and Concluding Remarks

Collard et al. partially addressed similar issues in [135]. Their technique relied on a

more sophisticated cache interaction model, but applied only to scheduling and enforced

a nonzero latency (spurious) flow dependence between stores and subsequent independent

6This simplifies the generation of epilogues for modulo-scheduled code generation.
7In FRP form, all instructions subsequent to a side-exit branch are guarded by a predicate that

prevents them from executing if they are relocated above the branch. This technique is useful for
purposes such as this, but too often incurs too much overhead for general use.

198

loads adjudged to be to the same cache line, whereas the technique described here allows

safe reordering while avoiding expensive juxtapositions of stores and loads. Their tech-

nique, nonetheless, achieved a result similar to that presented here for 256.bzip2 (1.25×

speedup in their framework). Other CINT2000 components were only barely affected.

The problem of temporal access conflicts is a good example of a secondary effect,

generally observed only in real hardware and not in a research simulator, which can have

a substantial deleterious effect on performance. Worse, this effect may increase with

application of more extensive ILP transformations, complicating experimental evaluation.

199

9 PERFORMANCE ANALYSIS METHODOLOGY

This dissertation relies on real-machine measurements, performed using real benchmarks

in a standard operating system environment. This setting presents unique limitations,

challenges, and opportunities. This chapter briefly discusses these observations and de-

scribes the tools used to produce the data presented in this work.

9.1 Limitations and Challenges

The primary limitation is that the use of a real machine, while it allows evaluation

of a broad range of different compilation strategies, does not admit modifications of the

architecture or eliminations of particular microarchitectural effects. These microarchitec-

tural effects often confound straightforward evaluation of transformation techniques as

one would hope they might operate in the abstract. There are any number of examples

of these limitations, some more obvious than others.

One of the most often problematic components is the data delivery subsystem. This

subsystem is fixed by the microarchitecture (preventing experimentation with different

cache sizes, etc.) and also very complicated, defying effective compiler modeling. As

noted in the detailed experimental results, small changes in schedule often exposed L2

bank and line fill conflicts, causing larger-than-expected and even contrary-to-expected

changes in results. Store-to-load conflicts, such as those exposed in bzip, proved an

even more injurious problem. Instruction delivery, branch prediction, and various other

microarchitectural considerations also caused problems in this work.

200

Such difficulties are not always solely microarchitectural. The interaction of register

allocation with CFS transformations is another problem that could have been addressed

after most of the more “fundamental” issues could have been worked out. Likewise,

the nonorthogonality of predicate definitions had a disruptive effect on generation and

optimization of predicate networks; this could easily have been abstracted away in a

simulated environment.

In a simulator-based study, the interaction of these events with CFS techniques would

not have been studied, or if it had been, it would have been one of the last things to

investigate. On real hardware, problems such as this confront the experimenter from the

first day of work, and the reality they present is often harsh and noisy.

The compiler is no less a source of perturbation in the measurement of the effects of

particular transformations. The interaction of region formation with optimization leaves

it very uncertain what exactly particular transformations are accomplishing. The IM-

PACT compiler was extensively retooled, involving generalization of many optimizations

and analyses, to minimize these effects, but this is not in general a soluble problem. The

results for vortex demonstrate this well. Massive optimization takes place after region

formation which may or may not be possible in the baseline version (with improved tech-

niques). Optimization choices then use many registers in a function where predication

of a key loop requires a few more, causing spill code to be inserted. This spill code (and

similar secondary costs) more than offset the beneficial effects of predication throughout

the benchmark, making Hyperblock effectiveness look inferior to Superblock.

Given the complex interaction of effects in a real machine and real compiler, if reported

results are to mean anything at all, they must be painstakingly investigated. Just as easily

as the microarchitecture can take away from performance of an optimized version of a

program, it can steal from the baseline. A final, benchmark-level performance number

reporting on the effect of a compiler technique is honest, provided the known variables

are suitably controlled, but it may not be meaningful.

For practical reasons, only a dozen benchmarks were experimented with, consisting

of perhaps several hundred performance-relevant code regions. The “strong law of large

numbers” does not apply here. A single deviant case in a given benchmark can often

201

sway results. This magnifies the effects mentioned here, which are more frequent in the

real machine environment but are not entirely absent in simulation. This is a daunting

consideration for anyone contemplating compiler-based performance work.

Achieving the degree of understanding of the effects of CFS transformation on Itanium

2 described in this dissertation has required a great deal of work to mitigate the effects

of both compiler and microarchitectural “performance land mines.” This work was much

harder and produced much noisier results than simpler, restricted simulation experiments.

9.2 Opportunities

Despite all these challenges, real machine work is worthwhile and important. It is dif-

ficult to perform meaningful compiler research on significant benchmarks in a simulation

environment.

Microarchitectural modifications can be tested in a simulation environment, sampling

pertinent sections of program execution. In that context IPC is a useful measure, and to-

tal performance can be extrapolated from reasonable and statistically sound experiments.

Not so with compiler work, which can through optimization and speculation change the

number of instructions being executed and also have complex and far-reaching effects on

the execution of other parts of the program. Whole-program execution is really necessary

if results are to be reliable. For benchmarks like SPEC CINT2000, with 12 components

each executing for on the order of 1011 cycles, only real-machine execution can reasonably

provide such measurements.

The opportunity to compare to contemporary commercial compilers on the same plat-

form is an invaluable benefit of this approach. This enables compiler experimentation in

a “performance-validated” context. If a new technique produces a result better than the

baseline number for a given compiler, but the relation of the net performance to com-

petent compilers is unknown, the benefit might easily be from an unanticipated source

(perhaps a commonly known optimization took effect as a side-effect of the technique

under test). When, as is frequently the case in these experiments, CFS techniques are

202

shown to produce higher performance than both the IMPACT baseline and a very com-

petent commercial platform compiler, one can be more confident that something “new

and different” is taking place.

Finally, the performance surprises of running on real hardware often lead to interesting

new understandings of proposed techniques. The extent and nature of the “wild load”

problem were undetermined before this real-machine work provided a real opportunity

for its study.

9.3 Performance Monitoring Infrastructure

This work relied exclusively on results from the Itanium 2 performance monitoring

infrastructure, consisting of four registers capable of measuring hundreds of microarchi-

tectural events, as well as interrupt hardware capable of reporting near-exact instruction

pointer values when particular performance monitoring register counts are reached [51].

While they do not offer the visibility that a simulator would, and while being able to

measure only four events at a time is limiting, these resources were sufficient to generate

a large amount of useful data.

Performance monitoring hardware means little without an appropriate infrastructure

for collecting and aggregating results. The pfmon driver and perfmon infrastructure de-

veloped for Linux-ia64 by Stephane Eranian of Hewlett-Packard Laboratories filled this

bill exquisitely [63]. This software provided event counting and sampling capabilities

for the full suite of performance monitoring data available on Itanium 2. The sampling

facility was extended by this dissertation’s author to include a low-overhead aggrega-

tion of events into an instruction pointer-based histogram. The sampling-based results

presented here (such as in Figure 5.13) reflect the sampling of the instruction pointer

every 65 536 execution cycles, with an accuracy of a few issue groups, for the entire

SPEC CINT2000 reference input. These results are stable with respect to repetition and

change in sampling period. This new feature enabled the low-overhead production of

function-level results, as well as aiding in localization of particular performance prob-

lems. A similar feature has been incorporated into newer versions of the pfmon software,

so it is unnecessary to detail it here.

203

10 RELATED WORK

The roots of EPIC research reach back to at least 20 years ago, with work on the machine

that came to be called Itanium itself spanning at least a decade. There is in this period an

immense amount of material in the literature on EPIC and EPIC-related topics, much of

which has been introduced at points of salience in the other chapters of this dissertation,

particularly in Chapter 1. This chapter provides a brief, unified survey of the previous

related work as a resource for broad exploration.

10.1 General VLIW and EPIC Research

Schlansker et al. [4] of Hewlett-Packard Laboratories (HPL) surveyed previous work

on EPIC features and techniques, at the time referred to collectively as HPL PlayDoh

(now called the HPL-PD architecture), in a 1996 technical report. This report serves,

together with with the work of August et al. [38], as an example of the culmination of

EPIC research prior to the availability of real hardware implementations in the Itanium

Processor Family in 2001. The latter paper provides experimental data, to which we may

compare the results of this dissertation’s experiments.

When we examine previous, simulation-derived EPIC results, such as the performance

of the nine SPEC CINT92 and SPEC CINT95 benchmarks in [38], we find a speedup of

1.17 for predication and 1.68 for predication and speculation combined on the IMPACT

EPIC simulator. The fact that this far exceeds our results on Itanium 2 is explained in

three ways. First, past “clean” simulations did not model data and instruction cache stall

204

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

I-
N

S
I-

C
S

S
-C

S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

S
p

ee
d

u
p

Static speedup

Perfect data cache speedup

Actual speedup

Figure 10.1 Actual and two idealized speedup measurements.

cycles or other dynamic events. One issue stands out far ahead of all others, and this is

the often dominant role of data cache miss stall time in performance outcomes. When

we correct for this using measurements of these effects from performance monitoring

counters, we find much better agreement with these past results. Figure 10.1 shows

the relation of the ILP-configured compilations to the IMPACT baseline (O-NS). The

“exploited” speedup reflects the change in total execution cycles, as was indicated in

Table 2.2. The “planned” speedup, on the other hand, measures the change in the

number of execution cycles statically anticipable by the compiler.1 Considering only

these cycles, as in past simulations, IMPACT achieves an average speedup of 1.47, closer

to the 1.68 speedup achieved in past work. (To emphasize the importance of data cache

stall as a contributor, excluding only this runtime effect category, IMPACT achieves a

speedup of 1.41. Clearly, this is an aspect that needs to be addressed to strengthen the

compiler’s ability to plan for high EPIC performance.) Second, the SPEC CINT2000

benchmarks are substantially harder to parallelize than the older benchmarks; as they

have more frequent and more irregular control flow, they require more code-expanding

transformations to expose the same degree of ILP, but their larger code size can cause

such expansion to have undesired effects on instruction cache performance. Finally, the

1This measure includes the unstalled and the three scoreboard components of Figure 2.6; it sub-
tracts out all “dynamic effects.” The “planned” execution time assumes, for example, that all branches
are predicted correctly and all loads complete with minimum latency.

205

benchmarks of [38] benefited from data speculation, which IMPACT does not currently

exploit on IA-64.

This work, then, largely confirms the work of August et al. [38], given the differ-

ences between their hypothetical EPIC system and the Itanium 2 microarchitecture.

The earlier work expounded on the constructive collaboration between if-conversion and

speculation techniques. This dissertation has shown this same synergy in real hardware

experimentation and adds an understanding of how instruction cache, data cache, branch

prediction, exception handling, and operating system model color a modern realization

of the technology outlined by the earlier paper.

A long heritage of other VLIW and superscalar compiler work contributed features

that are now part of IA-64. This work included complete, hypothetical machines that

supported extensive research projects [124]. As real EPIC hardware only recently became

available, and as research compilation environments are still adapting to it, the validation

and recalibration of these results to the modern situation is work just begun. Triantafyllis

et al. [40] demonstrated using the Intel production compiler that controlling optimization

for EPIC systems is a difficult problem, as large fluctuations in performance can be

observed with changes only in how, when, and to what degree existing optimizations are

applied. Their work pointed out interactions similar to those indicated here, within a

very different compiler infrastructure. Choi et al. [39] performed a focused evaluation of

if-conversion on the Itanium processor, in the context of a more conservative production

compiler. The relation of this dissertation to their work was discussed in Chapter 5.

There has been extensive work in ILP compilation for VLIW and EPIC systems, as

well as in a number of peripherally related topics. This section surveys this background,

providing an understanding of the wide variety of individually promising techniques at

hand and the difficulty of integrating selected ideas into a stable, productive framework.

10.2 Historical Development of CFS and its Variants

History provides a unique perspective on the control flow structural approach to

instruction-level parallelism. The literature shows a complex and multifaceted pattern of

development, starting with complicated and full-featured schemes. Simplified (and yet

206

highly profitable) models were then introduced, which encouraged significant develop-

ment of ancillary techniques. These models relied to some degree on the characteristics

of machines and benchmarks at the time for their success. Today, the simplified models

are under substantial stress. The reasons for this include the accumulated complexity of

the ancillary techniques and changes in both machine technology and software structure.

Some of the more complicated models of the past are beginning to re-emerge, and the

interaction of these models with the important ancillary techniques (which were devel-

oped in the context of simplified models such as the intraprocedural Superblock model)

has placed compiler developers in a real quandary. An understanding of the historical

contributors to the models will prove an indispensable aid in unraveling this situation,

and is thus included here.

The ILP cultivation methodology described here began as primarily an instruction

scheduling problem in the broad class of VLIW-styled machines. In the earliest work,

instruction scheduling was known as “microcode compaction” (finding operations that

were compatible to execute in the same machine cycle and compacting them into exe-

cutable bundles). The earliest of this work focused on compacting single control blocks

(i.e., control equivalent regions, including no branches) of microcode using classical data

dependence tests and basic machine description technology [136].

Gradually compaction was extended to include “microtemplate transfer,” the move-

ment of instructions2 across control block boundaries. This transformation involved

notions of data flow analysis (liveness) and control dependence / equivalence. Tokoro’s

work showed examples of this type of motion (this type of work would later be referred

to as “menu compaction” because of its selection of motion alternatives) and laid out

the basic rules permitting it, but stopped short of presenting a unifying framework to

control the most beneficial exchange of micro-operations3 [138].

2The author has modernized the terminology used in these early papers, which had various names
such as “operation,” “micro-operation” and “microtemplate” for what are today called instructions.

3One interesting facet of Tokoro’s work is that it considered control dependence and data flow inter-
procedurally, a feature that has only occasionally re-emerged in later systems [128, 137].

207

10.2.1 Trace scheduling

Compilation (and limited, continuing hand-coding) of more control-intensive codes

led to the development of global instruction scheduling techniques. The work of Fisher

extended compaction to traces [44], applying dependence-height prioritized, list-based in-

struction scheduling across splits and joins in the control flow graph. This general work

forms the basis for all subsequent approaches to global (i.e., inter-basic-block) schedul-

ing techniques. The key innovation relative to the menu compaction method, which

compacted individual basic blocks and then sought specific opportunities for interblock

instruction transfer, is the fact that an entire trace (a contiguous, straight-line sequence

of blocks tending to be traversed for a given input) is scheduled at once. This allows

freer scheduling and achieves better schedules, being less prone to the “local minima” on

which the menu-based approach could founder.

Trace scheduling operates by greedily selecting traces from the control flow graph (in

decreasing order of their frequency, as indicated by the control flow profile) and scheduling

them, until no instructions are left unscheduled. In the course of scheduling, when an

important trace is compacted, compensation code may be pushed out into off-trace blocks

to achieve a better schedule within the trace. In practice, in the Multiflow compiler, only

stores were permitted to be extruded in this manner, limiting code expansion [25].4

Both program structure (disruptive presence of loops and joins) and profile variation

(difference between the inputs of which the compiler has knowledge and those used in

actual practice) impact the effectiveness of trace scheduling. Performance of program

paths that are not maximally covered by traces may be degraded, and a nonnegligible

code replication cost is incurred.

With respect to the handling of complex control flow, Fisher’s trace scheduler had

a notion of control equivalent motion, even across loops, based on a hierarchical de-

composition of structured control flow graphs [44]. A second-generation trace scheduler

addressed the problem that trace scheduling, since it worked with a single trace at a

time, often missed potentially profitable motions of instructions between different traces

4Many details of the Multiflow compiler and Bulldog, the research compiler on which is was based,
are available in [25] and [139], respectively

208

(what was called “nonlinear compaction”). This acknowledges that not all branches are

highly biased, and it is necessary to exploit ILP across branches that have no statically

determinable, highly-biased direction. This new scheduler operated on maximal acyclic

control flow subgraphs, or clusters, rather than single traces, using a speculative yield

function that estimated, based on profile information and a number of other factors, the

likely benefit of speculating an operation upward within the cluster [140].

The ability to schedule potentially-excepting operations upward, above conditional

branches, granted significant freedom to the trace scheduling compiler. The Multiflow

hardware, on which the trace scheduling approach was applied, provided support for

suppression of exceptions on speculated, potentially-excepting operations [25, 56]. This

“silent” or “general speculation” model formed the basis for early experiments with EPIC

machines, and is still applied in the IMPACT compiler today (see Section 6).

Another respect in which the trace scheduling work is fundamental to later VLI-

W/EPIC techniques is that of profile dependence. Much of the work suggesting that

control flow profiling was a usable means of guiding compiler decision making was per-

formed in this context [32, 140]. Given the radical transformations that are now necessary

to render instruction-level parallel execution of irregular programs, new approaches, or

at least new studies, may be called for (as suggested by the difficulties encountered in

maintaining useful profiles across procedure inlining and tail duplication, as described in

Chapter 7).

The trace scheduling work, while fundamental to all subsequent approaches to en-

hancement of ILP through instruction scheduling (in the presence of control flow) lacked

some features that would allow the technology to advance dramatically in the handling

of complex and irregular codes. Most notably, it did not support wholesale code replica-

tion (e.g., tail duplication) for the purpose of specialization. This idea was the primary

contribution of a simplified technique yet to come, that being Superblock formation. A

trace also could not include the back-edge of a loop, prohibiting software pipelining.5

5The Multiflow architects considered software pipelining to be of limited value because they favored
heavy unrolling (up to the 96th degree) in the compilation of vector loops [25].

209

10.2.2 Superblock-based approaches

The trace scheduling model allowed for the biased motion of operations along common

paths, to compress the schedule of frequent cases. It did not, however, substantially sim-

plify the control flow graph. Traces could potentially contain side-entrances, which posed

complications for instruction scheduling (requiring complex bookkeeping) and often pre-

vented simplifying code optimizations. Researchers saw an opportunity for simplified

scheduling and enhanced optimization within regions that were single-entry rather than

potentially multiple-entry like the traces of earlier work. Thus, the Superblock, the next

step in the development of ILP techniques, was a simplification of the earlier model [22].

The Superblock is a single-entry, potentially multiple-exit trace.6 A Superblock is formed

by selecting an important trace, which may contain side-entrances, and then by perform-

ing tail duplication to render the region single-entry. The cost of this simplified model

is substantial, up-front code expansion. This creates the fundamental tension of the

Superblock model between code expansion and optimization and scheduling scope. The

desire to perform additional specialization-based optimizations on Superblocks began to

muddy the waters of ILP transformation. No longer was it just about scheduling.

10.2.3 Hyperblock-based approaches

The Superblock retains one crucial shortcoming of the earlier trace framework—it

optimizes single traces in isolation. Gradually, program complexity, the cost of branch

misprediction, and the need for higher levels of parallelism became more prominent.

Predication, the ability to turn individual instructions on and off with a Boolean pred-

icate, became a means of incorporating more than a single control flow path into an

optimization and scheduling region [36, 76, 83]. Where multiple Superblock candidate

traces can be combined by predicating individual instructions with Boolean predicates,

a Hyperblock [36] results. This presents new opportunities, as well as new difficulties.

Hyperblock formation potentially involves less code expansion than Superblock, since

each block incorporates multiple paths, but complicates both the region selection process

6The Superblock is structurally identical to the extended basic block of [49, p. 714]; the distinct
name reflects the manner of construction, not a different structure.

210

and subsequent optimization, as was described in Chapter 5. The complexity and risk

of the Hyperblock formation process led to work in partial reverse if-conversion [48], and

the predicate definition networks of aggressively formed Hyperblocks were shown to be

susceptible to Boolean network optimization [84].

Until this dissertation work, however, research-grade Hyperblock formation tech-

niques had not been demonstrated in a real-machine context. These experiments in-

dicated the cost of very aggressive speculation usually assumed to be performed in pred-

icated regions. The necessary means undertaken to correct these problems may reduce

the applicability of very aggressive formation and optimization techniques.

10.2.4 Optimization of Hyperblocks

Various mechanisms have been proposed for optimization of already-formed Hyper-

block regions, where optimization means a reduction in dependence height. There are

important contributions here, but this dissertation argues that these techniques do not of

themselves provide primary means of making ILP compilation outcomes more predictable

or more generalizable. Simply adding them to the wobbly tower of ILP transformations

is not likely to improve performance dramatically for a broad spectrum of nonnumeric

applications like SPEC CINT2000. Many hold a very kernel-focused view of ILP (im-

portant, to be sure, but not effective for every program), possibly contributing to the

expansion of lukewarm code for little tangible gain. Some also need to be applied in

the context of more strategic optimization. The work in Boolean optimization of predi-

cate networks, for example, met with reasonable success in its goal of reducing predicate

computation height, but often failed to achieve the best possible results because it did

not know how to use instruction ordering, register naming, promotion, and knowledge

of machine resources together to best advantage. Finally, these techniques are subject

to the typical compiler phase-ordering constraints. Those described here, for example,

assume the formation of Super- or Hyperblock regions before they begin their work; their

heroic efforts may not be able to make up for bad formation decisions.

August demonstrated the inefficiency of Hyperblocks formed too aggressively, but sug-

gested that overaggressive formation was unavoidable because such “overreaching” often

211

enabled subsequent, profitable transformations. Subsequent research has underscored

this observation. Partial reverse if-conversion was introduced to reduce the overhead

of decisions that, in the final analysis, resulted in a possible degradation [48, 92]. This

work also introduced the idea of optimization of the predicate defining instructions as a

Boolean network [84].

Schlansker et al. laid out a number of strategies for height reduction in Superblocks.

They describe techniques by which control recurrences in important loops having data-

dependent side exits can be compressed [141] and later introduce the idea of “blocked

back-substitution,” a means for controlling the expansion of terms in height-reduced

computation trees [142]. They later describe a technique whereby infrequently executed

side exits can be combined and moved off-trace using fully resolved predication [68]. This

technique, dubbed Control CPR (critical path reduction), can also be applied profitably

to Hyperblock regions. All these techniques have the potential to change dramatically

the characteristics of control and data dependences within a Hyperblock region, but all

are applied after the regions have been formed.

Carter et al. proposed Predicated Static Single Assignment as a means of removing

false dependences in optimization and scheduling of Hyperblocks [85]. This work used a

new scheme, block predication, for predicate computation, which was more amenable to

efficient logical operations on existing predicates (as was done in [84] to a much less radical

degree). Within this framework, operations were promoted (released from guard predi-

cates, reducing predicate computation dependences) and split as necessary at data flow

merges to relieve constraints. Results showed substantial improvements in instruction-

level parallelism for wide (16-issue) and infinite-issue Trimaran machines. Interesting is

the dynamic code expansion (total number of operations executed) required to deliver

between 1.4× and 2.3× speedups on a 16-issue simulator: between 1.3× (for the best

result) and 3.3× (one of the lesser results). The technique seems to be highly variable

in the amount of dynamic code expansion it causes (also in the number of register live

ranges overlapped), without an obvious way of maximizing benefit while minimizing this

expansion—making this a technique in need of stabilization.

212

Eichenberger et al. [86] developed a similar scheme for control and data height re-

duction in Hyperblocks. Their scheme selectively replicates operations (splits nodes im-

plementing a data flow merge) within a Hyperblock as needed to enable path-specific

optimizations. The node splitting enabled the optimization of some additional predicate

expressions after the manner of [84]. This work was demonstrated experimentally within

the Trimaran framework for small benchmarks (wc, 129.compress, and 130.li) on very

wide machines (issue width 16, 32, and 64). As we found in experimentation for [84], these

types of techniques could well be expected to be unstable in resource-, code-size-, and

register-constrained environments (as would be the case with more complex benchmarks

and more conservatively sized machines). Expanding code arbitrarily, even if infinite-

issue dependence height is reduced, can often degrade performance unexpectedly.

In more peripherally related work, Ebcioğlu et al. [143] described a number of tech-

niques similar in character to some of the proposed Hyperblock optimizations in their

attempts to increase oracle parallelism in a dynamic compilation environment. In partic-

ular, to reduce the exponential growth of instruction trees (an alternative to predication

preferred in IBM’s VLIW research), they employed a unification technique that found

and combined common instructions on distinct paths.

10.2.5 Ancillary transformations

A perusal of even early VLIW compilation work reveals a variety of ancillary transfor-

mations that existed to assist the trace- or region-based optimizer in exposing instruction-

level parallelism. In the Multiflow culmination of the trace-based work, which performed

little bulk code specialization, although it did schedule traces according to execution

profile bias, loop unrolling was employed to expose more parallelism within loops [25].

Early Superblock work identified branch target expansion, loop peeling, and loop un-

rolling as useful region-extending transformations; register renaming, induction variable

expansion, and accumulator expansion as means of breaking loop anti-, output-, and

213

flow-dependences; and sinking-based partial dead code removal7 as a path compression

technique [22].

10.2.6 Trace scheduling revisited

Since the introduction of the Itanium architecture, trace scheduling has been revis-

ited in a new, multipath form. Wavefront scheduling [34, 50] performs global scheduling

on acyclic control flow graphs using a path-based representation for data dependence.

This approach is used in the Intel Electron Code Generator (part of the icc compiler).

Wavefront scheduling performs many motions in a fashion similar to the trace scheduling

techniques (including, for example, the movement of code across loops via hierarchical

control flow reductions). While it works on maximal acyclic regions,8 as does Fisher’s

latter scheduler [140], it adds the notion of a wavefront that represents the scheduling

frontier that moves through the region. This concept enables natural schemes for the

calculation of speculative yield and the placement of compensation code. Finally, Wave-

front scheduling makes use of both control speculation (using the recovery code Sentinel

model) and predication in moving instructions across conditional branches. Where a

branch predicate (and/or its opposite) is available before the branch is to be executed,

instructions from one subsequent path or the other may be moved above the branch

without speculation, if guarded by the appropriate predicate. This reduces the overhead

of “speculation.” Likewise, operations may be moved down across control flow merges

without speculation by guarding them under a predicate.

Moon and Ebcioğlu proposed the selective scheduling framework to maximize instruc-

tion level parallelism within a global scheduling framework. This is similar in spirit to

the Wavefront scheduling scheme. Both these frameworks, like the much earlier and

less general compensation-based trace scheduling approaches [44], attempt to accommo-

date some limited degree of instruction replication, speculation, and renaming into the

7VLIW work generally referred to this transformation as “operation migration.” See Appendix B for
a description of these techniques.

8For these purposes, an acyclic region may contain loop(s) that have been reduced to single node(s).

214

scheduling process to improve parallel issue. These frameworks succeed in packing in-

structions effectively into existing control flow structures, sometimes opportunistically

forming Superblock or Hyperblock regions, without the explicit cost of tail duplication.

They do not, however, make dramatic modifications to the control flow graph, like peel-

ing, that tend to expose more parallelism in more control-intensive programs. The work

of Moon and Ebcioğlu contains some interesting comments on the scalability of their

technique, stated in terms of the ratio of usefully executed instructions to total executed

instructions (including all speculation). They note that, for some benchmarks, increased

aggressiveness only serves to decimate this ratio, suggesting more powerful techniques or

a different way of thinking about ILP are in order.

While it is not within the scope of this dissertation to compare the control flow struc-

tural approach to a Wavefront-based approach, it is important to note that Wavefront

has the potential to deliver quite respectable performance on a broad range of programs.

Wavefront scheduling was reported to deliver a 30% performance improvement relative to

basic block scheduling on Itanium [50]. It is the opinion of the author, however, that the

control flow structural approach, by virtue of its code specialization, offers the potential

for greater gains (at the cost of potentially more extreme profile dependence). That this

is likely the case is borne out in the experimental results. It is important to note that

Wavefront and the approach described in this work are not entirely exclusive of each

other in implementation—selective Wavefront motions may have a great deal to offer a

CFS compiler, and vice-versa.

10.2.7 Bringing CFS transformation into the present

Recent challenges that would have been peripheral or even foreign to the techniques of

the past include profile variation, the very frequent control flow characteristic of highly

structured or object-oriented programs, the relative constrictiveness of modern EPIC

machines, and the highly variable latency of memory operations. Various chapters of

the dissertation have substantiated these issues, and the reader is well advised when

considering these past techniques to consider the implications of these problems. Many of

the promising ideas of previous work have been rendered much more difficult to achieve

215

in a real hardware context and in benchmarks with less dependable and less regular

patterns of control flow.

10.3 Inlining and Code-Expanding Transformations

Procedure inlining and path specialization through code-expanding transformations

(really different cases of the same basic transformation) are frequently employed as the

basis for ILP transformation but are rarely examined critically. Much of this technology

was developed when applications were much smaller and there was less pressure on the

instruction cache (cf. [22], which made only passing notice of 1.5× to 4.5× code expansion

factors in Superblock formation—levels clearly harmful in many contexts today).

Hyperblock-based work [36, 48], likewise, rarely concerned itself with the code expan-

sion performed in enabling formation of large regions in the presence of long, cold paths.

Today, since more aggressive tail duplication and peeling must be performed to enable

effective region formation and since the instruction cache is placed under much more

stress by larger application footprints, these are now primary concerns.

In a work not primarily concerned with EPIC machines, McFarling proposed a tech-

nique for deciding when to perform procedure inlining that took into account instruction

cache limitations and program structure [127]. This work reflects some of the concerns

expressed here, but does not take into account the unique features of the problem in

EPIC systems, namely the definite need to produce ILP, the degree of specialization of

the inlinee possible in a powerful transforming compiler, and the possibility of trans-

forming the program prior to inlining to consolidate multiple calls to the same or similar

procedures. There is also, of course, an extensive body of work in optimizing procedure

layout for cache performance [144, 145]. This work would ease but not solve the cache

capacity vs. code customization conflict.

216

11 CONCLUSION

This dissertation has demonstrated how IMPACT’s “control flow structural (CFS)” ap-

proach to compilation for Itanium 2 provides a 1.20 average speedup (including single-

benchmark speedups of up to 1.59) relative to traditional optimization of code at the

same inlining and interprocedural analysis levels, and a 1.70 average speedup relative to

GCC, in the SPEC CINT2000 suite of nonnumeric applications [5]. These benefits come

by specialization of single-and multipath regions, selected according to execution bias,

for more instruction-parallel execution. Region specialization prepares common paths

for specialization and, with the aid of predication, removes branches, reducing the penal-

ties of branch misprediction. Instruction scheduling, empowered by region specialization

and control speculation mechanisms, compacts these regions for efficient execution. CFS

transformation is effective in the real-world context, and generally compares favorably

with commercial compilers taking more conservative approaches.

CFS transformation has always been assumed to have two primary, negative side-

effects. The first is that, since these techniques rely on such extensive code replication,

instruction cache performance losses are bound to rapidly outstrip the benefits of trans-

formation. The second is that, since speculation causes more memory accesses in a

machine already often stymied by memory latency, the gain of speculation would also

be spent rapidly. Experimental results presented here show neither of these effects to

have substantially dampened the gains of the control flow structural (CFS) approach.

In fact, significant overall gains and, most curiously, some improvements in instruction

217

fetch efficiency have been observed as the result of specializing transformations, suggest-

ing that simply curtailing static code size is not the best means of improving Itanium 2’s

front-end performance.

These positive results are, however, colored by a new quantitative understanding of

potential risks: in a few cases, potentially excessive replication led to small deleterious in-

struction cache effects; elsewhere, control speculation of “wild loads” exacted a heavy toll.

The latter problem was resolved satisfactorily with new approaches to control speculation

in the compiler, and new heuristic analysis mechanisms designed to prevent the control

speculation of likely-to-fault loads. These techniques made the general speculation model

a practical and effective approach to control speculation across SPEC CINT2000. Less

could be done about the former problem within the practical constraints of the IMPACT

framework and the limited observation points provided by SPEC CINT2000.

This effort thus shows the potential for CFS-style transformation to provide higher

performance than now-accepted EPIC compilation approaches, while pointing toward a

need for a new style of interprocedural optimization framework for more controllable CFS

optimization. This work provides an important milestone in the development of EPIC,

showing that further gains will rely on more sophisticated, as well as more aggressive,

compiler techniques, capable both of exposing more ILP and of managing traditionally

secondary elements such as instruction cache and the performance-stability of specu-

lation. Finally, the increasing significance of run-time effects, such as data cache and

DTLB stalls, in determining end application performance has been demonstrated. This

calls for better microarchitectural management of these events or new research that puts

them within the compiler’s understanding.

This dissertation aimed to increase the aggressiveness, and hence the potential for final

code performance, of CFS techniques in an EPIC compiler, while at the same time seek-

ing to improve the performance stability of these techniques. While at a practical level

this goal was achieved within the experimental benchmark set, much more systematic

work could be done now that the central problems have been exposed and characterized.

It has become apparent that, for programs structured in such a way as not to admit

extensive procedure inlining as an appropriate means of CFS enablement (for example,

218

crafty and parser) alternative means must be employed. The classical structure of the

ILP compiler as an early, interprocedural phase performing procedure inlining, followed

by intraprocedural processing, is no longer tenable if the instruction cache is to be man-

aged effectively. This change would require extensive infrastructure modification and the

author was, regrettably, thus not able to perform experiments with such a framework in

this dissertation.

Having sounded at best an uncertain clarion call for the success of EPIC techniques in

producing acceptable levels of performance on the Itanium 2 platform, the author would

like to conclude briefly with his opinions on the future directions of ILP research. One

of the most pronounced differences between the projections of the previous generation

of research and this dissertation is the anticipated future scaling of the EPIC architec-

tural approach. Only seven years ago, the author was among a group of researchers who

predicted “by the year 2000, hardware technology will be capable of producing micropro-

cessors that execute up to sixteen instructions per clock cycle [38]” (presumably under

the “simplifying” EPIC paradigm). This has not come to pass, and no one is making the

same predictions today, even by the year 2005, for two reasons. First, a more complete

understanding of the complexity of pulling ILP out of modern, nonnumeric applications

renders the building of such a processor an almost laughable idea. Second, several years

of meteoric technology scaling have made the building of such a processor, with its in-

tensely complicated centralized design, highly impractical. Architecture has turned in

more decentralized directions.

As Rau and Schlansker pointed out very insightfully, early in EPIC’s development,

though, this shift does not mean the end of EPIC’s usefulness [27]. This dissertation has

demonstrated substantial simplification of instruction flow and improved instruction fetch

efficiency that could make threads cooperatively executing a program more compatible

with each other than otherwise possible.

One thing is clear, though, and that is that compiler changes alone will not deliver

dramatically higher performance on today’s platforms. At the same time, a hardware

solution cannot afford to sacrifice the basic simplicity of the EPIC microarchitectural

model. The author sees two directions of development that are likely to be profitable:

219

the first attempts to ameliorate the negative effects of memory latency with a limited

amount of dynamic execution; the second adds the ability to exploit fine-grained threads

while maintaining the features of EPIC within individual instruction streams.

Although experiments generally showed that CFS transformations, including control

speculation, did not materially increase the incidence of performance-degrading memory

latency events, these events did affect outcomes. The impact of ILP-enhancing tech-

niques employed in this dissertation was substantially diluted by the dominant effect of

memory latency stalls. It appears that, at least for these nonnumeric benchmarks, this

problem must be addressed microarchitecturally. Some means of doing this have been

explored, including full out-of-order implementations of the Itanium architecture [29, 146]

and limited out-of-order adaptations more in keeping with the EPIC theme of hardware

simplicity [28, 147–149]. While the evaluation of these approaches is beyond the scope

of this work, these appear to be promising possibilities. With the adoption of one of

these models, much more of the potential gain from ILP optimization, as was shown in

Figure 10.1, could be exposed.

EPIC techniques can dramatically simplify instruction streams [101], potentially mak-

ing them more compatible components of a multithreaded execution environment. Sev-

eral examples were encountered in this work which support the idea of generating micro-

threads to execute parts of nonnumeric programs. These are especially appropriate

where the typical, statically-scheduled ILP expression of parallel constructs would be

prohibitively expensive or where runtime delays are likely to occur in one thread or the

other.

In conclusion, this dissertation found that the historically proposed control flow struc-

tural techniques, when appropriately controlled, can deliver competitive to exceptional

levels of performance on the Itanium 2 microarchitecture, a modern instantiation of the

core concepts of EPIC design. It also identified the significant limiting factors in further

improvement of this model, including profile stability, management of instruction cache

and registers in an interprocedural framework, diminishing returns of path expansion, ex-

ecution time becoming decreasingly anticipable at compile-time, and suggested potential

future directions for EPIC research. This timely, real-world evaluation of a generation

220

of experimental techniques will serve as a practical foundation for another generation of

research into the effective placement and management of the software-hardware interface.

221

APPENDIX A. THE INTEL ITANIUM 2 MICROPROCESSOR

The Itanium 2 microprocessor provides a concrete reference implementation of a con-

temporary, general-purpose EPIC system. This appendix provides additional details

about important processor subsystems, including performance measurement apparatus,

that was not included in the main presentation of the dissertation. For further informa-

tion, the interested reader is referred to the detailed description of the microarchitecture

presented in [51].

The microarchitecture of the Itanium 2 processor confesses the faith of its designers in

the compiler’s ability to deliver instruction-level parallelism using its many registers, wide

issue, control and data speculation, and predication. Figure A.1 shows an overview of the

Itanium 2 pipeline, which is, briefly, an 8-stage, nominally 6-issue, in-order design. The

execution units are presented with up to six compiler-selected, independent operations

in each cycle; the processor attempts to execute these as given, without reordering or

recombination. Instructions are marked for parallel issue by grouping them into specific

bundle templates (which, together with resource limitations, specify the types of instruc-

tions that may issue together) and demarcating issue group boundaries with explicit stop

bits (indicated as “;;” in assembly code).

The pipeline view of the architecture consists of two “rigid” pipe sections separated by

a small instruction buffer. This allows the front end to fetch instructions at a rate greater

than the execution rate of the back end, and to continue to fetch instructions during

back-end stalls. The entire core pipeline is only eight stages in length, in comparison to

222

��
�
���

�
��	
�

�
�
��

�
���
�

��� ���

�����
��� ����
���

�	����
����
�������

��	���	�
�����
!�����
��"
�##��
$�������	��

!

�
	
�%

�
�$

���

�

�&� ��� ��� �&� ��� '��

��(�� ��) ��* '��

��+
,(� ,(! ,(� ,('

, � , � , � , ! , � , � , '

,)# ,)� ,)� ,)� ,)� ,)� ,)� ,)� ��(�� ��) ��*

��-
��" "���
��"�.

�	�/ ���� ��0/ "��� ��/1�/

�2+

,
(

(

�
%
/

��
�
��

,

3
4

�
%
/

��
�
��

5
4

�
%
/

��
$
�

,
)

(

4

�
%
/

��
�
�4
�$
�

�6 �(� �6 �(

#6 #(# #) #* #3

#6 #(# #) #* #3

#6 #(# #) #* #3

#6 #(# #) #* #3

����
-�	�$

���$���7

������	���
�����

���������	�

�����

����
�	"�

!6 !(! !) �6 �(

�6 �(� �) �* �3

��������� (666
!89

	
��� � (5:�
�
(
�%/
;
(5:�
�
(
�%/

�� 35:�
3<=
�%/

��)6= :�
(4
�%/

Figure A.1 Intel Itanium 2 pipeline.

more than 30 stages for other contemporary designs. This implies a relatively low clock

rate, less than half the clock rate of the superpipelined approach [14], and thus requires

the compiler to identify substantial instruction-level parallelism to achieve competitive

performance.

A.1 Instruction and Data Delivery

A sub-1-cycle L1D and L1I (both only 16 KB) allow 1-cycle L1D access and a 0-

bubble taken branch. A branch direction misprediction results in a 6-cycle penalty. The

design was calibrated specifically to provide a 0-bubble taken branch (supported by a

3/4 cycle L1I) and a 1-cycle data cache load time (3/4 cycle L1D) [41]. This decision

can be interpreted as a hedge against the odds of the compiler being unable to transform

the program to remove taken branches and to provide enough ILP to hide multicycle

L1 accesses. Allowing longer latencies could have allowed increased capacity in these

important caches, but this decision would only have been wise if the compiler could be

expected to have consistent effectiveness in transforming away dynamic branches and in

optimizing code for ILP.

The Itanium 2 has a 16 kilobyte first-level instruction cache, a 16 kilobyte first-level

data cache, a 256 kilobyte shared second-level cache (at approximately a 5-cycle latency),

223

and a 3 megabyte tertiary cache,1 also shared (with at least a 12-cycle latency). Floating-

point accesses bypass the first-level data cache, and the latencies of accesses to lower levels

of cache vary due to queuing behavior and conflicts in the memory subsystem.

The effectiveness of address translation caching is sometimes an issue for data accesses

(less so for instruction accesses in these experiments). Itanium 2 has a 32-entry, fully

associative L1 DTLB, whose entries are for fixed-size 4 kilobyte pages. When an entry

is expelled, all L1D lines corresponding to the expelled page are invalidated, increasing

the costliness of thrashing in the L1 DTLB. An integer load that misses in the L1DTLB

but hits in the L2DTLB (a 128-entry, full associative table that, unlike the L1DTLB, is

capable of representing larger pages in single entries) is penalized 4 cycles (in addition

to the L2 data cache access latency). The hardware page walk that occurs if the address

does not hit in the L2 takes at least 25 cycles. The effects of this problem on results were

discussed in Chapter 8.

Increasing the system page size will move events from the “VHPT” column to the

L2TLB column, but will not decrease the total number of misses in the L1TLB, which has

fixed-size 4 KB pages. The handling of a L1TLB miss in L2TLB is at least twice as fast as

handling it in a walk of the VHPT, so inceased page sizes could substantially benefit mcf

and, to some extent, vpr and vortex. Increased page sizes, because they cannot increase

the L1TLB hit rate, cannot mitigate the effect of general control speculation where it

increases virtual memory penalties.

For further details on the complex and performance-critical data and instruction

delivery mechanisms of the Itanium 2, see [51].

A.2 Branch Prediction

The Itanium 2 processor implements a two-level Yeh-Patt branch predictor [97] in a

manner tightly integrated into the first-level instruction cache. A secondary history table

stores prediction data for lines evicted from the first-level cache, extending the accuracy

of the predictor across large spans of code. This prediction scheme achieves a 95% rate

1Newer models of the Itanium 2 have larger third-level caches.

224

of correct branch prediction across the SPEC CINT2000 suite in these experiments. The

IMPACT implementation uses static branch prediction hints for those branches control

flow profiling shows to be highly taken (≥ 97% taken) or highly-fall-through (≤ 3%

taken), except in the context of bbb bundles, in which the use of static prediction hints

often has unanticipated performance consequences. This in theory reduces the pressure

on prediction hardware, but in practice seems to have little effect on net performance, at

least within SPEC CINT2000.

A.3 Control Speculation

Control speculation was the most uniformly productive, EPIC-specific architectural

feature studied here. Since the architectural mechanisms supporting it were discussed

already in Chapter 6, it will not be belabored further here.

A.4 Predication

The predication mechanisms offered in the Itanium 2 were generally in keeping with

those described in the earlier HPL-PD architecture [124], and so support the common

methods for if-conversion and other uses of predication. One feature, though, bears

mentioning: The set of predicate defines provided in the Itanium architecture are not

fully orthogonal; that is, for some of the predicate definition types, not all the comparison

types are available. Generally speaking, only equality, inequality, and comparison relative

to zero are available in predicate defining (cmp) instructions with parallel (or- or and-

type) predicate destinations. Where unsupported comparison/destination combinations

are needed, extra instructions (with additional dependence height) must be inserted. This

complicates optimization of the predicate network [84] and poses a difficulty for general

use of these types, which are important to height-reducing techniques such as branch

combining [79] and critical path reduction [68]. This was a key factor in the fact that

branch combining was often detrimental to performance in the described experiments

with IMPACT, and so was disabled.

225

A.5 Register Resources

The Itanium architecture provides extensive register resources to sustain high rates

of instruction issue in the presence of many live value ranges. Most of these registers

are organized into the register stack, a windowing structure composed of 96 hardware

registers. At a function entry point, a compiler-specified number of these register are

allocated as function temporary registers. These registers are automatically allocated,

saved, restored, and deallocated by the Register Stack Engine as required by the pushing

and popping of invocation records on the execution stack. Some of the register can be

specified to rotate in the context of modulo scheduled loops, allowing kernel-only modulo

scheduling schema to be applied.

IMPACT successfully uses these registers for promotion of memory-bound variables

across large regions of program execution (but only intraprocedurally). Additionally, the

cultivation of ILP tends to increase the number of live ranges overlapped, as one might

expect. Section 7.4.1 dealt with the implications of inlining and other code replication

and optimization on register stack activity, and Section 5.7.5 reflected on the impact of

predication on this resource.

The register stack engine is noticeably active (contributing more than 1% to execution

time) in gcc, crafty, parser, eon, and vortex. It should be noted that the Itanium 2

implementation implements lazy spilling, the spilling and filling of the register stack

only when allocations or deallocations require it. The architecture supports the idea

of asynchronous maintenance of the register stack, which would allow the machine to

preemptively spill and fill backup frames of the register stack during cycles when the

cache interface is idle, in an attempt to hide the latency of these adjustments [57]. This

might effectively hide most of the register stack engine activity encountered in these

experiments.

226

Table A.1 Cycle accounting categories in terms of hardware counters

Category Event(s)

unstalled execution CPU CYCLES(user) − BACK END BUBBLE ALL(user) User cycles
in which at least one instruction retired.

floating-point score-
board

BE EXE BUBBLE FRFR(user) Cycles stalled on pending floating-
point operations.

integer load bubble BE EXE BUBBLE GRALL(user) − BE EXE BUBBLE GRGR(user)
Cycles stalled on pending integer loads.

L1D/FPU micro-
pipeline stall

BE L1D FPU BUBBLE ALL(user) Cycles stalled on the L1D/FPU
micropipelines.

front end bubble BACK END BUBBLE FE(user) Cycles the back end is stalled due to
the front end not supplying instructions to execute.

branch misprediction
flush

BE FLUSH BUBBLE BRU(user) Cycles stalled during flush after
branch misprediction.

register stack engine BE RSE BUBBLE ALL(user) Cycles in which execution is stalled
due to register stack engine operation.

miscellaneous user BE FLUSH BUBBLE XPN(user) Cycles flushing after exception de-
tection.

+ BE EXE BUBBLE GRGR(user) Cycles stalled on scoreboarded in-
teger unit results.

+ BE EXE BUBBLE ARCR PR CANCEL BANK(user) Miscellaneous
stall cycles, including AR, CR, or PR dependences, load
cancellation, or bank switching.

kernel CPU CYCLES(kernel) Cycles in kernel code.

A.6 Performance Monitoring

The experimental results presented in this dissertation are entirely based on real-

machine measurements. This would not have been possible without the extensive per-

formance monitoring support built into the Itanium 2 design or without the Perfmon

features developed for the Linux kernel by Stephane Eranian of Hewlett-Packard Labo-

ratories [63]. A few words are in order regarding these facilities.

Table A.1 indicates the performance monitoring measurements comprising the various

categories shown in the cycle accounting figures throughout the dissertation (Figure 2.6,

for example) [51]. The categories (and underlying hardware counters) are set up in such

a way that they are mutually exclusive, so the counters taken collectively are an accurate

summary of the state of the back end throughout execution. The Itanium 2 front end is

227

decoupled from the back end by means of a small instruction buffer, so while it is possible

to determine in which cycles the back end is stalled due to an inability of the front end

to deliver instructions, it is not always possible to definitively determine the reason for

the front-end stall.

• unstalled execution This category counts all user (nonkernel) cycles in which at

least one instruction retired. Assuming that no latencies were exposed and that

no run-time anomalies (such as branch mispredictions or exceptions) occurred, this

would be the total number of execution cycles for the application. Early experi-

ments in EPIC architecture/compiler design, in their simulation models, effectively

assumed this to be the case [38].

• floating-point scoreboard Here are accounted cycles of back-end stall due to

dependences on scoreboarded floating-point register values, including products of

floating-point arithmetic and conversion operations and floating-point loads. Un-

fortunately, there is no obvious means of distinguishing between load-related and

non-load-related floating point stalls.

• integer load bubble This category includes cycles during which the main pipeline

is stalled on the outcome of a pending integer (non-floating-point) load. On average,

25% of execution cycles are expended in this manner. One subtlety is worth pointing

out with respect to the measurement of this category: store-load dependence cycles

mentioned in Section 8.3 are largely accounted here. Addressing spurious store-

load dependence sites reduced this category of cycles by half in 256.bzip2, without

much effect on the L1D micropipeline stalls. This was contrary to what had been

expected, based on the relevant literature [51]. This category does not reflect

the total number of cycles stalled due to data loading, due to the inclusion of

floating point load stall cycles in the previous category and the accounting of certain

exceptional cases to the next category, L1D/FPU micropipeline stall.

228

• L1D/FPU micropipeline stall Here are found cycles accounted to main pipe

stalls due to the L1D2 cache access unit or, less frequently (always less than 1%

of total execution cycles, and generally an insignificant amount), the floating-point

subpipeline. L1D events account for the vast majority of this significant category of

cycles, which accounts for 9%, on average, and up to 22% (in vortex), of execution

cycles. FPU micropipeline contributions are insignificant, except in vpr, where they

contribute 0.6% of execution cycles.

L1D stalls fall into 12 categories, which are not mutually exclusive (more than one

of them may be occurring in any given cycle). These are as follows, listed roughly

in decreasing order of importance. The percentage of O-NS and I-CS cycles in

which each activity is operating are given at the start of each description:

– Data cache unit recirculation (L1D DCURECIR) (8.5-9.3%) Stall due to the

data cache unit recirculating. These cycles, the most numerous category, are

secondary effects of other events, or of collisions of other events. While their

magnitude is important, they offer little in the way of diagnostic guidance.

Those not accounted for by production from other L1D micropipeline events

may be related to collision of access requests in the memory system (two

simultaneous loads to the same L2 cache line, for example).

– Hardware page walker (L1D HPW) (2.1-2.2%) Stall due to activity of the

hardware page walker after a TLB miss. A single access to the HPW takes

at least 25 cycles.

– Level 2 back-pressure (L1D L2BPRESS) (1.0-1.5%) Stall due to too many

outstanding requests) in the L2 OzQ (out-of-order request queue). When the

32-entry OzQ is full, the L2 substructure applies back pressure to the L1D

unit, stalling issue until an OzQ entry becomes available.

2This name appears to be something of a misnomer. The L1D is the primary cache. The L1D units
manage the execution of all loads and stores, whether they hit or miss in the first-level data cache.

229

– Store buffer cancellation (L1D STBUFRECIR) (0.6%) Stall due to a store

buffer cancellation requiring recirculation. These occur when a store and load

accessing the same cache line occur within three cycles of each other, in that

order. These become significant in bzip2, where they account for 4.8% of

execution cycles; in other cases, they account for less than 1.0%. These are

an indication of the behavior described in Section 8.3.

– Translation lookaside buffer transfer (L1D TLB) (0.4-0.5%) Stall due to

transfer of line from second to first level TLB. A cycle accounted here will

also reflect 3 cycles of recirculation (above) and 5 cycles of load stall.

– Fill conflict (L1D FILLCONF) (0.4%) Stall due to a store conflicting with an

ongoing fill. These exceeded 1% of execution time only in gzip, and then only

barely.

– Full store buffer (L1D FULLSTBUF) (0.0%) Stall due to the store buffer being

unable to accept another store. These never account for more than 0.5% of

execution cycles in the experiments.

– Not-a-thing (NaT) generation (L1D NAT) (0.0%) Stall due to a need for

recirculation to perform NaT generation. These occur only in code that uses

control speculation, but still do not account for only insignificant numbers of

cycles (less than 0.5% in all cases).

– NaT spill/fill conflict (L1D NATCONF) (0.0%) Stall due to a conflict between

spill and fill operations over the unat register. These were not significant in

the experiments.

– Load ordering conflict (L1D LDCONF) (0.0%) Stall due to architectural load

ordering conflict. These did not occur in measurable numbers, since they

related to load and store operations with specialized acquire and release se-

mantics, which are only infrequently used in the studied benchmarks.

230

– Load check ordering conflict (L1D LDCHK) (0.0%) Stall due to a load

check ordering conflict. These did not occur in measurable numbers, since

data speculation was not applied in the experiments.

– DCS (L1D DCS) (0.0%) Stall due to access of system registers, never signif-

icant in this dissertation’s experiments. (DCS is not defined in the relevant

literature.)

• branch misprediction flush These are cycles during which the back end is stalled

due to the pipeline flush that occurs after detection of a branch misprediction, ap-

proximately 6 cycles for a typical “whether” misprediction. The average CINT2000

benchmark exhibits a 29% reduction in branch misprediction flush cycles in I-CS

mode, relative to O-NS. Branch misprediction flush, however, typically contributes

only about 6% of total execution time, so this effect is not a primary factor in per-

formance improvement due to prediction and region formation, as the conventional

wisdom might suggest [39].

• register stack engine This counter tallies cycles of back-end stall due to opera-

tion of the register stack engine (RSE). The RSE spills and fills general registers

as required by allocation and deallocation requests in the program call sequence.

For most benchmarks, this category is relatively insignificant, as function inlining

has eliminated most heavyweight callsites. ILP optimization, including inlining,

though, tends to increase register consumption. If frequently traversed call struc-

ture remains after ILP optimization, then it is likely this category will be impacted.

RSE activity is significant in crafty, in particular, in which 6% of cycles are spent

in it prior to ILP optimization, and this number of cycles increases by half af-

ter optimization. gcc, parser, and vortex show similar trends, although the initial

contribution is smaller. eon spends a constant 4% of its time in the RSE.

• miscellaneous user This category includes a handful of infrequent events, in-

cluding exception flush, integer unit stalls, and various system register and bank

switching penalties, as indicated in Table A.1.

231

• kernel Here are accounted all cycles spent executing kernel code.

A.7 Conclusions

Compiler work—particularly that which determines what degree of instruction-level

parallelism the compiler can extract at a reasonable efficiency from general purpose

programs—is highly relevant to the scaling of the Itanium Processor Family to future

generations. Averaging across SPEC CINT000, for the nominally 6-issue Itanium 2 mi-

croprocessor, IMPACT and commercial compilers today produce plans of execution with,

on average, 3.03 useful operations per cycle. These plans achieve an actual issue rate

of about 1.29 useful operations per cycle. (Here a useful operation is defined as a non-

no-op operation whose predicate evaluates to 1.) Slightly more time is spent in (largely

unscheduled) stalls than is spent in cycles retiring instructions. This carries interesting

implications for the furtherance of instruction-level parallelism in EPIC machines.

232

APPENDIX B. THE IMPACT COMPILER

The IMPACT compiler provides a full-featured environment for exploitation of ILP in C

and C++ programs. Today IMPACT generates code either for simulation on a generic,

experimental VLIW machine or for execution on the Intel Itanium 2 microprocessor [51];

the latter path is the one exercised in this dissertation, but the information contained in

this appendix is generally also applicable to the generic path. This appendix serves three

purposes: First, it provides details necessary for other compiler developers wishing to

evaluate this work. Second, it serves as an instructional resource for future users of the

compiler infrastructure developed in the course of this dissertation. Third, it provides

a concise, critical review of IMPACT as it stands today, as a guide to future developers

considering either an extension of IMPACT or the development of a new ILP compiler

infrastructure.

B.1 Overview

Compilation of a C program through IMPACT, shown at a very high level in Fig-

ure B.1 can be divided into eleven general stages. When IMPACT is run using the

OpenIMPACT command-line driver “oicc,” the first stage appears to be the “compila-

tion” or “.c → .o” stage; the second appears as a “profile linking” stage; the third as a

profiling stage; and the fourth through eleventh as a single interprocedural optimization

stage, culminating in production of the linked executable.

233

����������

�
�
�
�
�

�
�
�
�
�	

�
�
�

�

�
�
��

�

�
�
�
�

�
�
�
�
�
��

�
�

�
�
�

��
�
�

�
��

��
���

�

�
�
�
�
�

�
��

�
�
�
�
��

��
���

��
�

��

�

��
��

�
�

	
��	

�	

�
	
��

�

�
�
�

�
��
�
�

�
�	

��

	
�

�
�

�
�

��
	

�
�
�

��
�

�
�

�
�

��
	

�
�
�

�
�
�
�

�
�
�
�
�	

�
�
�

�
�
�
���

	

�
�
�

�
��

	
��

���������
��������

�	����
����
����	������

���	������	
��

 !�������	�����	��

 "�
������������

����
����	���	��

�������

 ��
�	�
���
	��
����
��#

����	������
�	������
��

����

 ����������������

 ���	�	�	�����������

	���
�	��������	���������

	��

"�������������$

 ������������ %���������&

 ����������	���������������

 ������������
��	���	
�

!���������������

�����
�������	
���

 ��
�����

��
���
�����

 �����������
��

 �������

��
���
���

 ������������
��

	����	
���

Figure B.1 The IMPACT compiler: high-level phase ordering.

Of particular note in this regard are the constraints imposed by phase ordering,

which can limit the effectiveness and the controllability of ILP transformations, and the

generally local nature of most of the important later phases, which can allow accumulation

of surprisingly negative results at the whole-program level. Some of these issues were

addressed in general in the dissertation.

B.2 Pcode Generation

This is the first detailed publication to use a totally rewritten IMPACT Pcode front

end (mostly written by Robert E. Kidd under the auspices of the Gelato Initiative’s

OpenIMPACT project). This portion of the compiler will therefore be described in

considerable detail.

C/C++ source code is preprocessed using another host compiler (gcc, for portability

and convenience), parsed using the Edison Design Group C++ Front End (EDGCPFE),

and translated into Pcode, the IMPACT high-level intermediate representation (IR), a

relatively conventional abstract syntax tree representation. One Pcode file is generated

per source code (.c/.cpp) file. Symbols are reconciled across these files in the next step

of processing.

In a feature added for this dissertation work, C++ source code is handled in the

normal fashion, except that EDGCPFE, in addition to parsing the preprocessed C++

into its internal representation for re-expression into Pcode, also lowers its C++ internal

234

representation into the C-style form that Pcode is used to receiving.1 While this pro-

vides rudimentary C++ support in the manner of the earliest C++ compilers (i.e., the

cfront approach), it is far from an optimal solution. Historically, this has not proven a

very effective means for dealing with C++ code, since important semantics of the C++

language (such as those necessary to analyze and devirtualize performance-penalizing vir-

tual function invocations [126]) are lost in the lowering process. This accounts for some

portion of IMPACT’s poor performance in the eon benchmark. To handle C++ properly,

IMPACT’s Pcode representation should be extended to support C++ abstractions and

to provide basic C++-targeting optimizations.

B.3 Pcode Linking

The gathering together of the entire application’s (library’s) Pcode starts the IM-

PACT compilation process in earnest. Conventional linkage rules are applied to match

symbol uses to definitions. The remainder of IMPACT operates within the interprocedu-

ral context created by this step. The Pcode linker (Plink) has to go somewhat beyond

the duties of the ordinary linker (ld) in linking the application’s Pcode files together, as

Pcode is a typed representation. Since subsequent optimizations will perform cross-file

inlining and optimization, the files need to share a consistent view of all the types de-

fined across the application. This is not a trivial problem, as types are typically defined

in header files, included in different inclusion paths and in various contexts in different

source code files. Since the typical linker does not check types, programs often contain in-

consistencies among the different source files. Different structures share common names;

the same structure may have different names in different files, but its instances may be

used interchangeably in the interprocedural context. The same is true of procedure in-

vocations. The Pcode linker often finds (generally indirect) procedure invocations whose

arguments do not match those of the function being called.

The Pcode linker generates a new Pcode symbol table file named “a.out” and a

unique key for each symbol in the application. This key is used, rather than a symbol

1EDG also provides exception-handling and C++ runtime libraries that are linked with the
application.

235

name, throughout Pcode optimization to prevent symbol conflicts. The key consists of

a (file, id) pair. Symbols that rise to the global level are indicated by file number “1,”

indicating that their records are located in the top-level symbol table. Other symbols

remain in their individual Pcode file symbol tables for scalability reasons. The top-

level symbol table provides a structure facilitating random access throughout the entire

application. This has revolutionized the design of most subsequent Pcode stages.

Most of IMPACT today still operates at the single-function level, but latter phases will

still benefit from the summarized results of interprocedural analysis. Because of a strong

need for improved whole-program optimization, we are in the process of improving the

quality, accessibility, and persistence of the interprocedural view of the program created

here.

The Pcode is also lowered and flattened in this phase (by the module Pflatten),

meaning that some complex expressions are broken down into simpler elements to ease

subsequent transformations.

B.4 Pcode Profiling

A probed version of the application is produced (via PtoC and the host compiler) and

is run with training input(s). Probes gather control flow arc traversal counts and loop

iteration counts, which are then annotated into the Pcode IR (by Pannotate). Procedure

calls through function pointers (indirect procedure invocations) are also profiled in this

stage, to give guidance to the inliner. Both the high-level (Pcode) and low-level (Lcode)

representations can be reprofiled at nearly any stage of compilation, although this would

not be very practical in a production environment. Subsequent transformations generally

try to preserve and extrapolate these initial profiling results, but can do so with only

limited success. The substantial value of a second profiling stage performed after classical

optimization (any time after inlining would actually do; this is just a convenient location

for a second profile in the IMPACT framework) was discussed in Chapter 7. The IMPACT

compiler used in the described experiments used such a second profiling pass. It is possible

that, if a certain degree of context-sensitive profiling information could be gained in the

Pcode profiling stage, this step could be eliminated without danger to performance.

236

B.5 Pcode Optimization (Inlining)

Procedure inlining [46, 74] is the only significant component of the Pcode-level op-

timizer today. Procedure inlining provides three basic benefits: (1) elimination of call

mechanism overhead; (2) specialization (optimization) of the inlined body for its call-

ing context (the classical benefit); and, (3) the effective formation of instruction-level

parallelism across call sites (a benefit particularly required for EPIC machines). Apart

from inlining, independent code from the caller and callee cannot commingle in an EPIC

machine. Inlining is performed after profiling, so that it uses profile data to find what

appear to be the most beneficial sites to inline (as well as to identify the likely targets

of indirect procedure calls). Inlining heuristics basically view reducing the number of

procedure invocations as the optimization objective, and will inline the “hottest” calls2

until some fixed maximum inlining ratio (typically a 2× increase in touched expression

count) is reached. Indirect procedure calls are profiled and inlined using the procedures

outlined in Section 7.2. Limited inlining of recursive cycles is supported. Further details

of the inlining routines and their effects in these experiments were described in Chapter 7

of the dissertation and will not be repeated here.

B.6 Pcode (Interprocedural) Analysis

The Pcode interprocedural analysis (IPA) phase provides later stages of the compiler

with precomputed memory access disambiguation information. Because the accuracy

of this analysis exceeds that available in production compilers, IMPACT has a unique

opportunity to perform memory optimizations. In addition to providing immediate per-

formance benefits, these optimizations in turn expose other important problems as the

next-limiting critical path features, creating opportunities for region selection and other

ILP transformations to reap large gains. This module was substantially altered during

this dissertation work.

2The actual priority function is calculated as the call weight divided by the square root of the callee
size, to give some preference to smaller callees.

237

In the past, memory disambiguation information was computed using Cheng’s in-

terprocedural, flow insensitive, context sensitive alias analysis algorithms [150, 151]. An

Omega test [71] was added to provide refined loop array dependence information, which

is of only occasional importance for SPEC CINT2000 applications. The information de-

rived from alias analysis was materialized in only one way: access conflict arcs (sync

arcs) which represent a pairwise, memory-carried, may-alias dependence between two

given low-level (Lcode) operations.

Four deficiencies were encountered in this work, with respect to the past IPA ap-

proach. First, the analysis could not be relied upon to deliver conservative results in

certain cases, leading to incorrect optimizations. Second, the analysis exceeded time

or machine resource limits for the more complex benchmarks, including eon, perlbmk,

and, especially gcc. Third, the representation of dependence information as arcs often

became dauntingly large, substantially slowing subsequent optimization phases. Fourth,

while the arcs represent the result of interprocedural optimization, they are inherently

intraprocedural, as they are drawn only between two operations in a single function.

This makes them a practical mechanism for scheduling and some optimizations but does

not, for example, permit substantial interprocedural optimizations, such as inlining, af-

ter the IPA results have been materialized. Furthermore, alias analysis cannot be rerun

on the low-level representation, so any interprocedural transformations performed at the

low level would be forced to behave conservatively with respect to most memory ac-

cesses. This last objection would prevent some meaningful areas of future research. The

combination of these factors required a new approach.

Erik Nystrom’s FULCRA Interprocedural Pointer Analysis System [59] was therefore

incorporated into the IMPACT Research Compiler to support this dissertation work.

(The IMPACT module name is Pipa.) FULCRA, unlike Cheng’s analysis, supports

several dimensions of configuration (see [59] for details):

• Assignment directionality. One may select either Andersen’s formulation (“sub-

typing”), which has directional assignments, or Steensgaard’s formulation (“uni-

fication”), which combines any two nodes that point to the same object. This

dissertation uses Andersen’s, which is more accurate.

238

• Field sensitivity. An analysis is field-sensitive if it distinguishes among fields of

structures. This dissertation used the field-sensitive formulation.

• Context sensitivity. Context sensitivity means that effects of different invoca-

tions of the same function are distinguished. This, too, was enabled.

• Heap cloning. Anonymous, dynamically allocated structures are identified by the

memory allocation site at which they were generated (malloc, calloc, etc.). A n-

level heap cloning approach considers these sites to be distinguishable by a certain

level of context, so that two sites with invocation records differing within n levels

are distinguished. This is useful for programs that encapsulate calls to the basic

allocation routines within allocator or constructor functions. Here, three-level heap

cloning was performed. Three levels generally capture all available benefit without

unduly increasing analysis time.

• Pointer arithmetic safety. Since C is not a type safe language, pointer arith-

metic poses special challenges for IPA, especially in a field-sensitive configuration.

FULCRA implements a new approach to field sensitivity that models these interac-

tions in a low-level, offset-based fashion, based on the analysis of pointer arithmetic

expressions. This feature was required by SPEC CINT2000, particularly gcc, which

overlaps arrays and aggregates in complex ways.

With these configurations, the FULCRA analysis ran to completion in reasonable time

(hours in a few cases) and provided correct3 results for the studied benchmarks. Like

Cheng’s analysis before it, FULCRA requires a whole-program view. This entailed writ-

ing pointer behavior summaries for all library procedures invoked across SPEC CINT2000

(This is a particular challenge for a C++ application like eon.) The problem of missing

code needs to be addressed for FULCRA to be more practically usable outside of fixed

benchmark suites.

Aside from the problems inherent to the analysis itself, which FULCRA addressed

handily, it was determined that a new representation for memory dependence information

3Correct means “without indicating a defect resulting in compilation failure or detected program
corruption.”

239

was required. The sync arc-only representation for dependence was replaced with a new,

two-part representation, consisting of both sync arcs and access specifiers (also known

in some circles as sync variables or store sets). In general, a load, store, or subroutine

call is annotated with a set of access specifiers, each of which specifies a node number,

heap cloning subscript, access offset (or 0 if unknown), and access size (-1 if the offset or

size is unknown). A specifier-by-specifier comparison of the access specifier lists of two

accesses reveals whether the accesses potentially conflict. This approach avoids the costly

generation of sync arcs, while avoiding the need to keep the points-to graph throughout

the compilation process.4 For arc-specific information, however, like dependence distance,

access specifiers are insufficient. For this reason, if dependence distance is known as a

result of the Omega test, sync arcs are added specifically to represent this information.

This compromise representation proved satisfactory for the purposes of this dissertation’s

experiments.

B.6.1 Auxiliary low-level disambiguator

In addition to the interprocedural analysis, IMPACT also implements a variety of sim-

ple disambiguation techniques in the Lcode back end. These rely on operation markings

(attributes) generated by PtoL in the lowering from the Pcode high-level representation

and on simple, local relations. The Lssaopti module improves these annotations, in-

creasing the effectiveness of these simple mechanisms. It is important to note that there

is a difference in character of the results from these analyses and the results of IPA—

the local relations can deliver “must-alias” information in addition to the “may-alias”

information provided by IPA.

B.6.2 Empirical evaluation

The effect of IPA on the performance of the SPEC CINT2000 benchmark suite was

measured as part of this dissertation’s experiments. On average, IPA yielded a speedup of

4Some compilers keep the points-to-graph, and perform queries directly on it, throughout the com-
pilation process; see [152] for an example.

240

1.13× relative to a baseline using only the auxiliary low-level disambiguator5 The suite’s

sole C++ benchmark, eon, stood out as exhibiting a 1.44× speedup with interprocedural

analysis. vpr and vortex also stood out as benefiting particularly from IPA, exhibiting

speedups of 1.28× and 1.18×, respectively. A simple, field-insensitive, context-insensitive

analysis achieved the maximum speedup for vortex, but context sensitivity and heap

cloning were necessary to maximally exploit vpr.

Ghiya, Lavery, and Sehr evaluated the importance of points-to analysis in the In-

tel production compiler using performance experiments on the Itanium (not Itanium 2)

processor [152]. Their results are not directly comparable, since they use a different

interprocedural technique and stronger simple disambiguation techniques (for example,

disambiguation of indirect references and global, non-address-taken variables—IMPACT

lacks this feature, which looks worth adding), but the comparison is still of interest.

Interestingly, the benefits seen in IMPACT with respect to vortex and vpr are not indi-

cated in their results. With respect to vortex, this is likely due to the lack of extremely

aggressive Superblock formation in the Intel compiler, which is likely necessary to see the

benefit of reordering enabled by pointer analysis. In vpr, a substantial gain is reported

by [152], but it is with respect to global, non-address-taken variables—something that

should be unrelated to the heap cloning benefits IMPACT identifies. There is clearly

an opportunity for further investigation here, but space and time constraints prevent its

resolution here.

B.6.3 Indicated future work

In the future it may be necessary to derive additional Itanium-specific analysis prod-

ucts from this phase. There is a microarchitectural need to find stores and loads to the

same cache line, not just to overlapping addresses, to avoid spurious forwarding penal-

ties [135]. This could make a difference in only a few benchmarks today (bzip2 in partic-

ular) but could become more important with increasingly aggressive optimization. More

5Since the IMPACT implementation of Omega test [71] in Pomega and the supplemental arithmetic
dependence analyzer in Lssaopti both require information from Pipa, these analyses are not available
in the baseline version, even where they could trivially apply.

241

significant is the need to identify “wild speculative loads,” those speculative loads that

access nonexistent or forbidden pages other than page zero. These can have a devastating

performance effect in the general speculation model. Chapter 6 provides more detail on

these events and some early schemes for their avoidance. Finally, Intel’s compiler benefits

extensively from loop transformation and prefetching based on high-level analysis and

transformations in mcf, parser, eon, perlbmk, gap, and twolf (these differences are visible

between icc compilations with -O2 and -O3). IMPACT lacks these features and so lags

in performance in most of these applications. Continued study of ILP benefit in these

specific applications should be in the context of high-level-optimized code.

B.7 Lcode Generation

The abstract-syntax representation of Pcode is translated in a conventional man-

ner [49, pp. 463–508] by the module PtoL into the three-address form Lcode to be used

for all subsequent compilation phases. Most nonaliased, scalar automatic variables are

promoted to virtual registers in this stage. Other automatic variables are “materialized”

into their locations in the activation record. Unfortunately, aggregates (structures and

unions) are not dealt with very aggressively in this stage. These are simply materialized

to the stack. Their fields have no opportunity, in this stage, to be register promoted.

Any aggregate assignments, even those not explicitly written by the programmer but

generated due to flattening, are therefore generated as sequences of the largest possible

loads and stores allowed under the default structure alignment. Subsequent optimiza-

tions are relied upon to clean up this mess. In some applications, most notably crafty

and eon, they are only partially successful in doing so, and performance suffers. Pcode-

to Lcode-lowering should be enhanced to do a better job of dealing with these aggregates.

Less importantly, objects materialized to the stack, but subsequently register-promoted

by optimization, still consume stack space. This is largely just a minor annoyance, but

could become significant in programs with great call depth.

Pcode is a typed representation; Lcode integer registers have no inherent type (i.e.,

an Lcode virtual register is not a char, short, or int; it is simply a register of the default

machine register size). This means that the Lcode generation is the last place to exploit

242

type information in selecting implementation of operations. PtoL was extended to deal

with this in limited cases. Divide operations in the Itanium architecture are not single

instructions, but successive approximation sequences. A divide of 8-bit quantities is much

shorter and faster than a full 64-bit divide. For this reason, divide and modulus operations

are marked in PtoL with the size of the operation. These markings are used in the

code generator, Ltahoe, to generate the appropriately tailored Itanium code sequences.

In Lcode, such complex operations as divide are left as machine independent macro-

operations to allow for more effective classical optimization. This is necessary to a certain

degree to enable optimizations (such as strength reduction) which would otherwise have

to be rewritten to recognize and contend with complex operation sequences. It is also,

however, sometimes an obstacle to effective optimization as the Lcode operations do

not necessarily reflect the number or cost of operations that will result in the lowered,

machine level IR. As part of the same type lowering operation, sign- and zero-extension

instructions are inserted liberally in PtoL to ensure language standard compliance. These

are removed by subsequent optimizations in Lopti, Lssaopti, and Ltahoe.

The access specifiers and sync arcs derived in Pipa and Pomega are applied from

Pcode expressions to the appropriate, lowered Lcode instructions to provide memory

dependence information for the compiler’s low-level optimization phases.

B.8 Lcode Optimization I: Classical Optimization

Low-level optimization begins with classical “Dragon Book” optimizations [49, pp.

585-680] of the Lcode, focused on classical optimization objectives—reduced number of

operations executed, local simplification of control flow, minimization of memory access,

etc. This optimization phase does not perform the voluminous code replication associated

with later, CFS-focused stages. The module Lopti provides such optimizations as:

• Branch and jump optimizations. Indirect branch expansion (pulling common

cases out of branch tables to enhance predictability and encourage subsequent op-

timization); decidable branch elimination, block coalescing, limited branch target

expansion (no code growth).

243

• Dead, unreachable, and inconsequential code removal.

• Local and global optimizations. Constant propagation; constant folding; for-

ward and reverse copy propagation; common subexpression elimination; redundant

load and store elimination; memory copy propagation; strength reduction; constant

combining; operation folding; sign extension elimination; logic and arithmetic re-

duction; lightweight predicate define network optimization.

• Additional global optimizations. Upward and downward instruction unifica-

tion; disjoint virtual register renaming and coalescing.

• Loop optimizations. Loop invariant code motion; loop global variable migra-

tion (register promotion in the presence of aliasing); loop branch simplification;

induction variable strength reduction; inductor combination/elimination.

• Partial code elimination. Partial redundancy elimination (with or without spec-

ulation), partial dead code elimination, dead store elimination, all with critical edge

splitting [88].

These optimizations are performed on virtual register-based computation, not on

variable accesses as might take place in Pcode. To expose as much code as possible to

optimization, IMPACT adds transformations which “register-promote” as many variables

as possible, using memory dependence information to detect aliasing and compensation

code as required to safely contain aliased accesses. This simplifies the optimizations, since

they need not deal with the complexities of potentially aliased memory operations, but

can create situations which oversubscribe machine register resources, causing insertion

of spill and fill code much later in the compilation process. This effect is not obvious to

most optimizations, and so is difficult to avoid, but in practice does not seem to occur

with alarming frequency.

Recently IMPACT’s classical optimization suite has been modernized with more ad-

vanced tools, including partial redundancy elimination (PRE), partial dead code elimi-

nation (PDE), and single-static assignment (SSA) environments [61, pp. 252–258]. The

244

PDE concept has been enhanced to enable a greater degree of store-sinking by the addi-

tion of predicate guards. This technique enables loop-carried partially dead store elimi-

nation in the presence of potentially aliased uses on infrequent loop paths. This is a very

sophisticated technique and makes elegant, if unorthodox, use of hardware support for

predication.

The author has developed an SSA phase, embodied in the module Lssaopti, used

mainly at this point for performing sparse analyses. These analyses are currently used

to remove sign and zero extensions, an important problem in 64-bit architectures, and to

improve the performance of load/store optimizations by examination of access expressions

and annotation of useful properties.

These new, more systematic optimization engines are displacing the older, less gen-

eral, less controllable, and less maintainable tools. They have strengthened IMPACT’s

global optimization capacity, which has traditionally been relatively weak. IMPACT

has historically relied heavily on all important-to-optimize code being collected into Su-

perblock or Hyperblock regions, where it would be subject to simpler but more powerful

local optimizations. This posed a problem for a couple of reasons: First, it assumed that

effective region formation can take place on poorly optimized code. Practical experience,

however, indicates that such post-formation optimization can change good formation de-

cisions into bad ones and vice-versa [48], so it is beneficial to produce the best possible

code before applying region formation techniques. Second, for large, complex, modern

applications, meeting the expectation that all important code is neatly enclosed in large

Hyperblock regions may require an unacceptable level of code growth. Hence, code out-

side and across these regions may play an important role in performance. As IMPACT

develops mechanisms to further reduce unnecessary code expansion, an effective base of

global optimizations will be essential in reducing the performance impact of doing less

“whimsical” region formation.

B.9 Lcode Region Formation: Parallelism Cultivation

One of the most critical elements in generating high-performance code for EPIC sys-

tems is the transformation of programmatic control flow into a form suitable for efficient

245

execution on the target machine. The basic principles applied here were described in

the seminal Superblock [22] and Hyperblock [36] papers. Paths through an acyclic code

region are enumerated, and (for Hyperblock) the dependence height and instruction issue

requirements of each are determined. Heuristics are applied to select the region’s most

important and most compatible paths on the basis of these measurements. Hyperblocks

may additionally pull a finite number of iterations of enclosed or adjacent loops into

the region using loop peeling transformations (described in Section 5.4.4). Relative to

the approach taken in previous publications, much has been added to improve the in-

clusion/exclusion decisions performed and to expose a greater portion of total executed

code for inclusion into efficient Hyperblock regions. Much of this work was material to

this dissertation, so it is described in Chapters 4 and 5, rather than here.

B.10 Lcode Optimization II: Parallelism Enhancement

After region formation, the IMPACT compiler performs a host of transformations in-

tended to increase the degree of parallelism within the specialized code versions. These in-

clude induction variable transformations (expansion, reassociation, and elimination), reg-

ister renaming, critical path reduction techniques (operation reassociation), and a variety

of other parallelism-enhancers. These transformations occur in the module Lsuperscalar,

in combination with a reapplication of the conventional optimization techniques employed

already in Lopti. The latter are performed in the hope that specialization has happened

to render new opportunities for these classical optimizations.

Today (in the SPEC CINT2000 benchmarks), much less useful optimization occurs

after region formation than was once the case (in other benchmarks). The benchmark

vortex is the one prominent exception, in which Lsuperscalar provides a 11% speedup

from optimization alone (excluding the benefits of region formation). The benchmarks

parser, eon, andbzip2 each garner about a 2% benefit. For other applications, the non-

region-formation aspects of Lsuperscalar cause no measurable gains.

246

B.10.1 Loop unrolling

The IMPACT compiler employs two loop unrolling schemata on loops consisting of

single extended basic blocks (Superblocks or Hyperblocks). The first is the traditional

technique; the second was developed for this dissertation work. In the primary schema,

the loop body is replicated sequentially to the desired degree, and the loop continuation

branches in all but the last loop stage are reversed, so that they become side-exit branches.

Subsequent control speculation is relied upon to hoist instructions across these branches,

allowing them to sink to the bottom of the loop.6 Nonetheless, the accumulation of these

side-exit branches complicates modulo scheduling and generally produces results that are

not as good as for loops that have not been unrolled.

It is, however, in some cases desirable to unroll loops that will be modulo-scheduled.

In the second schema, the loop is unrolled using unrolling stage predicates rather than

side-exit branches. See Section 8.4 for details of this approach.

The loop unroller is controlled by regrettably simple heuristics, and operates rela-

tively infrequently in the Itanium configuration (modulo scheduling often achieves better

results than unrolling, probably due to infelicities in the IMPACT scheduling and register

allocation infrastructure; see Sections B.11.2 and B.11.4). Unrolling is applied only to

single-extended-basic-block loops.7 Unrolling is limited by a maximum unrolling degree

(8) and a maximum number of Lcode operations in the loop body after the unrolling

operation (32). If the loop being examined is not a candidate for modulo scheduling

(See Section B.11.3), the primary (side-exit) schema is applied. If the loop is a modulo

scheduling candidate and meets the requirements indicated in Section 8.4, the second

schema is applied. The benefit of unrolling depends almost entirely on the applicability

of subsequent transformations. A more sophisticated implementation would evaluate the

6IMPACT’s somewhat limited implementation of modulo scheduling only allows branches in the last
stage of loops, making it critical that these branches be compressed to the end of the loop body, lest
they unacceptably increase the height of the last stage, increasing the resulting initiation interval

7This means an extended basic block with a self-edge, not a loop with all paths contained in a single
extended basic block. In many cases, only the “hot” path comprises the extended basic block, and only
this block is unrolled.

247

consequences of transformations such as unrolling on subsequent optimizations on a loop-

by-loop basis, rather than applying blanket limits. Recent work in optimization-space

exploration pointed out the importance of such a diverse approach, albeit in a different

compiler setting [153].

Other compilers apply more sophisticated unrolling techniques that take advantage

of counted loops to eliminate side exit branches. The Multiflow compiler [25] performed

preconditioning and postconditioning schema in its loop unroller. In pre-conditioning,

a counted loop unrolled by degree N is preceded by N − 1 bodies, each guarded by a

conditional branch that initiates the unrolled loop if the number of iterations remaining

is divisible by the unrolling degree. The postconditioned schema is a symmetric case

(see [25] for details). A degenerate case of either pre- or postconditioning occurs when

the loop iteration count is known at compile time and is an even multiple of the unrolling

degree. In this case, side exit branches may simply be eliminated in the generation of

the unrolled loop body, as they will never be taken.

B.10.2 Antidependence elimination

Achievable parallelism is enhanced by a variety of renaming and restructuring tech-

niques that share the goal of removing antidependences. These optimizations are par-

ticularly effective in the case of unrolled loops, in which, for example, a single induction

variable having an update in each unrolled stage can be converted into several parallel

induction variables, each having only a single update. This sometimes results in the

extrusion of compensation code at side-exits, which can occasionally prove troublesome

for subsequent optimizations. The modulo scheduler deals with some additional cases of

anti-dependence removal through its use of the rotating register facilities provided in the

Itanium architecture (see Section B.11.3).

B.11 Machine Code Generation

Machine-independent Lcode is converted to machine-specific Mcode. Though Mcode

is essentially similar to Lcode, this involves the assignment of machine-specific opcodes

248

and expansion of certain macro operations (including, on ia64, division). This creates

the opportunity for additional optimizations (for example, those related to subexpres-

sions of the expanded macros and ia64-specific predicate define sequences). Predicate

promotion is applied to increase the availability of instruction-level parallelism. Local

code transformations are applied to integrate inefficient small blocks of code into larger,

more cache- and encoding-efficient regions. Code is scheduled once before and once after

register allocation. Appropriate loops are modulo scheduled using a rotating-register,

explicit prologue and epilogue schema.

B.11.1 Fine-tuning optimizations

Small transformations are made to the code, some replicating instructions, to enhance

cache performance. These optimizations are similar in character and outcome to those

described in [154, 155].

B.11.2 Instruction scheduling

The IMPACT compiler performs two acyclic and one cyclic scheduling phases using

the general scheduling [156] and machine description [157] facilities developed by Gyl-

lenhaal. Both were extended by Ueng [158] to manage the bundling problem and other

special features of Itanium.

The scheduler is frequently a source of seemingly arbitrary changes in code perfor-

mance, the place where chains of unrelated events culminate in a surprise performance

degradation. This problem underscores the need to examine actual code, and not just

performance numbers, to determine the degree of success being had by transformations.

One good example comes in the calculation of dependence height and speculative yield

(DHASY) heuristics that govern the priority order in which operations are scheduled.

IMPACT’s scheduler uses the computation detailed in [65] (originally of [109]), in which

the difference between an operation’s late time and the latest late time in a control block

is a multiplicative weight in the priority function. This has the effect that low-probability

block tails can affect the priority of important operations early in the block, sometimes

creating suboptimal schedules. When the value produced by an instruction is not live

249

along all exit paths, the length of the tail can affect the priority of the instruction relative

to other instructions, when the length of the tail in reality has nothing to do with their

relative priority. This is a weakness in the DHASY model.8

In acyclic regions (everywhere but in software pipelined loops), the instruction sched-

uler schedules greedily (top-down, minimum-latency, earliest-ready-time scheduling of

each operation), without regard for the effects of such scheduling on register pressure.

When a substantial degree of slack is available on certain operations, or when the avail-

able parallelism vastly exceeds the execution resources available, the schedule generated

may use more registers than necessary to secure the resulting total execution time. In

extreme cases, spill and fill code may be inserted, with devastating performance effects.

In less extreme cases, the result is more register stack activity than necessary at function

invocation sites. The incorporation of a register pressure sensitivity technique such as

that proposed by Schlansker and Kathail [142] and a rematerializing register allocator [61,

pp. 488 ff.] would help solve this serious problem.

Evidence has been noted in this Itanium research of the potential for benefit from

schedule-time code transformations, confirming some past IMPACT work in the area [156].

Often dependences can be restructured, allowing better scheduling, by simple transfor-

mations of the instructions being scheduled. The advisability of these transformations

becomes apparent only during scheduling, when critical dependences are exposed and

open scheduling slots are readily identifiable. These transformations have not been im-

plemented in the IMPACT scheduler, however, due to the complexity of scheduling into

the architectural bundles of the Itanium architecture.

B.11.3 Cyclic instruction scheduling

IMPACT’s modulo scheduler is based on the algorithms of [159]. These have been

extended to support both predication and the rotating-register schema supported on

Itanium.

8An example of this problem occurred in 300.twolf, but subsequent region formation changes elimi-
nated it, so it cannot currently be reproduced.

250

IMPACT uses a rotating-register, explicit-prologue, explicit-epilogue model for mod-

ulo scheduling [160], despite the slight code expansion this incurs, on the theory that

it provides better overlap of the wind-up and wind-down phases with surrounding code,

enhancing ILP. A general attempt is made to cast loop bodies to be modulo-scheduled

into fully-resolved predicate (FRP) form [92] to allow the branches to be compacted at

the end of the loop, but this is not always possible after the loop formation has occurred.

Software pipelining is performed only on loops that have been rendered into single

PEBBs with single self-loop-back edges. This simplifies the procedure greatly, and is

successful because many loops can be so transformed, especially when predication is

employed. Control handling in modulo-scheduling regions is, however, suboptimal. IM-

PACT does not currently use the counted loop support provided in Itanium [57]. Since

loop-back branches are predicted-taken, this causes the misprediction of one branch per

loop invocation and requires the use of control speculation (rather than stage predicates)

for speculative stages. Finally, the scheduler disallows scheduling of branches in stages

other than the final stage to simplify (and reduce the size of) epilogue tails.

Despite all these restrictions, modulo scheduling is often a profitable transformation,

even in the nonnumeric codes of SPEC CINT2000.

B.11.4 Register allocation

The register allocator is a hybrid of Chaitin’s [161] and Chow and Hennessy’s [162] al-

gorithms, extended to support predicate-sensitive allocation in the spirit of [94]. Several

potentially profitable extensions could be proposed: (1) The register allocator does not

currently support rematerialization [163], although it appears this would be a profitable

transformation for IMPACT, particularly on Itanium. Because access to the data store

is through a relocation pointer on Itanium, and because Itanium uses single-address-

operand load and store operations, many of the values with the most scheduling and

hoisting freedom are labels. These labels are more cheaply regenerated than spilled and

filled. (2) The register allocator also does not yet support the efficient use of multi-

ple UNAT registers, as is necessary for complex functions optimized for recovery code

mode, or the efficient spilling and filling of predicate registers, as is rarely required in

251

practice [57]. Finally, (3) the register allocator would benefit from more interprocedural

information to support its choice of callee- and caller-saved registers, particular in the

context of the register stack.

B.11.5 Postpass

After register allocation, acyclic instruction scheduling is run again to allow absorption

of spill code. Static branch prediction and instruction prefetching hints are inserted, and

minor instruction cache alignment adjustments are performed. The resulting code is

output in either Intel-format or gas-format assembly.

B.12 Machine Code Linking

IMPACT-optimized assembly code files are assembled and linked using conventional

tools. If general control speculation is used, the binary is marked with chatr to disable

deferral of speculative exceptions.

252

APPENDIX C. DETAILED BENCHMARK PERFORMANCE RESULTS

This appendix provides detailed EPIC performance insights specific to the various C

and C++ benchmarks comprising SPEC CINT2000 [5, 62]. These benchmarks can be

classified as compute-intensive, tending to emphasize CPU performance (including, to

a minor extent, the performance of nearby cache structures) rather than other system

components; control-intensive, characterized by frequent, relatively difficult-to-predict

branches; integer, not dominated by either long-latency floating-point operations or by

easy-to-parallelize, large, regular numerical computations. Within these general param-

eters, each benchmark offers a unique sample point for measurement of optimization

effectiveness that is hopefully representative of a class of typical programs. The inten-

tion here is not to provide simply a tuning guide for SPEC CINT2000 on Itanium 2

(though this certainly is embedded here); rather, the SPEC CINT2000 suite is used to

show concrete examples of certain general problems in EPIC compilation. A reading of

this appendix should give the interested reader a relatively comprehensive view of the

problems faced by an EPIC compiler in this program domain. The information contained

herein serves three chief purposes:

• It is impossible to characterize a compiler’s effectiveness for all programs in gen-

eral and difficult to understand even concrete compiler-derived speedups without

253

detailed knowledge of the techniques applied. This detailed evaluation of the IM-

PACT compiler’s effectiveness in optimizing well-known, readily available bench-

marks on an easily characterizable, readily available system is intended to allow

the reader to assess concretely the results of this dissertation.

• The only effective means for comparing compilers with the intention of transferring

or improving optimizations is the analysis of specific code examples. This appendix

is intended to speed the assessment of techniques developed in this research vehicle

for incorporation into production compilers.

• In some instances, demonstrable opportunities exist for improvement beyond what

was achieved in this dissertation. Their documentation here is intended to facilitate

follow-on work in the research domain.

C.1 Summary of Performance Results

Table C.1 shows reportable and estimated1 SPEC ratios for the benchmarks of the

CINT2000 benchmark suite [5]. Each score is computed as one hundred times the ratio

of a reference run time to the measured run time; a higher ratio thus indicates higher

performance. For comparison, the graph includes results for contemporary versions of

the GNU C compiler (GCC version 3.2) [164] and Intel’s platform compiler (ICC versions

8.1.021) [35, 165]. GCC, the most commonly used compiler in the Linux-ia64 community,

is unfortunately not a serious performance contender, so it warrants little further mention.

These compilers are configured according to the descriptions provided in Section 2.3.1.

The IMPACT compiler configurations are as described in Table 2.1, except for the I-

CS/R column, which indicates the result of running the I-CS configuration with the

benchmark reference input(s) used instead of the usual training inputs during profiling

1These results are denoted as estimated in accordance with SPEC rules [5]. For reasons of convenience,
the IMPACT compiler was not run within SPEC scripts, although SPEC training inputs were used in
the profiling stage and the compiler was run with consistent settings across the benchmarks suite.
Measurement runs of the resulting binaries were run within the standard SPEC environment. These
results accurately reflect those that would be obtained in a certifiable reporting run. GNU GCC and
Intel ICC results were gathered on our systems in accordance with SPEC rules, and are reportable.

254

Table C.1 Estimated SPEC CINT2000 ratios for GNU GCC, Intel ICC, and IMPACT
compiler GCC 3.2 ICC 8.1.021 IMPACT Compiler (20050409)
config. -O3 -O2 -O3 O-NS S-NS S-CS I-NS I-CS I-CS/R

gzip 374 629 645 588 624 696 657 751 730
vpr 497 666 665 616 659 719 692 756 754
gcc 521 988 954 833 955 1066 977 1030 1045
mcf 333 335 692 330 335 323 331 338 336
crafty 489 801 806 657 695 709 175 745 777
parser 410 567 617 532 549 560 546 559 559
eon 273 895 1194 462 494 530 578 611 610
perlbmk 472 676 739 733 728 775 738 772 889
gap 375 601 661 569 607 651 597 630 649
vortex 550 1080 1081 867 1220 1393 1193 1382 1391
bzip2 414 662 746 610 624 654 737 763 781
twolf 557 798 923 738 755 816 812 884 894
GEOMEAN 430 697 792 609 656 699 683 730 743

stages. The difference between I-CS and I-CS/R columns gives an indication of the

degree of meaningful profile variation between the training and reference inputs.

With respect to Intel’s ICC compiler, IMPACT’s peak performance (reflected in the

I-CS column) makes a favorable showing, exceeding Electron’s performance at -O2 in

nine benchmarks out of twelve, sometimes by more than 20%. With ICC configured with

-O3, which enables data prefetching and high-level loop transformation optimizations

not available to the IMPACT compiler (but presumably orthogonal to IMPACT’s CFS

techniques), IMPACT still delivers leading performance in half the benchmarks.

The IMPACT configurations are briefly described as follows: To increase the compara-

bility of results, all configurations reflect the same degree of procedure inlining (maximum

code growth ratio of 2.0× touched code size) and the same level of interprocedural pointer

analysis (FULCRA analysis, configured to be context and field sensitive, using Ander-

sen’s formulation and heap cloning with a 3-invocation-level specialization limit [59]).

The O-NS configuration serves as a baseline, including only classical code optimizations

and none specifically designed to enhance instruction-level parallelism. It does not make

use of control speculation, although it does make occasional use of predication in some

optimizations (see Appendix B for details). This model is intended to reflect the best

performance achievable with a traditional (i.e., non-ILP) compiler framework on the tar-

get processor. The I-NS configuration adds ILP region formation (including predicated

255

regions, or Hyperblocks) and ILP-enhancing ancillary transformations (height reduction,

loop unrolling, loop peeling, etc.). The I-CS configuration, finally, adds control spec-

ulation. The I-CS configuration is the one put forth as the epitome in this work; the

others are configured to illustrate the contribution of various optimization components.

S-NS and S-CS configurations reflect the performance of Superblock-based approaches

that do not take advantage of the predicated execution facilities of Itanium 2.

The column for I-CS/R reflects a run of the benchmarks in which the usual training

inputs were replaced with the SPEC CINT2000 reference inputs. This configuration,

while not legal under the SPEC run rules, gives the “ideal” case of oracular control flow

profile information being available to the compiler. As indicated, only for the benchmarks

crafty, perlbmk, and gap does this make a significant difference.

C.2 Cycle Accounting

Figure C.1 shows an accounting of the execution cycles expended in executing the

SPEC CINT2000 benchmark codes as compiled with O-NS, I-NS, I-CS, and S-CS

configurations of IMPACT. The total height of each bar is the execution time of the

application as compiled, relative to the execution time of the O-NS configuration. For

example, gzip executes in 22% less time when compiled with the I-CS configuration.

Each bar segment represents the portion of execution time attributable to one of nine

categories, as determined through use of the performance monitoring layer in the Linux

kernel and Pfmon software [63].

Table A.1, in the previous appendix, indicates the performance monitoring measure-

ments comprising the various categories shown in the figure [51]. Before delving into

performance results for individual benchmarks, it is instructive to understand these ac-

counting categories. The categories (and underlying hardware counters) are set up in such

a way that they are mutually exclusive, so the counters taken collectively are an accurate

summary of the state of the back end throughout execution. One caveat is appropriate

here: instruction scheduling can change the allocation of events (i.e., scheduling instruc-

tions into what would otherwise be stall cycles moves these cycles into “unstalled,” even

256

0.00

0.20

0.40

0.60

0.80

1.00

1.20

O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS
O
-N

S
I-N

S
I-C

S
S-

CS

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Ex
eu

ct
io
n
tim

e
re
la
tiv

e
to
 O

-N
S
 kernel

misc. user

register stack
engine
branch mis-
prediction flush
front end bubble
L1D/FPU micro-
pipeline stall
integer load bubble

floating-point
scoreboard
unstalled execution

Figure C.1 Cycle accounting results: IMPACT O-NS, I-NS, I-CS, and S-CS configu-
rations.

though net ILP is note increased). Since the compiler generally tries to generate sched-

ules that are as compact as possible and does not generally attempt to schedule loads

and other variable-latency operations at their miss latency, this is likely not a significant

factor in interpreting these results, as long as they are taken at face value.

In Figure C.1, various general effects of ILP optimization can be observed. In general,

code compiled for ILP using IMPACT shows a decrease in two categories: “Unstalled

back-end cycles,” cycles in which the machine retired one or more program operations,

and “Branch misprediction flush,” cycles in which the machine was recovering from a

branch misprediction. This reflects successful ILP optimization, which attempts to miti-

gate the effects of control flow on execution and to compress more useful instructions into

each cycle. This figure will be referred to occasionally in the following benchmark-specific

results.

C.3 Analysis of Individual Benchmarks

Hereafter follow the program-specific analyses. Each program is characterized with

respect to the basic algorithms it implements, thanks to the descriptions provided in [5],

and with respect to its amenability to the ILP optimizations described in this dissertation.

As a general indicator of the benefit of ILP optimization, two graphs such as those of

Figure C.2 are provided for each component program. A brief word of explanation is

257

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

164.gzip execution time distribution for O-NS code

de
fla

te

de
fla

te
_f

as
t

in
fla

te
_c

od
es

co
m

pr
es

s_
bl

oc
k

in
fla

te
_s

to
re

d

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

164.gzip execution time distribution for O-NS code

de
fla

te

de
fla

te
_f

as
t

in
fla

te
_c

od
es

co
m

pr
es

s_
bl

oc
k

in
fla

te
_s

to
re

d

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.2 Execution profile for 164.gzip. Execution times are for code with (a) nonpred-
icated and (b) predicated CFS transformation applied, relative to classically
optimized code.

in order regarding the reading of these graphs. Figure C.2(a) compares the execution

time of code optimized for ILP but without the use of explicit control speculation to

the execution time of code optimized using only classical techniques. Each segment of

the graph corresponds to one function (after function inlining). The proportion of the

horizontal axis allotted to a function indicates its contribution to the total execution

time of the program in the classically optimized version. The height of the segment for

a function indicates its relative execution time in the code optimized for ILP. A segment

below 1.0 on the vertical axis indicates a speedup for ILP techniques. The total relative

execution time of the ILP-optimized application is indicated by the placement of the

arrow on the left vertical axis. Figure C.2(b) shows similar results for ILP-optimized

code using explicit control speculation. For example, the function deflate() accounts

for 59% of execution time when compiled in the O-NS configuration and runs in 0.79×

this amount of time in the I-CS configuration. As the arrow on the vertical axis indicates,

this is also approximately the average execution time proportion for the benchmark.

C.3.1 164.gzip

Gzip is an implementation of the well-known Lempel-Ziv (LZ77) compression algo-

rithm. As such, it has loop regions exhibiting a high degree of locality but containing

nontrivial control flow. A prominent example was shown in Figure 3.1.

258

Table C.2 Cycle accounting data for 164.gzip

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.492E+11 1.316E+11 1.069E+11 1.346E+11 1.033E+11

flush br 2.414E+10 2.564E+10 2.810E+10 1.547E+10 1.524E+10

flush xpn 2.441E+06 2.323E+06 2.153E+06 2.246E+06 2.031E+06

micropipe 1.615E+10 1.608E+10 1.891E+10 1.442E+10 1.854E+10

scorebd gr/gr 4.298E+09 4.684E+09 3.443E+09 4.183E+09 2.968E+09

scorebd gr/ld 3.849E+10 4.003E+10 3.804E+10 4.036E+10 4.211E+10

scorebd fr 1.382E+08 1.427E+08 4.621E+07 7.976E+07 4.414E+07

scorebd misc 2.961E+07 2.947E+07 2.958E+07 2.916E+07 2.944E+07

reg stack 5.927E+06 5.877E+06 6.742E+06 7.005E+06 6.788E+06

front end 4.375E+09 4.768E+09 5.619E+09 2.627E+09 3.249E+09

KERNEL 9.908E+08 1.126E+09 1.018E+09 9.893E+08 9.629E+08

TOTAL 2.378E+11 2.241E+11 2.021E+11 2.128E+11 1.865E+11

Figure C.2 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS

and I-CS) configurations. Tables C.2 and C.3 indicate cycle accounting and instruction

counting data, respectively. IMPACT achieves a significant benefit by successfully using

Superblock and Hyperblock formation, predication, and control speculation to transform

key while loops for profitable modulo scheduling, handily outstripping production com-

piler results (with a SPEC score of 751 vs. 629 for icc). The most important loop

(deflate.c:397) is optimized in the form of three versions, as selected based on control

flow graph profile information. All versions are trace-specialization based; one version is

developed using a peel of an inner loop. Only one (the outermost one, with the peel)

includes multiple paths. Peeling buys about a 2% performance gain. (This example was

presented in Section 3.3.1.) All these transformations are highly profile-dependent, but

the application profile seems relatively stable.

I-CS achieves a similar reduction in unstalled execution cycles to that achieved by

S-CS, but with concomitant reductions in branch misprediction flush and front-end bub-

ble cycles. (A well-tuned S-CS approach sees increases in both these categories, fully

accounting for the benefit of I-CS.) IMPACT’s aggressive use of predication eliminates a

quarter of branch misprediction stall cycles, relative to the O-NS version. Relative to a

259

Table C.3 Instruction accounting data for 164.gzip

O-NS S-NS S-CS I-NS I-CS

Useful instr. 3.632E+11 3.432E+11 3.577E+11 3.503E+11 3.721E+11

Pred. squashed instr. 3.468E+09 6.134E+09 5.233E+09 3.374E+10 2.310E+10

nop instr. 1.162E+11 7.849E+10 6.469E+10 6.622E+10 5.401E+10

Total instr. 4.829E+11 4.278E+11 4.276E+11 4.503E+11 4.492E+11

Superblock form, the Hyperblock version has only three-fifths as many branch mispredic-

tion stall cycles and one half the number of front end stall cycles. Predication-enhanced

region formation showed substantial benefit in gzip, achieving a 1.09× speedup relative

to S-CS, and I-CS benefited every function with significant execution time, compared

to S-CS. Most applications of predication, however, tend to be the inclusion of simple

hammock or diamond structures that may enable the modulo-scheduling of (or increase

the coverage of) particular, important loop kernels. As shown in the example of 3.3.1,

more aggressive use of predication could further increase the coverage of key kernel loops

without measurably increasing their execution time. This yields an additional 2% bench-

mark speedup over I-CS, not reflected in the results given here. Given the current means

of controlling Hyperblock aggressiveness, however, this level of if-conversion reduces the

average performance of the suite.

Control speculation increases the number of cycles spent resolving data address trans-

lation by 43%, consuming a total of 5.6% of execution time in the I-CS configuration.

Interprocedural pointer analysis, including Omega test, yielded a 1.11× speedup in

the I-CS configuration. Procedure inlining also increases performance by 1.11×, dis-

proportionately benefiting CFS-optimized code (note that the peeling-based outer loop

specialization example of 3.3.1 required inlining).

Modulo scheduling achieves a 9% benefit (in the I-CS configuration) relative to com-

pilation without modulo scheduling in a mildly unrolled version of the code and a 7%

benefit relative to a relatively heavily unrolled version.

260

C.3.2 175.vpr

Vpr consists of two phases, “place” and “route,” of the procedure for mapping logic

circuits onto field-programmable gate arrays (FPGA). Execution time is spent largely in

maintaining a heap organized using floating-point keys.

Figure C.3 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS

and I-CS) configurations. Tables C.4 and C.5 indicate cycle accounting and instruction

counting data, respectively. I-CS achieves a 23% improvement over O-NS. Predication-

enhanced region formation (I-CS) shows substantial benefit in vpr, achieving a 1.06×

speedup relative to the the S-CS configuration, and this improvement was relatively im-

mune to reasonable changes in if-conversion heuristic parameters. This difference derives

from route net(), with a 10% reduction in execution time, and get bb from scratch(),

with a 40% reduction; S-CS is roughly as effective as I-CS in the important try place(),

in which control structures lend themselves more to relatively short, but stable, individual

traces. The success in get bb from scratch() is due to the example shown in Figure 5.1.

The vast majority of the benefit of I-CS relative to S-CS is due to reduction in branch

misprediction flush.

The function get bb from scratch() contains an interesting loop, as used in the

example of Figure 5.1. The use of predication in this loop (I-CS) achieves a speedup of

1.30 relative to a Superblock-only configuration (S-CS). This speedup would be higher

(1.58) except for the fact that control speculation and the software pipelining it permits

allow two unrelated loads to move into the same cycle in the schedule. These loads are

frequently serviced in the L2 data cache and access the same cache bank. When this

happens, one of the two fails to make the L2 bypass and recirculates for four cycles, pe-

nalizing loop performance by nearly 20%. This loop dominates get bb from scratch(),

and this loss of performance between I-NS and I-CS is clearly visible in Figure C.3, but

this loss has nothing whatsoever to do with control speculation! (The increase in load-

related scoreboard cycles is also clearly evident in Table C.4.) This effect was observed in

261

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

175.vpr execution time distribution for O-NS code

ro
ut

e_
ne

t

tr
y_

pl
ac

e

ge
t_

bb
_f

ro
m

_s
cr

at
ch

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

175.vpr execution time distribution for O-NS code

ro
ut

e_
ne

t

tr
y_

pl
ac

e

ge
t_

bb
_f

ro
m

_s
cr

at
ch

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.3 Execution profile for 175.vpr. Execution times are for code with (a) nonpred-
icated and (b) predicated CFS transformation applied, relative to classically
optimized code.

Table C.4 Cycle accounting data for 175.vpr

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 8.441E+10 6.898E+10 6.047E+10 7.447E+10 6.272E+10

flush br 1.607E+10 1.541E+10 1.513E+10 6.930E+09 6.829E+09

flush xpn 9.028E+06 9.234E+06 1.257E+07 8.136E+06 1.719E+07

micropipe 2.255E+10 2.207E+10 2.541E+10 2.314E+10 2.478E+10

scorebd gr/gr 1.334E+06 1.350E+06 1.340E+06 1.355E+06 1.363E+06

scorebd gr/ld 4.840E+10 4.971E+10 5.035E+10 4.917E+10 5.643E+10

scorebd fr 5.008E+10 5.119E+10 3.831E+10 4.550E+10 2.995E+10

scorebd misc 3.487E+07 1.526E+08 1.240E+08 1.067E+08 1.684E+08

reg stack 7.465E+08 7.541E+08 7.531E+08 1.146E+09 1.227E+09

front end 3.226E+09 2.112E+09 2.227E+09 7.803E+08 6.512E+08

KERNEL 1.356E+09 1.352E+09 1.646E+09 1.433E+09 1.759E+09

TOTAL 2.269E+11 2.117E+11 1.944E+11 2.027E+11 1.845E+11

Table C.5 Instruction accounting data for 175.vpr

O-NS S-NS S-CS I-NS I-CS

Useful instr. 1.795E+11 1.721E+11 1.790E+11 1.755E+11 1.866E+11

Pred. squashed instr. 6.776E+08 5.653E+08 6.447E+08 2.117E+10 1.761E+10

nop instr. 7.235E+10 5.728E+10 4.774E+10 5.561E+10 4.437E+10

Total instr. 2.525E+11 2.299E+11 2.274E+11 2.523E+11 2.486E+11

262

the data and confirmed with hand-rescheduling of the affected loop to remove the bank

conflict.

One of vpr’s key loops, a heap extraction routine (in try place()), exhibits an op-

portunity for redundant load elimination that is only accessible to partial redundancy

elimination (PRE) or to path-sensitive optimization. IMPACT applies PRE here, re-

moving a redundant floating-point load (floating-point loads take at least six cycles on

Itanium 2) from this key loop, achieving approximately a 3% benefit to overall execution

time. This loop also exhibits additional opportunities for node splitting and slicing trans-

formations and advance scheduling of loads to predictable addresses, but exploitation of

these opportunities will require careful manipulation of loop-carried control dependence.

Interprocedural pointer analysis delivers a 1.28× speedup, but only when a field-

sensitive, context-sensitive, heap-cloning approach is used. This reflects the most complex

use of pointer analysis in the benchmark suite. Procedure inlining is responsible for an

impressive 1.32× increase in performance. Vpr garners a 1% gain from Lsuperscalar

optimizations (aside from region formation and unrolling).

Seventeen percent of execution time in the I-CS configuration is spent resolving data

address translations, but this represents less than a 10% increase in such cycles due

to control speculation. L2 bank conflicts increase with control speculation, especially

with predication (doubling), but at their peak still account for only approximately 2%

of execution time.

C.3.3 176.gcc

Gcc is the GNU C Compiler. Much of its execution time is spent in bit-vector data

flow routines and instruction scheduling, both of which provide excellent opportunities

for instruction-level parallelism.

Figure C.4 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS

and I-CS) configurations. Tables C.6 and C.7 indicate cycle accounting and instruction

counting data, respectively.

263

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

176.gcc execution time distribution for O-NS code

pr
op

ag
at

e_
bl

oc
k

m
ar

k_
re

g_
st

or
e

hu
ge

_l
oo

p

Z
er

o_
lo

op

cs
e_

in
sn

sc
he

du
le

_b
lo

ck
sc

he
d_

an
al

yz
e

lif
e_

an
al

ys
is

re
gc

la
ss

in
va

lid
at

e
ju

m
p_

op
tim

iz
e

fin
d_

re
lo

ad
s

in
se

rt
fin

d_
re

g
re

lo
ad

fo
rc

e_
m

ov
ab

le
s

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

176.gcc execution time distribution for O-NS code

pr
op

ag
at

e_
bl

oc
k

m
ar

k_
re

g_
st

or
e

hu
ge

_l
oo

p

Z
er

o_
lo

op

cs
e_

in
sn

sc
he

du
le

_b
lo

ck
sc

he
d_

an
al

yz
e

lif
e_

an
al

ys
is

re
gc

la
ss

in
va

lid
at

e
ju

m
p_

op
tim

iz
e

fin
d_

re
lo

ad
s

in
se

rt
fin

d_
re

g
re

lo
ad

fo
rc

e_
m

ov
ab

le
s

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.4 Execution profile for 176.gcc. Execution times are for code with (a) nonpred-
icated and (b) predicated CFS transformation applied, relative to classically
optimized code.

Table C.6 Cycle accounting data for 176.gcc

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 7.444E+10 6.061E+10 4.915E+10 6.107E+10 5.188E+10

flush br 8.358E+09 7.973E+09 7.588E+09 5.762E+09 5.906E+09

flush xpn 2.631E+06 2.508E+06 3.411E+06 2.458E+06 4.629E+07

micropipe 9.234E+09 9.184E+09 8.785E+09 8.656E+09 9.552E+09

scorebd gr/gr 3.701E+09 1.146E+09 1.149E+09 1.174E+09 8.019E+08

scorebd gr/ld 2.146E+10 2.160E+10 2.190E+10 2.178E+10 2.206E+10

scorebd fr 1.089E+09 1.110E+09 8.620E+08 1.002E+09 7.211E+08

scorebd misc 5.240E+08 6.170E+08 6.464E+08 8.361E+08 7.698E+08

reg stack 1.653E+09 1.613E+09 1.717E+09 2.121E+09 2.524E+09

front end 1.060E+10 9.985E+09 1.043E+10 9.399E+09 9.947E+09

KERNEL 9.505E+08 8.995E+08 9.781E+08 8.779E+08 2.890E+09

TOTAL 1.320E+11 1.147E+11 1.032E+11 1.127E+11 1.071E+11

Table C.7 Instruction accounting data for 176.gcc

O-NS S-NS S-CS I-NS I-CS

Useful instr. 1.786E+11 1.652E+11 1.663E+11 1.639E+11 1.656E+11

Pred. squashed instr. 7.859E+08 1.187E+09 1.176E+09 1.314E+10 1.230E+10

nop instr. 4.582E+10 3.235E+10 2.804E+10 2.888E+10 2.430E+10

Total instr. 2.252E+11 1.988E+11 1.955E+11 2.059E+11 2.022E+11

264

Gcc benefits substantially from IMPACT’s Super- and Hyperblock loop transforma-

tions and modulo scheduling, cross-file inlining, load/store optimizations, and specializa-

tions such as loop peeling. Data flow routines, providing a great deal of available paral-

lelism, are optimized with great success. Examining the cycle accounting data, substan-

tial reductions in branch misprediction penalty and unstalled execution cycles (reflecting

increases in both “dynamic” and “static” ILP formation) are evident. A Superblock-only

region formation strategy is approximately equally effective as the Hyperblock-enabled

region former in gcc.

As indicated by the nearly 10% of execution cycles spent in front-end bubbles, gcc has

some nontrivial instruction cache behavior. At the same time, code-expanding ILP trans-

formations are achieving substantial benefits. Gcc should therefore be one of the most

interesting benchmarks in which to observe the effects of more systematic transformation

techniques.

Due to its heavy use of “C polymorphism” in union-based data structures (chiefly

rtx), gcc exhibited a very high rate of wild loads (20% of execution time was spent in

the kernel handling spurious page faults) before the measures described in Section 6.7

were put in place to avoid these dangerous speculations.

Interprocedural pointer analysis, including Omega test, yielded a 1.11× speedup.

Procedure inlining delivered a speedup of 1.11. Modulo scheduling achieves a 13% per-

formance improvement in gcc, capitalizing on the compiler’s many data flow loops. This

is the best showing for modulo scheduling in these experiments with SPEC CINT2000.

In Figure C.4, huge loop() and Zero loop(), which show no improvement, are library

code.

C.3.4 181.mcf

Mcf is a bus (metropolitan transit route, not electronic interface) scheduling applica-

tion. It involves the iterative refinement of a large linked data structure. The topology

of the structure is updated throughout program execution.

Figure C.5 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS

265

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

181.mcf execution time distribution for O-NS code

pr
im

al
_n

et
_s

im
pl

ex

pr
ic

e_
ou

t_
im

pl

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

181.mcf execution time distribution for O-NS code

pr
im

al
_n

et
_s

im
pl

ex

pr
ic

e_
ou

t_
im

pl

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.5 Execution profile for 181.mcf. Execution times are for code with (a) nonpred-
icated and (b) predicated CFS transformation applied, relative to classically
optimized code.

and I-CS) configurations. Tables C.8 and C.9 indicate cycle accounting and instruction

counting data, respectively.

The linked data structure forming the core of this benchmark suffers from devas-

tatingly bad data cacheability—95% of benchmark execution cycles are spent waiting

for memory operations. As a linked data structure it is not susceptible to standard

compiler-based strided prefetching strategies. A stride-detecting software prefetching

strategy described by Wu, used in the Intel compiler, approximately doubles mcf’s per-

formance [54]. The technique instruments the code to perform a run-time-determined

strided prefetch. Periodic run-time re-evaluations allow the stride to be adjusted or the

prefetch to be canceled if judged ineffective. Since these techniques are available today

in the commercial environment, and since even with these techniques the contribution

of CFS transformation to mcf’s performance would be limited, this technique was not

pursued in the IMPACT work.

Due to the dominance of memory-related stalls in the performance of mcf, procedure

inlining, region formation, predication, and speculation have only barely measurable

effects on the benchmark’s run time. Data address translation overhead accounts for

approximately 10% of benchmark execution time.

266

Table C.8 Cycle accounting data for 181.mcf

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 4.739E+10 4.368E+10 2.727E+10 4.015E+10 1.839E+10

flush br 5.586E+09 6.231E+09 6.296E+09 3.344E+09 3.558E+09

flush xpn 5.600E+07 5.308E+07 5.421E+07 5.506E+07 5.392E+07

micropipe 5.713E+10 5.673E+10 6.027E+10 5.919E+10 5.722E+10

scorebd gr/gr 1.541E+03 1.518E+03 1.518E+03 1.479E+03 1.545E+03

scorebd gr/ld 4.394E+11 4.561E+11 4.596E+11 4.391E+11 4.589E+11

scorebd fr 8.845E+07 6.706E+07 6.697E+07 6.963E+07 6.707E+07

scorebd misc 4.129E+07 3.474E+06 4.168E+07 2.810E+06 4.130E+07

reg stack 4.665E+07 5.696E+07 1.129E+08 5.983E+07 6.165E+07

front end 1.236E+09 9.359E+08 1.240E+09 7.958E+08 7.017E+08

KERNEL 2.501E+09 2.120E+09 2.705E+09 2.496E+09 2.480E+09

TOTAL 5.535E+11 5.660E+11 5.577E+11 5.452E+11 5.414E+11

Table C.9 Instruction accounting data for 181.mcf

O-NS S-NS S-CS I-NS I-CS

Useful instr. 7.140E+10 6.908E+10 7.336E+10 6.600E+10 7.005E+10

Pred. squashed instr. 8.643E+07 2.036E+09 7.595E+08 4.616E+09 1.915E+09

nop instr. 2.739E+10 2.183E+10 1.914E+10 2.294E+10 1.679E+10

Total instr. 9.887E+10 9.295E+10 9.327E+10 9.355E+10 8.876E+10

C.3.5 186.crafty

Crafty is a chess game configured to play against itself. The position of the pieces on

the board is maintained in many bit vectors. The algorithm searches a given number of

moves ahead and scores possible outcomes.

Figure C.6 shows the execution time for the program’s functions, relative to the base-

line (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS and

I-CS) configurations. Tables C.10 and C.11 indicate cycle accounting and instruction

counting data, respectively. Crafty proves a problematic benchmark for the IMPACT

compiler for several reasons. IMPACT’s performance is competitive, although IMPACT

suffers from an increase in instruction cache footprint due to excessive specialization.

Any reduction in active code size will result in performance improvement. IMPACT is

very successful at forming parallel execution regions in crafty, and one cost of this success

267

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

186.crafty execution time distribution for O-NS code

E
va

lu
at

e

S
ea

rc
h

Q
ui

es
ce

M
ak

eM
ov

e

G
en

er
at

eC
ap

tu
re

s

S
w

ap

E
va

lu
at

eP
aw

ns

N
ex

tM
ov

e
U

nM
ak

eM
ov

e
G

en
er

at
eC

he
ck

E
va

si
on

s
(R

E
M

A
IN

D
E

R
)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

186.crafty execution time distribution for O-NS code

E
va

lu
at

e

S
ea

rc
h

Q
ui

es
ce

M
ak

eM
ov

e

G
en

er
at

eC
ap

tu
re

s

S
w

ap

E
va

lu
at

eP
aw

ns

N
ex

tM
ov

e
U

nM
ak

eM
ov

e
G

en
er

at
eC

he
ck

E
va

si
on

s
(R

E
M

A
IN

D
E

R
)

I-CS
I-NS

(b)

Figure C.6 Execution profile for 186.crafty. Execution times are for code with (a) non-
predicated and (b) predicated CFS transformation applied, relative to classi-
cally optimized code.

Table C.10 Cycle accounting data for 186.crafty

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 6.988E+10 6.273E+10 5.865E+10 6.147E+10 5.643E+10

flush br 1.187E+10 1.074E+10 1.080E+10 8.078E+09 7.751E+09

flush xpn 1.511E+06 1.470E+06 1.493E+06 1.493E+06 1.448E+06

micropipe 1.357E+10 1.353E+10 1.415E+10 1.222E+10 1.357E+10

scorebd gr/gr 1.137E+09 9.236E+08 1.077E+09 1.257E+09 9.831E+08

scorebd gr/ld 2.064E+10 2.104E+10 2.030E+10 2.126E+10 1.810E+10

scorebd fr 5.055E+09 4.618E+09 4.249E+09 4.623E+09 3.345E+09

scorebd misc 4.916E+08 2.690E+07 1.659E+08 1.387E+08 1.654E+08

reg stack 1.048E+10 8.261E+09 9.385E+09 1.480E+10 1.366E+10

front end 1.862E+10 2.155E+10 2.180E+10 1.943E+10 1.957E+10

KERNEL 3.738E+08 4.330E+08 3.566E+08 2.967E+08 3.139E+08

TOTAL 1.521E+11 1.439E+11 1.409E+11 1.436E+11 1.339E+11

Table C.11 Instruction accounting data for 186.crafty

O-NS S-NS S-CS I-NS I-CS

Useful instr. 1.841E+11 1.794E+11 1.833E+11 1.858E+11 1.880E+11

Pred. squashed instr. 7.182E+08 5.156E+08 6.509E+08 1.720E+10 1.582E+10

nop instr. 4.656E+10 3.913E+10 3.527E+10 3.194E+10 2.858E+10

Total instr. 2.314E+11 2.191E+11 2.193E+11 2.350E+11 2.324E+11

268

is high register stack utilization in many functions. Over 8% of cycles, in fact, are spent

simply manipulating the register stack. Performance would benefit from more strate-

gic inlining or from an interprocedural register allocation approach. Major recursive

functions (e.g., Search() and Quiesce()) require inlining of off-recursion callees (e.g.,

Evaluate()) to achieve successful levels of ILP, but this inlining increases the number

of registers used in the recursive invocation, noticeably impacting register stack engine

activity. The procedure granularity does not provide useful boundaries for control of in-

lining. Likewise, management of instruction cache resources is poor. Better management

of instruction footprint and register stack during code specialization would substantially

improve results.

Current peeling heuristics gain only approximately 1%, although particular proce-

dures benefit up to 6%. The net loss may be due to simple code expansion. Profiling

with reference, instead of training, input yields about a 5% improvement, revealing that

profile mismatch is a substantial factor in the benchmark’s performance.

Crafty is a highly structured application, but not one written with inlining and ILP

development in mind. In the development of this dissertation, it was thought that the

compiler could make very long-range and very wise decisions about combining similar

execution regions, allowing most of the critical ILP transformations to be performed

while actually decreasing the application’s instruction cache footprint. Crafty indeed

contains some very profound examples of these situations, but hand-manipulated versions

of crafty designed to test the efficacy of these transformations resulted almost uniformly

in degraded performance. The reason for these degradations appears to be a loss of

specialization opportunities in the “compacted” versions of the code. Crafty’s execution

reflects significant and highly input-dependent biases, so this is not entirely unanticipated.

It is, however, unfortunate, as the author had hoped crafty would be a useful, motivational

example for more highly ordered ILP transformations.

Additionally, crafty offers much coarser-grained parallelism that is today going un-

exploited. More sophisticated formation techniques and more efficient mechanisms for

exploiting fine-grained parallelism could render this accessible, for even greater gains.

269

The performance of the speculative versions of crafty suffers from a marked increase

in data translation lookaside buffer misses. This can be traced to the use of large tables

in (often inlined) invocations of the functions FirstOne() and LastOne(). In these

functions, the 64-bit Boolean vector representing the chessboard is broken into four 16-

bit segments, which are then used in sequence to access a 216 = 65536 byte table to

identify the first or last bit set to 1 in the vector. In the predicated code, with control

speculation, all four of these loads are executed in a given traversal of each of these

segments.

Interprocedural pointer analysis, including Omega test, yielded no tangible benefit.

C.3.6 197.parser

Parser is an English syntactic parser based on link grammars. It applies a dictionary

and syntactic rules to input sentences, constructing a syntax graph for the input word

sequence and determining whether or not it is grammatical. It is highly recursive and

depends on a dynamic programming approach with a relatively expensive hash scheme

at its core.

Figure C.7 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS

and I-CS) configurations. Tables C.12 and C.13 indicate cycle accounting and instruc-

tion counting data, respectively. This application benefits only minimally (achieving a

speedup of only 1.06 relative to classically optimized code) from CFS transformation

in the IMPACT compiler. Parser poses several difficulties for an EPIC compiler. It is

highly recursive, creating challenges for the inliner. It makes extensive use of a com-

plex, serial hashing function involving the repeated computation of moduli. IMPACT is

more successful than Intel’s production compiler at hiding its latency, but more could

be done. Superblock-only region formation (S-CS) is slightly (1.03×) more effective in

producing performance than the Hyperblock system (I-CS), as configured, suggesting

that unprofitable Hyperblocks are being formed. More aggressive Hyperblock selection

degraded performance slightly.

270

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

197.parser execution time distribution for O-NS code

re
gi

on
_v

al
id

co
un

t

bu
ild

_c
la

us
e

xf
re

e

le
ft_

co
nn

ec
to

r_
lis

t_
up

da
te

m
ag

ic

rig
ht

_c
on

ne
ct

or
_l

is
t_

up
da

te
fr

ee
_t

ab
le

in
it_

po
w

er
el

im
in

at
e_

du
pl

ic
at

e_
di

sj
un

ct
s

ps
eu

do
co

un
t

cl
ea

n_
ta

bl
e

fo
rm

_m
at

ch
_l

is
t

lis
t_

lin
ks

fr
ee

_c
la

us
e_

lis
t

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

197.parser execution time distribution for O-NS code

re
gi

on
_v

al
id

co
un

t

bu
ild

_c
la

us
e

xf
re

e

le
ft_

co
nn

ec
to

r_
lis

t_
up

da
te

m
ag

ic

rig
ht

_c
on

ne
ct

or
_l

is
t_

up
da

te
fr

ee
_t

ab
le

in
it_

po
w

er
el

im
in

at
e_

du
pl

ic
at

e_
di

sj
un

ct
s

ps
eu

do
co

un
t

cl
ea

n_
ta

bl
e

fo
rm

_m
at

ch
_l

is
t

lis
t_

lin
ks

fr
ee

_c
la

us
e_

lis
t

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.7 Execution profile for 197.parser. Execution times are for code with (a) non-
predicated and (b) predicated CFS transformation applied, relative to classi-
cally optimized code.

Table C.12 Cycle accounting data for 197.parser

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.543E+11 1.432E+11 1.269E+11 1.537E+11 1.277E+11

flush br 2.377E+10 2.278E+10 2.280E+10 1.828E+10 1.860E+10

flush xpn 1.031E+07 9.872E+06 1.142E+07 9.823E+06 6.166E+07

micropipe 1.924E+10 1.892E+10 2.087E+10 1.988E+10 2.504E+10

scorebd gr/gr 4.809E+07 4.482E+07 4.263E+07 4.790E+07 4.851E+07

scorebd gr/ld 8.848E+10 8.954E+10 9.677E+10 8.975E+10 9.603E+10

scorebd fr 3.500E+10 3.435E+10 3.437E+10 3.423E+10 3.427E+10

scorebd misc 2.011E+09 2.420E+09 2.554E+09 2.434E+09 2.652E+09

reg stack 9.613E+09 1.113E+10 1.323E+10 9.352E+09 1.354E+10

front end 5.288E+09 4.027E+09 4.096E+09 3.476E+09 3.913E+09

KERNEL 1.092E+09 1.021E+09 1.063E+09 1.077E+09 1.395E+09

TOTAL 3.388E+11 3.275E+11 3.227E+11 3.323E+11 3.233E+11

Table C.13 Instruction accounting data for 197.parser

O-NS S-NS S-CS I-NS I-CS

Useful instr. 3.291E+11 3.203E+11 3.295E+11 3.131E+11 3.302E+11

Pred. squashed instr. 1.172E+09 9.476E+08 9.147E+08 2.446E+10 1.612E+10

nop instr. 1.272E+11 1.072E+11 9.912E+10 1.077E+11 9.555E+10

Total instr. 4.574E+11 4.284E+11 4.296E+11 4.453E+11 4.419E+11

271

Interprocedural pointer analysis yielded a 1.05× speedup in the I-CS configuration.

Intel’s reference compiler improves parser’s performance by approximately 10% using

a patented scheme for stride-detecting software prefetching [54]. IMPACT lacks this

capability and so trails Intel’s performance.

The hashing algorithm could be subjected to very sophisticated global code motion

(global and interprocedural common subexpression elimination). This benchmark has

complex control flow and difficult-to-expose redundancy that may make it an interesting

(and challenging) test case for new ILP techniques.

C.3.7 252.eon

Eon is a probabilistic ray tracer written in C++.

Figure C.8 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS and

I-CS) configurations. Tables C.14 and C.15 indicate cycle accounting and instruction

counting data, respectively. The I-CS configuration delivers approximately a 1.10×

speedup relative to S-CS. Procedure inlining, especially that of indirect function calls,

was very important to eon’s performance, as its object-oriented nature would suggest.

A call graph profile reveals that most indirect function call invocations have only one

or a handful of common targets, making such transformation relatively easy and highly

effective. Procedure inlining delivered a speedup of 1.40.

Eon frequently uses structure assignments, which are generally implemented as sets of

double-word loads and stores. These structures frequently contain floating-point values.

This creates two problems: first, memory copy propagation opportunities are missed.

Second, values read and written as floating-point operations wind up in the first level

cache, potentially causing penalties. These deficiencies, at a minimum, need to be fixed

to make IMPACT’s eon performance more competitive.

Eon performance benefits 2% from modulo scheduling and 3% from Lsuperscalar

optimizations (beyond region formation and unrolling). In Figure C.8, init() is C++

library code.

272

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

252.eon execution time distribution for O-NS code

m
rG

rid
::v

ie
w

in
gH

it(
gg

R
ay

3
co

ns
t&

, d
ou

bl
e,

 d
ou

bl
e,

 ..
.

m
rG

rid
::s

ha
do

w
H

it(
gg

R
ay

3
co

ns
t&

, d
ou

bl
e,

 d
ou

bl
e,

 d
...

m
rC

oo
kP

ix
el

R
en

de
re

r:
:s

am
pl

eP
ix

el
(in

t,
in

t,
in

t,
gg

...

gg
G

rid
Ite

ra
to

r<
m

rS
ur

fa
ce

*>
::g

gG
rid

Ite
ra

to
r[

in
-c

ha
r.

..

m
rK

aj
iy

aP
ix

el
R

en
de

re
r:

:k
aj

iy
aR

ad
ia

nc
e(

gg
R

ay
3

co
ns

t..
.

m
rR

us
hm

ei
er

P
ix

el
R

en
de

re
r:

:s
am

pl
eP

ix
el

(in
t,

in
t,

in
...

_i
ni

t

m
rC

oo
kP

ix
el

R
en

de
re

r:
:d

ire
ct

Li
gh

t(
gg

R
ay

3
co

ns
t&

, d
o.

..
eo

nI
m

ag
eC

al
cu

la
to

r:
:p

ix
el

R
ad

ia
nc

e(
in

t,
in

t,
in

t)
gg

D
iff

us
eM

at
er

ia
l::

ge
tIn

fo
(g

gR
ay

3
co

ns
t&

, g
gP

oi
nt

3.
..

gg
R

ay
B

ox
In

te
rs

ec
t(

gg
R

ay
3

co
ns

t&
, g

gB
ox

3
co

ns
t&

, d
o.

..

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

252.eon execution time distribution for O-NS code

m
rG

rid
::v

ie
w

in
gH

it(
gg

R
ay

3
co

ns
t&

, d
ou

bl
e,

 d
ou

bl
e,

 ..
.

m
rG

rid
::s

ha
do

w
H

it(
gg

R
ay

3
co

ns
t&

, d
ou

bl
e,

 d
ou

bl
e,

 d
...

m
rC

oo
kP

ix
el

R
en

de
re

r:
:s

am
pl

eP
ix

el
(in

t,
in

t,
in

t,
gg

...

gg
G

rid
Ite

ra
to

r<
m

rS
ur

fa
ce

*>
::g

gG
rid

Ite
ra

to
r[

in
-c

ha
r.

..

m
rK

aj
iy

aP
ix

el
R

en
de

re
r:

:k
aj

iy
aR

ad
ia

nc
e(

gg
R

ay
3

co
ns

t..
.

m
rR

us
hm

ei
er

P
ix

el
R

en
de

re
r:

:s
am

pl
eP

ix
el

(in
t,

in
t,

in
...

_i
ni

t

m
rC

oo
kP

ix
el

R
en

de
re

r:
:d

ire
ct

Li
gh

t(
gg

R
ay

3
co

ns
t&

, d
o.

..
eo

nI
m

ag
eC

al
cu

la
to

r:
:p

ix
el

R
ad

ia
nc

e(
in

t,
in

t,
in

t)
gg

D
iff

us
eM

at
er

ia
l::

ge
tIn

fo
(g

gR
ay

3
co

ns
t&

, g
gP

oi
nt

3.
..

gg
R

ay
B

ox
In

te
rs

ec
t(

gg
R

ay
3

co
ns

t&
, g

gB
ox

3
co

ns
t&

, d
o.

..

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.8 Execution profile for 252.eon. Execution times are for code with (a) nonpred-
icated and (b) predicated CFS transformation applied, relative to classically
optimized code.

Table C.14 Cycle accounting data for 252.eon

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.225E+11 1.053E+11 1.011E+11 1.055E+11 1.011E+11

flush br 1.914E+10 1.977E+10 2.004E+10 6.137E+09 5.732E+09

flush xpn 2.379E+06 2.265E+06 2.110E+06 1.959E+06 1.856E+06

micropipe 4.164E+09 5.579E+09 5.567E+09 7.084E+09 6.972E+09

scorebd gr/gr 2.572E+06 2.541E+06 2.542E+06 2.609E+06 2.570E+06

scorebd gr/ld 2.191E+10 2.390E+10 2.632E+10 2.508E+10 2.573E+10

scorebd fr 7.353E+10 6.003E+10 4.273E+10 4.595E+10 3.746E+10

scorebd misc 1.192E+09 1.060E+09 1.355E+09 1.179E+09 1.835E+09

reg stack 1.036E+10 1.074E+10 1.127E+10 1.117E+10 1.129E+10

front end 2.674E+10 3.668E+10 3.724E+10 2.428E+10 2.348E+10

KERNEL 4.882E+08 5.455E+08 5.354E+08 4.297E+08 3.846E+08

TOTAL 2.800E+11 2.636E+11 2.462E+11 2.268E+11 2.140E+11

Table C.15 Instruction accounting data for 252.eon

O-NS S-NS S-CS I-NS I-CS

Useful instr. 3.372E+11 3.182E+11 3.259E+11 3.201E+11 3.232E+11

Pred. squashed instr. 1.697E+09 1.719E+09 1.719E+09 1.753E+10 1.736E+10

nop instr. 1.316E+11 1.102E+11 1.012E+11 1.013E+11 9.159E+10

Total instr. 4.704E+11 4.301E+11 4.289E+11 4.389E+11 4.321E+11

273

C.3.8 253.perlbmk

Perlbmk is a benchmark-ized version of the Perl interpreter. Its behavior can vary

widely depending on the input script, so it poses challenges for profile-based optimizers. A

run of perlbmk with its reference input used for training yields a 1.18× speedup, indicating

that profile stability is a problem in this benchmark, as is common with interpretive-style

applications.

Figure C.9 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS and

I-CS) configurations. Tables C.16 and C.17 indicate cycle accounting and instruction

counting data, respectively. This application benefits only very slightly (achieving a

speedup of only 1.02 relative to classically optimized code) from CFS transformation in

the IMPACT compiler, as configured in this dissertation. With slightly more aggressive

predication, however, including paths of lower weight relative to the main path and

allowing a greater increase in operations issued on included alternate paths, its benefit

increases, yielding a speedup of 1.10.

In perlbmk, indirect function call inlining improved performance for all versions of the

code. In CFS configurations, this transformation revealed opportunities for subsequent

optimization. These opportunities also became sites of frequent wild load generation,

which dramatically impacted the application’s performance before the techniques de-

scribed in Section 6.7 were applied.

S-CS and I-CS configurations yield very similar results. Interprocedural pointer

analysis yielded a 1.05× speedup. In Figure C.9, chunk free(), chunk alloc(), and

memcpy() are library code. The execution time of memcpy() is evidently reduced by

improvements in instruction cache behavior, since its code is not optimized by IMPACT.

C.3.9 254.gap

Gap is an interpreter for computational discrete algebra. The most important com-

ponent from a performance production standpoint in the SPEC CINT2000 context is an

interpreter component that performs multiple-precision mathematical operations. The

274

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

253.perlbmk execution time distribution for O-NS code

P
er

l_
re

ge
xe

c_
fla

gs

P
er

l_
ru

no
ps

_s
ta

nd
ar

d

ch
un

k_
fr

ee

P
er

l_
sv

_s
et

sv

re
gm

at
ch

P
er

l_
pp

_h
el

em
P

er
l_

pp
_s

as
si

gn
P

er
l_

pp
_c

on
ca

t
P

er
l_

pp
_m

at
ch

M
D

5T
ra

ns
fo

rm
P

er
l_

pp
_p

ad
sv

ch
un

k_
al

lo
c

P
er

l_
pp

_a
el

em
P

er
l_

pp
_a

nd
P

er
l_

am
ag

ic
_c

al
l

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

253.perlbmk execution time distribution for O-NS code

P
er

l_
re

ge
xe

c_
fla

gs

P
er

l_
ru

no
ps

_s
ta

nd
ar

d

ch
un

k_
fr

ee

P
er

l_
sv

_s
et

sv

re
gm

at
ch

P
er

l_
pp

_h
el

em
P

er
l_

pp
_s

as
si

gn
P

er
l_

pp
_c

on
ca

t
P

er
l_

pp
_m

at
ch

M
D

5T
ra

ns
fo

rm
P

er
l_

pp
_p

ad
sv

ch
un

k_
al

lo
c

P
er

l_
pp

_a
el

em
P

er
l_

pp
_a

nd
P

er
l_

am
ag

ic
_c

al
l

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.9 Execution profile for 253.perlbmk. Execution times are for code with (a) non-
predicated and (b) predicated CFS transformation applied, relative to classi-
cally optimized code.

Table C.16 Cycle accounting data for 253.perlbmk

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.520E+11 1.476E+11 1.310E+11 1.428E+11 1.345E+11

flush br 1.320E+10 1.176E+10 1.189E+10 1.151E+10 1.125E+10

flush xpn 2.247E+07 2.290E+07 2.512E+07 2.252E+07 4.959E+07

micropipe 2.394E+10 2.686E+10 2.688E+10 2.715E+10 2.739E+10

scorebd gr/gr 2.884E+08 2.891E+08 3.134E+08 2.916E+08 3.147E+08

scorebd gr/ld 3.630E+10 3.868E+10 3.882E+10 3.668E+10 3.659E+10

scorebd fr 2.057E+09 2.031E+09 1.866E+09 1.806E+09 1.944E+09

scorebd misc 1.579E+09 2.777E+09 2.474E+09 2.780E+09 2.817E+09

reg stack 2.200E+09 2.566E+09 2.775E+09 2.504E+09 2.574E+09

front end 1.283E+10 1.374E+10 1.509E+10 1.158E+10 1.274E+10

KERNEL 1.256E+09 1.107E+09 1.190E+09 1.158E+09 1.977E+09

TOTAL 2.457E+11 2.474E+11 2.323E+11 2.383E+11 2.322E+11

Table C.17 Instruction accounting data for 253.perlbmk

O-NS S-NS S-CS I-NS I-CS

Useful instr. 3.991E+11 3.936E+11 4.059E+11 3.925E+11 4.078E+11

Pred. squashed instr. 1.412E+09 1.356E+09 1.357E+09 1.927E+10 2.248E+10

nop instr. 8.849E+10 9.040E+10 8.019E+10 8.334E+10 7.476E+10

Total instr. 4.890E+11 4.854E+11 4.875E+11 4.951E+11 5.050E+11

275

interpreter relies on a table of operator functions (an array of function pointers) to eval-

uate various types of expressions. Interpreted operations operate on variable-sized large

numbers, represented by (containerized) array data structures allocated from a garbage-

collected pool.

Figure C.10 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS and

I-CS) configurations. Tables C.18 and C.19 indicate cycle accounting and instruction

counting data, respectively.

The interpreter structure (most invocations through function pointers) and data struc-

tures (array-based objects allocated from a custom allocator) pose special challenges for

an EPIC optimizer. IMPACT exposes parallelism across indirect function invocations by

performing inlining under a condition for important indirect callees (as determined in con-

trol flow graph profiling). This makes a very substantial difference (20% improvement) in

gap’s performance, but perhaps increases profile dependence to an uncomfortable degree.

This puts IMPACT’s performance in the ballpark of Intel’s electron compiler. Current

peeling heuristics lose about 3%.

IMPACT is not successfully disambiguating accesses to the data structures used in

the multiple-precision, interpreted arithmetic routines. This problem, due to the custom

memory allocation scheme not being recognized by the compiler as providing unique des-

tination “bags,” prevents otherwise very profitable loop pipelining. IMPACT could ex-

tract a significant amount of performance here if it could, through either disambiguation

or data speculation, reorder reads and writes in the multiple-precision arithmetic rou-

tines. Small-trip-count, nested loops (such as in multiplication of two multiple-precision

numbers) present interesting region formation challenges. Cursory examination reveals

unexploited peeling opportunities.

Superblock-only region formation is slightly more effective than IMPACT’s Hyper-

block framework, delivering 1.06× more performance. The primary reason for this differ-

ence is a two-step phenomenon: First, a relatively unprofitable general Hyperblock (See

Section 5.4.3) is formed in the Lblock phase of the compiler. Next, in the Lsuperscalar

phase, the ILP enhancement phase, where Superblock formation is run, this Hyperblock

276

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

254.gap execution time distribution for O-NS code

P
ro

d

C
ol

le
ct

G
ar

b

P
ow

E
vF

or

S
um

In
t

F
un

B
lis

tL
is

t

E
vE

lm
Li

st
E

vF
un

cc
al

l
Lt Q

uo

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

254.gap execution time distribution for O-NS code

P
ro

d

C
ol

le
ct

G
ar

b

P
ow

E
vF

or

S
um

In
t

F
un

B
lis

tL
is

t

E
vE

lm
Li

st
E

vF
un

cc
al

l
Lt Q

uo

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.10 Execution profile for 254.gap. Execution times are for code with (a) nonpred-
icated and (b) predicated CFS transformation applied, relative to classically
optimized code.

Table C.18 Cycle accounting data for 254.gap

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.154E+11 1.041E+11 8.475E+10 1.073E+11 8.916E+10

flush br 6.907E+09 6.475E+09 6.539E+09 5.787E+09 5.854E+09

flush xpn 1.057E+07 1.068E+07 3.332E+08 1.051E+07 3.470E+08

micropipe 1.565E+10 1.495E+10 1.643E+10 1.622E+10 1.733E+10

scorebd gr/gr 3.034E+09 3.503E+09 3.697E+09 3.812E+09 3.729E+09

scorebd gr/ld 4.351E+10 4.235E+10 4.131E+10 4.295E+10 4.192E+10

scorebd fr 3.227E+09 2.938E+09 2.876E+09 3.141E+09 2.806E+09

scorebd misc 7.350E+08 3.740E+08 9.385E+08 5.127E+08 1.574E+09

reg stack 6.535E+08 8.841E+08 1.082E+09 7.912E+08 1.635E+09

front end 4.027E+09 3.961E+09 5.092E+09 3.286E+09 4.209E+09

KERNEL 8.685E+08 7.104E+08 5.557E+09 5.762E+08 5.832E+09

TOTAL 1.940E+11 1.802E+11 1.686E+11 1.843E+11 1.744E+11

Table C.19 Instruction accounting data for 254.gap

O-NS S-NS S-CS I-NS I-CS

Useful instr. 2.258E+11 2.173E+11 2.202E+11 2.179E+11 2.244E+11

Pred. squashed instr. 1.501E+09 1.487E+09 1.472E+09 8.613E+09 7.732E+09

nop instr. 7.259E+10 6.123E+10 4.589E+10 5.868E+10 4.421E+10

Total instr. 2.999E+11 2.800E+11 2.675E+11 2.852E+11 2.764E+11

277

prevents the formation of a desirable (and more profitable) Superblock region. The

author has enhanced the Superblock former to be able to form Superblocks through ex-

isting Hyperblocks where it is possible to do so without computing new predicates. This

compiler improvement, which relaxes a previously annoying phase ordering constraint,

closes approximately half the gap between the Hyperblock-enabled model and the more

profitable Superblock-only scheme.

A run of gap with its reference input used for training yields a 1.06× speedup, indicat-

ing that profile stability is a problem in this benchmark, as is common with interpretive-

style applications. Interprocedural pointer analysis yielded a 1.06× speedup. Intel’s

reference compiler improves gap’s performance by approximately 15% using a patented

scheme for stride-detecting software prefetching [54]. IMPACT lacks this capability and

so trails Intel’s performance, but only by a small fraction of this difference.

S-CS and I-CS results are strikingly similar. The S-CS result benefits 3% from

branch target expansion. Both S-CS and I-CS are incurring a tripling of kernel cycle

time for gap. This is due to an unhandled instances of wild loads, as described in

Section 6.7.

C.3.10 255.vortex

Vortex (Virtual Object Runtime Expository) is an object-oriented database applica-

tion. Three inputs simulate various dataset sizes and insert, delete, and lookup patterns.

Much of vortex’s code checks for error conditions that simply never occur. Profile-based

inlining, trace-based optimization, and control dependence height reduction are there-

fore very successful in providing high performance. Predication seems to be relatively

unimportant, compared to simple Superblock trace formation. A traditional Superblock

region approach achieves similar performance results to the complex Hyperblock former

used typically.

Figure C.11 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS and

I-CS) configurations. Tables C.20 and C.21 indicate cycle accounting and instruction

counting data, respectively.

278

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

255.vortex execution time distribution for O-NS code

S
aF

in
dI

n

ch
un

k_
fr

ee

P
ar

t_
D

el
et

e

O
aG

et

Q
ue

ry
_A

ss
er

tO
nD

b

ch
un

k_
al

lo
c

O
aP

ut

m
em

cp
y

S
aD

el
et

eN
od

e
B

M
T

_V
al

id
at

e
C

_R
eF

ax
T

oD
b

O
aD

el
et

eF
ie

ld
s

T
re

e_
R

ec
ur

se
S

ea
rc

h

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

255.vortex execution time distribution for O-NS code

S
aF

in
dI

n

ch
un

k_
fr

ee

P
ar

t_
D

el
et

e

O
aG

et

Q
ue

ry
_A

ss
er

tO
nD

b

ch
un

k_
al

lo
c

O
aP

ut

m
em

cp
y

S
aD

el
et

eN
od

e
B

M
T

_V
al

id
at

e
C

_R
eF

ax
T

oD
b

O
aD

el
et

eF
ie

ld
s

T
re

e_
R

ec
ur

se
S

ea
rc

h

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.11 Execution profile for 255.vortex. Execution times are for code with (a) non-
predicated and (b) predicated CFS transformation applied, relative to clas-
sically optimized code.

Table C.20 Cycle accounting data for 255.vortex

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.056E+11 6.320E+10 4.193E+10 6.391E+10 4.489E+10

flush br 1.706E+09 1.268E+09 1.374E+09 1.107E+09 1.073E+09

flush xpn 3.827E+07 3.770E+07 3.769E+07 3.796E+07 3.996E+07

micropipe 2.933E+10 2.752E+10 2.912E+10 2.953E+10 2.970E+10

scorebd gr/gr 2.956E+08 1.824E+08 1.009E+08 1.938E+08 1.046E+08

scorebd gr/ld 5.476E+10 5.170E+10 5.267E+10 5.333E+10 5.066E+10

scorebd fr 4.329E+09 3.742E+09 2.621E+09 2.697E+09 2.085E+09

scorebd misc 3.241E+08 4.395E+08 2.688E+08 4.260E+08 3.067E+08

reg stack 1.963E+09 2.461E+09 2.791E+09 2.874E+09 3.689E+09

front end 2.036E+10 4.042E+09 4.131E+09 4.072E+09 3.940E+09

KERNEL 1.404E+09 1.098E+09 1.151E+09 1.236E+09 1.165E+09

TOTAL 2.201E+11 1.557E+11 1.362E+11 1.594E+11 1.377E+11

Table C.21 Instruction accounting data for 255.vortex

O-NS S-NS S-CS I-NS I-CS

Useful instr. 2.350E+11 1.577E+11 1.595E+11 1.639E+11 1.650E+11

Pred. squashed instr. 5.218E+09 5.211E+09 5.221E+09 1.067E+10 1.136E+10

nop instr. 7.551E+10 3.319E+10 1.773E+10 3.859E+10 1.487E+10

Total instr. 3.158E+11 1.961E+11 1.825E+11 2.131E+11 1.913E+11

279

Vortex performance is very sensitive to inlining, as indicated in Chapter 7, which

enables formation of large execution traces. These traces are then exploited with heavy

utilization of control speculation.

Instruction cache and instruction-side translation lookaside buffer (TLB) performance

vary substantially with optimization level. Comparing I-CS to O-NS, the optimized

version issues 39% fewer instruction cache accesses with the L1I hit rate simultaneously

improving from 95% to 98%. The number of instruction-related accesses to L2 is cut by

a factor of five. The number of L1I TLB misses is also reduced by 44%. Specialization,

although it substantially increases the total application code footprint, has a net beneficial

effect on instruction fetch and issue in this program.

Predication buys little additional performance in vortex, with a Superblock-only re-

gion formation strategy being approximately as effective. In several procedures, predica-

tion achieves a benefit, but a substantial loss in SaFindIn() more than offsets these gains.

In this function, the inclusion of a small piece of infrequently executed error checking

code in the main loop Hyperblock results in a loss of key optimization potential (register

promotion-enabled constant propagation) for the remainder of the block. Optimization of

logical conditions and the predicate define network might also yield improvements. The

situation could be improved with substantial improvements in the optimizer, resulting in

a positive margin of a few percentage points improvement for I-CS relative to S-CS.

Vortex was particularly responsive to interprocedural pointer analysis, with FULCRA

IPA [59] achieving a speedup of 1.18× relative to non-IPA optimization; a relatively

simple application of IPA (field-insensitive, context-insensitive, Andersen’s), however,

was sufficient to accomplish this improvement (See Section B.6).

Vortex garners about a 5% improvement in performance due to modulo scheduling.

Post-Superblock-formation optimizations (performed in Lsuperscalar) achieved a re-

markable 11% improvement in performance in vortex. It was the only benchmark to

respond with more than a 3% change to these optimizations.

280

The functions chunk free(), chunk alloc(), and memcpy(), the three prominent

functions with little benefit in Table C.20, are provided from gcc-compiled system li-

braries. The substantial contribution of these currently unoptimizable functions moti-

vates library and cross-module compilation using IMPACT. Vortex spends a quarter of

its execution time dealing with data address translation and could benefit somewhat from

larger pages (as many accesses wind up traversing the HPW).

C.3.11 256.bzip2

Bzip2 is a Burrows-Wheeler compressor, as embodied in Julian Seward’s familiar

*NIX utility.

Figure C.12 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS and

I-CS) configurations. Tables C.22 and C.23 indicate cycle accounting and instruction

counting data, respectively.

Of all the SPEC CINT2000 benchmarks bzip2 benefits most markedly from the use of

predication, which achieves a 1.20× speedup relative to Superblock-only code. Surpris-

ingly, almost none of this benefit is due to traditional Hyperblock formation techniques.

The majority of this large benefit is due to the combination of two factors: first, the

use of predication to implement the new stage predicate unrolling schema described in

Section 8.4; and, second, the development of store-load dependence avoidance techniques

in the dependence test and instruction scheduling portions of the compiler. This reduc-

tion in execution cycles, spread across several loops in the various prominent functions

of bzip2, appears as a prominent reduction in L1D micropipeline and load dependence

stalls. Prior to the implementation of this technique, predication yielded only a 1.03×

speedup relative to the Superblock-only code. This is not surprising, since even with

the technique, branch misprediction stalls are reduced by 10%, amounting to only 1% of

execution time. Unstalled execution cycles are hardly impacted.

Interprocedural pointer analysis, including Omega test, yielded a 1.12× speedup. This

is almost entirely due to manipulation of short-term store-load dependences in the critical

281

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

256.bzip2 execution time distribution for O-NS code

ge
ne

ra
te

M
T

F
V

al
ue

s

ge
tA

nd
M

ov
eT

oF
ro

nt
D

ec
od

e

so
rt

It

un
do

R
ev

er
si

bl
eT

ra
ns

fo
rm

at
io

n_
fa

st

qS
or

t3

si
m

pl
eS

or
t

se
nd

M
T

F
V

al
ue

s

lo
ad

A
nd

R
LE

so
ur

ce

(R
E

M
A

IN
D

E
R

)

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

256.bzip2 execution time distribution for O-NS code

ge
ne

ra
te

M
T

F
V

al
ue

s

ge
tA

nd
M

ov
eT

oF
ro

nt
D

ec
od

e

so
rt

It

un
do

R
ev

er
si

bl
eT

ra
ns

fo
rm

at
io

n_
fa

st

qS
or

t3

si
m

pl
eS

or
t

se
nd

M
T

F
V

al
ue

s

lo
ad

A
nd

R
LE

so
ur

ce

(R
E

M
A

IN
D

E
R

)

I-CS
I-NS

(b)

Figure C.12 Execution profile for 256.bzip2. Execution times are for code with (a) non-
predicated and (b) predicated CFS transformation applied, relative to clas-
sically optimized code.

Table C.22 Cycle accounting data for 256.bzip2

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.258E+11 1.048E+11 9.272E+10 1.075E+11 9.398E+10

flush br 1.882E+10 1.835E+10 1.918E+10 1.755E+10 1.749E+10

flush xpn 4.247E+06 5.362E+06 6.813E+06 6.604E+06 2.189E+07

micropipe 3.856E+10 4.081E+10 4.246E+10 3.857E+10 4.084E+10

scorebd gr/gr 2.658E+09 2.288E+09 2.283E+09 1.936E+09 2.238E+09

scorebd gr/ld 5.151E+10 6.483E+10 5.762E+10 3.323E+10 3.658E+10

scorebd fr 2.885E+05 2.568E+05 1.170E+05 1.606E+05 1.383E+05

scorebd misc 9.837E+07 9.802E+07 4.818E+04 1.012E+08 2.876E+06

reg stack 5.822E+04 1.190E+05 8.276E+07 2.638E+07 1.234E+08

front end 3.522E+09 3.675E+09 3.835E+09 3.263E+09 3.396E+09

KERNEL 8.986E+08 8.645E+08 9.533E+08 9.859E+08 1.585E+09

TOTAL 2.419E+11 2.357E+11 2.191E+11 2.032E+11 1.963E+11

Table C.23 Instruction accounting data for 256.bzip2

O-NS S-NS S-CS I-NS I-CS

Useful instr. 3.040E+11 2.801E+11 2.858E+11 2.858E+11 2.965E+11

Pred. squashed instr. 1.437E+09 1.459E+09 1.446E+09 1.238E+10 1.151E+10

nop instr. 7.230E+10 6.866E+10 6.388E+10 4.786E+10 3.956E+10

Total instr. 3.778E+11 3.502E+11 3.512E+11 3.461E+11 3.476E+11

282

loop mentioned previously. Bzip2 performance benefited by 2% from Lsuperscalar

optimizations (beyond region formation and unrolling).

C.3.12 300.twolf

Twolf is based on the TimberWolfSC placement and routing application for micropro-

cessor lithography. Given a collection of standard cells, twolf iteratively arranges, rotates,

and interconnects them. The algorithm used relies on a simulated annealing technique; a

pseudorandom number generator is frequently used to select the next cell to reposition.

Figure C.13 shows the execution time for the program’s functions, relative to the

baseline (O-NS) version, in nonpredicated (S-NS and S-CS) and predicated (I-NS and

I-CS) configurations. Tables C.24 and C.25 indicate cycle accounting and instruction

counting data, respectively.

IMPACT in the I-CS configuration achieves good performance in twolf. IMPACT is

very successful at forming good Hyperblock loop regions, but software pipelining only

achieves a 1% speedup due to constraining initiation intervals. Predication achieves a

1.12× speedup in twolf relative to Superblock-only code, attributable to three sources:

(1) the overlapping of independent control constructs allowed by peeling and if-conversion

transformations; (2) the elimination of branch misprediction penalty; and (3) more

instruction-cache-efficient exploitation of ILP.

Peeling is very active in twolf, overlapping the initial iterations of loops with each other

and with long, previous divide operations (IMPACT inlines all divide macro operations on

the Itanium architecture). As was indicated in Section 5.7.2, twolf benefits from peeling,

but peeling causes it to suffer an increase in instruction cache misses. Nonetheless,

examination of code suggests that, in certain cases, more aggressive peeling may be

warranted. More selective peeling methods could achieve increased benefit, if they could

allow more peeling in profitable cases while curtailing code growth in less-promising

locales.

Front end bubble cycles are increased by 50% in twolf I-CS, due to the extensive code

replication incurred by peeling, but even so they account for less than 5% of execution

time. (S-CS even more heavily impacts instruction fetch performance.) I-CS reduces

283

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

300.twolf execution time distribution for O-NS code

ul
oo

p

uc
xx

1

S-CS
S-NS

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

(r
el

at
iv

e
to

 O
-N

S
 c

od
e)

300.twolf execution time distribution for O-NS code

ul
oo

p

uc
xx

1

I-CS
I-NS

(b)

Figure C.13 Execution profile for 300.twolf. Execution times are for code with (a) non-
predicated and (b) predicated CFS transformation applied, relative to clas-
sically optimized code.

Table C.24 Cycle accounting data for 300.twolf

Accounting category O-NS S-NS S-CS I-NS I-CS

unstalled 1.600E+11 1.310E+11 1.344E+11 1.508E+11 1.269E+11

flush br 3.234E+10 4.069E+10 4.024E+10 1.374E+10 1.350E+10

flush xpn 3.438E+06 3.387E+06 3.281E+06 3.099E+06 3.010E+06

micropipe 2.265E+10 2.395E+10 2.438E+10 2.548E+10 2.698E+10

scorebd gr/gr 2.431E+06 2.431E+06 2.431E+06 2.431E+06 2.431E+06

scorebd gr/ld 1.239E+11 1.330E+11 1.268E+11 1.362E+11 1.220E+11

scorebd fr 5.503E+10 4.609E+10 2.871E+10 3.338E+10 3.074E+10

scorebd misc 1.537E+09 8.339E+08 8.739E+07 4.392E+08 4.930E+08

reg stack 1.533E+08 2.843E+08 3.170E+08 7.280E+08 7.161E+08

front end 1.151E+10 1.995E+10 2.524E+10 1.760E+10 1.832E+10

KERNEL 1.014E+09 1.136E+09 1.001E+09 8.969E+08 8.128E+08

TOTAL 4.081E+11 3.969E+11 3.812E+11 3.793E+11 3.405E+11

Table C.25 Instruction accounting data for 300.twolf

O-NS S-NS S-CS I-NS I-CS

Useful instr. 3.414E+11 3.290E+11 3.371E+11 3.224E+11 3.397E+11

Pred. squashed instr. 2.044E+09 2.133E+08 2.243E+08 3.115E+10 3.005E+10

nop instr. 1.269E+11 1.248E+11 1.178E+11 1.148E+11 1.012E+11

Total instr. 4.704E+11 4.541E+11 4.551E+11 4.684E+11 4.709E+11

284

branch misprediction flush cycles markedly relative to both approaches. As in crafty, the

author experimented with combining common code segments between control-exclusive

regions to reduce code size. (In twolf, this would have required either rewriting the

application or doing complicated semantic matching in the compiler, after inlining, so

these transformations were done by hand.) These experiments did not produce positive

results, as the versioning allowed for by correct, individual profiles was more valuable to

performance than any achievable reduction in code size.

The S-CS performance improved 2% with branch target expansion, and could benefit

another 2% from a more aggressive application. Increasing losses from instruction cache

pressure limit the gains achievable within this model, however, relative to the I-CS

approach. Interprocedural pointer analysis delivers a 1.07× speedup, requiring a field-

sensitive approach to do so.

Comparing to a production compiler, icc -O3 -ipo -prof gen|prof use achieves a

score of 923, while the -O2 version delivers only a 798. These scores bookend IMPACT’s I-

CS result. icc -O3 offers high-level loop transformations and prefetching, which are not

accessible to IMPACT. The benefits from these transformations, which are measurable

as decreases in integer load stall time, would likely add orthogonally to the performance

of twolf if combined in a common infrastructure.

Finally, twolf has many performance-influencing integer division operations whose

divisors (such as the number of pins) are variable but likely stable. Profiling could

probably identify common cases for specialization as cheaper operation sequences than

full divisions.

285

REFERENCES

[1] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J. Shen, “Coming
challenges in microarchitecture and architecture,” Proceedings of the IEEE, vol. 89,
no. 3, pp. 329–340, 2001.

[2] International Technology Roadmap for Semiconductors, “International Technology
Roadmap for Semiconductors,” 2003, http://public.itrs.net/.

[3] D. Culler and J. Singh, Parallel Computer Architecture: A Hardware/Software
Approach. San Francisco, CA: Morgan Kaufmann, 1999.

[4] M. S. Schlansker, B. R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. Anik,
and G. Abraham, “Achieving high levels of instruction-level parallelism with re-
duced hardware complexity,” Hewlett-Packard Laboratory, Tech. Rep. HPL-96-
120, November 1994.

[5] Standard Performance Evaluation Corporation, “SPEC CINT2000 benchmarks,”
2000, http://www.spec.org/cpu2000.

[6] N. P. Jouppi and D. W. Wall, “Available instruction-level parallelism for super-
scalar and superpipelined machines,” in Proceedings of the 3rd International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, April 1989, pp. 272–282.

[7] M. D. Smith, M. Johnson, and M. A. Horowitz, “Limits on multiple instruction
issue,” in Proceedings of the 3rd International Conference on Architectural Support
for Programming Languages and Operating Systems, April 1989, pp. 290–302.

[8] D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings of the 4th
International Conference on Architectural Support for Programming Languages and
Operating Systems, April 1991, pp. 176–188.

[9] M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge, “The limits of in-
struction level parallelism in SPEC95 applications,” Computer Architecture News,
vol. 27, pp. 31–34, March 1999.

286

[10] M. S. Lam and R. P. Wilson, “Limits of control flow on parallelism,” in Proceedings
of the 19th International Symposium on Computer Architecture, May 1992, pp. 46–
57.

[11] Standard Performance Evaluation Corporation, “SPEC CINT95 benchmarks,”
1995, http://www.spec.org/cpu95.

[12] H.-H. Lee, Y. Wu, and G. Tyson, “Quantifying instruction-level parallelism limits
on an epic architecture,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2000, pp. 21–27.

[13] M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and P. Shivakumar,
“The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays,” in
Proceedings of the 29th International Symposium on Computer Architecture, June
2002, pp. 14–24.

[14] E. Sprangle and D. Carmean, “Increasing processor performance by implementing
deeper pipelines,” in Proceedings of the 29th Annual International Symposium on
Computer Architecture, May 2002, pp. 14–24.

[15] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock rate versus IPC:
The end of the road for conventional microarchitectures,” in Proceedings of the
27th International Symposium on Computer Architecture, June 2000, pp. 248–259.

[16] G. Moore, “No exponential is forever...but we can delay forever,” Keynote address
at the 2004 International Solid State Circuits Conference, Feburary 2003.

[17] A. Hartstein and T. Puzak, “Optimum power/performance pipeline depth,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, December 2003, pp. 117–125.

[18] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,”
IBM Journal of Research and Development, vol. 11, pp. 25–33, January 1967.

[19] F. Pollack, “New microarchitecture challenges in the coming generations of CMOS
process technologies.” Keynote at the 32nd International Symposium on Microar-
chitecture, December 1999.

[20] D. Carmean, “The Pentium 4 processor.” Hot Chips 13, Stanford University, Palo
Alto, CA, August 2001.

[21] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL PlayDoh architecture speci-
fication: Version 1.0,” Hewlett-Packard Laboratories, Palo Alto, CA, Tech. Rep.
HPL-93-80, February 1994.

[22] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, “The Superblock: An effective technique for VLIW and superscalar
compilation,” The Journal of Supercomputing, vol. 7, pp. 229–248, January 1993.

287

[23] M. S. Schlansker and B. R. Rau, “EPIC: Explicitly Parallel Instruction Comput-
ing,” IEEE Computer, vol. 33, pp. 37–45, February 2000.

[24] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, “Overlapped loop support in the Cydra
5,” in Proceedings of the Third International Conference on Architectural Support
for Programming Languages and Operating Systems, April 1989, pp. 26–38.

[25] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix,
J. S. O’Donnell, and J. C. Ruttenberg, “The Multiflow Trace scheduling compiler,”
The Journal of Supercomputing, vol. 7, pp. 51–142, January 1993.

[26] B. R. Rau and J. A. Fisher, “Instruction-level parallel processing: History,
overview, and perspective,” The Journal of Supercomputing, vol. 7, pp. 9–50, Jan-
uary 1993.

[27] M. Schlansker and B. R. Rau, “EPIC: An architechure for instruction parallel pro-
cessors,” Hewlett-Packard Laboratory, Tech. Rep. HPL-1999-111, February 2000.

[28] R. D. Barnes, E. M. Nystrom, J. W. Sias, N. Navarro, S. J. Patel, and W. W.
Hwu, “Beating in-order stalls with ‘flea-flicker’ two-pass pipelining,” in Proceedings
of 36th Annual International Symposium on Microarchitecture, December 2003,
pp. 387–398.

[29] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R. M. Kling, and J. P. Shen,
“Memory latency-tolerance approaches for Itanium processors: Out-of-order ex-
ecution vs. speculative precomputation,” in Proceedings of the 8th International
Symposium on High-Performance Computer Architecture, February 2002, pp. 167–
176.

[30] A. Glew, “MLP yes! ILP no,” in Proceedings of the ASPLOS Wild and
Crazy Ideas Forum, October 1998, http://www.cs.berkeley.edu/~kubitron/ asp-
los98/slides/andrew glew.pdf.

[31] L. Gwennap, “Intel, HP make EPIC disclosure,” Microprocessor Report, vol. 11,
pp. 1–9, October 1997.

[32] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch directions
from previous runs of a program,” in Proceedings of 5th International Conference on
Architectual Support for Programming Languages and Operating Systems, October
1992, pp. 85–95.

[33] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, “Code generation schema for
modulo scheduled loops,” in Proceedings of the 25th Annual International Sympo-
sium on Microarchitecture, December 1992, pp. 158–169.

[34] J. Bharadwaj, K. Menezes, and C. McKinsey, “Wavefront scheduling: Path based
data representation and scheduling of subgraphs,” in Proceedings of 32nd Annual
International Symposium on Microarchitecture, December 1999, pp. 262–271.

288

[35] J. Bharadwaj, W. Chen, W. Chuang, G. Hoflehner, K. Menezes, K. Muthukumar,
and J. Pierce, “The Intel IA-64 compiler code generator,” IEEE Micro, vol. 20,
pp. 44–53, October 2000.

[36] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann, and W. W.
Hwu, “Effective compiler support for predicated execution using the Hyperblock,”
in Proceedings of the 25th International Symposium on Microarchitecture, December
1992, pp. 45–54.

[37] W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery, G. E.
Haab, J. C. Gyllenhaal, and D. I. August, “Compiler technology for future micro-
processors,” Proceedings of the IEEE, vol. 83, pp. 1625–1640, December 1995.

[38] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier, B. Cheng,
P. R. Eaton, Q. B. Olaniran, and W. W. Hwu, “Integrated predicated and spec-
ulative execution in the IMPACT EPIC architecture,” in Proceedings of the 25th
International Symposium on Computer Architecture, June 1998, pp. 227–237.

[39] Y. Choi, A. Knies, L. Gerke, and T. Ngai, “The impact of if-conversion and branch
prediction on program execution on the Intel Itanium Processor,” in Proceedings of
the 34th International Symposium on Microarchitecture, December 2001, pp. 182–
191.

[40] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August, “Compiler
optimization-space exploration,” in Proceedings of the 2003 International Sympo-
sium on Code Generation and Optimization, March 2003, pp. 204–215.

[41] C. McNairy and D. Soltis, “Itanium 2 processor microarchitecture,” IEEE Micro,
vol. 23, pp. 44–55, March 2003.

[42] W. W. Hwu, J. W. Sias, M. C. Merten, E. M. Nystrom, R. D. Barnes, C. J. Shan-
non, S. Ryoo, and J. V. Olivier, “Itanium performance insights,” Microprocessor
Forum, San Jose, CA, October 2001.

[43] Gelato/UIUC OpenIMPACT Effort, “The OpenIMPACT IA-64 compiler,” 2005,
http://gelato.uiuc.edu/.

[44] J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,”
IEEE Transactions on Computers, vol. C-30, pp. 478–490, July 1981.

[45] M. S. Lam, “Software pipelining: An effective scheduling technique for VLIW
machines,” in Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, June 1988, pp. 318–328.

[46] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Profile-guided auto-
matic inline expansion for C programs,” Software Practice and Experience, vol. 22,
pp. 349–370, May 1992.

289

[47] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, “Sen-
tinel scheduling for VLIW and superscalar processors,” in Proceedings of the 5th
International Conference on Architectural Support for Programming Languages and
Operating Systems, October 1992, pp. 238–247.

[48] D. I. August, W. W. Hwu, and S. A. Mahlke, “A framework for balancing control
flow and predication,” in Proceedings of the 30th Annual International Symposium
on Microarchitecture, December 1997, pp. 92–103.

[49] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Reading, MA: Addison-Wesley, 1986.

[50] J. Bharadwaj, K. Menezes, and C. McKinsey, “Wavefront scheduling: Path based
data representation and scheduling of subgraphs,” Journal of Instruction-Level Par-
allelism, vol. I, May 2000, http://www.jilp.org/vol2/v2paper12.pdf.

[51] Intel Corporation, Intel Itanium 2 Processor Reference Manual for Software Devel-
opment and Optimization, Document Number 251110-001, June 2002.

[52] J. W. Sias, S.-Z. Ueng, G. A. Kent, I. M. Steiner, E. M. Nystrom, and W. W.
Hwu, “Field testing IMPACT EPIC research results in Itanium 2,” in Proceedings
of the 31st Annual International Symposium on Computer Architecture, June 2004,
pp. 26–37.

[53] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and R. Gupta, “Pre-
dictability of load/store instruction latencies,” in Proceedings of the 26th Interna-
tional Symp. on Microarchitecture, December 1993, pp. 139–152.

[54] Y. Wu, “Efficient discovery of regular stride patterns in irregular programs and its
use in compiler prefetching,” in Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, 2002, pp. 210–221.

[55] J. W. Sias, W. W. Hwu, and D. I. August, “Accurate and efficient predicate anal-
ysis with binary decision diagrams,” in Proceedings of 33rd Annual International
Symposium on Microarchitecture, December 2000, pp. 112–123.

[56] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. Rodman,
“A VLIW architecture for a trace scheduling compiler,” in Proceedings of the 2nd
International Conference on Architectural Support for Programming Languages and
Operating Systems, April 1987, pp. 180–192.

[57] Intel Corporation, Intel IA-64 Architecture Software Developer’s Manual Volume
1: Application Architecture, Document Number 245317-003, December 2001.

[58] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir, “Introducing the
IA-64 architecture,” IEEE Micro, vol. 20, pp. 12–23, September 2000.

290

[59] E. M. Nystrom, “FULCRA pointer analysis framework,” Ph.D. dissertation, De-
partment of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, 2005.

[60] W. Pugh, “The Omega Test: A fast and practical integer programming algorithm
for dependence analysis,” in Proceedings of Supercomputing 1991, November 1991,
pp. 4–13.

[61] S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA:
Morgan Kaufmann Publishers, 1997.

[62] J. Henning, “SPEC CPU2000: Measuring CPU performance in the new millen-
nium,” IEEE Computer, vol. 33, pp. 28–35, July 2000.

[63] S. Eranian, “Perfmon: linux performance monitoring for IA64,” 2003,
http://www.hpl.hp.com/research/linux/perfmon/.

[64] J. Lin, T. Chen, W. Hsu, P. Yew, R. Ju, T. Ngai, and S. Chan, “A compiler
framework for speculative analysis and optimizations,” in Proceedings of PLDI
2003, 2003, pp. 289–299.

[65] B. L. Deitrich and W. W. Hwu, “Speculative hedge: Regulating compile-time spec-
culation against profile variations,” in Proceedings of the 29th International Sym-
posium on Microarchitecture, December 1996, pp. 70–79.

[66] S. McFarling, “Reality-based optimization,” in Proceedings of the 2003 Conference
on Code Generation and Optimization, March 2003, pp. 59–68.

[67] M. C. Merten, “A framework for profile-driven optimization in the IMPACT bi-
nary reoptimization system,” M.S. thesis, Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, 1999.

[68] M. S. Schlansker, S. A. Mahlke, and R. Johnson, “Control CPR: A branch height
reduction optimization for EPIC architectures,” in Proceedings of the ACM SIG-
PLAN 1999 Conference on Programming Language Design and Implementation,
May 1999, pp. 155–168.

[69] R. E. Hank, W. W. Hwu, and B. R. Rau, “Region-based compilation: An introduc-
tion and motivation,” in Proceedings of the 28th Annual International Symposium
on Microarchitecture, December 1995, pp. 158–168.

[70] R. E. Hank, “Region based compilation,” Ph.D. dissertation, Department of Elec-
trical and Computer Engineering, University of Illinois at Urbana-Champaign,
1996.

[71] W. Pugh and D. Wonnacott, “Eliminating false data dependences using the Omega
Test,” in Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation, June 1992, pp. 140–151.

291

[72] R. D. Ju, K. Nomura, U. Mahadevan, and L.-C. Wu, “A unified framework for
control and data speculation,” in Proceedings of the 2000 International Conference
on Parallel Architectures and Compilation Techniques, October 2000, pp. 157–168.

[73] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu,
“Dynamic memory disambiguation using the memory conflict buffer,” in Proceed-
ings of 6th International Conference on Architectual Support for Programming Lan-
guages and Operating Systems, October 1994, pp. 183–193.

[74] B. C. Cheng, “A profile-driven automatic inliner for the IMPACT compiler,”
M.S. thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1997.

[75] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph
and its use in optimization,” ACM Transactions on Programming Languages and
Systems, vol. 9, pp. 319–349, July 1987.

[76] J. C. Park and M. S. Schlansker, “On predicated execution,” Hewlett Packard
Laboratories, Palo Alto, CA, Tech. Rep. HPL-91-58, May 1991.

[77] N. J. Warter, G. E. Haab, K. Subramanian, and J. W. Bockhaus, “Enhanced
modulo scheduling for loops with conditional branches,” in Proceedings of the 25th
Annual International Symposium on Microarchitecture, December 1992, pp. 170–
179.

[78] B. Kernighan and D. Ritchie, The C Programming Language. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1988.

[79] S. A. Mahlke, “Exploiting instruction level parallelism in the presence of conditional
branches,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1995.

[80] Intel Corporation, Intel IA-64 Architecture Software Developer’s Manual Volume
3: Instruction Set Reference, Document Number 245319-003, December 2001.

[81] S. A. Mahlke, R. E. Hank, J. McCormick, D. I. August, and W. W. Hwu, “A
comparison of full and partial predicated execution support for ILP processors,” in
Proceedings of the 22th International Symposium on Computer Architecture, June
1995, pp. 138–150.

[82] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra 5 departmental
supercomputer,” IEEE Computer, vol. 22, pp. 12–35, January 1989.

[83] D. I. August, “Hyperblock performance optimizations for ILP processors,” M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, 1996.

[84] D. I. August, J. W. Sias, J. Puiatti, S. A. Mahlke, D. A. Connors, K. M. Crozier,
and W. W. Hwu, “The program decision logic approach to predicated execution,”
in Proceedings of the 26th International Symposium on Computer Architecture, May
1999, pp. 208–219.

292

[85] L. Carter, B. Simon, B. Calder, L. Carter, and J. Ferrante, “Predicated single static
assignment,” in Proceedings of the International Conference on Parallel Architec-
tures and Compilation Techniques, October 1999, pp. 245–255.

[86] A. E. Eichenberger, W. Meleis, and S. Maradani, “An integrated approach to accel-
erate data and predicate computations in Hyperblocks,” in Proceedings of the 33rd
Annual International Symposium on Microarchitecture, December 2000, pp. 101–
111.

[87] V. H. Allan, J. Janardhan, R. M. Lee, and M. Srinivas, “Enhanced region scheduling
on a program dependence graph,” in Proceedings of the 25th Annual International
Symposium on Microarchitecture, December 1992, pp. 72–80.

[88] S. Ryoo, “Partial code elimination in the IMPACT compiler framework,” M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, 2004.

[89] W. W. Hwu, D. I. August, and J. W. Sias, “Program decision logic optimiza-
tion using predication and control speculation,” Proceedings of the IEEE, vol. 89,
pp. 1660–1675, November 2001.

[90] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary decision dia-
grams,” School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU-CS-92-160, October 1992.

[91] J. W. Sias, “Condition awareness support for predicate analysis and optimization,”
M.S. thesis, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, 1999.

[92] D. August, “Systematic compilation for predicated execution,” Ph.D. disserta-
tion, Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, 2000.

[93] R. Johnson and M. Schlansker, “Analysis techniques for predicated code,” in Pro-
ceedings of the 29th International Symposium on Microarchitecture, December 1996,
pp. 100–113.

[94] D. M. Gillies, D. R. Ju, R. Johnson, and M. Schlansker, “Global predicate analysis
and its application to register allocation,” in Proceedings of the 29th International
Symposium on Microarchitecture, December 1996, pp. 114–125.

[95] R. C. Johnson and M. S. Schlansker, “Compiling a Predicated Code with Direct
Analysis of the Predicated Code,” U. S. Patent No. 5,920,716, July 1999.

[96] A. E. Eichenberger and E. S. Davidson, “Register allocation for predicated code,”
in Proceedings of the 28th Annual International Symposium on Microarchitecture,
December 1995, pp. 180–191.

293

[97] T.-Y. Yeh and Y. N. Patt, “Alternative implementation of two-level adaptive
branch prediction,” in Proceedings of the 19th International Symposium on Com-
puter Architecture, May 1992, pp. 124–134.

[98] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher,
and W. W. Hwu, “Characterizing the impact of predicated execution on branch
prediction,” in Proceedings of the 27th International Symposium on Microarchitec-
ture, December 1994, pp. 217–227.

[99] G. S. Tyson, “The effects of predicated execution on branch prediction,” in Pro-
ceedings of the 27th International Symposium on Microarchitecture, December 1994,
pp. 196–206.

[100] D. N. Pnevmatikatos and G. S. Sohi, “Guarded execution and branch prediction in
dynamic ILP processors,” in Proceedings of the 21st International Symposium on
Computer Architecture, April 1994, pp. 120–129.

[101] J. W. Sias, H. C. Hunter, and W. W. Hwu, “Enhancing loop buffering of media and
telecommunications applications using low-overhead predication,” in Proceedings
of 33rd Annual International Symposium on Microarchitecture, December 2001,
pp. 262–273.

[102] D. A. Connors, J.-M. Puiatti, D. I. August, K. M. Crozier, and W. W. Hwu,
“An architecture framework for introducing predicated execution into embedded
microprocessors,” in Proceedings of the 5th Annual Euro-Par Conference, August
1999, pp. 1301–1311.

[103] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of the 8th
International Symposium on Computer Architecture, May 1981, pp. 135–148.

[104] W. W. Hwu and Y. N. Patt, “Checkpoint repair for high performance out-of-
order execution machines,” in Proceedings of the 14th International Symposium on
Computer Architecture, June 1987, pp. 18–26.

[105] J. Smith and G. Sohi, “The microarchitecture of superscalar processors,” Proceed-
ings of the IEEE, vol. 83, no. 12, pp. 1609–1624, 1995.

[106] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “Dynamic specula-
tion and synchronization of data dependences,” in Proceedings of the 1997 Inter-
national Symposium on Computer Architecture, December 1997, pp. 181–193.

[107] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau,
and M. S. Schlansker, “Sentinel scheduling for VLIW and superscalar processors,”
ACM Transactions on Computer Systems, vol. 11, pp. 376–408, November 1993.

[108] M. D. Smith, “Architectural support for compile-time speculation,” in The Interac-
tion of Compilation Technology and Computer Architecture, Boston, MA: Kluwer
Academic Publishers, 1994, pp. 13–49.

294

[109] R. A. Bringmann, “Compiler-controlled speculation,” Ph.D. dissertation, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 1995.

[110] J. Knoop, O. Rüthing, and B. Steffen, “Lazy code motion,” in Proceedings of the
ACM SIGPLAN 1992 Conference on Programming Language Design and Imple-
mentaton, June 1992, pp. 224–234.

[111] J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts in pipelined
processors,” in Proceedings of the 12th Annual International Symposium on Com-
puter Architecture, June 1985, pp. 36–44.

[112] Hewlett-Packard Company, Cupertino, CA, PA-RISC 1.1 Architecture and Instruc-
tion Set Reference Manual, 1990.

[113] W. W. Hwu, D. A. Connors, D. I. August, and J. W. Sias, “Method and apparatus
for enhancing instruction-level parallelism,” United States Patent No. 6,640,315,
October 2003.

[114] R. A. Bringmann, S. A. Mahlke, R. E. Hank, J. C. Gyllenhaal, and W. W. Hwu,
“Speculative execution exception recovery using write-back suppression,” in Pro-
ceedings of 26th Annual International Symposium on Microarchitecture, December
1993, pp. 214–223.

[115] M. D. Smith, M. S. Lam, and M. A. Horowitz, “Boosting beyond static scheduling
in a superscalar processor,” in Proceedings of the 17th International Symposium on
Computer Architecture, May 1990, pp. 344–354.

[116] M. D. Smith, M. A. Horowitz, and M. S. Lam, “Efficient superscalar performance
through boosting,” in Proceedings of the Fifth International Conference on Archi-
tecture Support for Programming Languages and Operating Systems, October 1992,
pp. 248–259.

[117] Intel Corporation, Intel IA-64 Architecture Software Developer’s Manual Volume
2: System Architecture, Document Number 245318-003, December 2001.

[118] L.-C. Wu, R. Mirani, H. Patil, B. Olsen, and W. W. Hwu, “A new framework for de-
bugging globally optimized code,” in Proceedings of the ACM SIGPLAN 1999 Con-
ference on Programming Language Design and Implementation, May 1999, pp. 181–
191.

[119] S. A. Mahlke, “Design and implementation of a portable global code optimizer,”
M.S. thesis, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, 1991.

[120] B. R. Rau, “Iterative modulo scheduling: An algorithm for software pipelining
loops,” in Proceedings of the 27th International Symposium on Microarchitecture,
December 1994, pp. 63–74.

295

[121] F. Somenzi, “CUDD: CU Decision Diagram package, release 2.30,” 1998,
http://vlsi.colorado.edu/~fabio/CUDD/.

[122] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
Transactions on Programming Languages and Systems, vol. 13, pp. 451–490, Octo-
ber 1991.

[123] P. Markstein, IA-64 and Elementary Functions: Speed and Precision. Upper Saddle
River, New Jersey: Prentice Hall PTR, 2000.

[124] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL-PD architecture specification:
Version 1.1,” Hewlett-Packard Laboratories, Palo Alto, CA, Tech. Rep. HPL-93-80
(R.1), February 2001.

[125] T. Kiyohara, W. W. Hwu, and W. Chen, “Memory conflict buffer for achieving
memory disambiguation in compile-time code schedule,” United States Patent No.
5,694,577, December 1997.

[126] D. Bacon and P. Sweeney, “Fast static analysis of C++ virtual function calls,” in
Proceedings of OOPSLA 1996, 1996, pp. 324–341.

[127] S. McFarling, “Procedure merging with instruction caches,” in Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Imple-
mentation, June 1991, pp. 71–79.

[128] S. Triantafyllis, M. Vachharajani, and D. I. August, “Procedure boundary elimina-
tion for EPIC compilers,” in Proceedings of the 2nd Workshop on Explicitly Parallel
Instruction Computing (EPIC) Architectures and Compiler Techniques, November
2002, pp. 70–76.

[129] K. Hazelwood and D. Grove, “Adaptive online context-sensitive inlining,” in Pro-
ceedings of the 2003 International Symposium on Code Generation and Optimiza-
tion, March 2003, pp. 253–264.

[130] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of 29th Annual
International Symposium on Microarchitecture, December 1996, pp. 46–57.

[131] T. Ball, P. Mataga, and M. Sagiv, “Edge profiling versus path profiling: The
showdown,” in Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, January 1998, pp. 134–148.

[132] D. Melski and T. Reps, “Interprocedural path profiling,” Department of Computer
Sciences, University of Wisconsin Madison, Tech. Rep. CS-TR-98-1382, September
1998.

[133] A. M. Holler, “Optimization for a superscalar out-of-order machine,” in Proceedings
of the 26th Annual International Symposium on Microarchitecture, November 1996,
pp. 336–348.

296

[134] D. M. Lavery and W. W. Hwu, “Unrolling-based optimizations for modulo schedul-
ing,” in Proceedings of the 28th International Symposium on Microarchitecture,
November 1995, pp. 327–337.

[135] J. F. Collard and D. M. Lavery, “Optimizations to prevent cache penalties for the
Intel Itanium 2 Processor,” in Proceedings of the 2003 International Symposium on
Code Generation and Optimization, March 2003, pp. 105–114.

[136] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallet, “Local microcode com-
paction techniques,” ACM Computing Surveys, vol. 12, pp. 261–294, September
1980.

[137] R. E. Hank, “Machine independent register allocation for the IMPACT-I C com-
piler,” M.S. thesis, Department of Electrical and Computer Engineering, University
of Illinois at Urbana-Champaign, 1995.

[138] M. Tokoro, E. Tamura, and T. Takizuka, “Optimization of microprograms,” IEEE
Transaction on Computers, vol. C-30, pp. 491–504, July 1981.

[139] J. Ellis, Bulldog: A Compiler for VLIW Architectures. Cambridge, MA: The MIT
Press, 1985.

[140] J. A. Fisher, “Global code generation for instruction-level parallelism: Trace
scheduling-2,” Hewlett-Packard Laboratory, Tech. Rep. HPL-93-43, June 1993.

[141] M. Schlansker, V. Kathail, and S. Anik, “Height reduction of control recurrences
for ILP processors,” in Proceedings of the 27th International Symposium on Mi-
croarchitecture, December 1994, pp. 40–51.

[142] M. Schlansker and V. Kathail, “Critical path reduction for scalar programs,” in
Proceedings of the 28th International Symposium on Microarchitecture, December
1995, pp. 57–69.

[143] K. Ebcioğlu, E. Altman, S. Sathaye, and M. Gschwind, “Optimizations and oracle
parallelism with dynamic translation,” in Proceedings of the 29th Annual Interna-
tional Symposium on Microarchitecture, November 1999, pp. 284–295.

[144] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in Proceedings ACM
SIGPLAN 1990 Conference on Programming Language Design and Implementa-
tion, June 1990, pp. 16–27.

[145] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient procedure mapping using
cache line coloring,” in Proceedings of the ACM SIGPLAN 1997 Conference on
Programming Language Design and Implementation, 1997, pp. 171–182.

[146] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. P. Shen, “Register
renaming and scheduling for dynamic execution of predicated code,” in Proceedings
of the 7th International Symposium on High-Performance Computer Architecture,
January 2001, pp. 15–25.

297

[147] R. Barnes and W. Hwu, “Multipass pipelining,” in Proceedings of the Fourth Work-
shop on Explicitly Parallel Instruction Computer Architectures and Compiler Tech-
nology, March 2005, http://rogue.colorado.edu/EPIC4/.

[148] G. Ottoni, R. Rangan, N. Vachharajani, and D. August, “Decoupled software
pipelining: A promising technique to exploit thread level parallelism,” in Proceed-
ings of the Fourth Workshop on Explicitly Parallel Instruction Computer Architec-
tures and Compiler Technology, March 2005, http://rogue.colorado.edu/EPIC4/.

[149] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations for exploiting
memory-level parallelism,” in Proceedings of the 31st Annual International Sympo-
sium on Computer Architecture, June 2004, pp. 76–87.

[150] B. C. Cheng and W. W. Hwu, “Modular interprocedural pointer analysis using
access paths: Design, implementation, and evaluation,” in Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and Implementa-
tion, June 2000, pp. 57–68.

[151] B. C. Cheng, “Compile-time memory disambiguation for C programs,” Ph.D.
dissertation, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2000.

[152] R. Ghiya, D. Lavery, and D. Sehr, “On the importance of points-to analysis and
other memory disambiguation methods for C programs,” in Proceedings of the
ACM Symposium on Programming Language Design and Implementation, June
2001, pp. 47–57.

[153] S. Triantafyllis, M. Vachharajani, and D. August, “Compiler optimization-space
exploration,” Journal of Instruction-Level Parallelism, vol. 7, February 2005,
http://www.jilp.org/vol7/v7paper3.pdf.

[154] F. Mueller and D. B. Whalley, “Avoiding unconditional jumps by code replication,”
in Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation, June 1992, pp. 332–330.

[155] F. Mueller and D. B. Whalley, “Avoiding conditional branches by code replication,”
in Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, June 1995, pp. 55–66.

[156] J. C. Gyllenhaal, “An efficient framework for performing execution-constraint-
sensitive transformations that increase instruction-level parallelism,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 1997.

[157] J. C. Gyllenhaal, B. R. Rau, and W. W. Hwu, “HMDES version 2.0 specification,”
IMPACT, University of Illinois at Urbana-Champaign, Tech. Rep. IMPACT-96-03,
1996.

298

[158] S.-Z. Ueng, “Template building for EPIC architectures,” M.S. thesis, Department of
Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,
2004.

[159] D. M. Lavery, “Modulo scheduling for control-intensive general-purpose programs,”
Ph.D. dissertation, Department of Electrical and Computer Engineering, University
of Illinois at Urbana-Champaign, 1997.

[160] B. R. Rau, M. S. Schlansker, and P. Tirumalai, “Code generation schemas for
modulo scheduled do-loops and while-loops,” Hewlett Packard Labs, Tech. Rep.
HPL-92-47, April 1992.

[161] G. J. Chaitin, “Register allocation and spilling via graph coloring,” in Proceedings
of the ACM SIGPLAN 82 Symp. on Compiler Construction, June 1982, pp. 98–105.

[162] F. C. Chow and J. L. Hennessy, “The priority-based coloring approach to register
allocation,” ACM Transactions on Programming Languages and Systems, vol. 12,
pp. 501–536, October 1990.

[163] P. Briggs, K. D. Cooper, and L. Torczon, “Rematerialization,” in Proceedings of
the ACM SIGPLAN 1992 Conference on Programming Language Design and Im-
plementation, June 1992, pp. 311–321.

[164] GCC Project, “GNU Compiler Collection version 3.2,” 2003, http://gcc.gnu.org/.

[165] Intel Corporation, “Intel C/C++ Compiler 8.1 for Linux,” 2004,
http://www.intel.com/software/products/compilers/clin/.

299

AUTHOR’S BIOGRAPHY

John Wollenburg Sias earned his Bachelor of Science in Computer Engineering (High-

est Honors, University Honors) and Master of Science in Electrical Engineering degrees

from the University of Illinois at Urbana-Champaign in 1997 and 1999, respectively.

Since 1996 he has served as a research assistant in the Illinois Microarchitecture Project

Utilizing Advanced Compiler Technology (IMPACT) Research Group, under Professor

Wen-mei W. Hwu. (The IMPACT Research Group is affiliated with the Coordinated Sci-

ence Laboratory and the Center for Reliable and High-Performance Computing.) John

architected the re-development of the IMPACT Research Compiler to target the Itanium

processor family and leads compiler development in the research domain and, under the

Gelato Initiative’s OpenIMPACT program, the public domain. He has also collaborated

extensively with experts at Intel and Hewlett-Packard Corporations and worked four

summers at the IBM Centre for Advanced Research in Toronto, Canada. While John’s

work has focused primarily on compiler technology for instruction-level parallelism in

explicitly-parallel instruction computing systems, he has also participated in developing

compiler techniques for nontraditional, ultra-efficient computer architectures.

John has enrolled in the Master of Divinity program at Concordia Theological Semi-

nary, Fort Wayne, Indiana. The Lord willing, he will, upon completion of this program,

be called and ordained as a pastor in the Lutheran Church—Missouri Synod.

300

