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1CHAPTER 1INTRODUCTIONMultistage interconnection networks (MIN's) have been proposed as a means forhardware sorting [1], data alignment in array (SIMD) machines [2], and for use inshared memorymultiprocessor (MIMD) systems [3]. Projects to build large-scale sharedmemory multiprocessors are under way in industry and academia, among them the RP3by IBM [4], and Cedar by the University of Illinois [5] [6]. In these MIMD systems,multistage interconnection networks replace the conceptually desirable, yet infeasible,crossbar switch as a means to connect memory modules to processors.The performance of multistage interconnection networks has been studied exten-sively in the literature. Patel introduced the Delta network and commented on its ex-pected bandwidth and cost-e�ectiveness in [3]. Kruskal and Snir used analytical queuingtheory techniques to derive the performance of bu�ered and unbu�ered banyan multi-stage interconnection networks under random tra�c. For the bu�ered banyan network,they derived an equation for the performance of the �rst stage of the network and



2estimate the performance of the network from this �rst-stage approximation [7]. Workdone by Dias and Jump [8] used Petri net techniques to analyze the performance of abu�ered Delta network. They found that the length of bu�ers inside the network hada large impact on performance, with an optimal value of one or two bu�ers per stage.In the design of the Cedar system, the results of these performance studies andseparate simulation studies were used to make initial design considerations. The entiresystem was not simulated exactly in an e�ort to speed up the design cycle. During thefabrication of the system, it was decided that an e�ort should be started to predict theperformance of the networks via a detailed simulation. The results of this simulationstudy would then be used to begin the design cycle for the next version of the Cedar sys-tem, while the current version of the system was being fabricated and assembled. Thisthesis presents an overview of the Cedar interconnection networks, and the techniquesused in the simulation of the networks, and discusses the results of the simulation.When Cedar becomes operational, the behavior of the network will be investigated viameasurement techniques, which will add to the knowledge gained in this study. How-ever, not all behavior measurable in the simulation will be directly measurable in thereal system. Hence, the study described herein has long-term usefulness to the designeralong with the advantage of decreasing the design time of the next version of Cedar.In Chapter 2, the design of the global memory subsystem is discussed, reviewingthose features that impact the performance of the subsystem. Then, in Chapter 3, thealgorithm used to simulate the subsystem is discussed. After Chapter 3, the reader



3should be con�dent that the performance of our simulator matches that of the subsys-tem.The work presented in this thesis concentrates on the performance of a global mem-ory subsystem composed of two unidirectional Omega networks, N memory units andN processors. Systems containing 8, 16, and 64 processors and memory units are in-vestigated in Chapters 4 and 5. The simulator will be used to determine an expressionfor a lower bound on the global memory subsystem's performance To do this, the sub-system's performance under its worst-possible workload will be evaluated. In Chapter5, the simulator will be used to evaluate the usefulness of intelligent access patterns,to help understand how the subsystem performs in general.Several conclusions will be drawn:� There is little di�erence between best-case and worst-case global memory subsys-tem performance for small-scale (8- and 16-processor) systems. There are notice-able di�erences in larger (64-processor) systems.� For all system sizes, the memory units are the bottleneck to the performance ofthe subsystem for all tra�c patterns discussed.� Because prefetch operations cannot be guaranteed to start at the same time, al-gorithms for intelligently accessing data that exploit the characteristics of Omeganetworks may perform no better than the worst-case accessing scenario.From these results, some guidelines can be proposed for building a global memorysubsystem using Omega networks and an equal number of memory units and processors:



4� The bandwidth of the memory units of the subsystem should be equal to thebandwidth of the networks� Prefetch operations should be synchronizable� The compiler should use heuristics derived from simulation to hide prefetch per-formance by scheduling prefetch operations far enough in advance of the opera-tions that require the prefetch data.



5CHAPTER 2SYSTEM OVERVIEWThe simulation of any subsystem of a computer requires careful consideration ofthe components of the computer that service the subsystem and the components thatmake requests of the subsystem. the global memory subsystem is to be simulated andanalyzed. This subsystem is composed of the memory units of the global memory andthe networks that shuttle requests between the computational elements and the globalmemory. An architectural-level description of this subsystem is presented here. Thesimulator that was constructed to observe the behavior of the subsystem implements aslightly more detailed description than what follows in order to capture implementationissues of the subsystem that may a�ect its performance. This simulator was writtenin the C programming language and consists of approximately two thousand lines ofcode; it will be described in the following chapter.



6In this chapter, an overview of the Cedar system is presented, followed by a de-scription of the global memory subsystem in detail, and conclude with some examplesof the operation of the subsystem.2.1 Cedar System OverviewThe Cedar multiprocessor is composed of clusters of K computational elements(CEs) (currently,K = 8), where each cluster is a modi�ed Alliant FX/8 mini-supercomputer.The CEs in a cluster can communicate between themselves via a crossbar switch anda synchronization bus. All CEs in all clusters have peer-access to a global memory [6].The global memory subsystem is composed of two unidirectional, N � N Omeganetworks and N memory units (MUs) [6]. The network that takes requests to thememory units is called the to-network , and the network that returns requests from thememory units is called the from-network (See Figure 2.1). The from-network and theto-network are identical in structure and built usingK�K bu�ered crossbar switchingelements (SEs). Handshaking control signals are used between SEs to implement owcontrol inside the network. For the current version of Cedar, the SEs are 8� 8 wide.CEs access global memory via a global memory interface board (GIB). A GIB canbe instructed by a CE to prefetch a vector from global memory in addition to normalscalar variable accesses. Even though all accesses are actually emitted from a GIB, aCE will be thought of as performing a memory reference instead of a GIB performingthe reference. Since there is a GIB associated with each CE, there will be no ambiguity.



7From-network
To-network MUN�1

MU1MU0...Figure 2.1: The Cedar global memory access subsystem.The entire global memory subsystem is synchronous and controlled by a centralclock. Time units delimited by this clock will be referred to as clock tics.2.2 The Global Memory SubsystemA detailed description of the global memory subsystem is now presented, �rst bydescribing the architecture of the Omega networks that comprise the to-network andthe from-network. Then, the operation of the switching elements will be described andsome notation will be introduced which will be useful in the examples section at theend of the chapter. Finally, at the close of this section operation of the memory unitswill be described.



82.2.1 The architecture of the networksEach network is a generalized Omega network [2]. It has a total of N = KM in-puts, and the SEs are arrayed into M columns of B = N=K SEs. The stages, Si,are numbered 0; . . . ;M . In this notation, the computational elements (memory units)will be symbolically represented as stage S0 (SM ) in the to-network (from-network)and the memory units (computational elements) as stage SM (S0) in the from-network(to-network).An example of a Cedar con�guration would have two stages of eight SEs (N =64;K = 8;M = 2). The SEs are labeled [Si; j], where j = 0 is the uppermost SE andj = B � 1 is the lowermost SE, when stage Si is viewed as a column of SEs.Between each stage in a network is a K*B shu�e connection de�ned by the functionShu�eK�B: Let INSi be the label of an input line and OUTSi be the label of an outputline of an SE in stage Si , where the lines are labeled 0; . . . ;N � 1 from the top to thebottom of a column, then,INSi = Shu�eK�B(OUTSi�1 ) = (OUTSi�1 �B + bOUTSi�1K c) mod N;for all i, 0 < i < M � 1 (see [2]). Additionally, there is a K � B shu�e includedbefore stage S1 to allow a network to realize an identity permutation (CEi accessingMUi, 0 � i < N) [3]. (For a general network, see Figure 2.2.) Routing through a net-work is distributed and performed by successively resolving the destination address ateach stage. Let SOURCE and DEST be the source and destination addresses (respec-tively), expressed in base-K, for a request sent through a network. For example, for a
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Shuffle

K �KSE... ...K �KSE... ...K �KSE... ...��� Shuffle
K �KSE... ...K �KSE... ...K �KSE... ...��� � � � Shuffle

K �KSE... ...K �KSE... ...K �KSE... ...���Figure 2.2: The architecture of a general Omega network.request entering the to-network, SOURCE is the requesting CEs number, and DESTis the destination MUs number. An SE in stage Si directs a message to the outputport equal to the ith base-K digit of DEST. For notational convenience, the functionWindow(SOURCE;DEST; Si), is de�ned as the value of the network output that therequest will be routed to in stage Si; 0 < i �M . Another de�nition of the Window func-tion would be: concatenate SOURCE and DEST, discard the (i�1)st signi�cant (base-K) digits, and then the value of Window is theM most signi�cant digits of the remain-ing number. As a �nal comment, note that Window(SOURCE;DEST; S0) = SOURCE,and that Window(SOURCE;DEST; SM) = DEST.



102.2.2 Packet structureThe networks are packet-switched, where each packet is composed of a series of�xed-length words. Each line through a network is as wide as this word-size so thatpacket words can be transmitted in parallel. The �rst word in the packet is a routingand control header called the access control word (ACW ). This word contains, amongother information, the SOURCE and DEST addresses referred to above, and the o�setinto a memory module of a datum (i.e., the datum's memory address). The length ofa packet is variable. If words follow the ACW, their meaning is not interpreted by thenetwork hardware. Usually, if any words follow the ACW, they contain data and willbe referred to as data words.Three control signals govern the tra�c on each network line. These control signalsare: BUSY, used for ow control; AD, used to discriminate between access and datapackets; and HOLD, used to implement variable length packets. The AD signal isasserted for the �rst word in each packet. Subsequent words are data words. The HOLDsignal is set for each packet word except the last. Hence, these two signals implementvariable length packets. The �nite-length bu�ering of the network is regulated usingthe BUSY signal, and its detailed operation will be explained below.There are three types of packets: read, write, and synchronization. Read packetsare one word long in the to-network (i.e., an ACW only), and the acknowledgementto a read packet is two words long in the from-network (i.e., the ACW and the datumread). Write packets are two words long in the to-network (i.e., the ACW and the



11datum to be written) and one word long in the from-network (an ACW that servesas a write acknowledge). Synchronization packets can take various forms, dependingon the operations performed. Since this research focuses on prefetching operations,synchronization packets will not be treated here.Packet-word notation will be used in the following discussions of the switchingelements and memory units. In this notation, an ACW is represented as one of \R,"or \W," for read packets or write packets (respectively). The packet's source (i.e., theSOURCE value described above) is represented as a subscript, and the destination (i.e.,DEST) as a superscript. (These sub- and superscripts will be omitted when they arenot important to the discussion.) Additionally, data words are represented as \D." Thecase of the letters is signi�cant: lower-case represents the last word of a packet, andupper-case is used for every other word of the packet. Hence, the case of the lettersmirrors the setting of the HOLD signal. Since packet-word notation shall later be usedin a network drawing where data ows from left to right, packets are written right toleft, with the ACW on the right. For example, if CE1 is sending to MU8 one read andone write request, the requests would be written as shown in Table 2.1.Table 2.1: An example of read and write requests.To-Network From-Networkread r81 d R18write d W81 w18



122.2.3 Switching element structureAs previously discussed, the switching elements perform all routing inside the net-works. Inside each of these SEs, each of the K inputs connects to a �rst-in �rst-outinput queue (FIFO) of length `SE. The outputs of the input queues are then connectedto a crossbar switch. After the switch there is an output port (composed of a latch) be-fore each of the K outputs. (See Figure 2.3.) Currently, the input queues are composed
��� ���� � �� � �� � � K �KCrossbar ��� ���Figure 2.3: A Switching Element (SE ).of a latch followed by a register, and are e�ectively of length two (`SE = 2).When an ACW word reaches the head of an input queue, it is serviced and per-mission may be granted to transfer all of the words of the packet across the crossbar.There are two reasons why permission to transmit may not be granted. The �rst is aresult of ow control and handshaking in the network (see Section 2.2.4). The secondreason is contention, and it occurs when two or more (up to K) ACWs arrive at thehead of their respective input queues at the same time and request the same output



13port. Such requests are said to be blocked due to contention for a speci�c output portof the crossbar. All such requests are placed in a snapshot for a given output port, andthe output port is said to be in contention. A contention resolution policy is used todecide which of the blocked requests should be serviced �rst. The current policy is asfollows:1. The request at the head of the lowest numbered input queue of the snapshot istransmitted across the crossbar, then that request at the head of the next nextlowest numbered input queue is transmitted, etc., until all packets in the snapshothave been transmitted.2. If during the servicing of a snapshot another request arrives for the output port,it must wait until all requests in the snapshot have been transmitted before itcan be transmitted.3. Any request destined for an output port that is not in contention can pass to thespeci�ed output port without being delayed.This policy provides some means of fairness while avoiding more complicated schemesand the complex hardware needed to implement them.Switch-slice notation will be used to diagram the state of the switching elements inthe network. It is useful to think of the switch in terms of slices, where each slice isthe two input bu�ers and the output port being requested (by an ACW at the head ofthe input FIFO). Packet-word notation is used to represent the contents of the bu�ers.



14[1; 0; 0] - W [1] W[1; 0; 0] - d (1) d[1; 0; 0] - - () -Figure 2.4: A write request traveling through an SE.When a bu�er is empty, \-" is used. The crossbar is represented by \[i]," where i is theoutput port number requested. Square braces indicate that the current packet has beengiven permission to transmit to the output port, whereas \(i)," indicates that it is eitherin contention for the output port or �nished transmission. The output port number, i,may be omitted when it is not important. The switch slice is labeled \[Sm; b; i]" whereSm is the stage number, b is the row number of the SE, and i is the input port number(0 � i < K). The label \[]" indicates that the switch slice label is not important to thediscussion at handAs an example of the above notation, the progress of a write request travelingthrough the �rst input of an SE and requesting the second output of the SE is shownin Figure 2.4.Note that an idle slice is represented by \[] - - () - ," in switch-slicenotation.2.2.4 HandshakingHandshaking through the network is implemented using the BUSY signal. Recallthat there is a latch on each of the output ports of an SE (Section 2.2.1). This latch is



15usually transparent as long as the bu�ers that the output leads to are not full (i.e., theinput bu�er of another SE, or the input ports of the memory units). However, whenthese bu�ers become full, the BUSY control signal associated with the network line(that connects the input bu�er to the previous stage's output bu�er) is asserted. Ite�ectively closes the output latch in an SE. The output port is then said to be busy.Hence, the meaning of BUSY is simply, \hold further requests."There are propagation delays in the transmission of a busy signal. This delay isrepresented as a two-slot queue between switch slices. An element of the queue can beempty, which is represented as an equals sign, \=", or, an element of the queue cancontain an asserted busy signal, which is represented as a left arrow, \ ". Figure 2.5shows the busy signal between two SEs being asserted at at clock tic 0, and lowered atclock tic 1. tic 0: [] r2 r3 () r3 = [] r1 r0 () r0tic 1: [] - r2 () r3  =[] - r1 () r1tic 2: [] - r2 () r2 ==[] - r3 () r3Figure 2.5: Transmission of the busy signal.This example is useful in illustrating some of the behavior of the SE bu�eringschemes. Note how the busy signal prevented the SE in the �rst stage from transmittingread request r2 across the crossbar. Because of the propagation delay, even though atclock tic 1 the input bu�er of the SE in the second stage could accept the request r3,the request r2 was not serviced until the following clock tic. This latency is a major



16reason that the input queue of the SE in the second stage cannot be combined withthe output latch of the SE in the �rst stage and treated conceptually as a single FIFOqueue.2.2.5 Memory unit structureEach of the N memory units (MUs), has identical structure, with an input bu�er,memory service area, and output bu�er. The input bu�er is composed of `MU registers,Ii, 0 � i < `MU. Data enters from the to-network through I0, and advances on thenext clock to I1, etc., until it reaches I(`MU�1). There is a special register called anassembly register , that follows the input bu�er. The assembly register is composed ofa pair of hardware registers, one to hold the header of a packet and one to hold thewrite-data portion of the packet for write operations. Once the packet is fully assembledin this input assembly register, it is copied into a service assembly register inside theservice area. There the request waits a period of time called the memory unit servicedelay, �, which is currently �ve clock tics. Requests wait in this service area while theactual memory operation is being performed. The resultant packet enters an assemblyregister in the output bu�er of the memory. From there it is placed on the outputFIFO, Oi; 0 � i < `MU. Unlike the input bu�er, the output FIFO is not composed ofregisters and therefore performs like a true FIFO queue. `MU = 2 will be used, exceptwhere explicitly stated otherwise. (See Figure 2.6.)
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I0 I1 O0 O1

Memory
Decode & accessFigure 2.6: The pipeline of a memory unit, `MU = 2.2.2.6 Prefetch operationPrefetch instructions are issued by the Cedar FORTRAN compiler directly beforethe vector instructions that require them. Each CE inside a cluster performs prefetchoperations independently by making requests to the GIB associated with the CE. TheCE will stall until the operation is completed. Each GIB performs a prefetch operationindependently from other GIBs, so that accesses are asynchronous across the processorsusing the subsystem. These details have impact on the performance of the subsystem,as will be shown in Chapter 4.



182.3 ExamplesSome examples of the operation of the networks will now be presented. An exampleof the handshaking in the network has already been presented in Figure 2.5; here twomore examples of the subsystem's operation are shown.2.3.1 An example of a read from memoryIn the �rst example, the to-network tra�c for a read from MU0 by CE3 is shown forN = 8, K = 2, M = 3, and B = 4. These subsystem parameters correspond to an 8�8Omega network for both networks, 8 CEs, and 8 MUs. The switch-slice notation alongwith the simulation clock are shown in Figure 2.7. Notice that it takes each packetword one clock tic to pass through a stage.To-network: tic 0[0; 2; 1] - r03 0 r03 ==[] - - () - ==[] - - () -To-network: tic 1[] - - () - ==[1; 1; 0] - r03 0 r03 ==[] - - () -To-network: tic 3[] - - () - ==[] - - () - ==[2; 0; 1] - r03 0 r03Figure 2.7: The to-network tra�c for a read from MU0 by CE3.2.3.2 A contention exampleAn example using a subsystem of dimensions N = 16;K = 4;M = 2; and B = 4 isnow shown. In this example, CE0, CE4, CE8, and CE12, submit a read packet destinedto MU0. The tra�c in the to-network is shown in Figure 2.8. Notice that the requestscollide in the �rst stage of the network. Request r00 is allowed to transmit across the



19To network: 0 tics[1; 0; 0] - r00 (0) r00 ==[] - - () - ==[1; 0; 1] - r04 (0) r00 ==[] - - () - ==[1; 0; 2] - r08 (0) r00 ==[] - - () - ==[1; 0; 3] - r012 (0) r00 ==[] - - () - ==To network: 1 tics[1; 0; 1] - r04 (0) r04 ==[2; 0; 0] - r00 (0) r00 ==[1; 0; 2] - r08 (0) r04 ==[2; 0; 0] - r00 (0) r00 ==[1; 0; 3] - r012 (0) r04 ==[2; 0; 0] - r00 (0) r00 ==To network: 2 tics[1; 0; 2] - r08 (0) r08 ==[2; 0; 0] - r04 (0) r04 ==[1; 0; 3] - r012 (0) r08 ==[2; 0; 0] - r04 (0) r04 ==To network: 3 tics[1; 0; 3] - r012 (0) r012 ==[2; 0; 0] - r08 (0) r08 ==To network: 4 tics[] - - () - ==[2; 0; 0] - r012 (0) r012 ==Figure 2.8: The to-network tra�c for the second example.crossbar �rst via the contention resolution policy explained in Section 2.2.3. During thenext clock, r04 is allowed to pass, etc., until all packets waiting have cleared the �rststage, at clock tic 4.The tra�c in the from-network is shown in Figure 2.9. Notice that the output portreserved by the header of a packet remains reserved until the data portion of the packethas passed through the network. There is no contention in the from-network, since MU0issues requests sequentially and since each packet is destined for a di�erent CE.
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From network: 8 tics[1; 0; 0] - R00 [0] R00 ==[] - - () - ==From network: 9 tics[1; 0; 0] - d (0) d ==[2; 0; 0] - R00 [0] R00 ==From network: 10 tics[] - - () - ==[2; 0; 0] - d (0) d ==From network: 12 tics[1; 0; 0] - R40 [1] R40 ==[] - - () - ==From network: 13 tics[1; 0; 0] - d (1) d ==[2; 1; 0] - R40 [0] R40 ==From network: 14 tics[] - - () - ==[2; 1; 0] - d (0) d ==From network: 16 tics[1; 0; 0] - R80 [2] R80 ==[] - - () - ==From network: 17 tics[1; 0; 0] - d (2) d ==[2; 2; 0] - R80 [0] R80 ==From network: 18 tics[2; 2; 0] - d (0) d ==[] - - () - ==From network: 20 tics[1; 0; 0] - R120 [3] R120 ==[] - - () - ==From network: 21 tics[1; 0; 0] - d (3) d ==[2; 3; 0] - R120 [0] R120 ==From network: 22 tics[] - - () - ==[2; 3; 0] - d (0) d ==Figure 2.9: The from-network tra�c for the second example.



21CHAPTER 3THE SIMULATORHow the simulator was constructed to match the performance of the global memorysubsystem can now be described. This description reviews some of the simulator designconstraints and should be useful to those who wish to write simulations of computersystems. Those who are not interested may wish to skip to the next chapter.3.1 Simulator OverviewThe simulator is composed of four modules. These modules are:Pattern generator. This module generates a scenario �le for the simulator which con-tains a list of packet words for input to the simulator. The output �le is generatedfrom a user-supplied subroutine written in C that simulates the CEs/GIBs.Simulation main-loop. This module initializes the data structures, performs I/O on thescenario �le and the statistics �les, and executes the simulation components.



22Network simulation. This module evaluates the state of the switching elements for eachstage in a network. It is called twice by each iteration of the simulation main-loop,once for the to-network and once for the from-network.Memory unit simulation. This module evaluates the state of the memory units in theglobal memory, taking the output of the to-network and producing a vector ofwords to be used as input to the from-network. Hence, it is called in-betweeninvocations of the network simulation in the simulation main-loop.Additionally, there is support for in�nite-length bu�ers at the inputs of the to-networkto bu�er the words which cannot enter the subsystem because of full SE input queues.Statistics are collected via statistics gathering code dispersed throughout the simulator.3.2 Theory of OperationThe theory of operation of the simulator is now described in depth by explainingthe operation of each of the component modules.3.2.1 The pattern generatorThe pattern generator takes as input a user-supplied function written in C andproduces as output a scenario �le listing all the network words, in groups of N , to besubmitted to the simulator. This user-supplied function, called distrib, generates apacket type and destination when it is supplied with the processor number and thesimulation clock. The distrib function takes four arguments:



231. The processor number (i.e., the network input port number)2. The simulation clock3. The packet type that the distrib function returns (passed as a call-by-referenceargument)4. The destination of the packet (i.e., memory unit number) that the function returns(call-by-reference).Finally, the pattern generator is supplied with a count of how many packets eachprocessor will send. The pattern generator then calls the distrib function for each CEduring each clock tic, until all packets have been generated. After the packet has beengenerated, it is stored in a linked list for each CE. After the lists have been built, thescenario �le is generated from the lists' contents.3.2.2 The simulation main-loopThe simulationmain-loop takes as its input a scenario �le from the pattern generatorand executes the simulator based on the contents of this �le. After the end of thesimulation run, it produces a list of statistics collected during the simulation. Mostsimulations include a main-loop, the body of which corresponds to a clock tic. Themain-loop for the simulator is shown in Figure 3.1.Each block in the main-loop of Figure 3.1 represents a function that takes vectorsof network words as input, where each one of these vectors is an N element one-dimensional array of type Word. This data type is a union of two structures; one is
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NoYesCompute statisticspackets?allReceivedAdvance clockEvaluate to-networkEvaluate GIBsInput from scenario �leEvaluate from-networkService MUs

Figure 3.1: The main-loop of the simulator.



25the access control word structure and one is the data structure. The data type wasimplemented in this way because a network word can be interpreted as either a dataword or an access control word. (See Figure 3.2.)typedef union acw data fstruct data word f...g data;struct access word f...g acw;g Word;Figure 3.2: The de�nition of the data type Word.The �rst function called in Figure 3.1 services the memory units based on the outputof the to-network. The network advance function is called next. It evaluates the stateof a network; this �rst time it is called is to evaluate the state of the from-networkbased on the output of the memory units. After this, a vector of network words istaken from the scenario �le, representing the input from the CEs/GIBs. This is appliedto a function which simulates the global interface boards. This function bu�ers pendingrequests that cannot enter the network due to full network bu�ers (i.e., received BUSYsignals, see Section 2.2.4); it also initiates the collection of statistics for the words asthey enter the to-network. Finally, the function network advance is called again, thistime to evaluate the status of the to-network based on the outputs of the GIBs. Theoutput of this second call to network advance is used at the beginning of the nextiteration of the main-loop as the inputs to the memory units. Note how this ordering



26of event evaluation allows requests to enter the to-network during the �rst clock tic,i.e., when clock = 0.After the number of packets speci�ed in the scenario �le has gone through theentire network, the program exits from the main-loop and statistics gathered duringthe simulation are output to several cumulative �les.3.2.3 The network simulationThe network is simulated by the function network advance. Before explaining howthis function implements the network described in the previous chapter, the data struc-ture se state must be introduced. Se state is a four-dimensional array used to holdthe state information of the two networks (the de�nition is shown in Figure 3.3). TheSE se state[2][M+1][B][K];Figure 3.3: The de�nition of se state.�rst index of se state speci�es the network in question (0 = from-network, 1 =to-network), the second index speci�es the stage of a network, the third speci�es aparticular SE in the stage, and the �nal index speci�es an input port of the SE.The de�nition of the data type SE is shown in Figure 3.4. The type SE is implementedas a structure of integers, short integers, and several items of type Word, representing thevarious registers and latches of switch-slice notation. The structure elements ilatch,and ff implement the latch and register (or ip-op) of an input bu�er of an SE.The short integer ff busy is used as a ag and set when ff contains a valid dataitem, essentially used to implement the semantics of a hardware register. The element



27typedef struct se state stWord ilatch;Word ff;Word olatch;int olatch clock;short busy;short oldbusy;short ff busy;SE;Figure 3.4: The de�nition of the data type SE.olatch is used to implement the output latch of an output port of an SE. The integerolatch clock is used to simulate the behavior of a latch, holding the last time a wordwas stored in olatch. The elements busy and oldbusy are used to hold the busysignal and simulate the signal propagation delay. There are other elements of the datastructure used for bookkeeping and statistics gathering that are not shown in the �gure.The essential body of the network-advance function is shown in Figure 3.5. Thefor (stage = M; stage > 0; --stage)for (se = 0; se < B; se++) ffor (inp = 0; inp < K; inp++) fninp = se*B+ninp;se state[net][stage-1][shufse(ninp)][shufinp(ninp)].busy =se slice(. . .);g Figure 3.5: The body of network advance.functions shufse(ninp) and shufinp(ninp) implement the Shu�e function, returningthe destination SE index and SE input port number index, respectively. The functionse slice (arguments not shown) evaluates the state of the switch slice and returnsthe busy signal to be transmitted to the previous stage. Note how the network state isevaluated from the last stage through to the �rst stage. This is opposite to the direction



28that data ows in the system. Evaluating the network in this direction simpli�es theproblem of keeping the state information consistent with the simulation clock.The semantics of the switch slice introduced in the previous chapter are implementedusing the se slice function. Figure 3.6 shows a diagram of this function. A networkword is taken from the output of the previous stage of the network and placed in theilatch, where it waits to be shifted to the head of the queue. This shifting is performedin the second block from the top of Figure 3.6. If after the shifting, the word in thetop of the queue (i.e., in the variable \ff") is an access control word, it is used todetermine which output port to transmit the packet to. If the port is being used byanother packet, the word becomes part of a snapshot and must wait its turn to transmitacross the crossbar. If ff is not an ACW, it is transmitted through the crossbar to theoutput port speci�ed by an ACW that occupied the ff some time before this word. Nomatter what type of word ff is, if the BUSY signal is asserted, this transmission is notperformed and the word waits until the the next clock to try again. (See Section 2.2.3.)After the evaluation of each switch slice for each SE in each stage of the network,network advance returns a vector composed of the words that are in each olatchof each SE of the last stage of the network. If the network being evaluated is theto-network, this vector is used as input to the memory unit simulation.



29Input to ilatchShift forward input FIFOIs ff an ACW?
In contention? Become part of snap-shot

Wait until next clockOutput BUSY?
YesNo

Yes
No YesNo

Transmit through the crossbarFigure 3.6: A diagram of se slice.



303.2.4 The memory unit simulationHow the memory units are simulated is now described. Figure 3.7, Figure 3.8, andFigure 3.9 diagram the operation of the memory unit simulation. Beginning with Fig-ure 3.7, the �rst task the simulation performs is to load the input assembly register(AR) with the word from the head of the memory unit's input queue. After this hasbeen done, the input queue can be shifted forward. Then, a word can be taken fromthe output of the to-network and placed at the tail of the input queue. If the queue isfull, however, the word remains on the output of the to-network and the BUSY signalis asserted to ag the full-queue condition.Attention now shifts to the state of the service area of the memory unit. If there is arequest currently being serviced, the delay time (initially set to �) is decremented andthe request continues to wait. In Figure 3.8, if the request in the input assembly registeris not serviced and the service area is empty, the delay time is set to � and servicingbegins for that request. If the servicing is �nished, the output packet is shipped out tothe output assembly register, if it is not already occupied. Otherwise, the request inthe service area will wait a time greater than �, until the output assembly register isfree. Finally, in Figure 3.9, the output queue is advanced and the head of the queue ismade available to the from-network. The from-network may then take the data wordat the head of the queue or leave it, depending on the availability of space in the inputqueues of the SEs in the �rst stage of the network.
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No YesNo Yes

A
Decrement delay timeServicing request?
Assert busy signalQueue full?Take output from to-networkAdvance input queueLoad input AR from input queue

Figure 3.7: A diagram of the memory unit simulation, part 1.
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AR serviced?Yes No Set delay timeRequest inA

BEmit reply packet to output AR
Finished waiting?No YesOutput AR full? YesNo

Figure 3.8: A diagram of the memory unit simulation, part 2.



33B
Emit head of queue to networkAdvance output queue

Figure 3.9: A diagram of the memory unit simulation, part 3.This completes the discussion of the simulator. In the next chapter the results ofexperiments with the simulator will be described.



34CHAPTER 4WORST-CASE ANALYSISIn this chapter, the worst-case performance bottlenecks of the global memory sub-system is identi�ed using simulation results. The worst-case is of interest since it can beinterpreted as the guaranteed performance of the subsystem. The investigation beginsby de�ning the performance measures, de�ning the test subsystem con�gurations, andderiving the worst-case performance scenario. An expression for our main performancemetric in the worst-case is then constructed, which could possibly be used as a lowerbound on prefetch performance by a compiler optimization pass. Finally, the worst-casescenario is used to identify the performance bottleneck in the subsystem and investigatemeans of tuning the subsystem to improve the worst-case performance.4.1 De�nitionsSome de�nitions are now presented that will be used to describe the results in thischapter and the next chapter.



354.1.1 Performance measuresIf it is assumed at a given time unit that CEi, 0 � i < N , fetches data from MU�i,0 � �i < N , this situation may be written as a permutation, p = (�0 �1 �2 . . .�N�1),of N integers, �i; 0 � �i < N . De�ne fc, the fraction of contention, as an index of thecontention a permutation would cause in the to-network. If Nint(�i; p) is de�ned to bethe number of times the integer �i occurs in the permutation p, then:fc = 1N N�1Xi=0 Nint(�i; p):Note that fc is not a measure of the contention in an Omega network, only a statementabout the input to the network. This is due to the bu�ering in the network (i.e., thestoring of packets by the input queues of the SEs and the queuing structure of theMU's).The entire prefetch of vector data by allN CEs is referred to as a prefetch operation,and the amount of time it takes from when the �rst CE makes its request to when thelast request �nishes traversing the from-network is referred to as the prefetch delay, T .The main performance metric that will be used is inverse bandwidth, BW�1, de�nedas the prefetch delay divided by the length of the vector (L). Hence, the formulaBW�1(L) = T=L, can be used to convert between values of inverse bandwidth andprefetch delay. The inverse bandwidth is in units of (clocktics)� (vector element)�1. Ingeneral, a lower value of inverse bandwidth is preferred. The value of inverse bandwidthcan also be interpreted as the delay of the slowest stage in the subsystem, when the



36subsystem is viewed as a pipeline, for L � N . Hence, inverse bandwidth can be usedto identify the bottleneck of the subsystem's performance.The average time spent by all packets in a stage, Si, of either the to-network or thefrom-network will be called the latency for that stage, t(Si). An input port of an SEcan be thought to be in one of four general states: the MOVE state, when a request canmove freely to the requested output port; the BUSY state, when a request cannot movedue to a received BUSY signal at the output port; the CONT state, when a requestcannot move due to a contention condition for the requested output port; and, the BCstate, when a request cannot move due to both a received BUSY signal and contentionfor the requested output port. The fraction of time a typical request spends in eachof these states will be measured. These fractions are labeled, FMOVE, FBUSY, FCONT,and FBC, respectively. Collectively, these fractions are called the latency statistics, sincethey are useful in determining the cause of unusual packet latencies for each stage.4.1.2 Test subsystemsThree subsystem dimensions will be chosen for examination to try to keep theconclusions general. The �rst subsystem contains eight CEs, eight MUs, and the twonetworks are constructed using 2�2 SEs. The second subsystem contains 16 CEs/MUs,and the networks are constructed using 4�4 SEs. Finally, a large subsystem composedof 64 CEs/MUs, with the networks constructed using 8 � 8 SEs will be examined.Table 4.1 summarizes the characteristics of the subsystems chosen.



37Table 4.1: The test subsystem dimensionsSubsystem Number oftitle CE's, MU's, network inputs SEinputs Stages SE's per stage(N �N) (N) (K) (M) (B)8� 8 8 2 3 416� 16 16 4 2 464� 64 64 8 2 84.1.3 Worst-case scenarioThe L-length vector simultaneous prefetch is de�ned as the case when all the GIBssimultaneously fetch a vector, each vector of length L. When the vector they are fetchinghappens to reside in the same sequence of memorymodules, this scenario will be referredto as a prefetch of the same vector , or simply SV . Figure 4.1 shows the permutationsfor a simultaneous prefetch of the same vector for the 8 � 8 subsystem, where thevector begins in MU0, and its length is L = 10. This is obviously a worst-case forvector prefetch performance, since each permutation in Figure 4.1 has a unity fractionof contention. There is one case even worse than this, when all the elements of avector reside in the same memory unit. However, this implies the vector elements wereseparated N-locations apart in when they were stored in physical memory, which is anavoidable situation. Therefore, the SV scenario shall be used for the worst-case. Sincethe contention appears in the to-network, the analysis will be simpli�ed by neglectingthe performance of the from-network, where possible.



38p0 = (0 0 0 0 0 0 0 0), fc = 1p1 = (1 1 1 1 1 1 1 1), fc = 1p2 = (2 2 2 2 2 2 2 2), fc = 1p3 = (3 3 3 3 3 3 3 3), fc = 1p4 = (4 4 4 4 4 4 4 4), fc = 1p5 = (5 5 5 5 5 5 5 5), fc = 1p6 = (6 6 6 6 6 6 6 6), fc = 1p7 = (7 7 7 7 7 7 7 7), fc = 1p8 = (0 0 0 0 0 0 0 0), fc = 1p9 = (1 1 1 1 1 1 1 1), fc = 1Figure 4.1: The permutations and their fractions of contention for simultaneousprefetch, L = 10, the 8� 8, subsystem.4.1.4 Con�gurationsThe e�ect of altering several subsystem parameters will be observed. These param-eters are the memory unit service delay, �, the length of the input queues of the SEs,`SE, and the length of the input bu�ers and output FIFOs of the MUs, `MU. Table 4.2lists the di�erent combinations of these parameters associated with a given parametercon�guration name. Table 4.2: Subsystem con�gurationsCon�guration Memory unit SE input MU bu�er/Name service delay (�) queue length (`SE) FIFO length (`MU)Normal 5 tics 2 2Fmem 1 tic 2 1MD2 2 tics 2 2MD10 10 tics 2 2SE3I 5 tics 3 2SE8I 5 tics 8 2SE8IFmem 1 tic 8 1



39Once the e�ect of the memory units on the overall performance of the subsystem hasbeen investigated, this will be removed by replacing the memory units with single-cycle,or fast memory units. Figure 4.2 shows a diagram of the structure of these fast memoryFrom-networkTo-networkFigure 4.2: The structure of a fast memory unit.units. Requests are processed by a server as they exit the to-network, in a single cycle.The resultant reply packets are placed on an in�nite-length queue to isolate the serverfrom the handshaking signals received from the from-network. Subsystems built withthe fast memory units will be referred to as the \Fmem" con�guration.4.1.5 De�nition of experimentsEach experiment will be described using a three-tuple, the �rst item of which is thesubsystem used, the second is the con�guration used, and the third is the scenario. Forexample, \(8� 8, MD2, SV)," is an experiment using the simultaneous prefetch of thesame vector scenario, using the 8 � 8 subsystem, with the memory delay, � = 2 (i.e.,the MD2 con�guration).It is re-emphasized that the vector elements are stored sequentially across memorymodules. Simulation has shown that the memory unit where a vector begins is notimportant to the characteristic performance of the SV scenario, so the e�ects of varyingthe starting location of a vector will be ignored and it will be assumed that vectorsbegin in MU0.



40Each experiment will involve many runs of the simulator, for increasing vectorlengths, until the values of the performance measures of the subsystem are of predictablebehavior. Hence, vector lengths up to L = 80, for the 8� 8 subsystem, up to L = 100,for the 16� 16 subsystem, and up to L = 200, for the 64� 64 subsystem will typicallybe investigated.4.2 Analysis of Memory UnitsPresented here is some analysis of the performance of the memory units that will beuseful in the interpretation of the simulation results presented later in this chapter. Twoquestions about the memory units will be answered: what is the inverse bandwidth forvarious values of �, and what is the delay for a request traveling through the memoryunits. The inverse bandwidth for a memory unit is its slowest stage. Normally, then,BW�1MU = �. However, it was mentioned above that the MD2 con�guration, when � =2, will be investigated. In this situation, however, the loading of the input assemblyregister, processing in the service area, and unloading to the output assembly registerof the reply packet take four clock tics. Hence, in general, the inverse bandwidth forthe memory units is BW�1MU = �; � > 2, and BW�1MU = 4; � � 2.In Section 2.2.5 of Chapter 2, the structure of the memory unit was discussed. Fromthis structure, a general expression for the latency of a full memory unit, tMU, can bederived: tMU = 8><>: (`MU + 2) � � � 1; if � � 5;� + 4`MU + 3; otherwise.



414.3 Experimental ResultsThe results of some experiments performed on the three subsystems are now dis-cussed. A model of the performance of the subsystem in the worst-case using the sim-ulator is derived. Experimental results are then used to investigate the e�ectiveness ofimprovements to the memory units and switching elements.4.3.1 Worst-case performanceFigure 4.3 shows the average latency for packets in the to-network for the experiment(8 � 8, Normal, SV). Figure 4.4 shows the latency statistics for this experiment. Inthese �gures, stage one's behavior is shown with a solid line, stage two's behavior witha dashed line, and stage three's behavior with a dotted line.
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Figure 4.3: Latency for to-network, (8� 8, Normal, SV).
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Figure 4.4: The latency statistics for the to-network for the experiment (8�8, Normal,SV).



43The latency for the stages of the to-network (Figure 4.3) reveals that stage two isthe fastest stage. The latency statistics (Figure 4.4) explains why: stage two is the mostmobile stage (See FMOVE) and is busy the most (See FBUSY). Another interesting featureis the fraction of time a stage is in contention alone (i.e., FCONT) is approximately thesame as the fraction of time a stage is in busy-contention (FBC), for long vectors, andFCONT and FBC do not vary signi�cantly between stages. Also, the fraction of time arequest cannot move due to busy alone (FBUSY) is approximately four times that dueto contention or busy-contention. Therefore, contention is not the major cause of thedelays in the stages. Instead, the cause is the BUSY signal, which is caused by thememory units. Attention now turns to inverse bandwidth to �nd the slowest stage ofthe pipeline.Figure 4.5 shows the inverse bandwidth for the experiments (8�8, Normal, SV), and(64� 64, Normal, SV). Note that the inverse bandwidth in the worst-case in general isvery high for small vector lengths, L. For larger N however, the inverse bandwidth thenfalls, seeking an asymptote. This curve can be �tted reasonably well using a hyperbolicformula for inverse bandwidth,BW�1(L) = BW�1(1) �BW�1(1)L +BW�1(1);where BW�1(1) is the inverse bandwidth for a single-element vector prefetch, andBW�1(1) is the inverse bandwidth for a very long vector prefetch. BW�1(1) = 51:0; and 329,for the (8 � 8, Normal, SV), and (64 � 64, Normal, SV) experiments, respectively.The asymptotic inverse bandwidth, BW�1(1) � 5:0, for the (8 � 8, Normal, SV)
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Figure 4.5: Inverse bandwidth for experiments (8 � 8, Normal, SV) [top graph], and(64 � 64, Normal, SV) [bottom graph].



45experiment. This is the same as the value for BW�1MU, further indicating that the rea-sons for the values of FBUSY in Figure 4.4 were the memory units. To verify this, weperformed the experiments (8 � 8, MD10, SV). The results are shown in Figure 4.6.Observe that BW�1(1) � 10:0, justifying the statement, BW�1(1) = BW�1MU, for the
0 50 100050

100
LBW�1

(8� 8, MD10, SV)
Figure 4.6: Inverse bandwidth for experiment (8 � 8, MD10, SV).8� 8 subsystem. Equivalent experiments performed for the 16� 16 subsystem indicateBW�1(1) = BW�1MU, for this subsystem also.For the (64 � 64, Normal, SV) experiment, BW�1 = 20:1 (See Figure 4.5). Thelatency for the to-network for this experiment for the range of prefetch vector lengths,180 � L < 200 is shown in Figure 4.7. The latency statistics are shown in Figure 4.8.The latency for the �rst stage is much higher than that for the second stage. Also,the fraction of time a packet is mobile (FMOVE) is approximately 20% less for the
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Figure 4.7: Latency for to-network for the experiment (64� 64, Normal, SV).�rst stage than the same fraction for the second stage. The fraction of time spent incontention for the �rst stage is approximately 0.20. Also, the fraction of time spentbusy is approximately equal for both stages, indicating that the BUSY signal was notthe reason for the di�erence between the latencies of the two stages. Therefore, thereason for the high latency of the �rst stage is largely due to contention. The value ofBW�1(1) equals the inverse bandwidth measured for the �rst stage of the to-network.It can therefore be concluded that the bottleneck for this experiment is the contentionin the �rst stage of the to-network.The bottlenecks for the subsystem for long vector lengths have been found. At-tention now turns to understanding the subsystem's behavior for short vector lengths.To do this, the observed values of BW�1(1) will be explained using a completion time
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Figure 4.8: The latency statistics for the to-network for the experiment (64� 64, Nor-mal, SV), 180 � L < 200.



48histogram for each stage of the to-network for the vector prefetch L = 1. The rationaleis as follows: the last read packet to exit the subsystem determines the total prefetchdelay, T . For L = 1, BW�1(1) = T . Therefore, if a general equation for the delay of thelast request can be written, a general equation for BW�1(1) is also obtained.Figure 4.9 shows the completion time histograms for the (16 � 16, Normal, SV),L = 1. Here, the CE that emitted each read request is plotted against the time therequest spent in each stage. The time a request enters a stage is shown with a smallcircle, and the time a request leaves the stage is shown with a small triangle. Theprefetch operation is illustrated in Figure 4.10, which shows the path from each CE toMU0.There are several interesting features of Figure 4.9. First, beginning with Stage 1(the upper graph in the �gure), four requests complete at clock tic 1 and again at clocktic 2, (i.e., requests 0, 1, 2, 3, and then requests 4, 5, 6, and 7). These requests arefrom each of the four SEs in the �rst stage. After they have cleared the stage, theyhave �lled the input bu�ers of the second stage. Now requests 8, 9, 10, and 11 �nishsequentially, due to the contention in the second stage for the single output port thatis attached to the requested MU0. It would expected that after this time, the behaviorof the �rst stage will mirror the behavior of the second stage, which is indeed the case.Attention now turns to the second graph in Figure 4.9, which shows the completiontimes of the second stage. Notice here that three requests enter without delay betweenthem (requests 0, 1, and 2). Then there is a delay of four before the next request can
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Figure 4.9: Completion time histograms for (16� 16, Normal, SV), L = 1.
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Figure 4.10: The paths from each CE to MU0 for the 16� 16 subsystem.enter the memory unit (request 3). After this delay, the requests enter the memory unitonce every �ve clock tics, which is the inverse bandwidth of the memory unit, BW�1MU.Hence, the time it takes the last request to complete the second stage can be writtenas, M � 1 + (`MU + 1) + 4+ (16� `MU � 2)�BW�1MU. The �rst term in this expressionis the time it takes for the �rst request to pass the �rst few stages of the network.The second term is the time it takes to �ll the memory unit bu�ers. The third term,4, has to do with the characteristics of the memory unit's register transfer operation(see Section 4.2). Finally, the last term is the number of remaining requests times theinverse bandwidth of the memory unit. The latency for a full memory unit with � = 5,is 18. Also, it takes two clock tics for a read request to pass through each stage of thefrom-network. This implies the total prefetch delay is,BW�1(1) = T = 2M + (`MU + 1) + 4 + (N � `MU � 2)� BW�1MU + tMU � 1;which when evaluated produces values identical to those observed for BW�1(1).



51Some of the observations made above are now investigated further to con�rm thisequation for BW�1(1). First, it will be determined if the SE bu�er length plays arole in the behavior of the last stage in the to-network. The bu�ers in the switchingelements will be increased by one and the behavior of the subsystem will be observed.Figure 4.11 shows the completion time histograms for the 16�16 subsystem, where theSE3I con�guration has been used. Here, observe that the completion times of the �rststage have indeed changed; however, the inuence of the memory unit's performance onthe second stage masks this improvement. Indeed, the completion times for the secondstage are exactly the same as for the Normal con�guration. Without simulation, it canbe clearly seen that increasing the memory unit bu�er length would decrease the e�ectof the memory unit's inverse bandwidth on the subsystem performance in the L = 1case.Now it will be determined how the memory delay a�ects the equation for BW�1(1).Shown in Figure 4.12 are the completion-time histograms for (16�16, MD10, SV), L =1. The only di�erences found between these histograms and those shown in Figure 4.9are that the requests are now separated by ten clock tics, instead of �ve, once theinput bu�er inside the memory unit becomes full. This indicates the use of BW�1MU wascorrect. To make sure, the experiment (16� 16, MD2, SV), L = 1 was performed (seeFigure 4.13). This graph also con�rms the use of BW�1MU in the expression for BW�1(1).
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Figure 4.11: The completion time histograms for (16� 16, SE3I, SV), L = 1.
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Figure 4.12: The completion-time histograms for (16� 16, MD10, SV), L = 1.
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Figure 4.13: The completion-time histogram for stage 2 of the to-network, (16 � 16,MD2, SV), L = 1.



55The total equation for inverse bandwidth as a function of the subsystem parametersis: BW�1(L) =1L �2M + (`MU + 1) + 4 + (N � `MU � 2)� BW�1MU + tMU � 1� BW�1(MU)�+BW�1(1);where, BW�1(1) = BW�1MU for the 8�8 and 16�16 subsystems, and BW�1(1) is dueto the contention in the �rst stage of the to-network for the 64� 64 subsystem.Finally, on the di�erence between this equation and the observed inverse bandwidthare now discussed. Figure 4.14 shows a comparison between the actual inverse band-width for the (8 � 8, Normal, SV) experiment [solid line] and the hyperbolic model[dotted line]. This di�erence is graphed in Figure 4.15. (The envelope of this curve ishyperbolic, although the hyperbolic that delimits the peaks of the curve is not thesame shape as the hyperbolic that delimits the valleys.) The valleys occur at multiplesof eight. The peaks occur at multiples of eight, o�set by two (e.g., 10, 18, 26, etc.).This implies that vector prefetch operations that are multiples of the subsystem's di-mension perform slightly better than other vector prefetches. For the (8 � 8, Normal,SV) experiment, the RMS error is 0:105. The two points of interest, the initial and �nalvalues, are exact.
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Figure 4.14: Inverse bandwidth for (8 � 8, Normal, SV) [solid line] and its hyperbolicmodel [dotted line].

0 50 100-2024
6

L
BW�1

Figure 4.15: The di�erence between the hyperbolic model and the actual inverse band-width for (8� 8, Normal, SV).



574.4 Subsystem TuningNow that the performance of the subsystem is understood in greater detail, attentionnow turns to investigating methods for improving the worst-case performance.It was showed above that for the (8 � 8, Normal, SV), and (16 � 16, Normal, SV)con�gurations, the asymptotic inverse bandwidth, BW�1(1) = BW�1MU. The perfor-mance of the memory units cannot be controlled. However, pipelining and interleavingof memory unit pipelines within one MU are plausible methods for reducing BW�1MU tounity. Therefore other bottlenecks that may exist in the subsystem after the memoryunit bottleneck has been removed will be investigated. This will be done by assumingthat the memory units behave similarly to the fast memory units described in Sec-tion 4.1.4, above. Speci�cally, these memory units have the ideal BW�1MU = 1, and havesu�cient bu�ering on their outputs to decouple the BUSY signal propagation of thefrom-network from that of the to-network.The inverse bandwidths for the three subsystems in the Fmem con�guration willnow be discussed. Figure 4.16 shows the inverse bandwidth for the three experiments,(8 � 8, Fmem, SV), (16 � 16, Fmem, SV), and (64 � 64, Fmem, SV). Notice thatBW�1(1) = 4:0, for the (8 � 8, Fmem, SV) experiment, BW�1(1) = 5:4 for the(16 � 16, Fmem, SV) experiment, and BW�1(1) = 8:4 for the (64 � 64, Fmem,SV)subsystem. This indicates that reducing the memory unit inverse bandwidth to unityhas a noticeable e�ect on the asymptotic inverse bandwidth. Although the bottleneckpreviously was not the memory unit in the 64 � 64 subsystem, reducing the memory
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Figure 4.16: Inverse bandwidth for experiments (8 � 8, Fmem, SV) (top graph, solidline), (16� 16, Fmem, SV) (top graph, dashed line), and (64� 64, Fmem,SV) (bottom graph).



59unit's inverse bandwidth decreased the second stage's latency and therefore decreasedthe overall prefetch delay.The latencies of the to-network for the stages of the three subsystems in the Fmemcon�guration are now investigated. Figure 4.17, Figure 4.18, and Figure 4.19, show thelatencies for the experiment (8 � 8, Fmem, SV), (16 � 16, Fmem, SV), and (64 � 64,Fmem, SV), respectively. Here, as before, the latency of the �rst stage is shown using
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Figure 4.17: Latencies for (8� 8, Fmem, SV).a solid line, the latency of the second stage as a dashed line, and where applicable, thelatency of the third stage is shown as a dotted line. There are several things to notice:�rst, the shape of the latency curve is very similar for the �rst stage across all threeexperiments. Second, the latency for the second stage is similar for the 16 � 16 and64 � 64 subsystems. Finally, the magnitude of the latencies seems to be proportional
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Figure 4.18: Latencies for (16� 16, Fmem, SV).
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Figure 4.19: Latencies for (64� 64, Fmem, SV).



61to N , the subsystem size. In all cases, the stage with the longest latency is the �rststage. Since the memory units always accept, we know that contention is the cause ofthe latencies. The input ports of the SEs in the �rst stage are in the BUSY state moreoften than the other stages of the network. In the (16� 16, Fmem, SV) and (64� 64,Fmem, SV) experiments, FBUSY = 0:12 for the �rst stage, and the second stage's inputports are never in the BUSY state (i.e., the fast memory units always accept requests).In the (8 � 8, Fmem, SV) subsystems, FBUSY = 0:18 for the �rst stage, FBUSY = 0:08for the second stage, and FBUSY = 0:0 for the third stage. The BUSY signal is onlybeing asserted due to the di�erence in arrival rate of packets at an input port in thesecond (or third) stage, which is one request per clock tic, and the service rate of thecontention resolution policy of the SEs in the second (third) stage, which is nominallyone request per K clock tics. Therefore, increasing the length of the SEs input bu�ersshould not improve performance due to this mismatched arrival and service rates sinceeven very large queues would not be useful. To test this claim, the SE input bu�erlengths of the 16�16 subsystem was increased to `SE = 8 (con�guration \SE8IFmem")and the inverse bandwidth is shown in Figure 4.20, compared to the inverse bandwidthfor the nominal `SE = 2 for the Fmem con�guration. The performance of the SE8IFmemcon�guration is roughly twice that of the Fmem con�guration for the asymptotic case,indicating bu�ering actually worsens the subsystem performance.The arrival rate of requests inside the network cannot be controlled; however, theissue rate of requests at the GIB/CE end of the subsystem can be. Hence, in the next
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Figure 4.20: The inverse bandwidth for the experiment (16�16, SE8IFmem, SV) [solidline], and the experiment (16� 16, Fmem, SV) [dotted line].



63experiment the issue rate of requests from the GIBs/CEs was reduced to one requestevery K clock tics and the results were observed. Figure 4.21 shows the stage latenciesof this experiment for the 16 � 16 subsystem, which is typical of the results obtainedfor all three subsystems. Though the latency of stage one for vector lengths shorter
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Figure 4.21: Latencies for (16 � 16, Fmem, SV), with reduced issue rate.than L = 50 is now 14% less than before, the latencies for longer vectors are the same.Hence, this approach also fails to reduce the severity of the latencies in the �rst stage.Hence, none of the obvious ways of improving Omega network performance in theworst case have signi�cant e�ects on the contention inside the to-network. Bu�eringonly exacerbates the problem and changing issue rate of the GIB has little e�ect.In conclusion, then, the largest worst-case performance increase of the subsystemcan be obtained by improving the memory units so that the inverse bandwidth, BW�1MU,



64approaches unity. It is suggested that the networks remain essentially the same. In thenext chapter these conclusions will be con�rmed for more realistic scenarios.



65CHAPTER 5BEST-CASE AND REALISTIC SCENARIO PERFORMANCEIn the previous chapter, the performance of the subsystem in the worst-case wasanalyzed. Attention now turns to the performance of the subsystem under more realisticscenarios.5.1 Best-Case ScenariosIt is useful to have a best-case simultaneous prefetch scenario to evaluate the perfor-mance of the subsystem. In [2], Lawrie describes several permutations that an Omeganetwork can pass without contention. The following theorem adapted from [2] will beused,Theorem: [Lawrie] An Omega network passes without contention an access by CEito MU(i+k)modN ; for all 0 � i < N and all integer k.For a proof, see [2].



66When the vector for each CEi starts in MUi, this will referred to this as the identityvector scenario, or ID, since it causes a series of identity permutations [2]. Figure 5.1shows the permutations for the 8 � 8 subsystem, where L = 10. Note that all thepermutations have zero fc, indicating this scenario should not cause any contention inthe to-network. This is therefore picked to be the best-case scenario.p0 = (0 1 2 3 4 5 6 7), fc = 0p1 = (7 0 1 2 3 4 5 6), fc = 0p2 = (6 7 0 1 2 3 4 5), fc = 0p3 = (5 6 7 0 1 2 3 4), fc = 0p4 = (4 5 6 7 0 1 2 3), fc = 0p5 = (3 4 5 6 7 0 1 2), fc = 0p6 = (2 3 4 5 6 7 0 1), fc = 0p7 = (1 2 3 4 5 6 7 0), fc = 0p8 = (0 1 2 3 4 5 6 7), fc = 0p9 = (7 0 1 2 3 4 5 6), fc = 0Figure 5.1: The permutations and their fractions of contention for identity vectorprefetches, L = 10, the 8� 8 subsystem.Althought the ID scenario is the best-case for a simultaneous vector prefetch, it isnot a prefetch of the same vector by all CEs. Since this was the purpose of the worst-case scenario of the last chapter, scenarios that perform the same task but do so moree�ciently will now be introduced.By changing the order by which CEs emit requests, and assuming the time at whichCEs make requests is controllable, an SV scenario prefetch operation can be modi�edto obtain the same zero fraction of contention of the ID scenario. This idea is displayedin the following algorithm, assuming L is a multiple of N and L > N ,



67Algorithm I:CEi issues a request to MUi. The next request made by CEi is to MU(i+1)modN , etc.,until the entire vector has been retrieved.Without loss of generality and for readability it has been assumed that the vector beingfetched starts in MU0. This will be referred to as the Algorithm I scenario, or A1 . Thisscenario is illustrated in Figure 5.2 for the 8 � 8, L = 16, where we have written thepermutations in vertical columns and time of issue increases from left to right. One cansee that each column is an identity permutation and there are no requests for the samememory unit at the same time. Hence, fc = 0 for all permutations.CE0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7CE1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0CE2 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1CE3 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2CE4 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3CE5 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4CE6 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5CE7 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6fc = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Figure 5.2: Algorithm I scenario, the 8� 8 subsystem, L = 16.However, L may not always be an integral multiple of N . One possible solution isto extend the Algorithm I scenario in the following manner:Step 1 CEi issues a request to MUi, The next request made by CEi is to MU(i+1)modN ,etc. This pattern is continued until CEi makes a request of MU(L�1)modN .



68Step 2 CEi then issues a request to MU0, then MU1, etc., until the entire vector hasbeen retrieved.. This is illustrated in Figure 5.3 for the 8 � 8 subsystem, with L = 15. Notice thatCE0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6CE1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 0CE2 2 3 4 5 6 7 0 1 2 3 4 5 6 0 1CE3 3 4 5 6 7 0 1 2 3 4 5 6 0 1 2CE4 4 5 6 7 0 1 2 3 4 5 6 0 1 2 3CE5 5 6 7 0 1 2 3 4 5 6 0 1 2 3 4CE6 6 7 0 1 2 3 4 5 6 0 1 2 3 4 5CE7 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6fc = 0 0 0 0 0 0 0 0 14 14 14 14 14 14 14Figure 5.3: Algorithm I scenario extended, the 8� 8 subsystem, L = 15, for each CE.the property of each time issuing an identity permutation has been lost, and hencecontention does occur. A possible way to avoid this contention is to always requestvectors in multiples of N , �lling up the extra unused elements with idle periods so thatan identity permutation always results. This leads to what will be called the AlgorithmII scenario, or A2 :Algorithm II:If L is a multiple of N , use Algorithm I. Else, do the following for all 0 � i < N :Step 1. CEi begins by issuing a request to MUi; this pattern is continued until CEimakes a request to MU(L�1)modNStep 2. CEi does not issue a request for N � (L mod N) time units.



69Step 3. CEi begins issuing requests to MU0; this pattern is continued until CEi makes arequest toMUi�1, at which time the entire vector has been fetched by all processors.The Algorithm II scenario is illustrated in Figure 5.4 for L = 15, where \x" signi�esan idle CE. Notice that identity permutations always result.CE0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 xCE1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 x 0CE2 2 3 4 5 6 7 0 1 2 3 4 5 6 x 0 1CE3 3 4 5 6 7 0 1 2 3 4 5 6 x 0 1 2CE4 4 5 6 7 0 1 2 3 4 5 6 x 0 1 2 3CE5 5 6 7 0 1 2 3 4 5 6 x 0 1 2 3 4CE6 6 7 0 1 2 3 4 5 6 x 0 1 2 3 4 5CE7 7 0 1 2 3 4 5 6 x 0 1 2 3 4 5 6fc = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Figure 5.4: Algorithm II scenario, the 8� 8 subsystem, L = 15.However, for a value of L that is not reasonably close to a multiple of N , eachCE is idle for a noticeable amount of time in the Algorithm II scenario. Witness inFigure 5.5 what occurs for L = 9. Notice that there is no way to compact the schemewithout contention occurring. However, the cost of contention might not be as severeas the cost of avoiding contention in this situation. The time a CE spends idle mightbe better spent issuing requests while its earlier requests wait to get out of contentionin the network. For this reason, both the A1 and A2 scenarios will be used for theperformance evaluations.



70CE0 0 1 2 3 4 5 6 7 0 x x x x x x xCE1 1 2 3 4 5 6 7 0 x x x x x x x 0CE2 2 3 4 5 6 7 0 x x x x x x x 0 1CE3 3 4 5 6 7 0 x x x x x x x 0 1 2CE4 4 5 6 7 0 x x x x x x x 0 1 2 3CE5 5 6 7 0 x x x x x x x 0 1 2 3 4CE6 6 7 0 x x x x x x x 0 1 2 3 4 5CE7 7 0 x x x x x x x 0 1 2 3 4 5 6fc = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Figure 5.5: Algorithm II scenario, the 8� 8 subsystem, L = 9.5.1.1 Prefetch skewingWhat if the assumption that the time at which CEs make requests is controllable(i.e., the CEs issue requests synchronously) is relaxed? In other words, all GIBs maynot start the prefetch operation at the same time. Although this assumption mightseem unrealistic, the reader is reminded that an MIMD machine does not have a syn-chronization operation to insure that all CEs execute an instruction at the same time.Indeed, the general philosophy of an MIMD machine, in contrast to a SIMD machine,implies a degree of inherent asynchrony. Barrier synchronization does seem to be a can-didate for such an operation. However, though the conventional barrier synchronizationoperation is implemented in Cedar, this operation guarantees only that all CEs havepassed into a critical region of code and not that they have done so at the same time.With the synchronous issue assumption relaxed, the time at which requests entera network is not predictable. However, once a GIB starts making requests, we must



71assume it will continue to make requests once every time unit. Hence, this new assump-tion can be interpreted as making the starting time for each vector prefetch variable.This will be referred to as prefetch skewing.What would be the worst possible amount of contention assuming prefetch skewingof the Algorithm I scenario and assuming L was a multiple of N? If CEi started makingrequests of the network i clock units late, then one would expect some permutationswith unity fraction of contention. This is illustrated for L = 16 in Figure 5.6. Thisparticular skewing will be referred to as worst-case skewing, and this scenario will bereferred to as the worst-case static-skewed Algorithm I scenario, or WCSA1. NoticeCE0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7CE1 x 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0CE2 x x 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1CE3 x x x 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2CE4 x x x x 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3CE5 x x x x x 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4CE6 x x x x x x 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5CE7 x x x x x x x 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6fc = 0 14 38 12 58 34 78 1 1 1 1 1 1 1 1 1 78 34 58 12 38 12 0Figure 5.6: Algorithm I scenario with worst-case skewing, the 8�8 subsystem, L = 16.that this region of unity fraction of contention will grow as the vector length grows.Therefore, a worst-case skewing of the A1 scenario will degenerate into the SV scenarioin the limit.In summary, three scenarios have been presented that will be use to evaluate theperformance of the subsystem. The ID scenario is the best-possible prefetch scenario.



72Somewhat more realistic are the A1 and A2 scenarios. Finally, the WCSA1 scenariowas presented to demonstrate the need for synchronization.5.2 Performance ResultsIn this section, the data from simulation is presented and commented on. First, thereseults of experiments for all three subsystems using the ID scenario will be presented;then some other interesting results of the other scenarios will be presented. The Normalcon�guration and the Fmem con�guration will be used to observe the e�ects of memorydelay.5.2.1 Performance in the best-caseThe stage latencies for the experiments (8�8, Fmem, ID), (16�16, Fmem, ID), and(64�64, Fmem, ID) were constant at 1 clock tic for all stages of the to-network, and allvector lengths, indicating there was no contention whatsoever. The inverse bandwidthfor these three experiments was constant at BW�1 = 2, since it takes two clock tics forthe two-word reply packets to move across each stage of the from-network.For the Normal con�guration, the inverse bandwidth for all three subsystems isconstant at BW�1 = 5, due to the memory units. Because of this, the stage latenciesare not unity, as shown in Figure 5.7 for the experiment (16�16, Normal, ID). Therefore,the performance of the ID scenario is not ideal with the current memory units. For thisreason, rest of the experiments will use the Fmem con�guration.
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Figure 5.7: Latency for to-network for the experiment (16� 16, Normal, SV).5.2.2 The e�ectiveness of scenariosThe results of the simulator can be used to determine which of the two scenarios,A1 or A2, performs better. The inverse bandwidth for the two experiments, (16 � 16,Fmem, A1) and (16 � 16, Fmem, A2), are shown in Figure 5.8. Additionally, we haveshown (16�16, Fmem, SV), as a reference. The A2 scenario performs approximately 0:5clock tics better than the A1 scenario. This means the time spent delaying a requestbefore it enters the network (i.e., the A2 scenario) produces better results than notdelaying requests and allowing some contention to occur (i.e., the A1 scenario).
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Figure 5.8: Inverse bandwidth for experiments (16 � 16, Fmem, A1) [solid line], and(16� 16, Fmem, A2) [dashed line], with (16� 16, Fmem, SV) [dotted line]shown as a reference.



75The performance of the worst-case scenario indicated that contention was a verycostly phenomenon in larger subsystems. Avoiding contention is very important. How-ever, the A1 and A2 scenarios assume a synchronization operation that is not availablein the subsystem.5.3 ConclusionsSome interesting scenarios for simultaneously accessing the same vector have beenpresented. The previous chapter proposed that the memory units be redesigned tomatch the best-case bandwidth of the network. In this chapter, skewing due to the lackof synchronization was also commented on. In SIMD machines, permutations that enterthe Omega network can be controlled. In MIMD machines, however, they cannot be. Itis proposed that hardware be added to selectively synchronize the initiation of prefetchoperations so that the characteristics of Omega networks can be used to improve theperformance of prefetch operations, as in [2].



76CHAPTER 6CONCLUSIONS6.1 Summary and ConclusionsThis thesis reviewed the design of a global memory subsystem, described the algo-rithm used to simulate it, and then simulated its performance in several scenarios ofa simultaneous vector prefetch. The performance in the worst case and best case of asimultaneous prefetch was investigated. Also investigated was the performance of thesubsystem using algorithms designed to e�ectively prefetch information.Several conclusions can be drawn from the results:� Reviewing the results for the Normal con�guration reveals that the 8 � 8, and16�16 subsystems did not show much di�erence in performance between the bestcase and the worst case for very long vector lengths. The 64 � 64, however, didshow a di�erence in performance. Therefore it can be concluded that for smallsubsystems with the current memory units, the tra�c through the network does



77not a�ect performance as much as for larger systems. When the subsystem is madelarge (N = 64), contention takes over as the primary performance bottleneck. Inall cases, performance is best for long vector lengths.� The memory units were the direct cause (8�8 and 16�16 subsystems) or indirectcause (64� 64 subsystem) of the upper bound on performance of the subsystem.The simulator was then used to derive an expression for this upper bound as afunction of subsystem design parameters, where possible. The performance in thebest-case showed that the memory units' performance determined the subsystems'performance.� The e�ectiveness of using algorithms for improving the performance of a simul-taneous prefetch was investigated. It was discovered that for small subsystemsthese algorithms performed only slightly better than the worst-case simultaneousprefetch, due mainly to the memory units' performance. When the memory unitswere replaced with higher performance units, the algorithms performed better.However, it was shown that the algorithms can degenerate into the worst-casescenario due to a lack of synchronization.6.2 Designing a Global Memory SubsystemFrom the experiments performed, some guidelines for building a global memorysubsystem using Omega networks and an equal number of memory units and processorscan be proposed:



78� The memory units of the subsystem should have an inverse bandwidth thatmatches the best-case inverse bandwidth of the network stages.� There should be provisions for synchronization of a prefetch operation so thatthe characteristics of an Omega network can be exploited to improve individualprefetch performance. This synchronization need not eliminate skewing, rather itneed only make the skewing predictable and exposed to the compiler.� The compiler should use heuristics derived from simulation, such as the per-formance of the subsystem in the worst case, to hide prefetch performance byscheduling prefetch operations far enough in advance of the operations that re-quire the prefetch data. This scheduling of prefetch operations is especially im-portant for larger systems.6.3 Future WorkThere are several possible extensions to this thesis. One extension would be to ex-pand the concept of scenario-based performance analysis. There are a �nite numberof possible vector-prefetch scenarios a given subsystem can encounter. Though thisnumber is large, it can be reduced greatly by observing that many patterns have sim-ilar performance due to the symmetry inherent in the Omega networks. With enoughinsight, the performance of the subsystem could be fully characterized in terms of in-dices such as the permutation of memory units, the individual vector lengths beingprefetched, and the amount of tra�c already in the network. Once this information



79is collected, a full expression for the performance of the subsystem in terms of theseindices could be written. Finally, this expression could be used to create a new globalinterface that intelligently controls its issue rate to improve inverse bandwidth andtrace delay. Alternately, prefetch scheduling could be placed under the control of thecompiler without modifying the global interface.Another possible extension would be to evaluate the subsystem's performance basedon actual traces of executing applications. When Cedar becomes operational, suchtraces will be available. Work based on traces of multiprocessor applications is currentlybeing done by Steve Turner.In conclusion, it was shown that the use of Omega networks for interconnectionbetween the memory units and processors of the Cedar multiprocessor was a wise choice.These networks allow parallel accesses for some input patterns that a bus architecturewould not allow. There are just four control lines associated with each network line,much less than usually required in bus systems. However, to use the networks e�ciently,the memory units and global interfaces attached to them should be carefully tuned.Ways of modifying the hardware to improve the performance of the subsystem havediscussed. It is suggested that the compiler use reasonable heuristics to schedule thetra�c in a memory system, much the way compilers are now being used to scheduleinstructions inside processors themselves. For this reason, a heuristic was provided inthe form of an upper bound on the subsystem performance and its usefulness to thecompiler for improving prefetch performance was discussed.
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