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SUMMARY

Previous work on compiler-basedmultiple instruction retry has utilized a series of compiler transformations,
loop protection, node splitting, and loop expansion, to eliminate anti-dependencies of length � N in the
pseudo register, the machine register, and the post-pass resolver phases of compilation 1. The results have
provided a means of rapidly recovering from transient processor failures by rolling back N instructions.
This paper presents techniques for improving compilation and run-time performance in compiler-based
multiple instruction retry. Incremental updating enhances compilation time when new instructions are
added to the program. Post-pass code rescheduling and spill register reassignment algorithms improve
the run-time performance and decrease the code growth across the application programs studied. Branch
hazards are shown to be resolvable by simple modifications to the incremental updating schemes during the
pseudo register phase and to the spill register reassignment algorithm during the post-pass phase.
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INTRODUCTION

To achieve uninterrupted operation, fault-tolerant computer systems usually possess the ability
of detecting errors and either correcting the errors immediately or recovering the systems to
previous consistent states prior to the occurrences of the errors. There is evidence that hardware
transient faults, due mainly to temporary changes of electric, electromagnetic and radioactive
conditions, occur more often than permanent faults 2,3. In an environment with a high transient
fault rate, it is desirable for a system to recover rapidly without resorting to a global restart
whenever a fault occurs.

Software based checkpointing provides for rollback recovery when transient system faults
occur. In such schemes, a checkpoint of the system state is captured and recorded at regular
intervals 4,5,6, or predetermined positions in the application program 7. In the event of a fault,
the system can be rolled back to one of the previously recorded checkpoints, returning the
system to a consistent state 8. Software checkpointing can accommodate long error detection
latencies at the cost of potentially long recovery time.

In contrast to full software checkpointing, multiple instruction retry schemes aid in rollback
of just a few instructions. Instruction retry schemes have traditionally been implemented
in hardware, both in full checkpointing 9,10,11,12,13, and in incremental checkpointing (sliding
window) 14,15,16,17,18 formats.
� Current address is IBM Corp., Dept. 8C9A Internal Zip 2111, 1798 N.W. 48th St. Boca Raton, FL 33431, U.S.A.
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Several multiple instruction retry schemes maintain at least two copies of the data for N
cycles, which is the maximum error detection latency (or exception latency), before the old
values can be destroyed. For example, IBM has utilized a shadow register file for backup of the
entire register file 13, and single instruction retry has been implemented by twin shadow register
files 14. The DEC VAX 8600 11 and VAX 9000 12 implement single instruction retry without
the need for complex redundant data storage. The IBM 3081 10 supports full checkpointed
rollback recovery with a checkpoint interval of 10 to 20 instructions. The shadow file serves
as a history buffer, recording the old system state. The IBM ES/9000 19 utilizes the virtual
register management system to dynamically map 16 architectural registers to 32 physical
registers. Data redundancy in the physical registers is used to assist in instruction retry.
Similar techniques have been developed for exception handling in out-of-order architectures,
including history buffers, reorder buffers, and future file structures 15.

The micro-rollback scheme 16 employs a delayed write buffer to sustain rollback capability.
A write to the register file is written to the buffer instead. The delayed write buffer has N
entries, where each entry corresponds to an instruction of the last N cycles and consists
of two fields, the name of the destination register and the new value. The new value and
the information regarding its destination register are held in the buffer for N cycles before
updating the real register. A prioritized by-pass circuitry is needed to retrieve the most recent
copy of the register. During recovery, the buffer contents are invalidated and the program
counter(PC) and the program status word(PSW) are reloaded with the rollback values.

A compiler-based multiple instruction retry scheme has been developed, in which compiler-
driven data flow manipulation is used to resolve data hazards associated with rollback recov-
ery 1 by removing anti-dependencies of length � N instructions. If an error is detected, the
execution is recovered by loading the correct values of the PC and the PSW. The delayed
write buffer for the register file is removed in this approach. However, the original implemen-
tation suffered from long compilation times. An alternative to the compiler-based technique
is the combined compiler-hardware scheme 20, which can remove one type of hazard using a
hardware read buffer, while allowing the compiler transformations to resolve the remaining
hazards.

This paper addresses the compile-time limitations of the original compiler-based hazard
removal approach to multiple instruction retry 1. The techniques described include incre-
mental updating, post-pass code rescheduling, spill register reassignment and branch hazard
resolution.

ERROR MODEL AND HAZARD TYPES

Targeted processor errors are described as follows 20. Error detection latency is � N instruc-
tions. Units external to the CPU, such as memory and I/O, have their own rollback capability
(e.g., delayed write buffers of depth N and appropriate bypass logic). The PC and the PSW
contents at each instruction are preserved by an external recording device or by shadow reg-
isters 16. A restartable CPU state can be restored by loading the correct contents of the PC and
the PSW.

Given the above assumptions, a permissible error is one which does not result in a path
inconsistent with the control flow graph (CFG) of the target application program provided that
the register file contents do not spontaneously change and data is not written to an incorrect
register location. Errors targeted for recovery via multiple instruction retry are summarized
as follows: 1) CPU errors such as those caused by a faulty ALU; 2) incorrect values read
from memory, the register file, or external functional units such as the floating point unit; 3)
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correct/incorrect operands read from incorrect locations within the I/O, memory, or register
file; and 4) incorrect branch decisions resulting from errors 1 through 3.

The code can be represented as a CFG, G(V;E), where V is the set of nodes denoting
instructions and E the set of edges denoting flow information. If there is a direct control flow
from instructions Ii to Ij , where Ii 2 V and Ij 2 V , then there is an edge (Ii; Ij) 2 E.
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Figure 1. On-path and branch hazards

Within the general error model above, data hazards resulting from instruction retry are of
two types 20. On-path hazards are those encountered when the instruction path after rollback
is the same as the initial instruction path and branch hazards are those encountered when the
instruction path after rollback is different from the initial instruction path. On-path hazards
can be described as anti-dependencies of length � N in G(V;E) 21. As shown in Figure 1,
register x of node Ij represents an on-path hazard and register y of node Ik represents a branch
hazard.

OVERVIEW OF SCHEMES IMPLEMENTED

Our implementation is based on the intermediate code generated by the IMPACT C compiler 22

after optimization but before register allocation. Data hazards are resolved in three different
phases, the pseudo register phase, the machine register phase, and the nop insertion phase.
In order to compare compile time and run time efficiency, alternative schemes for each of the
phases were implemented, as shown in Table I.

Table I. Schemes implemented

Pseudo register machine register Nop insertion
Scheme L on-path on-path on-path
Scheme A on-path + branch[*] on-path + branch on-path + branch
Scheme 0 on-path[i] on-path on-path[cr]
Scheme 1 on-path[i] on-path on-path + branch[cr]
Scheme 2 on-path + branch[i] on-path on-path + branch[cr]
Scheme 3 on-path + branch[i] on-path + branch on-path + branch[cr]
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Figure 2. Node splitting, loop expansion, and renaming

Scheme L 1 resolves on-path hazards only. Scheme A 20 resolves both on-path and branch
hazards at the latter two phases, but does not resolve all pseudo register branch hazards
at the first phase, as marked “[*]”. The dominant fraction of compile time in the previous
Schemes L and A is devoted to resolving pseudo register hazards. Both schemes implement a
simple pseudo register phase, and the data structure updating is not incrementally maintained.
Therefore, four alternative schemes that exploit incremental compilation techniques were
implemented and compared. Scheme 0 uses incremental updating in the pseudo register phase
for resolving on-path hazards. Compilation time has been enhanced with respect to Scheme L.
Scheme 0 also employs post-pass code rescheduling and spill register reassignment algorithms
to enhance the run-time performance and decrease the code growth across the application
programs studied. The marker “[i]” denotes incremental updating, while “[cr]” denotes code
rescheduling. Modifications to the post-pass algorithms can resolve both types of hazards
during the nop insertion phase (Schemes 1, 2, and 3). We also show that a slightly modified
incremental updating scheme can resolve branch hazards as well in the pseudo register phase
(Schemes 2 and 3), though experimental results favor Scheme 1 in code run-time, code growth
and compilation speed.

REVIEW OF THE PSEUDO REGISTER PHASE IN SCHEME L

The following notation is for on-path hazards, while those for branch hazards can be similarly
defined. A node Id is a hazard node if Id defines a register x, another node Iu uses x, and
there is a directed path of length less than or equal to N from Iu to Id. Register x is called a
hazard register or a hazard that causes data inconsistency. A loop header is the beginning of
the loop, and a loop tail is the node that is within the loop and has a directed connection to
the loop header. Live in(I) and live out(I) are the sets of registers whose values have later
uses immediately before and after node I respectively 23.

Scheme L resolves pseudo register hazards in three sequential stages, loop protection, node
splitting, and loop expansion. All three stages may insert new nodes, which change the CFG,
loop structure, and data flow information. Renaming is the primary technique for hazard
resolution. Figure 2 illustrates how node splitting and loop expansion resolve hazards. A
hazard node is denoted by a circle with a “*”. In Scheme L, node Ij will be split due to
hazard register x if x 2 live in(Ij) and there is more than one definition of x that can reach
Ij . Nodes are scanned sequentially in the node splitting process. Scheme L also derives the
number of times a loop should be expanded to resolve hazards. To prevent some loop headers
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Figure 3. Conditions for loop protection

from being split, and to allow the targeted hazards to be renamed freely after loop expansion,
save and restore nodes are inserted around loop headers, tails, and exit nodes. A loop can be
protected either from outside or from inside. The following conditions are used to determine
if a loop L should be protected for register x: C1. x is a hazard register which is live after the
extended loop L̃ for register x; C2. L’s header will be split due to its hazard register x; and
C3. L’s header will be split due to out of loop hazard register x.

The extended loop L̃ for register x consists of all nodes in L and all nodes I1 satisfying
the following rules: 1) x 2 live in(I1), 2) I1 has only one successor, 3) I1 has only one
predecessor I0, and 4) I0 is in L̃. C2 may occur since some tail has more than one reaching
definition and at least one is a hazard node defining x. If C1 or C2 is true, L is protected from
inside. If C3 is true, L is protected from outside. C1 is for L̃ instead of L since L may not
have to be protected if all nodes in which x is live after L are in L̃�L. Checking C3 prevents
L’s header from being split, while observing C1 and C2 can confine x’s live range to within
each iteration of L, so that after loop expansion, x can be renamed correctly within each new
loop copy.

Example Figure 3 illustrates the three conditions for loop protection. In Figure 3(c), to
limit the code growth, the loop on the splitting path needs to be protected from outside for x.
Dotted lines denote that there may be some nodes in between as long as they do not redefine
register x.

PERFORMANCE ENHANCEMENT TECHNIQUES – PSEUDO REGISTER PHASE

Let d(Ii; Ij) denote the minimum number of edges on any path from Ii to Ij , and dL(Ii; Ij) is
similar to d(Ii; Ij) except that all the nodes in the minimum length path must be within loopL.
LetDL denote the minimum number of edges from L’s loop header to any ofL’s tail. fIu; Idg
is a hazard pair within loop L on register x if Iu uses x, Id defines x, and dL(Iu; Id) � N .
Register x is a cut hazard register in loop L if 1) there is a hazard node in L, defining x; and
2) any header to tail path within loop L has at least one node defining x.
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Figure 4. Loop protection and cut hazard register

Loop protection

In Scheme L, if x is a hazard register inside loop L, and condition C1 or C2 is true, then
L should be protected from inside for x. However, if x is also a cut hazard register, L can be
renamed correctly after being protected from outside for x and expanded a sufficient number
of times.

Example As shown in Figure 4(a), register x is such a cut hazard register. According
to Scheme L, L is protected from inside since both conditions C1 and C2 are true. U(x)
represents using register x. Figure 4(b) illustrates the program segment after applying node
splitting, loop expansion twice, and renaming. The shaded circles denote save and restore
nodes for register x. Observing that every iteration of the loop redefines x, we can protect
L from outside and still get the correct renaming after expanding the loop twice, as shown
in Figure 4(c). The number of nodes is reduced, and the run time is improved since every
iteration of loop L dose not execute save and restore nodes. Similarly register x within the
loop in Figure 3(a) is also a cut hazard register.

Node splitting

A hazard node can be split if it is on the splitting path of some other hazards. Such new
hazard nodes may cause redundant splittings in Scheme L. We have implemented a scheme
in which the number of copies for node I after splitting equals the number of original hazard
reaching definitions ( plus 1 if there is at least one non-hazard reaching definition). This can
be done by using a stamp heap data structure 24, so that if a hazard node I is split into I , I1,
I2, : : : , IS�1, then the stamp field of Ii, i = 1; 2; : : : ; S � 1, points to I . The hazard nodes in
the same heap will be assigned to the same new destination register if renaming is required.
During the sequential scanning process, node I should be split due to hazard register x if 1) x
is in live in(I), and 2) all reaching definitions of x that can reach I do not belong to the same
stamp heap, assuming that all non-hazard nodes defining x belong to the same stamp heap.

Example Consider the program segment shown in Figure 5(a). We process hazard register
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Figure 5. Node splitting enhancement

x first. The nodes from A to B are split into two copies in Scheme L. However, the hazard
node F , defining x, is also split since x is still live, resulting in two hazard nodes, F and
F1. Therefore, the nodes from C to D are split into four copies due to the hazard reaching
definitions E, F , F1, and the reaching definition G. By applying the stamp heap strategy, we
can view F and F1 as the same reaching definition. Only three copies are required from nodes
C to D, as shown in Figure 5(c).

Loop and node processing order

Node splitting transforms all the hazards within the current loop across its backedges, while
loop expansion resolves all such hazards. In this manner, when we process a given loop, there
is no data hazard across the backedges of its inner loops. Therefore it is natural to process the
loops from inside out so that the levels of data hazards can be successively reduced until all
of them occur at the root level. The hazards at the root level then can be resolved by node
splitting and renaming.

In addition to the inner loop first rule, we have to enforce the sequential order rule ( top-down
) to smoothly check condition C3 for parent hazard registers and to further eliminate extra
save/restore nodes. Figure 6(a) illustrates the inner loop first rule that new hazards due to loop
protection are propagated to the outer loop. The program segment in Figure 6(b) illustrates
the sequential order rule. Suppose L2 is processed first. Without enforcing the sequential
order rule, L2 may need to be protected from outside for register x. However, such protection
is redundant if we process L1 first and remove hazards that might affect L2, as shown in
Figure 6(c).

Breadth First Search (BFS) is used to determine the processing order of nodes within loops
or nodes of the entire program. The starting nodes may be the headers of loops or the root
of the program. For some procedures, we have to modify the BFS algorithm by enforcing
the following rules : 1) a node can be processed if and only if all of its parents have been
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processed, MBFS; and 2) reverse the direction of searching, RBFS.

Loop expansion

Our formula for the number of copies of L needed to resolve all on-path hazards within L
is the same as the formula in Scheme L 1, with a slight modification. To simplify the analysis,
we assume that loop L has a header Ih, and a single tail It. It can be easily extended to loops
with multiple tails. Let DL = d(Ih; It). Assume that fIu; Idg is a hazard pair within loop L
for register x. The new formula includes the following cases: Case 1. The backedge (It; Ih) is
not counted in dL(Iu; Id); Case 2. The backedge (It; Ih) is counted in dL(Iu; Id), and within
L there exists a directed path that does not include (It; Ih) from Id to Iu; and Case 3. The
backedge (It; Ih) is counted in dL(Iu; Id), and within L not considering (It; Ih), there is no
directed path from Id to Iu.

Suppose it takes K1, K2 and K3 copies to resolve the hazard pair fIu; Idg for each case
respectively, where a value 1 denotes no replication. For case 1, since the use of x in Iu
and the definition of x in Id are renamed to different registers in the same loop iteration after
expanding the loopK1 times, the potential hazard distance would be from Iu through (K1�2)
copies of L to the K1th copy of Id, which is d(Iu; It) + (K1 � 2)DL + d(Ih; Id) +K1 � 1,
as shown in Figure 7(a). On the other hand, for case 2, both x’s can be renamed to the same
register, and the potential distance is from Iu through (K2� 1) copies of L to the first copy of
Id, which is d(Iu; It) + (K2� 1)DL+ d(Ih; Id) +K2, as shown in Figure 7(b). These terms

must be greater than N . Solving both inequalities, we have K2 =
j
N�d(Iu;It)�d(Ih;Id)�1

DL+1

k
+ 2

, and

K1 =

(
2 , if d(Iu; It) + d(Ih; Id) + 1 > Nj
N�d(Iu;It)�d(Ih;Id)�1

DL+1

k
+ 3 , otherwise.

For case 3, due to our observation concerning cut hazard registers, K3 may be either K1



MULTIPLE INSTRUCTION RETRY 9

Ih

It

Iu

Idx
renaming
different

U(x)

(a)  Case  1,  K1.

*

Ih

It

* Id

Iu

x

renaming
same

U(x)

(b)  Case  2,  K2.

Ih

It

x

Iu

x

Id

renaming
same

U(x)

(c)  Case  3,  K3 = K2.

*

Ih

It

x

Id

Iu

renaming
different

(d)  Case  3,  K3 = K1.

U(x)

x

*

Figure 7. Cases for loop expansion

or K2, depending on if both x’s in Iu and Id can be renamed to different registers, as shown
in Figure 7(c) and (d) respectively. For fixed d(Iu; It) and d(Ih; Id), we have K1 = K2 + 1.
Since case 3 rarely occurs, we chooseK3 = K1 in our implementation. The number of copies
of L needed to resolve all hazards within L is the maximum of all such K’s.

Self-anti-dependency

A node I is self-anti-dependent if I defines what it uses. For example, x  x + a is a
self-anti-dependent node that uses and defines pseudo register x. This type of anti-dependency
can be resolved by splitting I into two nodes : ( I1 : y  x+a, I2 : x y ), and then inserting
N nops between them 1,20. However, using renaming with the aid of node splitting and loop
protection, we can rename the definition of x to a new pseudo register without introducing a
new node.

THE INCREMENTAL UPDATING SCHEME

For on-path hazards – Scheme 0

Figure 8 shows the flowchart of the incremental scheme for resolving on-path hazards during
the pseudo register phase. Three subroutines loop-protection, node-splitting, and replicate-
loop, marked by “*”, may insert new nodes to loops. Information associated with each node,
including register live range, stamp heap and loop structure, is updated locally whenever a
node is inserted.

Assume that Li’s immediate parent loop is Lj , which may be the entire program, and
fIu; Idg is a hazard pair for register x. The two cases in which we consider protecting Li
from outside for x are shown in Figure 9(a) and (b). In Figure 9(a), since the x in Id will be
renamed, we only need to check if there is any other definition of x, I!, that can reach Ih, and
is not in the same stamp heap as Id. The search for Id is restricted to the shaded area, denoting
the definitions within Lj that can reach Ih without going through backedges, but I! can be
nodes in the upper levels that can reach Ih. The hazard in Figure 9(b) can also be resolved by
expanding Li a sufficient number of times and renaming registers within Li. For simplicity,
we protect Li from outside for register x instead, so that the hazard is automatically resolved.

Subroutines renaming, live-analysis, record-loop-structure, and sort-loop are executed only
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Figure 8. Incremental updating for resolving on-path hazards

once. The incremental scheme does not perform global DU-chain and global reaching defi-
nition analysis as Scheme L does, but rather performs a global live range analysis 23. Loop
structure and dataflow information live in and live out are maintained and updated locally
throughout the computation.

Subroutine compute-hazard computes all hazard registers and hazard nodes within the
current loop, bypassing inner loop hazards. It traverses nodes withinLi from the loop header
in a BFS order. If node I defines x, it performs an RBFS traversal from node I up to distance
N , but the search never leaves Li. If there is a use of x within distance N , it records x a
hazard register, and I a hazard node. Subroutine loop-protection protects loopLi according to
conditions C1, C2, and C3. Subroutine get-number-of-replications performs a BFS traversal
to compute d(Ih; I�) and an RBFS traversal to compute d(I�; It) for all nodes I�, I� in Li. It
then computes K using the new formula, for every hazard pair fIu; Idg in Li. The maximum
of all such values is the number of replications needed for Li to resolve its hazards.

Subroutine node-splitting executes the criterion mentioned in the previous section, and
scans the loop nodes in an MBFS order, bypassing the inner loops. Subroutine replicate-loop
first marks the extended loop L̃i for all hazard registers, and then applies a BFS traversal to
replicate L̃i. The number of copies is obtained from get-number-of-replications subroutine.

As shown in Figure 8, each program loop is examined once. The actual code growth occurs
after all loops have been inspected.

Incorporating branch hazards – Schemes 2 and 3

Branch hazards occur at branch boundaries when an error results in a wrong branch decision.
The following criterion can be used to locate all branch hazards : Register x is a branch hazard
if there exists a branch node IBR, such that the distance from IBR to a definition of x along
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one branch path of IBR is withinN , and x is live at the other branch paths of IBR. By viewing
x as if it is used at IBR, renaming can resolve branch hazards as well as on-path hazards.
Similar to the case shown in Figure 9(b), we modify the loop protection conditions. As shown
in Figure 9(c), Iu is a branch node that does not use register x, and x is live along one branch
path of Iu. Loop Li is protected from outside for register x, as if branch node Iu uses register
x.

Example Consider the partial segment shown in Figure 10(a), and N = 3. Register x at
node I is a branch hazard due to branch nodes IBR and It, denoted by double circles. After
loop protection as in Figure 9(c), and renaming x to y, the new register y at node I is a branch
hazard due to branch node It, as shown in Figure 10(b). Note that the save instruction y  x
before the loop header Ih is removed since x is not live at Ih. In Figure 10(c), by expanding
the loop twice and renaming, the branch hazard is resolved. The formula for the number of
loop replications can also be modified by viewing the branch node as using the hazard register
x.
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Figure 10. The loop expansion for branch hazards,N = 3
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POST-PASS CODE RESCHEDULING AND SPILL REGISTER REASSIGNMENT

On-path hazards – Scheme 0

Although the pseudo register phase aims at removing on-path hazards within a function,
new hazards may emerge after the machine register phase. First, the stack pointer adjustment
instructions within the prologue segment and the epilogue segment create immediate self-
anti-dependencies. Second, before calling a procedure, the registers used as parameters need
to be saved before the new values can be loaded. Register spilling may also create on-path
hazards. When a register is to be spilled, most likely it will be loaded with new values, thus
creating a use-before-definition scenario. A straightforward post-pass nop insertion algorithm
was employed in Scheme L to resolve these new hazards. Sufficient nops are inserted before
the hazard definitions to force all anti-dependency distances exceeding N .

In this section, we apply a code rescheduling technique within the prologue and the epilogue
segments, and a register reassignment algorithm for rearranging spill registers, so that the total
number of nops inserted is greatly reduced. The post-pass algorithm includes the following
steps : 1) reassign spill registers; 2) reschedule code and insert nops in the prologue segment;
3) reschedule code and insert nops in the epilogue segment; and 4) insert remaining nops.

The IMPACT C compiler 22 reserves three registers, $3, $24, and $25, as spill registers. The
spill registers perform load and store to access memory. The compiler generates instructions of
the following groups for load and store functions respectively, where $r1 and $r2 are different
spill registers, and are dead after the second ( or the third ) instruction :

load $r1, memory; load $r1, memory1; operation defining $r1;
use $r1; load $r2, memory2; store $r1, memory;

use $r1, $r2;

Spill registers serve as temporaries and have very short live ranges, i.e., 2 or 3. On-path
hazards occur when two groups of spill code use the same spill register and their distance,
from the use of the first group to the definition of the second group, is less than or equal toN .
The goal is to minimize the number of nops needed to resolve all hazards. Our approach is to
utilize dead registers as substitutes within groups so that the sum of all the anti-dependency
distances for spill registers and substitutes is maximized, considering the anti-dependency
distance between groups of different spill registers and substitutes N + 1. In general, this
problem is NP-hard, which includes as a special case the following NP-complete problem
after determining that only spill registers are dead registers, and N = 1 :

Given K colors, an undirected graphG and an integer n, is there a node coloring
such that the number of edges with the same colors at both ends is at most n?

This can be proven by restricting n to 0, and it becomes the K-colorability problem 25.
However, we propose a simple heuristic algorithm to reassign spill registers within groups in
a BFS traversal of the entire program. We always choose as a substitute the register which is
dead before and after the group, and whose sum of the distance backward to the first use and
the distance forward to the first definition is maximum.

The prologue segment includes code to adjust the stack pointer and to save the values of
local registers to memory. The epilogue segment includes code to retrieve the original register
values from memory and to adjust the stack pointer. The last step simply performs a BFS
traversal, and inserts nops to resolve all remaining on-path hazards.
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$_merge_sort_3 :
epilogue_begin :

merge_sort :

move      $sp,         $30
epilogue_end :

beq         $17,        $23,       $_merge_sort_3

beq         $16,        $20,       $_merge_sort_3

10    nops

addu        $30,        $sp,       128

lw          $20,        108($sp)

lw          $31,        124($sp)

lw          $16,        92($sp)

lw          $23,        120($sp)

lw          $17,        96($sp)

lw          $22,        116($sp)

lw          $18,        100($sp)

lw          $21,        112($sp)

lw          $19,        104($sp)

10    nops

move      $0,          $0
move      $0,          $0
move      $0,          $0
move      $0,          $0

addu        $30,        $sp,       128

move      $sp,         $30

epilogue_end :

beq         $17,        $23,       $_merge_sort_3

beq         $16,        $20,       $_merge_sort_3

$_merge_sort_3 :
epilogue_begin :

merge_sort :

lw          $21,        -16($30)
lw          $31,        -4($30)
lw          $22,        -12($30)
lw          $19,        -24($30)
lw          $18,        -28($30)
lw          $23,        -8($30)
lw          $20,        -20($30)
lw          $17,        -32($30)
lw          $16,        -36($30)

(a)   Scheme  L. (b)   The  new  scheme.

Figure 11. Post-pass code rescheduling for an epilogue segment,N = 10

Example Figure 11(a) shows the epilogue segment processed by Scheme L in post pass,
for N = 10. Figure 11(b) illustrates how the register assignment and code rescheduling are
used to eliminate 16 nops in the epilogue segment. Instruction ’addu $30, $sp, 128’ has been
moved backward up to before all instructions of loading local registers, with the base register
being replaced by $30. The instructions to load local registers are rescheduled according to
their distances from the first uses of corresponding registers. The four instructions loading
registers $16, $17, $20, and $23 are thus moved to the end of the load instructions. Four more
nops are needed to resolve the hazard register $23.

Both types of hazards – Schemes 1, 2, and 3

Post-pass nop insertion can also resolve extra branch hazards generated by the machine
register allocator. The branch hazard check can be incorporated in the original on-path hazard
check. The heuristic to reassign spill registers has to be modified as follows. The register we
choose to replace the reserved spill register at a specific group G of spill instructions must be
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not only dead before and after G, but also requires as few nops as possible to resolve the new
branch hazard induced by the substitute register.

1  >  0 ?

$r  <-  

(a)

try :

Prologue :

H1 :

addu      $18,   $11,  1  /*   fall-thru  path (F)   */

b            H1

save  $18

J  :

jal          try

M  : li            $8,    1

lw          $18,   2

(b)

X :
Prologue : Callee  saves

registers  including  $r

K :

I :

J :

F
T

M :

within  N

/*  No  definition  of  $18  in  between.  */

/*  $18  is  dead  after  node  K.  */

bne       $9,     0,    P       /*  node  I  */

P  :

/*  recursive  call ,   node  K  */Call  Y

Figure 12. Register live range across procedure boundaries

The above schemes for incorporating branch hazard resolution do not create extra hazards
across procedural boundaries. However, depending on implementations, the callee-saved reg-
isters may have a performance impact due to separate compilations. As shown in Figure 12(a),
suppose at branch node I , a wrong decision is made. After rollback and a correct decision at
I , register $r has a wrong value. If $r is in Y ’s callee-saved register set, then $r is live along
I’s target (T ) branch. Several nops should be inserted between I and J to resolve such branch
hazard. However, since Y ’s callee-saved register set are unknown at current procedure X , a
conservative scheme may assume that the registers are all in the set, e.g., $16, $17, � � �, $23
in IMPACT C. By viewing K as a node that uses such set, we can incorporate it in the initial
global live range analysis.

For library routines, a built-in table holding corresponding saved register sets can be attached
to the compiler to relieve the situation described above. The following checking can determine
$r’s live range before the procedure call, regardless of whether $r belongs to the callee-saved
register set. $r 2 live in(M) iff $r is live at node K, where M is the next instruction
following the subroutine call nodeK. Such live range checking starting from M should skip
any subroutine call encountered.

Example Figure 12(b) is an assembly code segment for the recursive function try . Without
checking the additional condition,N nops are inserted between node I and node J to eliminate
the hazard $18. None is required by observing $18 is dead after node K. Code run time
performance is improved since such N nops are within a loop.
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Figure 13. Compile time speedup

PERFORMANCE EVALUATION

Implementation and performance benefits of the schemes are evaluated on a set of twelve pro-
grams cross-compiled on a SPARC server 490 by the IMPACT C compiler with the hazard re-
moval schemes, and executed on a DEC station 3100. The benchmarks and descriptions are as
follows: QUEEN(148), 8-queen program; QSORT(261), recursive quick sort algorithm; PUZ-
ZLE(877), a game; WC(181), CMP(251), GREP(926), COMPRESS(1828), UNIX utilities;
EQN(6251), mathematics typesetting program; LEX(6873), lexical analyzer; YACC(8099),
parser generator; CCCP(8775), preprocessor for gnu C compiler; and TBL(9191), table for-
matter. The number within the parentheses is the number of instructions generated by the
IMPACT C compiler without removing hazards. The chosen benchmarks consist of a vari-
ety of typical program constructs including sequential single loops, highly nested loops, and
recursive functions.

Resolving on-path hazards – Scheme 0 v.s. Scheme L

The incremental updating scheme and the post-pass code rescheduler improve application
compile time, run-time performance, and reduce code growth for most applications studied.
In this section we compare the performance impact of Scheme 0 and Scheme L with respect
to the compile time, code run time and code size. We investigate the same set of benchmarks
used in 1: CMP, COMPRESS, PUZZLE, QSORT, QUEEN, and WC.

For N = 10, Scheme L requires more than 8 minutes, 15 seconds, 1.5 minutes, 3.5 minutes,
and 9.5 minutes compiling QSORT, QUEEN, CMP, WC, and PUZZLE respectively, while
Scheme 0 takes compile time less than 16 seconds, 8 seconds, 15 seconds, 15 seconds and 50
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Table II. Code run time overhead for Schemes L and 0

N 1 2 3 4 5 6 7 8 9 10

QSORT L 6.2% 8.3% 8.3% 10.4% 11.5% 13.5% 14.6% 26.0% 22.9% 30.2%
0 5.2% 6.2% 6.2% 8.3% 8.3% 10.4% 10.4% 13.5% 15.6% 16.7%

QUEEN L 3.0% 5.3% 7.2% 7.2% 9.0% 9.8% 11.5% 15.8% 16.3% 20.9%
0 2.9% 3.5% 3.9% 4.9% 5.1% 5.5% 6.0% 8.0% 10.2% 16.3%

CMP L -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8% -1.8%
0 -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4% -2.4%

WC L 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 4.4%
0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 1.3%

PUZZLE L -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7%
0 -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% 0.0% 0.0%

COMPRESS L -0.6% 0.0% 0.0% 0.0% 1.2% 2.5% 5.6% 6.2% 11.2% 18.8%
0 -0.6% -0.6% -0.6% -0.6% 1.2% 1.2% 5.0% 5.6% 10.6% 16.9%

seconds respectively. COMPRESS has the best compile time improvement. Scheme L spends
more than an hour for N = 7, 8, and 9, and almost two hours for N = 10 on compilation,
while Scheme 0 compiles in less than 3 minutes. Figure 13 shows the compile time speedup
which is the compile time ratio between Scheme L and Scheme 0.

Table II lists code run time overhead for both Schemes L and 0 respectively. The base of
comparison is the original code run time. Some benchmarks, e.g., CMP and PUZZLE, have
improved performance, as shown by negative numbers. The register allocator, nop inserter, and
spill register reassignment involve heuristic algorithms that in some cases provide improved
performance under loop expansion. The MIPS post-pass code reorganizer also sometimes
changes the execution order for different N . Two benchmarks, QSORT, and QUEEN, include
recursive functions and have among the largest run-time enhancements, forN > 5. Post-pass
code rescheduling is a significant contributor to these two benchmarks.

Table III lists the code size overhead for Schemes L and 0. The base of comparison is the
number of instructions in the original code. COMPRESS has larger code growth in Scheme 0
due to the removal of the 800 instruction threshold 1 and the change in the number of functions
compiled in simplified mode which bypasses the rest of pseudo register hazard resolution
except the breaking of self-anti-dependent instructions, after exceeding the threshold. In

Table III. Code size overhead for Schemes L and 0

N 1 2 3 4 5 6 7 8 9 10

QSORT L 63% 70% 105% 115% 123% 136% 154% 199% 219% 274%
0 101% 104% 105% 110% 118% 130% 138% 146% 169% 191%

QUEEN L 57% 69% 124% 134% 152% 164% 176% 208% 219% 310%
0 48% 53% 58% 68% 78% 127% 132% 147% 151% 179%

CMP L 75% 80% 92% 107% 120% 141% 158% 179% 200% 228%
0 60% 63% 67% 76% 82% 84% 88% 90% 94% 122%

WC L 133% 138% 160% 167% 179% 216% 245% 249% 257% 290%
0 153% 155% 160% 163% 164% 165% 187% 205% 209% 244%

PUZZLE L 80% 80% 87% 89% 91% 94% 96% 101% 106% 126%
0 79% 79% 81% 84% 85% 87% 96% 99% 101% 111%

COMPRESS L 28% 32% 38% 52% 60% 69% 80% 94% 107% 129%
0 70% 73% 74% 78% 82% 87% 108% 122% 152% 156%
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Table IV. Run time overhead for Scheme 1

N 1 2 3 4 5 6 7 8 9 10

QSORT 6.2% 6.2% 7.3% 9.4% 9.4% 12.5% 12.5% 16.7% 18.7% 18.7%
QUEEN 2.8% 3.1% 4.1% 5.7% 6.3% 6.7% 7.4% 11.1% 11.2% 18.0%

CMP -3.0% -3.0% -3.0% -3.0% -3.0% -3.0% -2.4% -1.8% -1.2% -1.2%
WC 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3%

PUZZLE 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.7% 0.7%
COMPRESS 1.3% 2.0% 2.6% 4.0% 7.3% 9.3% 9.9% 11.3% 13.9% 17.9%

GREP 11.1% 11.1% 11.1% 11.1% 11.1% 13.0% 13.0% 13.0% 14.8% 24.1%
LEX 10.5% 11.6% 11.6% 11.6% 11.6% 11.6% 12.8% 14.0% 14.0% 18.6%
EQN 7.8% 11.3% 12.2% 12.2% 12.2% 12.2% 13.9% 13.9% 13.9% 13.9%

YACC 0.0% 0.0% 2.4% 2.4% 2.4% *7.1% *11.9% *16.7% *23.8% *28.6%
CCCP 8.5% 9.3% 10.1% 11.6% 11.6% *17.1% *17.1% *19.4% *20.9% *26.4%
TBL 5.3% 7.9% 7.9% 7.9% 7.9% 7.9% 14.5% 14.5% 14.5% 15.8%

Scheme 0, QSORT and WC have larger code growth when N = 1 and 2. Loop expansion is
the major stage that results in most of the code growth. In Scheme L proper renaming after
protecting the loop from inside and node splitting for small N may prevent the loop from
being expanded. Also, if the loop is protected for several registers from inside, the hazards
can be removed after arranging the order of the save/restore nodes, and renaming without
actually expanding the loop. However, using the cut hazard register technique, as in Scheme
0, to move save/restore nodes out of the loop L requires L to be expanded at least once.

Resolving on-path and branch hazards – Schemes 1, 2, and 3

Schemes 1, 2, and 3 deal with removing both types of hazards during three separate phases.
Scheme 1 has the fastest compilation speed since it postpones the branch hazard resolution to
the last phase.

All three schemes perform relatively the same for the twelve benchmarks studied. Reasons
for this behavior include 1) the occurrences of branch hazards are infrequent; 2) both ma-
chine register and nop insertion phases employ heuristics, and the spill register reassignment
heuristic may be efficient enough to resolve branch hazards in the post-pass; and 3) resolving
branch hazards at the pseudo register phase or the machine register phase is likely to have
larger code growth, due to the extra node splitting and loop expansion. In most benchmarks,
Scheme 1 even outperforms the other two schemes in both code run-time and code growth.

The performance overhead of Scheme 1 is tabulated in Table IV. Due to the heuristic
algorithm employed in the post-pass phase, the performance overhead observed is not mono-
tonically increasing according to N . However, the code generated to allow N instruction
rollback is correct for N � 1 instruction rollback as well. Therefore, the overhead can be
recorded as non-decreasing. Several functions generate more than 15,000 nodes, which in-
creases the computation time for the machine register assignment phase, when N > 6. YACC
has two such functions, and CCCP has one. For these three functions, we resolve the rollback
hazards of distance 5 in the pseudo register phase, and then resolve the rollback hazards of
distance N > 5 in the post-pass phase, as marked by “*” in Table IV.

Figure 14 depicts the percentage of hazard nodes that are branch hazard nodes but are
not on-path hazard nodes, for various rollback distances. Benchmarks QUEEN and QSORT
have 0 percentage for N within 10 because either they have no branch hazards, or all of their
branch hazards are also on-path hazards. PUZZLE has the highest percentage of branch hazard
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Figure 14. Percentage of the hazard nodes that are branch hazard nodes

nodes, 42.42% when N = 3. There is a significant rise from N = 2 to N = 3 due to the
relative distances between branch nodes and hazard nodes. This can explain why in Scheme A,
PUZZLE has the highest run-time overhead 10% when N = 10 20. The post-pass algorithms
apparently reduce the overhead to 0.7%, as shown in Table IV. All the other benchmarks have
less than a quarter of the hazard nodes that are branch hazard nodes but not on-path hazard
nodes.

CONCLUSION

The previous compiler-based multiple instruction retry resolves data hazards associated with
rollback recovery 1. The proposed approach eliminates the delayed write buffer for the register
file, but suffers from long compilation times. An incremental updating scheme has been
incorporated in the compiler-based scheme, resulting in significantly reduced compile times.
The code in the prologue and the epilogue segments was rescheduled, and the spill registers
were reassigned to reduce the total number of nops inserted. The threshold for the number of
nodes increased from 800 to 15,000. Branch hazards were shown to be resolvable by simple
modifications to the proposed approaches. Three schemes were implemented and compared.
Postponing the resolution of branch hazards to the last phase was shown to provide the fastest
compilation. This approach also typically generated code as good as the alternatives in both
code run time and code growth.
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