
Using NET to Capture Performance in Java-Based Software

Cheng-Hsueh A. Hsieh Marie T. Conte Teresa L. Johnson John C. Gyllenhaal
Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois
1308 W. Main St.

Urbana-Champaign, IL 61801
ada, mconte, tjohnson, gyllen, hwu@crhc.uiuc.edu

Cheng-Hsueh A. Hsieh (408) 929-1150
Marie T. Conte (217) 244-1277 Fax: (217) 333-5579 (coordinating author)
Teresa L. Johnson (217) 244-1081
John C. Gyllenhaal (217) 244-3226
Wen-mei W. Hwu (217) 244-8270

Keywords: Universal Software Distribution Environment
Universal Software Distribution Language
Optimizing Java Bytecode Translator
Stack to Register Mapping
Java Memory Organization
Java Verification Costs
Java Garbage Collection
Java Cache Performance
Java Array Index Bounds Checking

1

Abstract

The Java bytecode language is emerging as a software distribution standard, with major

vendors committed to porting the Java run-time environment to their platforms. These first

generation run-time environments rely on an interpreter, possibly extended with capabilities to

cache native code for reduced interpreter overhead, to bridge the gap between the bytecode

instructions and the native hardware. The interpreter approach is sufficient for specialized

applications such as Internet browsers, where application performance is often limited by

network delays rather than processor speed. It is, however, not sufficient for executing general

applications distributed in Java bytecode. This article presents our initial prototyping

experience with our Native Executable Translation (NET) compiler, an optimizing Java-

bytecode-to-native-machine-code translator. We discuss the major issues involved in improving

run-time performance as well as some less obvious costs. Encouraging initial results based on

our X86 port are presented.

1. Introduction

Java, the new object-oriented programming language from Sun Microsystems, appears to

be setting the standard for universal software development1. Java code compiles into a binary

format called bytecode which can be used for software distribution, and which does not need

recompilation in order to run on any platform. Java is also secure, guarding against code

corruption before execution2. This new language uses run-time resolution to locate objects and

their corresponding classes, meaning software updates can be integrated as quickly as they are

made available1. However, there are several trade-offs and costs involved in migrating to a

universal software distribution environment.

Currently there are four approaches to running Java: an interpreter, a Just-In-Time (JIT)

compiler, a Native Executable Translation (NET) compiler, and a hardware implementation. In

this article we present our initial prototyping experience with our NET compiler, an optimizing

2

Java-bytecode-to-native-machine-code translator. The objective of this work is to run the

translated code at nearly the full performance of native code directly generated from a source

representation such as the C/C++ programming languages. However, the work with our NET

compiler is not limited to Java. Our goal is to develop a strong portfolio of techniques from our

Java implementation efforts that will contribute to the development and acceptance of any universal

software distribution language.

Due to space limitations we will focus our discussion on the critical issues involved in the

design of our NET compiler. However, we also explain some of the less intuitive costs involved in

running Java. The critical issues include: minimizing verification overhead, mapping the stack

computation model of the bytecode virtual machine to the register computation model of modern

processors and developing a more efficient memory organization. We also present some

preliminary results for several large application programs and standard benchmarks, running on a

166MHz Pentium system, and we compare the NET compiler translated code performance with

Sun’s Java Virtual Machine version 1.0.2 and Microsoft’s Java Just-In-Time compiler version

1.03. Also included in the comparison is the execution time of equivalent C/C++ programs directly

compiled by the Microsoft Visual C/C++ compiler version 4.2. Preliminary results show that our

optimizing NET compiler is currently capable of achieving better performance than the other

bytecode execution methods, in some cases achieving speeds comparable to directly compiled

native code4.

2. Overview and Motivation

Our interest in Java is motivated by four key aspects of Java bytecode-based software

distribution. First, Java adds security to the distribution of software, providing added benefits over

more common languages like C/C++. Second, the Java Virtual Machine (VM) defines an interface

for executing Java bytecode programs on a wide variety of vendor platforms, allowing for the

development of a truly portable software base. Third, Java contains many features that we believe

3

are fundamental to the success of any universal language. Last, due to the nature of interpreted

languages, Java executables run slower than their compiled counterparts in other languages. Our

objective is to develop a technology for executing Java bytecode programs at high performance

while fully supporting all of the desirable Java features. In the remainder of this section we

describe the three software models for running Java bytecode: the interpreter, the JIT compiler, and

our NET compiler.

Interpreters are the most widely available approach to executing Java bytecode programs.

A software interpreter emulates the Java VM by fetching, decoding, and executing bytecode

instructions. In the process, it faithfully maintains the contents of the computation stack, local

memory state, and structure memory. The Java interpreter from SUN Microsystems is publicly

available5.

Just-In-Time (JIT) compilers perform on-the-fly code generation of frequently executed

Java methods, while emulating the VM, and cache the native code sequences to speed up the

processing of the original bytecode sequences in the near future. The current generations of Just-

In-Time compilers do not save the native code sequences in external files for future invocations of

the same program. Rather, they retain cached native code sequences to speed up the corresponding

bytecode sequences during the same invocation of the program. At the time of this work, Borland6,

Symantec7, and Microsoft3 have all released Just-In-Time compiler products, and the Microsoft JIT

compiler is used in this article. Due to the code generation overhead that occurs during program

execution, and limited time available to perform code optimizations, Just-In-Time compilers are

still intrinsically slower than direct native code execution. In addition, due to the need to explicitly

generate and cache native code, this approach requires more effort than interpreters when porting

to new platforms.

Native Executable Translation (NET) Compilers use state-of-the-art compiler analysis to

translate bytecode programs into native code programs off-line. The fundamental difference

4

between a JIT and a NET compiler is that the code compiled by a NET is intended to be saved for

future invocations, under protection of an updater to support software updates. However, without

extensive analysis and optimization capabilities, the native code generated may not perform much

better than that cached by JIT compilers. Such analysis and transformations tend to make the

translation process more expensive in terms of time and space. In general, only those applications

that are repeatedly invoked or those applications for which the execution time is much longer than

the translation time should be translated. Thus, optimizing NET compilers are unlikely to fully

eliminate the need for interpreters and JIT compilers. NET compilers are also the least understood

approach among the three alternatives, and require significantly more effort to port to new

platforms than interpreters.

Figure 1 shows an overview of the steps in our prototype optimizing NET compiler. The

Java class files required to execute the program are identified, parsed, and translated into an

internal representation (IR), called the Java IR, consisting of methods and basic blocks of bytecode

instructions. Then, several optimization techniques are applied before generating the final native

code output. Our NET compiler is based on the IMPACT compilation infrastructure8. The

prototype is sufficiently stable to handle Java bytecode programs of substantial size.

5

3. Benefits of Translating to Native Code

Among the reasons for Java’s success are features such as the ease of software updates, an

architecture-independent implementation, and verification support. Unfortunately, these features

also contribute significantly to the performance penalty experienced when running Java,

particularly with an interpreter. Our NET compiler translates Java bytecode directly into machine

code, reducing the cost of these features and enabling aggressive optimizations (see Figure 1).

Furthermore, we believe the translated code can eventually achieve performance very close to

C/C++ programs compiled directly for the underlying architectures, while maintaining the security

and other added benefits associated with Java. Figure 2 shows an overview of the IMPACT NET

compiler framework, and how it fits into the Java system architecture.

 ByteCode

Java
IR

Machine-Indep.
IR

Optimized
Native Code

Optimized
Machine-Specific

IR

Optimized
Machine-Indep.

IR

Instruction Recognition
Data Recognition

Stack Analysis
Stack to Register Mapping
Class Inheritance Analysis
Instruction Annotation

Inlining
Data Dependence Analysis
Interclass Analysis
Classic Optimization
ILP Optimization
Predication

Peephole Optimization
Scheduling, Speculation
Register Allocation

Assembly Code Generation
Assemble & Link

Run-Time Support
BenchmarksClassfile reader

Java bytecode decoder

Figure 1: Overview of the IMPACT NET Compiler Translation Path

6

3.1 Taking Advantage of Architectural Registers

The Java VM uses a stack computation model where source operands are fetched from the

top of the operand stack, and the result is pushed back onto this stack. The use of a stack model

eliminates the need for making assumptions about the architectural register file size available to the

interpreter, and thus increases the architectural independence of the interpreter9. However, the

stack model requires that items be pushed and popped off a central stack, creating an execution

bottleneck. For example, if we execute a code segment such as:

int A, B, C, j;
 A = 4;
 B = 8;
 for(j = 0; j < 10; j++)
 { C = A + B;
 /* A and B are modified in the body of the loop */
 }

X.class
Y.class

Classes
Librar y

Networks

Services

ByteCode
Verifier

Class
Loader

GUI

Operating System

Hardware

Native-Code
Translator

Local disk

Native Executable

AWTHPI

Remote disk

A.class
B.class

.

.

.

C.class

Challenges
Accurate exception handling
Optimized Garbage collection
Incremental Optimization

Disk
Cache

Added benefits
Reduced verification cost
Stack to register model mapping
Improved memory management

NET
Class Verifier
and Updater

 IMPACT NET

Dynamic compilation and
updating of native code
class libraries

Challenges
Recognition of changes
Triggering of proper
re-compilation level

Heap Memory

Garbage Collection

Figure 2: Overview of the IMPACT NET Compiler Framework

7

a register-based architecture would load the values of A and B into a register, suffering the load

expense only once per variable for the entire loop. In the Java VM, two numbers can only be

added when both numbers are on top of the stack. Therefore, each time we compute C we must

push A on the stack, push B on the stack, pop both of these values, add them, and push their result

back on the stack. Even with the optimization of pushing both A and B at once, which is used in

the Sun 1.0.2 VM5, there is a substantial delay over the register execution model.

In the NET compiler approach, we improve upon the stack model by mapping the run-time

stack to architectural registers. During this mapping it is important to utilize all the architectural

registers in order to minimize both the number of native code instructions and the memory traffic.

The first step in this register mapping translates a push to the operand stack into a move to a

register, and a pop into a move from a register. Then optimizations, including register renaming,

copy propagation, and dead code removal followed by global register allocation, eliminate all the

overhead associated with the stack computation model. Further details on this mapping can be

found in the paper by Hsieh, et. al4.

3.2 Streamlining the Run-time Memory Organization

Java’s ability to dynamically link a new class or interface at run-time, locating its fields as

needed, overcomes the recompilation problems associated with class library updates in other

object-oriented languages such as C++1. By dynamically locating the fields within the class, Java

can ignore added fields, new methods, and new features as long as the original fields and structure

remains valid.

Figure 3a illustrates the heap memory organization used by the SUN Java interpreter to

facilitate dynamic linking. In this organization, neither the class object nor the array object points

directly to its associated data. Rather, they each point to an 8-byte handle, which points to the

corresponding data10. This indirection allows the VM to find the up-to-date data without

recompiling after software updates. The handle is also used for garbage collection and heap

8

compaction. Accesses to both class instance data and the array body require two levels of

indirection due to this handle space9. Accesses to the method block for method invocation are even

more complex, and may need three or more levels of indirection.

The enhanced memory model used in the our NET compiler (Figure 3b) reduces the

amount of indirection by combining the class instance data block and the method table into one

object block. A reference to our object block now requires only one level of indirection. Also,

since the class run-time type information in our implementation remains constant at run time, we

eliminate the method_ptr in SUN’s Memory model shown in Figure 3a, reducing a method block

reference to two levels of indirection. The complex method invocations are similarly optimized.

An advantage of this approach is that it consumes less memory, and allows quicker access to data

and class methods. The drawback is that during a software update, all references from other

modules that invoke the updated module must be adjusted. This is handled by the updater shown in

Figure 2.

classobj_ptr
obj_ptr

Handle Space Object Space

method_table_ptr

class_ptr

method_ptr

method table

 class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

arrayobj_ptr
obj_ptr

length

class_ptr

class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

Class A descriptor

type

Class B descriptor

2

3

2
array
 body
 ..
 ..

Heap Memory Shared MemoryExternal
Reference

class
 instance
 data

classobj_ptr
 class_ptr

class
 instance
 data

arrayobj_ptr

 class_ptr

class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

Class A descriptor

 type
Class B descriptor

2

1

1

array body
..
..

Heap Memory Shared MemoryExternal
Reference object block

 class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

 length

(a) SUN VM Memory Model (b) IMPACT NET Compiler Memory Model

2

1

1

2

3

3

Figure 3: Memory Models

9

3.3 Reducing the Time Spent Performing Garbage Collection

In C/C++ it is the responsibility of the programmer to handle dynamic memory allocation.

Keeping track of all dynamically allocated memory in a large program is often complex. The Java

language avoids problems that this complexity may cause by using garbage collection. Garbage

collection transfers the responsibility for memory management from the programmer to the run-

time system, or the VM implementation in Java’s case. The job of the garbage collector (GC) is to

periodically determine which memory blocks are still in use, and release the others for reuse by the

memory manager. Java’s GC runs as either a synchronous or asynchronous background thread,

with the goal of interfering as little as possible with program execution. One use of the handle

space in Sun’s VM 1.0.25 is to facilitate the implementation of a GC. We investigated the effects

of a baseline approach to the GC that does not rely on the handle space eliminated in our

streamlining of the memory organization discussed in Section 3.2. We have implemented this GC

in the IMPACT NET compiler, and compared it with the current GC used in Sun’s VM 1.0.2.

Our baseline GC, shown in Figure 4, is modeled on what we call the “lazy approach” to

garbage collection. Namely, we do not collect the garbage until we run out of room or reach some

limit. To perform the actual garbage collection we use a mark and sweep approach. That is, we

mark the memory blocks still in use and free the others. We accomplish our mark and sweep with

the help of additional structures. Two of these structures are bit map arrays that hold the

information necessary for collecting garbage as shown in Figure 4. In addition, we have organized

memory so that all memory blocks contain a header field. The header fields for the memory blocks

store information such as the size of the block. The size information is used when locating the

position of the header for the next allocated memory block (Figure 4).

10

When the program is first started, three megabytes of memory is reserved for the memory

manager and given an initial header. The next step is to initialize the Memory Bit Map (MBM).

The MBM consists of single bit fields, with each bit corresponding to a consecutive 64 bits of

memory. The MBM bits are used to record information concerning the allocated memory. At

program startup, the MBM is initialized to all zeros, except for a leading one which corresponds to

the initial header. As the program runs, the MBM is updated by setting the corresponding bit for

the header of each newly allocated block of memory. Dynamically allocated objects are always

referenced using the header address and an offset from the header.

The GC is called after the memory available to the memory manager has been consumed.

It uses the Garbage Collector Bit Map (GCBM) to keep track of the memory blocks determined to

 class_ptr

class
instance

data

class_ptr

 type

array
 body

 length

 block size XXX

 block size XXX

block size XXX

…

…

…

…

…

…

…

…

…

Memory

header

data

header

header

data

free

 Static Registers

T.L.S. Stack

Root Set

0 0 1 0 1 0 0 1 0

0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 1 0 0

1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Memory Bit Map

GC Bit Map

f000
f102
f334
f400

.

.

.

Header Stack

Figure 4: The IMPACT NET Compiler’s Baseline Garbage Collector

11

be still in use (active memory blocks). The GCBM is identical in size and shape to the MBM, and

is initialized to all zeros. Its entries are changed to one as active memory blocks are found. The

search for active memory blocks starts with the known active blocks contained in the root set. This

root set includes the static memory blocks, registers in use, stack frame for method invocations,

and thread local storage (TLS), as shown in Figure 4. To find the rest of the active blocks, each

block known to be active is scanned for addresses of other memory blocks. Unfortunately, the GC

cannot easily distinguish data representing memory block addresses from other types of data. In

order to be conservative, the GC must treat every data value as a potential address. However, in

order for an address to be valid it must correspond to the header of an allocated memory block.

The GC can check this requirement efficiently, by determining if the corresponding MBM bit is set

to one. When a valid address is found, the corresponding GCBM bit is set to one (if not already

set) to indicate that this block must now be considered active. The first time a block is determined

to be active, it is added to the header stack so that it also can be scanned for other possible active

blocks, as shown in Figure 4. After every active block has been scanned, the GCBM contains a

map of all active blocks and the free memory blocks can then be easily determined. To reduce

memory fragmentation, consecutive free memory blocks are combined. When necessary, the

memory manager can also allocate additional memory.

Our GC has shown some improvement over the model used by Sun. By using the lazy

approach, the GC is not even called for smaller programs. We examined the execution time of

garbage collection incurred by both the Sun interpreter and the NET compiler. Common C/C++

benchmarks that were hand-translated to Java source code, staying as close as possible to a one-to-

one mapping, were used. For larger programs such as javac and 130.li, the translated code GC

activity is lower than that of Sun’s interpreter. The time spent performing garbage collection in

130.li was reduced from 2.76 to 0.98 seconds, and in javac, from 9.36 to 1.96 seconds.

12

3.4 Reducing the Verification Overhead

The key to security in Java is the verification process it uses. The Java bytecode

verification is a four-pass process, three of which are conducted when the class is first loaded and

linked and the fourth when the code is executed2. The first pass simply ensures that the loaded

Java class file has the proper format. Although this pass can spot some initial problems within the

class just loaded into the VM, it is not enough to ensure the full security needed in public network

software distribution. The second and third passes in the Java VM verification scheme occur

during the linking phase of the class loading. During the second pass the verifier checks for items

dealing with language semantics and structure. The third pass of the verifier is an actual code

verifier which examines the contents of the methods contained in the class. This pass actually

performs a data flow analysis on each method as it checks the method. The fourth pass is

conducted when the method is called (invoked), and includes both access permission and type

checking.

In SUN’s VM version 1.0.2, the first three passes in the verification process are only

invoked for classes imported from another machine (untrusted source). However, due to the

dynamic updating features, a remote class is imported every time a program accessing it is run,

whether or not the class was updated since a program last accessed it. In the NET compiler,

classes are validated during translation, leaving the native code on the local machine for future

invocations of the program. This verification is performed again only when the updater spots a

change in a class. In addition to the reduced verification overhead, we are also able to enforce a

stricter security policy. For example, SUN’s VM 1.0.2 does not verify classes that exist on the

user’s machine, allowing a user to install a program from another source and inadvertently bypass

Java’s security features. Every class is verified at translation time whether or not it is local.

13

3.5 Better Utilization of Processor Resources

The speed of executing programs in a modern system is not determined solely by the

number of instructions executed. A significant amount of the execution time can be spent in

dealing with inefficient use of the microarchitecture mechanisms such as the instruction and data

caches. Translating Java bytecode into native code reduces the undesirable effects Java has on

these architectural features, particularly when the VM is implemented via an interpreter.

The architectural performance studies were performed using the IMPACT simulation

environment, which performs an execution-driven simulation, to generate results. Our cache

simulation model consists of a 32Kbyte instruction cache (Icache) with 64-byte blocks and 2-way

set-associativity. The data cache (Dcache) is 16Kbytes with 64-byte blocks and 2-way set-

associativity.

3.5.1 Instruction Cache Performance

Due to the software emulation of the bytecode instructions in an interpreter, the processor

is executing the interpreter program, rather than the benchmark application. The bytecode versions

of the benchmarks, which are now input sets to the interpreter, have an impact on the size of the

interpreter Icache footprint. Therefore, to examine Icache performance we looked for input set

characteristics that affected the size of this footprint. As can be seen from the number of Icache

misses in the third column of Table 1, the interpreter’s Icache behavior is relatively consistent

except when running 099.go and 132.ijpeg. These programs have a much larger unique bytecode

mix in comparison with the other programs. In particular, 099.go uses 123 of the 227 possible

unique bytecode instructions, and 132.ijpeg uses 141, while the others average around 100.

Additionally, 099.go and 132.ijpeg utilize a larger number of complex bytecode instructions, such

as array operations which require additional bounds checking overhead. Translation to native code

will remove the interpreter effects from the Icache, however for large programs the Icache

performance may not improve. For example, Icache misses for wc are significantly reduced after

14

translation to native code when compared with those of the interpreter, as shown in the fourth

column of Table 1. On the other hand, the Icache misses of the translated code greatly increase for

099.go, because it is a much larger program and has a larger Icache footprint than the interpreter.

However, any Icache degradation due to the native code translation will be more then compensated

for by the improved data cache performance, as will be discussed next in Section 3.5.2. Due to the

extra instructions required for implementation of the Java specifications, such as array index

bounds checking (AIBC), the translated code typically incurs more Icache misses than native C

code, shown in column 2 of Table 1.

3.5.2 Data Cache Performance

As mentioned earlier, in the interpreter approach the Java bytecode effectively becomes

data. In addition to the Java program’s data and bytecode, all of the interpreter state is also

competing for the limited Dcache space. The significant increase in Dcache traffic that results can

be seen in the second column of Table 2, which shows the number of interpreter Dcache requests

per native C code Dcache request. Although some of this overhead is due to fetching the bytecode,

most is due to the interpreter’s processing of the fetched bytecode.

As a result of the competition for Dcache space, there is also a dramatic increase in read

misses, as shown in column three of Table 2. This effect is most noticeable for wc, grep and cmp,

TOTAL ICACHE MISSES
BENCHMARKS C CODE SUN

INTERPRETER
NET COMPILER

WC 13 6129 477
GREP 36 6251 484
026.COMPRESS 44 6726 545
099.GO 242114 18460 2873437
CMP 11 6124 450
DES 42 6680 1059
132.IJPEG 6402 50919 21294

Table 1: Icache performance of C code, Sun Interpreter, and the IMPACT NET
compiler (32Kbyte Icache with 64-byte blocks and 2-way set-associativity).

15

which had particularly low numbers of misses in the native C code. On the other hand, the

increases are smallest for 026.compress, 099.go and 132.ijpeg, because they already have high

numbers of misses in the native C code.

Translating the Java bytecode to native code separates the benchmark code from the data,

as in native C code, and the extra interpreter state is not needed. The last two columns of Table 2

show that the number of Dcache read requests and misses incurred by the translated code, divided

by the corresponding numbers for native C code, have been greatly reduced in comparison with the

interpreter ratios. However, extra requests are still generated in order to support some of the Java

specifications. For instance, before each array access, the array’s size is loaded during array index

bounds checking. Usually these extra accesses result in more misses in comparison with native C

code, but in the case of cmp, the translated version actually incurs fewer misses. Further

investigation revealed that one of the two input buffers was conflicting slightly with a global

variable in the native C version, but that our translated version mapped the buffers differently,

avoiding these conflict misses.

4. Preliminary Comparison of Java Software Methods

BENCHMARKS SUN Interpreter IMPACT NET Compiler
Read Requests

Per C Read
Request

Read Misses
Per C Read

Miss

Read Requests
Per C Read

Request

Read Misses
Per C Read

Miss
WC 214.6 9961.4 2.7 4.2

GREP 85.8 649.2 3.5 10.1
026.COMPRESS 78.5 3.5 2.6 1.0

099.GO 51.7 11.7 3.4 1.6
CMP 102.8 519.2 2.2 0.1
DES 75.6 172.3 3.6 8.4

132.IJPEG 70.4 26.1 3.9 2.4

Table 2: Dcache performance of Sun interpreter relative to C code (16Kbyte
primary Dcache with 64-byte blocks and 2-way set-associativity).

16

As stated earlier, even though our NET compiler is still in the preliminary stages of

development, we have already shown substantial performance improvement over other software

methods for executing Java. We examined the performance of our NET compiler versus the Sun

VM, Microsoft’s JIT compiler, and native C/C++ code, on an 166MHz Pentium-based PC running

Windows 95 with 48 Mbytes of memory. The Microsoft’s JIT was chosen because it was the most

stable, and able to handle the most benchmarks. There were only two benchmarks (132.ijpeg and

jBYTEmark) that the Microsoft’s JIT version 1.0 could not handle at the time of this evaluation,

and the average performance numbers for the Microsoft’s JIT does not include these benchmarks.

The Java interpreter used was Sun JDK Version 1.0.2. The IMPACT NET compiler was used for

the bytecode-to-native-code translation, and the C code was optimized for the x86 instruction set

using the Microsoft Visual C++ compiler version 4.2.

0 10 20 30 40 50 60

javac

jBYTEmark

cup

132.ijpeg

099.go

130.li

129.compress

026.compress

grep

des

othello

Linpack

cmp

wc

Pi

Sieve

Average

B
en

ch
m

ar
ks

Speedup versus Sun Interpreter

MS-JIT

IMPACT NET Compiler

Native C Code

Figure 5: Performance Comparison of Software Methods for Executing Java Bytecode

17

Figure 5 shows the speedup of the different execution models over the Sun interpreter

version 1.0.2. The IMPACT NET compiler is currently capturing 28-83% of the native C/C++

code performance, with speedups over the interpreter as high as a factor of 45.6. On average, for

C/C++ benchmarks, the IMPACT NET compiler achieved 54% of native C/C++ performance,

with an average factor of 17.3 speedup over the interpreter for all benchmarks. This compares to

Microsoft’s JIT’s 23% of C/C++ performance, with an average factor of 5.6 speedup over the

interpreter, and the SUN’s interpreter’s 4% of C/C++ performance. Although the initial

performance captured by the IMPACT NET compiler is encouraging, we have identified several

promising optimizations that we believe will significantly improve translated code performance.

One such optimization is the elimination of array index bounds checks that are found to be

unnecessary through extensive program analysis11. There is a potential 15% average performance

improvement if this overhead can be eliminated. When coupled with a class updater utilizing

dynamic linking technology, we should be able to effectively utilize high-powered transformations

that maintain the Java semantics while approaching C/C++ performance for a large set of

applications.

Acknowledgments

The authors would like to thank all the members of the IMPACT research group whose

comments and suggestions helped to improve the quality of this article, in particular Dan Lavery,

Dan Connors, Dave August, Brian Deitrich and Rich Kutter. We would also like to thank the

anonymous referees for their constructive comments.

This research has been supported by the National Science Foundation (NSF) under grant

CCR-9629948, Intel Corporation, Advanced Micro Devices, Hewlett-Packard, SUN

Microsystems, NCR, and the National Aeronautics and Space Administration (NASA) under

Contract NASA NAG 1-613 in cooperation with the Illinois Computer laboratory for Aerospace

Systems and Software (ICLASS).

18

References

1. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
Massachusetts. 1996.

2. T. Lindholm and F. Yellin. The Java Virtual Machine Specifications. Addison-Wesley,
Massachusetts. 1997.

3. Microsoft’s Software Development Kit (SDK) for Java™, November 1996.
http://www.microsoft.com/java/

4. C.-H. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu, “Java Bytecode to Native Code
Translation: The Caffeine Prototype and Preliminary Results,” Proceedings of the 29th

International Symposium on Microarchitecture, Paris, France, December 1996.
5. Java-Programming for the Internet, Sun Microsystems, Inc., 1996, http://java.sun.com/
6. Borland C++ Development Suite, Borland International, Inc., 1996 ,

http://www.borland.com/
7. Café – Visual Java Development and Debugging Tools, Symantec Corporation, 1996,

http://www.symantec.com/
8. P.P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, “IMPACT : An

architectural framework for multiple-instruction-issue processors, “ Proc. 18th Ann. Int’l
Symp. Computer Architecture, Toronto, Canada, June 1991, pp. 266-275,
http://www.crhc.uiuc.edu/IMPACT/.

9. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
Massachusetts. 1996.

10. F. Yellin and T. Lindholm, “Java Internals,” JavaOne Sun's Worldwide Java Developer
Conference, San Francisco, CA., May 29-31, 1996,
http://www.oasis.leo.org/java/documentation/slides/JavaOne/00-index.html

11. Roger Alexander Bringmann, “Enhancing Instruction Level Parallelism Through Compiler-
Controlled Speculation,” Ph.D. thesis, Department of Computer Science, University of
Illinois, Urbana-Champaign, 1995, http://www.crhc.uiuc.edu/IMPACT/.

Cheng-Hsueh Andrew Hsieh is currently working as an intern at Intel in Santa Clara, CA. He is a Ph.D.
candidate at the University of Illinois. He received his MS degree in electrical engineering in 1993 from
University of Califormia at Los Angeles and his BS degree in electrical engineering in 1990 from the
National Taiwan University. His research interests include universal software languages, compiler
optimizations and binary translation. Hsieh has been a student member of IEEE since 1995.

Marie T. Conte is currently a Ph.D. candidate in the Department of Electrical Engineering at the
University of Illinois. She received her BS degree in electrical engineering in 1995 from the University of
Delaware. Her research interests include universal software languages, ubiquitous computing, compiler
optimizations, and software translators. Conte has been a student member of IEEE since 1992 and a
student member of ACM since 1994.

Teresa L. Johnson is currently a Ph.D. candidate in the Department of Electrical Engineering at the
University of Illinois, where she received her MS in 1995 and her BS in 1993. Her research interests
include cache memory optimizations for high-performance computer architectures, and universal software
languages.

John C. Gyllenhaal is currently a Ph.D. candidate in the Department of Electrical Engineering at the
University of Illinois, where he received his M.S. degree in 1994. He received his B.S. degree in electrical
engineering at the University of Arizona in 1991. His research interests include schedule-time
optimizations, universal software languages, and performance evaluation tools for high-performance

19

computer architectures.

Wen-mei W. Hwu is a Professor at the Department of Electrical and Computer Engineering, University
of Illinois at Urbana-Champaign. His research interest is in the area of architecture, implementation, and
compilation for high performance computer systems. He is the director of the IMPACT project, which has
delivered new compiler and computer architecture technologies to the computer industry since 1987. In
recognition of his contributions to the areas of compiler optimization and computer architecture, the Intel
Corporation named him the Intel Associate Professor at the College of Engineering, University of Illinois
in 1992. He received the National Eta Kappa Nu Outstanding Young Electrical Engineer Award for
1993, the 1994 Senior Xerox Award for Faculty Research, and the University Scholars Award of the
University of Illinois. Dr. Hwu received his Ph.D. degree in Computer Science from the University of
California, Berkeley, in 1987.

Article Summary
Java, the new object-oriented programming language from Sun Microsystems, appears to

be setting the standard for universal software development. Java code compiles into a binary
format called bytecode which can be used for software distribution, and which does not need
recompilation in order to run on any platform. Java is also secure, guarding against code
corruption before execution. This new language uses run-time resolution to locate objects and their
corresponding classes, meaning software updates can be integrated as quickly as they are made
available. However, there are several trade-offs and costs involved in migrating to a universal
software distribution environment.

Currently there are four approaches to running Java: an interpreter, a Just-In-Time (JIT)
compiler, a Native Executable Translation (NET) compiler, and a hardware implementation. In
this article we present our initial prototyping experience with our NET compiler, an optimizing
Java-bytecode-to-native-machine-code translator. The objective of this work is to run the
translated code at nearly the full performance of native code directly generated from a source
representation such as the C/C++ programming languages. However, the work with our NET
compiler is not limited to Java. Our goal is to develop a strong portfolio of techniques from our
Java implementation efforts that will contribute to the development and acceptance of any universal
software distribution language.

We focus our discussion on the critical issues involved in the design of our NET compiler,
including minimizing verification overhead, mapping the stack computation model of the bytecode
virtual machine to the register computation model of modern processors and developing a more
efficient memory organization. We also explain some of the less intuitive costs involved in running
Java. Preliminary results show that our optimizing NET compiler is currently capable of achieving
better performance than the other bytecode execution methods, in some cases achieving speeds
comparable to directly compiled native code.

