
Region-Based Compilation: An Introduction and Motivation

Richard E. Hank Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana-Champaign, IL 61801

Abstract

As the amount of instruction-level parallelism required

to fullg utilize VLZW and superscalar processors increases,

compilers must perform increasingly more aggressive anal-

ysis, optimization, paralleli.zation and scheduling on the

input programs. Traditionally, compilers have been built

assuming functions as the unit of compilation. In this

framework, function boundaries tend to hide valuable opti-

mization opportunities from the compiler. Function inlin-

ing may be applied to assemble strongly coupled jlmctions

into the same compilation unit at the cost of very large

function bodies. This paper introduces a new technique,

called region-based compilation, where the compiler is al-

lowed to repartition the program into more desirable compi-

lation units. Region-based compilation allows the compiler

to control problem size while exposing inter-procedural op-

timization and code motion opportunities.

Keywords: ILP compilation, region-based compilation,

compilation time complexity, function inlining, code expan-

sion

1 Introduction

As the amount of instruction-level parallelism (ILP) re-

quired to fully utilize high-issue rate processors increases,

so does the difficulty of designing the compiler. An im-

plementation of an ILP compiler must tradeoff the use

of aggressive ILP techniques and compiler performance in

terms of compile time and memory utilization. In situa-

tions where the compile time and memory usage becomes

too large, the aggressiveness of the applied transformations

must be scaled back to avoid excessive compilation cost.

Also, the implementation of ILP compilation techniques

may require the use of certain simplifying constraints and

heuristics to make’the technique viable in a production en-

vironment. The implementation of trace scheduling within

1072-4451/95 $4.0001995 IEEE

Proceedings of MICRO-28
158

B. Ramakrishna Rau

Hewlett Packard Laboratories

Palo Alto, CA 94303

the Multiflow compiler provides an example [1]. As a re-

sult, a production quality implementation may not reflect

the true potential of a technique.

In order to satisfy the need for more ILP, compilers

increasingly resort to inlining to support inter-procedural

optimization and scheduling [2] [3] [4]. However, inlining of-

ten results in excessively large function bodies that make

aggressive global analysis and transformation techniques,

such as global dat ailow analysis and register allocation,

ineffective and intractable. The root of this problem is

the function-oriented framework assumed in conventional

compilers. Traditionally, the compilation process has been

built using the function as a compilation unit, because the

function body provides a convenient way to partition the

process of compiling a program. Unfortunately, the size

and contents of a function may not be suitable for ag-

gressive optimization. For this reason, the function-based

partitioning of the program may not provide the most de-

sirable compilation units to the compiler.

The purpose of this paper is to motivate the selec-

tion of the fundamental compilation unit by the compiler

rather than the software designer. Essentially, the com-

piler is allowed to repartition the program into a new set

of compilation units, called regions. These regions will re-

place functions as the fundamental unit to which all trans-

formations will be applied. This approach was used in

a more restricted context within the Multiflow compiler

where scheduling and register allocation are applied to

traces [1]. Under the region-based framework, each region

may be compiled completely before compilation proceeds

to the next region. In thk sense, the fundamental mode of

compilation has not been altered and all previously pro-

posed function-oriented compiler transformations may be

applied.

Such an approach to compilation has several potential
advantages. First, the compiler is in complete control over

the size and contents of th~ compilation ‘unit. This is not

true with functions. Second, the size of the compilation

unit is typically smaller than functions reducing the im-

portance of the algorithmic complexity of the applied ILP

transformations. Finally, the use of profile information

to select regions allows the compiler to select compilation

units that more accurately reflect the dynamic behavior of

the program and may allow the compiler to produce more

optimal code.

—
.,, ,

i

Fn

—

—

INgure 1: Block diagram of function-based compilation.

The remainder of this paper is divided aa follows. Sec-

tion 2 discusses the characteristics of function-based com-

pilation units. Section 3 discusses the benefits and draw-

backs of applying aggressive inlining within an ILP com-

piler. Sections 4 and 5 discuss the implications of the

region-based approach to ILP compilation and the research

issues involved. Finally, Section 7 contains a summary.

Z Desirable Compilation Units

Traditionally, the compilation process has been built

assuming functions aa the unit of compilation. The func-

tion body provides a convenient way to break up the task

of compiling a program, since each function is a self con-

tained entity. Typically, the compiler processes each func-

tion of the program in turn, applying a phase ordered suite

of transformations. Figure 1 illustrates the process of com-

piling a program of n functions. The partitioning of the

program into functions is done by the software engineer

usually to satisfy standard software engineering practices:

modularity, reuse, and maintainability y. For this reason,

the function-based partition may not provide the most de-

sirable compilation units to the compiler.

Consider the two functions shown in Figure 2. Blocks

1-4 of function A form a very frequently iterated loop.

WMin block 3 there is a subroutine call to function B. As

a result, function B, which consists of blocks 5-8, is very

frequently executed. The shaded portions represent the

dynamic behavior of these two functions and indicate that

blocks 2 and 7 are infrequently executed. While compiling

function A, the scope of the compiler is limited to the con-

tents of function A, The contents of function B axe hidden.

Likewise, the fact that function B is paxt of a cycle, is hid-

den from the compiler while compiling function B. In this

case, the function-baaed compilation units are hiding po-

tential optimization opportunities making this partitioning

undesirable.

The type of compilation units desirable to an aggres-

sive ILP compiler dependa upon the techniques and trans-

formations employed by the compiler. Conventional wis-

dom expects programs to spend most of their time in

loops,

ciable

since any program that executes for an appre-

amount of time must cent ain at least one cy-

t I
Function A Function B

Figure 2: Example of an undesirable function-based parti-

tion.

cle. This belief is supported by the large amount of

active research being done to extract ILP from cyclic

code [5][6][7] [8] [9] [10] [11] [12] [13] [14] [15]. Exposing more

cycles to an aggressive ILP compiler increases the likeli-

hood that these techniques may be applied to generate

more efficient code.

By examining the dy,namic distribution of cyclic and

acyclic code within functions we can gain some insight as

to the quality of the function-baaed partition of the pro-

gram. Figure 3 contains the dynamic dktribution of cyclic

and acyclic code within the function bodies of several non-

numeric programs. The large percentage of time spend

in cyclic code within the programs validates the impor-

tance of cycles. The programs lex, yacc, and 023.eqn-

tott, which spend at least 95% of their execution time in

cyclic code, fall in line with the philosophy that programs

spend most of their time in loops. However, there are sev-

eral programs that appeim to spend an unexpectedly large

percentage of their execution time in acyclic code. The

programs tbl, 022.li, and perl spend more than 50% of

their time in intra-procedural acyclic code.

A large percentage of time spent in acyclic code im-

plies that these programs contain cycles spanning func-

tion boundaries that are outside the scope of the compiler.

These inter-procedural cycles are caused by the presence

of subroutine calls within loop bodies, such aa in Figure 2,

and procedure call cycles, i.e., recursion. The function-

baaed partition of the program hides the existence of these

cycles, aa well aa other valuable optimization opportuni-

ties. By making these inter-procedurally coupled portions

of the program simultaneously visible to the compiler, the

potential for an aggressive compiler to expose more ILP is

increased.

Function inlining is the only well known technique that

will allow inter-procedurally coupled portions of the pro-

gram to be aasembled into the same compilation unit.

However, within a function-baaed framework, any trans-

formation applied during the compilation process must en-

sure that code expansion within the function body will not

adversely tiect the rest of the compilation process. Ap-

plication of function inlining to the example in Figure 2

159

Figure3: Intra-procedural distribution ofdynamic acyclic

and cyclic code.

successfully exposes the entire cycle to the compiler by

placing the contents of function Binto function A. How-

ever, function A now contains two basic blocks, 2 and 7,

that are dynamically unimportant to the compilation of

the exposed cycle. Thus, the effectiveness of the rest of

the compilation process could be unnecessarily tiected by

the presence of these basic blocks.

Consider a situation were the compiler is allowed to

repartition the program into a new set of compilation units,

called regions. Where a region is defined as an arbitrary

collection of basic blocks selected to be compiled as a unit.

Under thk fknework, the compiler may select compilation

units that are more represent ative of program behavior.

Focusing the attention of the compiler on these regions as

self-cent ained entities has several benefits. The compiler

may more accurately determine the class of transforma-

tions applicable to particular region of the program. Also,

individual regions are isolated from the code expansion ef-

fects in other regions and the surroundhg function body.

This allows the aggressive application of inline expansion

under a region-based compilation framework to aid the for-

mation of more desirable compilation units.

After inlining function B into A, the compiler may

repartition the program and select the preferred region

that consists of basic blocks 1, 3, 4, 5, 6, and 8. Blocks

2 and 7 will be pl=ed in other regions and will no longer

atlect the compilation of this cycle. Compilation of this

region as a self-contained entity has several implications

to the compilation process that will be discussed in more

detail in Sections 4 and 5.

3 Function Inlining

Traditionally, the goal of function inlining has been to

eliminate the overhead of frequent subroutine calls [3] [4].

Within the context of an ILP compiler, the goal of inlin-

ing is to increase the visibility of the compiler by expos-

ing code that is hidden by subroutine calls. This benefits

the compiler in several ways. Additional opportunities for

the application of classical optimizations, such as, common

getline(s)
register char *s;

{ register c;

~{
error(!FATAL, “input line too long: ?&20s\n”, in);

in[MAXLINE] = ‘\O’;
break;

}
if (c==lefteq)

s–;
*s++ = ‘\ O’;
return(c);

}

gtco {
loop:

@w_iD)

~
~

if (++ifile > svargc) {
return(EOF)~ ‘ -

}
fclose(curfile);
linect = 1;
if (openinfileo == O)

goto loop;
return(EOF);

Figure 4: Source code for functions getline and gtc.

subexpression elimination, const ant propagation, and loop

invariant code motion are exposed [3]. Assembling larger

compilation units may allow privatization of the code, im-

prove variable aliaaing information [2] and may subsume

some inter-procedural analysis [4].

In addition, ixdining frequent function calls tends to in-

crease the amount of cyclic code visible to the compiler.

This may increase the opportunities for application of tech-

niques designed to extract ILP from cyclic code. A detailed

example of the ILP benefits to be gained from inlining is

provided in the next eection. The negative effects of in-

lining within a function-baaed compilation framework are

discussed in Section 3.2.

3.1 Benefits of Inlining - An Example
The function-based partitioning of the non-numeric

program eqn provides an example of the potential ILP

benefits of inlining. Intra-procedurally, eqn appears to

have a large percentage of frequently executed code that

does not occur within the body of a loop. Figure 3 shows

that eqn appears to spend 2270 of its execution time within

acyclic code. This is the result of several inter-procedural

cycles that are caused by the presence of subroutine calls

within the bodies of frequently iterated loops.

One such inter-procedural cycle spans the two functions

getline and gtc. The source code for these two functions is

shown in Figure 4. The function getline contains a very fre-

quently iterated loop wh:ch calls the function gtc once ev-

160

——

A1

2

/’
/’
/
I

i

9 i
\
\

10 \
\
I

11

getineo
a)

‘- gtco
b)

Figure 5: Control flow graphs for the functions a) getline

and b) gtc.

ery iteration. Inlining function gtc into the call site within

getline provides significant benefit beyond simply eliminat-

ing the overhead of the subroutine call. This is illustrated

through the use of superblock optimization and scheduling

techniques [13] as follows.

The control flow graph (CFG) for the function getline is

shown in Figure 5a. The loop is composed of basic blocks 5,

6, 7, and 8. Basic block 6 contains a subroutine call to the

function gtc. The CFG for gtc is shown in Figure 5b. The

dotted lines indicate the implicit fiow of control between

these two functions.

Consider the application of superblock formation and

optimization to the function gethne as it appears in Fig-

ure 5a. Several superblocks will be formed. However, we

are concerned primarily with the superblock loop gener-

ated from basic blocks 5, 6, 7, and 8. This is indicated

by the shaded area in Figure 5a. These basic blocks cor-

respond to the shaded portion of the getline source code

in Figure 4. The contents of the resulting superblock after

optimization is shown in Figure 6a. Scheduling this su-

perblock loop for an 8-issue, fully uniform machine, yields

the issue times shown to the right of Figure 6a. One it-

eration of this superblock loop requires four cycles. Ap-

plying superblock formation to the function gtc yields the

superblock indicated by the shaded area in Figure 5b. The

corresponding source code lines are shaded in Figure 4.

L
bge r6,rl Lcb12

mov r4,t6

acid r6,r6,1

j.vr gtc

mov rl,$P15

1s1 r14,$P15,24

r5.r14,24

st-c [r4+O],r5

beq r5,10,cb9

@ $P15,-Lcb9
Id-i r15,[r21+O]
bne $P15,r15,cb

o
0
0
0
1

1

2

3

3

3

1

3
—

/
Issue Cycle

getlineo

a)

mov r46,%lri(1p)

add r25,%lo(ip),r46

mov r47,%hi(curfOe)

add r26,%Io(cti11e),r47

mov r48,%bi(ktarchar)

add r28,%lo(k+stchar),r48

ld_i r3,[O+r25]

mov r49, %hi(ibuf)

add r50,%lo(ibuf),r49

bgt r3@0,cb9

Id-i r4,[O+r26]

ld_i r43,[O+r4]

add r5,-lr43

st_i [O+r4],r5

bgt l,r43,cb27

Id-i 19.[4+r41

add r8,1@

st_i [4+r4],r8

ld-uc II l,[O+r9]

st-i [O+r28],rl 1

beq 10,rl l,cb28

bsq -l,rll,cb29

Id-i $P15,[O+r28]

Is.wef

gtco

b)

o
1
0
1

0
1

2

0
1

4

2

4

6

7

7

4

6

7

6

8

8

8

8

:Ie

Figure 6: Superblock contents prior to inlining for a) get-

line and b) gtc.

Figure 7: Superb-.

bge r6,rll,cb12 o
add I’6,1’6,1 o
bgt rl 9,r50,cb9 o
add r174,r174,–1 o
blt r174,0,cb88 1
ld_uc r178,[O+r175] o
add r175,r175,1 1
beq r178,10,cb87 2

beq r178,-l,cb89 2

mov $P15,r178 2
mov rl,r178 2

st_c [r6-l],r178 2

bne r178,r15,cb5 2

/
Issue Cycle

]ck loop after inlining gtc into getke.

Again, the contents of the resulting superblock after opti-

mization and scheduling for the same 8-issue, fully uniform

machine is shown in Figure 6b. This superblock requires

nine cycles to completely execute. Thus one loop iteration

requires 13 cycles not includlng subroutine call overhead.

Consider the application of superblock formation and

optimization to the function getline after the inline expan-

sion of the function gtc into the call site in basic block 6

of getline. The loop in the function getline now contsins

all blocks from the function gtc. In this case, inlining has

certainly increased the amount of code visible to the com-

piler, but it h~ also increased the amount of cyclic code

visible to the compiler. The blocks inlined from gtc are

now subject to loop-based optimization techniques, since

their presence within the cycle is known to the compiler.

Superblock formation yields a superblock that contains the

blocks in both shaded areas of Figure 5.

161

Semhmwk

Figure 8: Distribution of dynamic acyclic and cyclic code

after aggressive inlining.

This superblock loop presents several optimization op-

portunities that were not available prior to inline expan-

sion. Applying superblock optimizations to this loop re-

sults in the code shown in Figure 7. The loop contains 13

operations, one more than the original superblock loop de-

spite the large amount of code added during inlining. The

application of loop-based optimizations eliminates most of

the operations from the superblock loop body. Applica-

tion of loop invariant code elimination [16] allows the op-

erations indicated by an (*) in Figure 6b to be removed.

Also, the application of operation migration [13] allows the

operations indicated by an (x) in Figure 6b to be hoisted

outside the superblock loop body. These code optimiza-

tion would not be accomplished without compiling func-

tions getline and gtc together. Scheduling this superblock

for the same 8-issue, fully uniform machine actually pro-

duces schedule with length three cycles, one cycle shorter

than the original superblock loop in getline.

Inlining the function gtc into getline results in a cycle

that is four times shorter than in the non-inlined case. De-

tailed simulation of an 8-issue processor executing eqn and

gathering statistics for this cycle shows that before inlin-

ing 7.24M cycles are spent in these two functions. After

inlining, the loop requires only 1.9M cycles. The speedup

is 3.8 which corresponds closely to the estimate of 4. Irdine

expansion has provided the compiler with many more ILP

optimization opportunities than prior to inlining, yielding

significant performance improvement.

3.2 Aggressive Inlining
The previous example illustrates the benefits of expos-

ing hidden cycles to the compiler through the use of in-

lining. In order to form better compilation units, it is de-

sirable to expose all of the frequently executed cycles that

axe hidden by the function-based partition of the program.

This can be achieved by aggressively applying profile-based

function inlining. Figure 8 shows how aggressive irdining

tiects the distribution of cyclic and acyclic code within

the benchmarks shown in Figure 3.

For the most part, the desired result is achieved. The

Program

Cccp

eqn
lex

qsort
tbl
yacc
perl
008.espresso
022.li

023.eqntott
026.compress
072sc

085.cc1
Average

No. Oper

5280
3868

5501
146

6375

5154
44558
27009

8348

3695
1305

11433
107414

Inline No. Oper
1,6259

i4077
11529

146
28311
13078

110298
114818
145099

13078
1428

~ooo8

5:4059

Growth

3.1
3.6
2.1
1.0
4.4

2.5
2.5
4.3

17.4

3.5
1.1

1.8
5.2

4.0

Table 1: Static code growth due to inlining,

dynamic percentage of acyclic code for all but three of

the programs has been reduced to less than 10%. This

implies that most of the frequently executed cycles have

been assembled and made visible to the compiler. The

programs 022.li, 085.cc1, and perl still contain about

20% dynamic acyclic code. The principle reason for thk

is recursion. Although the inliner was allowed to irdine

self-recursive functions, this will not necessarily increase

the amount of visible cyclic code. Inlining a self-recursive

function into itself does not expose a cycle within the func-

tion body since the cycle is still hidden by the subroutine

call. Inlining of recursive cycles does however serve to in-

crease the scope of the compiler in the same way unrolling

is applied to increase the scope of the compiler for iterative

cycles.

Despite the obvious benefits of increasing the compila-

tion scope in this way, inlining has severaf negative effects

on the compiler’s performance within the current function-

based compilation fhrnework. Inline expansion may in-

crease register pressure to the point where the resulting

spill code negates any benefit to be gained from the inlin-

ing [4]. More important, aggressive inline expansion can

lead to excessive code expansion. The increase in function

size will have adverse effects on compile time due to the

algorithmic complexity of datafiow analysis, optimization,

scheduling and register allocation.

The code expansion resulting from aggressively inlining

benchmark programs is shown in Table 1. The code expan-

sion ranges from 1,0 to 17.4 times the original code size,

with an average increase of 4 times. The data presented in

Figure 9 provides better insight into the effect inlining may

have on compilation. Figure 9 contains histograms of the

stat ic function size weighted by the number of dynamic op-

erations in each function. The function bodies within these

programs tend to be rather small. Prior to irdining all 13

programs spent 80~0 of their execution time in functions

with fewer than 250 operations. Whereas after inlining

there is a noticeable shift to the right. After inlining, over

1These and all subsequent operation counts are before the

application of any aggressive optimization other than inlining.
Since we are interested in assembling program units for compi-
lation, this measure of size has merit.

162

25%
❑ Function Size (No Inlinhg) ■ Fumtim Sire (MWW)

o%

Figure 9: Hktogram of function size before and after in-

lining.

5070 of the program’s execution time is spent in functions

with more than 1000 operations. Inlining has succeeded in

assembling the inter-procedurally coupled portions of the

programs together. However, the axess of the program that

should be subject to the most aggressive ILP techniques

are now located within the largest function bodies. The

tractability of applying aggressive ILP compilation tech-

niques under these conditions is questionable. In this situ-

ation, the attention of the compiler must be focused such

that the important regions of the program can be aggres-

sively optimized without the compile time being affected

by the size of the surrounding function body.

4 Region-Based Compilation Units
The compilation difficulties that arise as a result of in-

lining and other ILP techniques are a product of the com-

pilation framework. Function-based compilation units are

not represent ative of the behavior of the program and ap-

plied transformations are restricted to prevent excessive

code expansion that may adversely affect compilation time.

By allowing the compiler to repartition the program into

regions, the compiler is provided a more desirable compi-

lation unit that has the potential to result in better qual-

ity code. In addition, since each region is compiled as a

self-cent ained entity, the compilation process for a region

is not aflected by code expansion within the surrounding

function body.

This section will present a profile-based algorithm for

region selection and discuss the application of this algo-

rithm to aggressively inlined functions.

4.1 Region Formation
The goal of the region formation process is to pro-

vide the best possible compilation unit for aggressive opti-

mization. The properties of the selected compilation unit

should be such that aggressive optimization is both fe~

sible and beneficial. In order to ensure that compilation

time and memory usage fall within certain constraints, re-

gion formation should consider factors m.wh as the number

of operations, the number of virtual registers, the num-

ber of memory dependence, etc. In order to make ag-

gressive optimization beneficial, region formation should

consider factors that affect the quality of the generated

code. These factors include the dynamic program behav-

ior, the presence of optimization hazards [17], the control

flow structure, etc. A possible region formation algorithm

is presented next that takes into account dynamic program

behavior.

This region formation algorithm is a generalization of

the profile-based trace selection algorithm used in the

IMPACT compiler [18]. The principle difference being that

the algorithm is permitted to expand the region along more

than one path of control. The use of profile information

for region formation provides the compiler with an accu-

rate indication of the interaction between basic blocks in

the program. This results in compilation units that are

more representative of the dynamic behavior of the pro-

gram than the original functions.

The region formation process begins by selecting a seed

block, s, whkh is the most frequently executed block not

yet in a region. From this seed block, the scope of the

region is expanded by selecting a path of desirable succes-

sors from s. For thk discussion, desirability is based solely

upon execution frequency. There are no other restrictions

placed on the region formation process, however factors

other than execution frequency should be considered in

the future. Thus, a desirable successor of a block x is a

block y that is likely to be executed once the flow of con-

trol enters block z. The control flow transition from block

x to block y is considered likely if the weight of the control

flow arc from z to ~, W(Z + g), is at least (2’ x 100)% of

the weight of block z, W(Z). Furthermore, to prevent the

inclusion of irrelevant blocks to the region, the execution

frequency of y must beat lesst (T. x 100)% of the execution

frequency of s, where the values T and Ts axe threshold

values defined by the compiler. Therefore, ~ is a desirable

successor of x if it satisfies the following equation.

()()@+’y)>T kk W>T.
Succ(x,y) =

w(z) – w(s) –)
(1)

Once the most desirable successor of s has been added

to the region, the most desirable successor of that block is

selected. This process continues until the successor path

can no longer be extended. A path of most desirable prede-

cessors from s is added next. The conditions under which

block y is a desirable predecessor of a block x are analo-

gous to the successor case. The resulting path forms the

seed path of the region. The region is further extended by

selecting all possible desirable successors from every block

in the region, Each selected block is then added to the

region and the process continues until no more desirable

successors are found. This has the effect of addhg all of

the desirable paths that extend out from the seed path,

The algorithm is summarized in Figure 10.

Consider the application of this algorithm to the inlin-

in~ example from Section 3.1. Figure 5 represents the CFG

after inlining gtc into getline if the dashed arcs are replaced

by solid arcs. For this example, the assumed value of the

163

/* most frequent block not in a region “/
seed = Seed(B)

/“ select path of desirable successors “/
z = seed

y = most, frequent successor of x
while (y 3 R && Succ(z, y)) {

R= Ru{g}
Z=y

y = most frequent successor of z

1

~:~e~path of desirable predecessors ‘/

y = most frequent predecessor of z

while (y 3 R && Prwi(z, ~)) {
R= Ru{Y}
X=y

~ = most frequent predecessor of z

}

~:a~le:t jeehble successors of all blocks */

while (stack # @) {
z = Pop(stack)

for each successor of z, y 3 R {
if (Succ(z, y)) {

R= Ru{Y)

}}1

.. .
Push(stackjy)

Figure 10: An algorithm for region formation.

thresholds T and T. is 0.10. Region formation begins by

selecting the most frequent block not yet in a region. The

loop header, block 5 of getline, will be selected as the seed

block. The region selection process will then select block 6

in getline, blocks 1-7 and 16 in gtc, and finally blocks 7 and

8 in getline, in that order, as desirable successors because

their execution frequency is very close to that of block 5.

The third step of region formation is to select desirable

predecessors of the seed block. In this instance, the exe-

cution frequency of block 15 (19K) in getline is much less

than that of block 5 (506K), since block 5 is the header

of a frequently iterated loop. Thus no predecessors are se-

lected. If, in fact, the preheader and header blocks of a

loop have similar execution frequencies, the region selec-

tion process would grow the region outside the loop, since

the loop tends to infrequently iterate. The last step of re-

gion selection is to select desirable successors of all blocks
currently in the region. The contents of the region before

th:s step are indicated by the shaded area of Figure 5. In

this example, the profile weights indicate that the dynamic

behavior of these functions is extremely biased towards the

currently selected path. Thus, there are no successors of

the blocks currently in the region that satisfy the desirable

successor condition, Equation 1. The region is now com-

plete and is representative of the dynamic behavior of this

area of the program.

,—45%
. ., —.-..--.-.--.—- ,...--.....=. —. .-=--------

n

I

Figure 11: Hktogram comparing function size before and

after inlining with regions selected on inlined code.

4.2 Problem Size Control

One problem with function-based compilation units is

that function size is potentially unbounded, especially if

aggressive inlining is employed. The compiler engineer

must deal with the time and memory complexity of algo-

rithms in the presence of unbounded problem size. Allow-

ing the compiler to select region-based compilation units,

places the compiler in complete control of the problem size.

Since the problem space of the compiler is now localized

to a region, the size of the function body or the code ex-

pansion in other regions has no effect on the compilation

of the current region. Reducing the problem space has the

advantage of reducing the importance of the time complex-

it y and memory complexity of the optimization, scheduling

and register allocation algorithms used by the compiler.

This simplifies the task of a compiler engineer developing

a production quality ILP compiler.

The region formation algorithm presented in Section 4.1

used profile weight as the sole criterion for region forma-

tion. No upper bound on region size was imposed, in or-

der to determine how well the profile information naturally

controlled the size of the selected regions. Figure 11 adds

a histogram of the selected regions to the function size

histograms shown in Figure 9. For all 13 programs, 85%

of the execution time was contained in regions with fewer

than 250 operations. The large percentage (20%) of re-

gions that contain less than 10 operations results from the

fact that many of these integer programs are dominated

by small loop bodies. Small cyclic regions are not a sig-

nificant problem for optimization and scheduling, because

the amount of ILP within a loop is essentially limited only
by the trip count. There were also some regions formed

with more than 10000 operations. These large regions were

formed within 085.cc1 after aggressive inlining and they

can be easily prevented by placing an upper bound on the

allowable region size. Overall, the presented region selec-

tion algorithm is successful in controlling the problem size

even in the presence of aggressive inlining.

Presenting the region size characteristics of all 13 pro-

grams within the same histogram hides some information.

164

❑ Funclbn Size (no inlinin@ ■ Functbn Size (Inlining) ❑ Regbn Size (Inlinw)
so%

0%

Figure 12: Histogram comparing function size before in-

lining, function size after inlining, and selected region size

after inlining for 022.li,

The comprwison of region size and function size for the pro-

gram 022.li provides some interesting insights2, see Fig-

ure 12. Notice that all functions in 022 .li contain fewer

than 250 operations prior to inlining; actually there are

no functions containing more than 175 operations. After

inlining, however, 50% of the execution time of 022.li is

shifted into functions containing more than 5000 opera-

tions. Irdining haa increased the scope of the compiler to

an extreme in this case. After performing region selection,

the selected compilation units have two beneficial charac-

teristics. First, the problem size is much smaller than the

function bodies resulting from inlining. Second, the his-

togram indicates that the selected regions are larger than

the original function bodies, which were extremely small.

Thus, region formation properly enlarged the compilation

scope when needed. The result is a shifting of the compi-

lation scope into more desirable compilation units rather

than the drastic increase seen at the function level.

In order to better illustrate the benefits of controlling

problem size, consider the effect of problem size on a global

graph-coloring register allocator [19] [20]. The register al-

location process generally consists of three steps: interfer-

ence graph construction, register assignment or graph col-

oring, and spill code insertion. The computational com-

plexity of the interference graph construction and graph

coloring steps is 0(n2), where n is the number of virtual

registers in the compilation unit. The amount of time and

memory required for global register allocation is heavily

dependent upon the size of the compilation unit in terms

of virtual registers. The region-baaed partition may reduce

the amount of time and memory required by reducing the

number of virtual registers visible to the register allocator.

A technique proposed by Gupta et al. [21], with a similar

goal, reduces the memory requirements of register alloca-

tion by using clique separators to avoid constructing the

entire interference graph for a function.

By characterizing the time complexity of the global reg-

ZUnfo~unatelY space does not permit discussing such a com-

parison for all 13 programs.

$~~
Seiwhmmks

Figure 13: Estimated register allocation times for function-

based and region-based compilation units.

ister allocator within the IMPACT compiler, a function

was obtained that estimates register allocation time as a

function of virtual register count. Figure 13 contains the

register allocation time required for all regions selected on

the aggressively inlined programs relative to the amount of

time required to register allocate the large function bod-

ies. Note that the time to register allocate the region-based

compilation units is, for most of the programs, less than

10% of the time required to allocate the large functions3.

The register allocation times for qsort are almost identical

due to the small size of the program. The region-based par-

tition will have similar effects for other compilation phases

that use algorithms of nonlinear complexity.

4.3 Regions Spanning Multiple Functions
The intra-procedural distribution of cyclic vs. acyclic

code in Figure 3 implies a significant amount of inter-

procedural coupling between program functions. Figure 8

shows that through aggressive inlining, most of the inter-

procedural transitions have been transformed into intra-

procedural transitions. By examining the selected regions,

we can determine the degree of inter-procedural coupling,

as indicated by the dynamic profile information. Figure 14

shows the fraction of regions that span each given number

of function bodies. For each region selected, the number

of original functions represented by the blocks within the

region are counted. These regions are then weighted by

dynamic execution frequency to produce the dktribution.

For example, the region selected from eqn within Sec-

tion 4.1 contains blocks from two functions, namely getline

and gtc. This region accounts for 30% of the execution time

within that program. Thus, Figure 14 shows that for eqn

more than 30% of the execution time spans two functions.

As selected, this region contains 32 of the 9600 operations

in the function body that contains it.

The distributions in Figure 14 indicate the depth of the

inter-procedural coupling within these programs. Several

of the programs have a great deal of inter-procedural cou-

aThe quality of register allocation is practically identical for
these benchmarks with the function-baaed approach and the
region-based approach.

165

I I

Router
1

L–––––––––––––_

I r–==:–l r–––~–l r–––––l
1 ~Pu~muOn, 1 Schedukng , 1 Regalloc , I

Smwhmdu

Figure 15: Block diagram of a region-based compiler.

Figure 14: Dynamic distribution of the number of func-

tions spanned by selected regions.

pling. The programs eqn and 022.li spend more than 40%

of their execution time in regions spanning nine or more

functions. For 022.li most of these regions are small, con-

taining fewer than 250 operations. The program 085.cc1

spends more than 7070 of its execution time in regions

spanning 10 or more function. Within perl, through in-

lining and region selection, a cyclic region is formed that

spans nine functions and represents 25% of the execution

time of the program. The importance of this region shows

that it is desirable to assemble inter-procedurally coupled

blocks in the program into the same compilation unit. This

region cent ains only 230 operations, whereas the function

it is cent ained in cent tins approximately 15,000 operations

after inlining. Under a region-based framework, the com-

piler is able to isolate and perform aggressive optimization

on this portion of the program without being affected by

the large number of operations that actually reside within

the function body. Aggressive ILP compilation of such

large functions would be extremely expensive in terms of

compilation time and memory.

5 Research Opportunities

A region-based compiler has several characteristics that

dktinguish it from a more traditional function-based com-

piler. Figure 15 contains a block diagram of a region-based

compiler. The upper block represents the program being

compiled, the bottom block represents the suite of avail-

able transformations, and the center block the core of the

compiler. A region-based compiler has three more capabil-

ities than a function-based compiler: region selection, clas-

sification, rout ing. There are a number of research issues

raised by the application of emh of these tasks that must

be addressed in the design of a region-based ILP compiler.

Region Selection. The region-based compiler begins

by repartitioning the program into regions. The region se-

lector may select one region at a time or it may select all

regions a priori, before the compilation process begins on

any region. The results in this paper were generated using

a region formation algorithm that considered only profile

information. The import ante of the additional factors dis-

cussed in Section 4.1 will be investigated.

Region Compilation. Once the region is selected, the

compiler determines the best compilation path based upon

the region’s characteristics. The region characteristics that

may be relevant to the compiler include topology, content,

and previously applied transformations. A function-based

compiler does not require this capability, because within

such a compiler, a suite of transformations are applied to

the function in a rigid phase order. The phase ordered

application of transformations over a function implies that

each phase of compilation is applied to every basic block

in the function before the next phase begins.

For example, global optimization is typically applied to

an entire function prior to scheduling. In a similar manner,

the region-based compiler applies a transformation over

the entire region before applying a subsequent transfor-

mation. However, a region has a scope that differs from

the function it resides in. Thus, basic blocks in different

regions may be in two completely different phases of the

compilation process.

The fact that basic blocks in different regions may be

at different phases in the compilation process provides a

region-baaed compiler with a potentird advantage over a

function-based compiler. Compensation code generated

while applying a transformation to a region may be pushed

into unprocessed regions. Consider the application of

global optimization, followed by scheduling, to a region.

Any resulting compensation code may be pushed into a

neighboring region where it will be subject to optimiza-

tion applied when that region is processed. This is not the

case for a function-based compiler, since the entire func-
tion is optimized prior to scheduling and reapplication of

the optimizer after scheduling may destroy the schedule.

Region Boundary Conditions. Separate compila-

tion of a program using a traditional function-based com-

piler is facilitated by the fact that the boundaxy conditions

of a function are fixed. The variables live across the sin-

gle entry point and single exit point of a function are well

defined by the pmameter passing convention. However,

a region is an arbitrary partition of the program’s con-

166

trol flow graph. There may be any number of variables

live across each region’s entry and exit points. This live

variable information and any other required information,

such as memory dependence information, may change as a

result of transformations applied to the current region,

Separate compilation of regions also requires the com-

piler to maintain register allocation and scheduling in-

formation at the region boundary points to ensure that

regions can be reconciled. This capability has been im-

plemented within the Multiflow compiler, which applies a

combined scheduling and register allocation technique on

individual traces. For correctness, the scheduler must take

into account information on processor resources and reg-

ister bindings at trace boundary points [1]. The register

binding information is communicated by means of a wdue-

location mapping data structure [22]. In general, a region-

based compiler must maintain, update, and propagate all

of this boundary information to a degree that guarantees

correctness and allows efficient optimization.

Partial Inlining. Rather than perform aggressive in-

lining a priori, the inline expansion decisions could be

made during the region selection process. The region

formation algorithm could be allowed to cross function

boundaries and grow regions inter-procedurally. Once the

region is selected, only the desired portions of the called

functions need be inlined rather than the entire function

body. Recall the eqn example from Section 3.1. Assume

an inter-procedural region selection algorithm selected the

shaded basic blocks in Figure 5 to comprise the region,

only the shaded blocks in the function gtc need be inlined.

This reduces the code expansion that results from aggres-

sive inlining prior to region formation. The region-based

compilation framework may provide a directed method for

performing partial inlining.

SeIf-Recursion. The results from Figure 8 show that

self-recursion can prevent important cycles from being ex-

posed to the compiler in some programs. Irdining self-

recursive functions does not increase the amount of vis-

ible cyclic code since the cycle is still hidden by a sub-

routine call. All that is achieved is an increase in the

amount of code visible to the compiler. A technique that

can transform a general self-recursive function into itera-

tive cyclic code has detilte merit, Such a transformation

would make the inter-procedural cycle visible to the com-

piler and should further reduce code expansion.

6 Related Work

In addition to the previously mentioned work done in

the Multiflow compiler, Mahadevan and Ramakrishnan

have proposed a global scheduling technique that oper-

ates over regions within a function [23]. In this approach,

a region is a single entry sub-graph of a function control

flow graph. The region-based compilation technique is

more general than this technique in two important aspects:

First, the definition of region for our technique places no
restrictions on the subset of control flow nodes that make

up a region. In addition, the technique described in thhi

paper applies to the entire compilation process.

The term region hss been used before in several contexts

different from that of region-baaed compilation. For ex-

ample, the region scheduling approach proposed by Gupta

and Soffa uses an extended Program Dependence Graph

representation [24] to support global code scheduling [25],

allowing code motion between regions consisting of control-

equivalent program statements. Although this technique

provides a vehicle for efficient global code scheduling, the

compilation unit remains an entire function.

7 Summary
The traditional function-based framework for compila-

tion is not suitable for an aggressive ILP compiler. The

function-based partitioning presents the compiler with

compilation units which hide valuable optimization oppor-

tunities. By utilizing profile information to repartition the

program into regions, the compiler may apply aggressive

inlining to overcome the deficiencies of the function-based

partitioning. The resulting compilation units allow aggres-

sive optimization in the presence of large function bodies

and have the potential to result in more efficient code.

In addition to the on going region-based compilation

work in the IMPACT compiler group, HP Labs is actively

investigating the area. HP Labs is developing an ILP re-

search compiler, called Elcor, that supports region-based

compilation. Both compilers are being used to investigate

region-based program analysis, optimization, scheduling,

and register allocation,

Acknowledgments

This paper and the underlying research have bene-

fited from discussions with Santosh Abraham, Sadun Anik,

Richard Johnson, Vinod Kathail, Scott Mahlke, and Mike

Schlansker at HP Labs. The authors would also like to

thank John Gyllenhaal, Grant Haab, all the members of

the IMPACT research group, and the anonymous referees

whose comments and suggestions helped to improve the

quality of this paper significantly.

This research has been supported by the National Sci-

ence Foundation (NSF) under grant MIP-9308013, Intel

Corporation, Advanced Micro Devices, Hewlett-Packard,

SUN Microsystems, and AT&T GIS.

References
[1]

[2]

[3]

P. G. Lowney, S. M, Freudenberger, T. J. Karzes,
W. D. Liechtenstein, R. P. NIX, J. S. O’Donell, and
J. C. Ruttenberg, “The Multiflow trace scheduling
compiler,” The Journal of Supercomputing, vol. 7,
pp. 51-142, hmiry 1993.

R. Allen and S. Johnson, “Compiling C for vector-
ization, parallelization, and inline expansion,” in Pro-

ceedings of the ACM SIGPLAN 1988 Conference on
Progmmming Language Design and Implementation,

pp. 241-249, June 1988.

W. W. HWU and P. P. Chang, %Jine function .x.
pansion for compiling realistic C programs,” in Pro-
ceedings of the ACM SIGPLAN 1989 Conference on

167

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Programming Language Design and Implementation,
pp. 246–257, June 1989.

J. W. Davidson and A. M. Holler, “Subprogram in-
lining: A study of its effects on program execution

time; IEEE Transactions on Soflware Engineering,
vol. 18, pp. 89–101, February 1992.

B. R. Rau and C. D. Glaeser, “Some scheduling tech-

niques and an easily schedulable horizontal architec-
ture for high performance scientific computing,” in
Proceedings of the 20th Annual Workshop on Micro-
programming and Microarchitecture, pp. 183–198, Oc-

tober 1981.

J. A. Fisher, “Trace scheduling: A technique for
global microcode compaction,” IEEE Transactions on
Computers, vol. C-30, pp. 478-490, July 1981.

M. S. Lam, “Software pipelining: An effective
scheduling technique for VLIW machines: in Pro-
ceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation,
pp. 318–328, June 1988.

K. Ebcioglu, “A compilation technique for software

pipeiining of loops with conditional jumps,” in Pro-
ceedings of the 20th Annual Workshop on Micropro-
gramming and Microarchitectwe, pp. 69–79, Decem-

ber 1987.

A. Aiken and A. Nicolau, “Optimal loop paralleliza-
tion,” in Proceedings of the ACM SIGPLAN 1988

Conference on Programming Language Design and
Implementation, pp, 308–317, June 1988.

K. Ebcioglu and T. Nakatani, “A new compilation
technique for parallelizing loops with unpredictable

branches on a VLIW architecture,” in Languages and
Compilers for Parallel Computing, PP 213-229, 1989.

P. Tirumalai, M. Lee, and M. Schlansker, “Paralleliza-

tion of loops with exits on pipelined architectures,” in
Proceedings of Supercomputing ’90, November 1990.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,
and R. A. Bringmann, “Effective compiler support for

predicated execution using the hyperblock,” in Pro-
ceedings of the 25th International Symposium on Mi-

croarchitecture, pp. 45-54, December 1992.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.

Hank, T. Kiyohara, G. E. Haab, J. G. Helm, and
D. M, Lavery, “The Superblock: An effective tech-

nique for VLIW and superscahm compilation,” The
Journal of Supercomputing, vol. 7, PP. 229-’248, Jan-

Uaxy 1993.

B, R, Rau, “Iterative modulo scheduling: An algo-

rithm for software pipelining loops? in Proceedings of
the 27th International Symposium on Microarchitec-
ture, pp. 63–74, December 1994.

M, Schlansker, V. Kathail, and S. Anik, “Height re-
duction of control recurrences for ILP processors? in
Proceedings of the 27th International Symposium on
Microarchitecture, pp. 40-51, December 1994.

A. Aho, R. Sethi, and J. Unman, Compilers.+ Princi-
ples, Techniques, and Tools. Readhg, MA: Addkon-
Wesley, 1986.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.

Gyllenhaal, and W. W. Hwu, “Superblock formation
using static program analysis,” in Proceedings of the

26th Annual International Symposium on Microarchi-
tecture, December 1993.

P. P. Chang and W. W. Hwu, ‘Trace selection
for compiling large C application programs to mi-
crocode,” in Proceedings of the 21st International

Workshop on Microprogramming and Microarchitec-
ture, pp, 188-198, November 1988.

G. J. Chaitin, “Register allocation and spilling via
graph coloring,” in Proceedings of the ACM SIGPLAN

82 Symposium on Compiler Construction, pp. 98-105,
June 1982.

F. C. Chow and J. L. Hennessy, “The priority-

based coloring approach to register allocation,” ACM
Transactions on Programming Languages and Sys-
tems, vol. 12, pp. 501–536, October 1990.

R. Gupta, M. L. Soffa, and D. Ombres, “Efficient reg-
ister allocation via coloring using clique separators,”

ACM Transactions on Programming Languages and
Systems, vol. 16, pp. 37k386, May 1994.

S. Freudenberger and J. Ruttenberg, “Phase order-
ing of register allocation and instruction scheduling,”

in Code Generation - Concepts, Took, Techniques,
pp. 146–170, May 1992.

U. Mahadevan and S. Ramakrishnan, “Instruction
scheduling over regions: A framework for scheduling
across basic blocks,” in Proceedings of the 5th Interna-
tional Conference on Compiler Construction, pp. 419–
434, April 1994.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The
program dependence graph and its use in optimiza-

tion,” ACM Transactions on Programming Languages

and Systems, vol. 9, pp. 319–349, July 1987.

R. Gupta and M. L. Sofia, “Region scheduling: An ap-
proach for detecting and redistributing parallelism,”

IEEE Transactions on Software Engineering, vol. 16,
pp. 421431, April 1990.

168

