
1

E�cient Instruction Sequencing with Inline Target Insertion1

Wen-mei W. Hwu, Member IEEE, 2 and Pohua P. Chang3

Abstract

The trend of deep pipelining and multiple instruction issue has made instruction sequencing

an extremely critical issue. This paper de�nes Inline Target Insertion, a speci�c compiler and

pipeline implementation method for Delayed Branches with Squashing. The method is shown

to o�er two important features not discovered in previous studies. First, branches inserted into

branch slots are correctly executed. Second, the execution returns correctly from interrupts

or exceptions with only one program counter. These two features make Inline Target Inser-

tion a superior alternative (better performance and less software/hardware complexity) to the

conventional delayed branching mechanisms.

1 Introduction

The instruction sequencing mechanism of a processor determines the instructions to be fetched from

the memory system for execution. In the absence of branch instructions, the instruction sequencing

mechanism keeps requesting the next sequential instructions in the linear memory space. In this

1This research has been supported by the National Science Foundation (NSF) under Grant MIP-8809478, Dr. Lee

Hoevel at NCR, the Joint Services Engineering Programs (JSEP) under Contract N00014-90-J-1270, the National

Aeronautics and Space Administration (NASA) under Contract NASA NAG 1-613 in cooperation with the Illinois
Computer laboratory for Aerospace Systems and Software (ICLASS), and the O�ce of Naval Research under Contract

N00014-88-K-0656.
2W. W. Hwu is with the Department of Electrical and Computer Engineering, University of Illinois, Urbana-

Champaign, Illinois, 61801.
3P. P. Chang is with the Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124. The work

presented in this paper was conducted while he was with the Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign, Illinois, 61801.

To appear: IEEE Transactions on Computers 2

sequential mode, it is easy to maintain a steady supply of instructions for execution. Branch

instructions, however, disrupt the sequential mode of instruction sequencing. Without special

hardware and/or software support, branches can signi�cantly reduce the performance of pipelined

processors by breaking the steady supply of instructions to the pipeline [26].

Many hardware methods for handling branches in pipelined processors have been studied

[39][28][9][29][17][10]. An important class of hardware methods, called Branch Target Bu�ers (or

Branch Target Caches), use bu�ering and extra logic to detect branches at an early stage of the

pipeline, predict the branch direction, fetch instructions according to the prediction, and nul-

lify the instructions fetched due to an incorrect prediction[28]. Branch Target Bu�ers have been

adopted by many commercial processors [28][16]. The performance of such hardware methods is

determined by their ability to detect the branches early and to predict the branch directions accu-

rately. High branch prediction accuracy, about 85-90% hit ratio, has been reported for hardware

methods[39][28][29]. Another advantage of using Branch Target Bu�ers is that they do not re-

quire recompilation or binary translation of existing code. However, the hardware methods su�er

from the disadvantage of requiring a large amount of fast hardware to be e�ective[28][20]. Their

e�ectiveness is also sensitive to the frequency of context switching [28].

Compiler-assisted methods have also been proposed to handle branches in pipelined processors.

Table 1 lists three such methods. Delayed Branching has been a popular method to absorb branch

delay in microsequencers of microprogrammed microengines. This technique has also been adopted

by many recent processor architectures including IBM 801[37], Stanford MIPS[14], Berkeley RISC

[33], HP Spectrum [3], SUN SPARC [43], MIPS R2000 [25], Motorola 88000[30], and AMD 29000[1].

In this approach, instruction slots immediately after a branch are reserved as the delay slots for

that branch. The number of delay slots has to be large enough to cover the delay for evaluating the

branch direction. During compile-time, the delay slots following a branch are �lled with instructions

that are independent of the branch direction, if the data and control dependencies allow such code

movement[13]. Regardless of the branch direction, these instructions in the delay slots are always

executed. McFarling and Hennessy reported that the �rst delay slot can be successfully �lled by

the compiler for approximately 70% of the branches, and the second delay slot can be �lled only

25% of the time[29]. It is clear that delayed branching is not e�ective for processors requiring more

than one slot.

To appear: IEEE Transactions on Computers 3

Another compiler-assisted method, called Delayed Branches with Squashing, has been adopted

by some recent processors to complement delayed branching[29][15][8][30][23]. That is, the method

is used when the compiler cannot completely �ll the delay slots for delayed branching. In this

scheme, the number of slots after each branch still has to be large enough to cover the branch

delay. However, instead of moving independent instructions into branch delay slots, the compiler

can �ll the slots with the predicted successors of the branch. If the actual branch direction di�ers

from the prediction, the instructions in the branch slots are scratched (squashed or nulli�ed) from

the pipeline.

On the least expensive side, the hardware predicts all conditional branches to be either always

taken (as in Stanford MIPS-X [8]) or always not-taken (as in Motorola 88000 [30]). Predicting all

the instructions to be taken achieves about 65% accuracy whereas predicting not-taken does about

35%[39][28] [11]. Predicting all the branches to be either taken or not taken limits the performance of

delayed branches with squashing. Furthermore, �lling the branch slots for predicted-taken branches

requires code copying in general. Predicting all branches to be taken can result in a large amount

of code expansion.

McFarling and Hennessy proposed Pro�led Delayed Branches with Squashing. In this scheme,

an execution pro�ler is used to collect the dynamic execution behavior of programs such as the

preferred direction of each branch[29]. The pro�le information is then used by a compile-time code

restructurer to predict the branch direction and to �ll the branch slots according to the prediction.

In order to allow each branch to be predicted di�erently, an additional bit to indicate the predicted

direction is required in the branch opcode in general[23]. Through this bit, the compiler can

convey the prediction decision to the hardware. McFarling and Hennessy also suggested methods

for avoiding adding a prediction bit to the branch opcode. Using pipelines with one and two

branch slots, McFarling and Hennessy showed that the method can o�er comparable performance

with hardware methods at a much lower hardware cost. They suggested that the stability of using

execution pro�le information in compile-time code restructuring should be further evaluated.

This paper examines the extension of McFarling and Hennessy's idea to processors employing

deep pipelining and multiple instruction issue. These techniques increase the number of slots for

each branch. As a result, four issues arise. First, there are only 3 to 5 instructions between branches

in the static program (see Section 4.2) . In order to �ll a large number of slots (on the order of

To appear: IEEE Transactions on Computers 4

ten), one must be able to insert branches into branch slots. Questions arise regarding the correct

execution of branches in branch slots. Second, the state information about all branch instructions

in the instruction pipeline becomes large. Brute force implementations of return from interrupts

and exceptions can involve saving/restoring a large amount of state information of the instruction

sequencing mechanism. Third, the code expansion due to code restructuring can be very large.

It is important to control such code expansion without sacri�cing performance. Fourth, the time

penalty for re�lling the instruction fetch pipeline due to each incorrectly predicted branch is large.

It is very important to show extensive empirical results on the performance and stability of using

pro�le information in compile-time code restructuring. The �rst three issues were not addressed by

McFarling and Hennessy [29]. The second issue was not addressed by previous studies of hardware

support for precise interrupt [18] [40].

In order to address these issues, we have speci�ed a compiler and pipeline implementation

method for Delayed Branches with Squashing. We refer to this method as Inline Target Inser-

tion to reect the fact that the compiler restructures the code by inserting predicted successors

of branches into their sequential locations. Based on the speci�cation, we show that the method

exhibits desirable properties such as simple compiler and hardware implementation, clean inter-

rupt/exception return, moderate code expansion, and high instruction sequencing e�ciency. We

also provide a proof that Inline Target Insertion is correct. Our correctness proof of �lling branch

slots with branch instructions is also applicable to a previously proposed hardware scheme [34].

The paper is organized into �ve sections. Section 2 presents background and motivation for

Inline Target Insertion. Section 3 de�nes the compiler and pipeline implementation, proves the

correctness of the proposed implementation, and suggests a clean method to return from interrupt

and exception. Section 4 provides empirical results on code expansion control and instruction

sequencing e�ciency. Section 5 o�ers concluding remarks regarding the cost-e�ectiveness and

applicability of Inline Target Insertion.

To appear: IEEE Transactions on Computers 5

2 Background and Motivation

2.1 Branch Instructions

Branch instructions reect the decisions made in the program algorithm. Figure 1(a) shows a C

program segment which �nds the largest element of an array. There are two major decisions in the

algorithm. One decides if all the elements have been visited and the other decides if the current

element is larger than all the other ones visited so far.

With the register allocation/assignment assumption in Figure 1(b), a machine language program

can be generated as given in Figure 2. There are three branches in the machine language program.

Instruction D ensures that the looping condition is checked before the �rst iteration. Instruction I

checks if the loop should iterate any more. Instruction F determines if the current array element

is larger than all the others visited so far.

The simpli�ed view of the machine language program in Figure 2 highlights the e�ect of

branches. Each arc corresponds to a branch where the head of an arc is the target instruction.

The percentage on each arc indicates the probability for the corresponding branch to occur in

execution. The percentages can be derived by program analysis and/or execution pro�ling. If

the percentage on an arc is greater than 50%, it corresponds to a likely branch. Otherwise, it

corresponds to an unlikely branch.

The instructions shown in Figure 2(a) are static instructions. These are the instructions gener-

ated by the compilers and machine language programmers. During program execution, each static

instruction can be executed multiple times due to loops. Each time a static instruction is executed,

it generates a dynamic instruction. A dynamic branch instruction which redirects the instruction

fetch is called a taken branch.

2.2 Instruction Sequencing for Pipelined Processors

The problems with instruction sequencing for pipelined processors are due to the latency of de-

coding and/or executing branches. A simple hardware example su�ces to illustrate the problem

of instruction sequencing for pipelined processors. The processor shown in Figure 3 is divided

into four stages: instruction fetch (IF), instruction decode (ID), instruction execution (EX), and

result write-back (WB). The instruction sequencing logic is implemented in the EX stage. The

To appear: IEEE Transactions on Computers 6

sequencing pipeline consists of the IF , ID, and EX stages of the processor pipeline. When a

compare-and-branch4 instruction is processed by the EX stage5, the instruction sequencing logic

determines the next instruction to fetch from the memory system based on the comparison result.

The dynamic pipeline behavior is illustrated by the timing diagram in Figure 4. The vertical

dimension gives the clock cycles and the horizontal dimension the pipeline stages. For each cycle,

the timing diagram indicates the pipeline stage in which each instruction can be found.

The pipeline fetches instructions sequentially from memory until a branch is encountered. In

Figure 4, the instructions to be executed are E ! F ! G ! H ! I ! E ! F . However,

the direction of branch I is not known until cycle 7. By this time instructions J and K have

already entered the pipeline. Therefore, in cycle 8 instruction E enters the pipeline while J and

K are scratched. The nonproductive cycles introduced by incorrectly fetching J and K reduce the

throughput of the pipeline.

2.3 Deep Pipelining and Multiple Instruction Issue

The rate of instruction execution is equal to the clock frequency times the number of instructions

executed per clock cycle. One way to improve the instruction execution rate is to increase the clock

frequency. The pipeline stages with the longest delay (critical paths) limit the clock frequency.

Therefore, subdividing these stages can potentially increase the clock frequency and improve the

overall performance. This adds stages in the pipeline and creates a deeper pipeline. For example,

if the instruction cache access and the instruction execution limit the clock frequency, subdividing

these stages may improve the clock frequency. A timing diagram of the resultant pipeline is shown

in Figure 5. Now four instructions are scratched if a compare-and-branch redirects the instruction

fetch. For example, I2 � I5 may be scratched if I1 redirects the instruction fetch.

Another method to improve instruction execution rate is to increase the number of instructions

executed per cycle. This is done by fetching, decoding, and executing multiple instructions per

cycle. This is often referred to as multiple instruction issue [44] [12] [27] [31] [32] [19] [35] [36]

[42] [24] [41] . The timing diagram of such a pipeline is shown in Figure 6. In this example, two

4Although the compare-and-branch instructions are assumed in the example, the methods in this paper apply to

condition code branches as well.
5Although unconditional branch instructions can redirect the instruction fetch at the ID stage, we ignore the

optimization in this example for simplicity.

To appear: IEEE Transactions on Computers 7

instructions are fetched per cycle. When a compare-and-branch (I1) reaches the EX stage, �ve

(I2; I3; I4; I5; I6) instructions may be scratched from the pipeline.6

As far as instruction sequencing is concerned, multiple instruction issue has the same e�ect

as deep pipeling. They both result in increased number of instructions which may be scratched

when a branch redirects the instruction fetch.7 Combining deep pipelining and multiple instruction

issue will increase the number of instructions to be scratched to a relatively large number. For

example, the TANDEMCyclone processor requires 14 branch slots due to deep pipeline and multiple

instruction issue[16].8 The discussions in this paper do not distinguish between deep pipelining and

multiple instruction issue; they are based on the number of instructions to be scratched by branches.

3 Inline Target Insertion

Inline Target Insertion consists of a compile-time code restructuring algorithm and a run-time

pipelined instruction fetch algorithm. The compile-time code restructuring algorithm transforms a

sequential program Ps to a parallel program Pp. Inline Target Insertion is correct if the instruc-

tion sequence generated by executing Pp on a pipelined instruction fetch unit is identical to that

generated by executing Ps on a sequential instruction fetch unit. In this section, we �rst formally

de�ne the sequential instruction fetch algorithm. Then, we formally de�ne the code restructuring

algorithm and the pipelined instruction fetch algorithm of Inline Target Insertion. From the formal

models of implementation, we will derive a proof of correctness.

3.1 Sequential Instruction Fetch

In a sequential instruction fetch unit, Is(t) is de�ned as the dynamic instruction during cycle t.

The address of Is(t) will be referred to as As(Is(t)). The target instruction of a branch instruction

Is(t) will be referred to as target(Is(t)). The next sequential instruction of a branch instruction

6The number of instructions to be scratched from the pipeline depends on the instruction alignment. If I2 rather

than I1 were a branch, four instructions (I3; I4; I5; I6) would be scratched.
7A di�erence between multiple instruction issue and deep pipelining is that multiple likely control transfer in-

structions could be issued in one cycle. Handling multiple likely control transfer instructions per cycle in a multiple

instruction issue processor is not di�cult in Inline Target Insertion. The details are not within the scope of this

paper.
8The processor currently employs an extension to the instruction cache which approximates the e�ect of a Branch

Target Bu�er to cope with the branch problem.

To appear: IEEE Transactions on Computers 8

Is(t) will be referred to as fallthru(Is(t)). The sequential instruction fetch algorithm (SIF) is

shown below.

|||||||||||||||-

Algorithm SIF begin

if (Is(t) is a taken branch) then

As(Is(t+ 1)) As(target(Is(t)));

else

As(Is(t+ 1)) As(Is(t)) + 1; 9

end

|||||||||||||||-

The correct successors of a dynamic instruction Is(t) is de�ned as the dynamic instructions to

be executed after Is(t) as speci�ed by SIF . The kth correct successors of Is(t) will be denoted

as CS(Is(t); k). It should be noted that CS(Is(t); k) = Is(t + k). For a sequential program, Ps,

whose execution starts from instruction I0, the instruction sequence is (I0, CS(I0; 1), CS(I0; 2), ..,

CS(I0; n)), where CS(I0; n) is the �rst terminating instruction.

3.2 Compiler Implementation

The compiler implementation of Inline Target Insertion involves compile-time branch prediction

and code restructuring. Branch prediction marks each static branch as either likely or unlikely.

The prediction is based on the estimated probability for the branch to redirect instruction fetch

at the run time. The probability can be derived from program analysis and/or execution pro�ling.

The prediction is encoded in the branch instructions.

The predicted successors (PS) of an instruction I are the instructions which tend to execute after

I . The de�nition of predicted successors is complicated by the frequent occurrence of branches.

Let PS(I; k) refer to the kth predicted successor of I . The predicted successors of an instruction

can be de�ned recursively:

9In the discussions, all address arithmetics are in terms of instruction words. For example, address address+1

advances the address to the next instruction.

To appear: IEEE Transactions on Computers 9

1. If I is a likely branch, then PS(I; 1) is target(I). Otherwise PS(I; 1) is fallthru(I).

2. (I1 = PS(I; k))^ (I2 = PS(I1; 1)) ! I2 = PS(I; k+ 1).

For example, one can identify the �rst �ve predicted successors of F in Figure 2 as shown

below. Since F is a likely branch, its �rst predicted successor is its target instruction H . The

second predicted successor of F is I , which is a likely branch itself. Thus the third predicted

successor of F is I 's target instruction E.

H = PS(F; 1)

(H = PS(F; 1))^ (I = PS(H; 1)) ! I = PS(F; 2)

(I = PS(F; 2))^ (E = PS(I; 1)) ! E = PS(F; 3)

(E = PS(F; 3))^ (F = PS(E; 1)) ! F = PS(F; 4)

(F = PS(F; 4))^ (H = PS(F; 1)) ! H = PS(F; 5)

The code restructing algorithm for Inline Target Insertion is shown below. It is also illustrated

by Figure 7.

|||||||||||||||-

Algorithm ITI(N) begin

1. Open N insertion slots after every likely branch 10.

2. For each likely branch I , adjust its target label from the address of PS(I; 1) to

(the address of PS(I; 1) + N).

3. For each likely branch I , copy its �rst N predicted successors (PS(I; 1),PS(I; 2),

..,PS(I;N)) into its slots11. If some of the inserted instructions are branches, make

sure they branch to the same target after copying.12

end

10It is possible to extend the proofs to a non-uniform number of slots in the same pipeline. The details are not in
the scope of this paper.

11This step can be performed iteratively. In the �rst iteration, the �rst predicted successors of all likely branches are

determined and inserted. Each subsequent iteration inserts one more predicted successor for all the likely branches.
It takes N iterations to insert all the target instructions to their assigned slots.

12This is trivial if the code restructuring works on assembly code. In this case, the branch targets are speci�ed as

labels. The assembler automatically generates the correct branch o�set for the inserted branches.

To appear: IEEE Transactions on Computers 10

|||||||||||||||-

The goal of ITI is to ensure that all original instructions �nd their predicted successors in the

next sequential locations. This is achieved by inserting the predicted successors of likely branches

into their next sequential locations.

We refer to the slots opened by the ITI Algorithm as insertion slots instead of more traditional

terms such as delay slots or squashing delay slots. The insertion slots are only associated with likely

branches. The instructions in the insertion slots are duplicate copies. All the others are original.

This is di�erent from what the terms delay slots and squashing delay slots usually mean. They often

refer to sequential locations after both likely and unlikely branches, which can contain original as

well as duplicate copies.

Figure 8 illustrates the application of ITI(N = 2) to a part of the machine program in Figure

2. Step 1 opens two insertion slots for the likely branches F and I . Step 2 adjusts the branch label

so that F branches to H + 2 and I branches to E + 2. Step 3 copies the predicted successors of F

(H and I) and I (E and F) into the insertion slots of F (H 0 and I 0) and I(E0 and F 0). Note that

the o�set is adjusted so that I 0 and F 0 branches to the same target instructions as I and F . The

reader is encouraged to apply ITI(N = 3) to the code for more insights into the algorithm.

With Inline Target Insertion, each instruction may be duplicated into multiple locations. There-

fore, the same instruction may be fetched from one of the several locations. The original address,

Ao(I), of a dynamic instruction is the address of the original copy of I . The fetch address, Af (I), of

a dynamic instruction I is the address from which I was fetched. In Figure 8, the original address

of both I and I 0 is the address of I . The fetch addresses of I and I 0 are their individual addresses.

It should be noted that ITI moves fallthru(I) of a likely branch I to Ao(I) +N + 1 which is

an original address.

3.3 Sequencing Pipeline Implementation

The sequencing pipeline is divided into N +1 stages. The sequencing pipeline processes all instruc-

tions in their fetch order. If any instruction is delayed due to a condition in the sequencing pipeline

(e.g. instruction cache miss), all the other instructions in the sequencing pipeline are delayed. This

includes the instructions ahead of the one being delayed. The net e�ect is that the entire sequencing

pipeline freezes. This ensures that the relative pipeline timing among instructions is accurately ex-

To appear: IEEE Transactions on Computers 11

posed to the compiler. It guarantees that when a branch redirects instruction fetch, all instructions

in its insertion slots have entered the sequencing pipeline. Note that this restriction only applies to

the instructions in the sequencing pipeline, the instructions in the execution pipelines (e.g., data

memory access and oating point evaluation) can still proceed while the instruction sequencing

pipeline freezes.

The de�nition of time in instruction sequencing separates the freeze cycles from execution cycles.

Freeze cycles do not a�ect the relative timing among instructions in the sequencing pipeline. In

this paper, cycle t refers to the tth cycle of program execution excluding the freeze cycles. I(k; t) is

de�ned as the dynamic instruction at the kth stage of the sequencing pipeline during cycle t. The

implementation keeps an array of fetch addresses for all the instructions in the sequencing pipeline.

The fetch address for the instruction at stage i in cycle t will be referred to as Af (I(i; t)).

A hardware function REFILL13 is provided to reload the instruction fetch pipeline from any

original address. REFILL is called when there is a program startup, an incorrect branch prediction,

or a return from interrupt/exception. It is easy to guarantee that the program startup address is

an original address. We will show in the next subsection that the appropriate original address for

a program to resume after incorrect branch prediction and interrupt/exception handling is always

available.

|||||||||||||||-

REFILL(pc) begin

Af (I(N + 1; t+ 1)) pc;

for k = 1::N do Af (I(N � k + 1; t+ 1)) pc+ k;

end

|||||||||||||||-

The pipelined instruction fetch algorithm (PIF) that is implemented in hardware is shown

below. The sequencing pipeline fetches instructions sequentially by default. Each branch can

13REFILL is excluded from the accounting of time when proving correctness of Inline Target Insertion. REFILL

may be physically implemented as loading an initial address into Af (I(1; t)) and subsequently computing Af (I(1; t+

k)) = Af (I(1; t + k � 1)) + 1, for k = 1::N . REFILL is included in the accounting of time when evaluating the
performance of Inline Target Insertion (Section 4).

To appear: IEEE Transactions on Computers 12

redirect the instruction fetch and/or scratch the subsequent instructions when it reaches the end

of the sequencing pipeline. If a branch redirects the instruction fetch, the next fetch address is the

adjusted target address determined in Algorithm ITI . If the decision of a branch is incorrectly

predicted, it scratches all the subsequent instructions from the sequencing pipeline.

|||||||||||||||-

Algorithm PIF (N) begin

if (I(N + 1; t) is not a branch) then

Af(I(1; t+ 1)) Af (I(1; t))+ 1;

for k = 1::N do Af(I(k + 1; t+ 1)) Af(I(k; t));

else if (I(N + 1; t) is likely and is taken) then

Af(I(1; t+ 1)) Ao(target(I(N + 1; t))) +N ;

for k = 1::N do Af(I(k + 1; t+ 1)) Af(I(k; t));

else if (I(N + 1; t) is unlikely and is not taken) then

Af(I(1; t+ 1)) Af (I(1; t))+ 1;

for k = 1::N do Af(I(k + 1; t+ 1)) Af(I(k; t));

else if (I(N + 1; t) is unlikely but is taken) then

REFILL(Ao(target(I(N + 1; t))));

else if (I(N + 1; t) is likely but is not taken) then

REFILL(Af(I(1; t)) + 1);

end

|||||||||||||||-

Figure 9(a) shows a timing diagram for executing the instruction sequence (E ! F ! H !

I ! E) of the machine program in Figure 8(a). With Inline Target Insertion (Figure 8(e)), the

instruction sequence becomes (E ! F ! H 0 ! I 0 ! E0). In this case, the branch decision for F

is predicted correctly at compile time. When F reaches the EX stage in cycle 4, no instruction is

scratched from the pipeline. Since F redirects the instruction fetch, the instruction to be fetched by

the IF stage in cycle 5 is E0 (the adjusted target of F) rather than the next sequential instruction

G.

To appear: IEEE Transactions on Computers 13

Figure 9(b) shows a similar timing diagram for executing the instruction sequence (E ! F !

G). With Inline Target Insertion, the instruction fetch sequence becomes (E ! F ! H 0 ! I 0 ! G).

In this case, the branch decision for F is predicted incorrectly at the compile time. When F reaches

the EX stage in cycle 4, instructions H 0 and I 0 are scratched from the pipeline. Since F does not

redirect the instruction fetch, the instruction fetch pipeline is re�lled from the next sequential

instruction G.

3.4 Correctness of Implementation

Branches are the central issue of Inline Target Insertion. Without branches, the sequencing

pipeline would simply fetch instructions sequentially. The instructions emerging from the sequenc-

ing pipeline would be the correct sequence. Therefore, the correctness proofs of the compiler and

pipeline implementation will focus on the correct execution of branches. For pipelines with many

slots, it is highly probable to have branches inserted into insertion slots (see Section 4.2). In the

case where there are no branches in insertion slots, the correctness follows from the description

of the ITI Algorithm. All branch instructions would be original and they would have their �rst

N predicted successors in the next N sequential locations. Whereas a branch instruction in an

insertion slot cannot have all its N predicted successors in the next N sequential locations. For

example, in Figure 8(e), questions arise regarding the correct execution of F 0. When F 0 redirects

the instruction fetch, how do we know that the resulting instruction sequence is always equivalent

to the correct sequence F ! H ! I:::?

De�nition 1 Inline Target Insertion is correct if the instruction sequence that is generated by

(PIF; Pp) is (I0, CS(I0; 1), CS(I0; 2), .., CS(I0; n)), where CS(I0; n) is the �rst stop instruction.

We shall prove that the instruction sequence that is issued by (PIF , Pp) is identical to that

by (SIF , Ps). Unfortunately, it is di�cult to compare the output of PIF and SIF on a step

by step basis. We will �rst identify su�cient conditions for (PIF , Pp) to generate the same

instruction sequence as (SIF , Ps), and then show that these conditions are guaranteed by Inline

Target Insertion.

To help the reader to read the following lemmas and theorems, we list important terms in Table

2. We de�ne two equality relations on the state variables of the instruction fetch pipeline.

To appear: IEEE Transactions on Computers 14

R(t): I(i; t) = PS(I(N + 1; t); N � i+ 1); i = 1::N .

S(t): Af (I(1; t)) = Ao(I(N + 1; t)) +N .

Theorem 1 states that these two equality relations are su�cient to ensure the correctness of

Inline Target Insertion.

Theorem 1 If R(t) and S(t) are true for all t, then I(N + 1; t) = CS(I0; t).

Proof: The theorem can be proved by induction on t.

P (t) : I(N + 1; t) = CS(I0; t):

Induction basis: From the de�nition of REFILL, I(N + 1; 0) = I0. P (0) is true for t = 0.

Induction step: Assuming P (t) is true, show P (t+ 1) is also true.

Case 1: I(N + 1; t) is not an incorrectly predicted branch.

According to PIF , I(N+1; t+1) = I(N; t). R(t) implies that I(N; t) = PS(I(N+1; t); 1). For

a correctly predicted instruction I(N + 1; t), PS(I(N + 1; t); 1) is equal to CS(I(N +1; t); 1).

Hence, I(N + 1; t+ 1) = I(N; t) = PS(I(N + 1; t); 1) = CS(I(N + 1; t); 1) = CS(I0; t+ 1).

Case 2: I(N + 1; t) is unlikely but is taken.

PIF performs REFILL(Ao(target(I(N+1; t)))) at t. According to the de�nition of REFILL,

I(N+1; t+1) becomes target(I(N+1; t)) which is CS(I(N+1; t); 1). Hence, I(N+1; t+1) =

CS(I(N + 1; t); 1) = CS(I0; t+ 1).

Case 3: I(N + 1; t) is likely but is not taken.

PIF performs REFILL(Af(I(1; t)) + 1) at t. According to the de�nition of REFILL and

S(t), Af(I(N+1; t+1)) = Af (I(1; t))+1 = Ao(I(N+1; t))+N+1. Because I(N+1; t) is a

likely branch, ITI allocates N insertion slots after Ao(I(N+1; t)), and fallthru(I(N+1; t))

is at Ao(I(N + 1; t)) + N + 1.14 Because I(N + 1; t) is not taken, CS(I(N + 1; t); 1) is

fallthru(I(N + 1; t)). Hence, I(N + 1; t+ 1) = fallthru(I(N + 1; t)) = CS(I(N + 1; t); 1) =

CS(I0; t+ 1).

2

14It should be noted that, if I(N + 1; t) is a likely branch, the original copy of fallthru(I(N + 1; t)) is always at

Ao(I(N + 1; t)) +N + 1 according to ITI. Therefore, Ao(I(N + 1; t)) +N + 1 is a legal argument for REFILL.

To appear: IEEE Transactions on Computers 15

Theorem 1 shows that R(t) and S(t) are su�cient to ensure correct execution. Therefore, we

formulate the next theorem as the ultimate correctness proof of Inline Target Insertion.

Theorem 2 ITI and PIF ensure that R(t) and S(t) are true for all t.

Theorem 2 has a standard induction proof. We start by proving that R(0) and S(0) are true.

Then we show that, if R(t) and S(t) are true, R(t+1) and S(t+1) are also true. Because PIF and

ITI are complex algorithms, we need to consider several cases in each step of the proof. Instead

of presenting the proof as a whole, we will �rst present several lemmas, from which the proof of

Theorem 2 naturally follows.

Lemma 1 If REFILL(Ao(Ientry)) is performed at time t so that Ientry is I(N + 1; t+ 1) then

R(t+ 1) and S(t+ 1) are true.

Proof:

ITI ensures that the original instructions �nd their N predicted successors in their next N

sequential addresses. R(t+ 1) naturally follows the de�nition of REFILL.

Af(I(1; t + 1)) = Af (I(N + 1; t + 1)) + N is implied by the de�nition of REFILL. Because

Af (I(N + 1; t+ 1)) = Ao(I(N + 1; t+ 1)), Af (I(1; t+ 1)) = Ao(I(N + 1; t+ 1)) +N . Therefore,

S(t+ 1) is also true.

2

Lemma 1 shows that re�lling the instruction fetch pipeline from an original address ensures that

R(t+1) and S(t+1) are true. The instruction sequence pipeline is initialized by REFILL(Ao(I0)),

where I0 is the entry point of a program. It follows from Lemma 1 that R(0) and S(0) are true.

We proceed to prove that, if R(t) and S(t) are true, S(t + 1) is also true. We �rst prove for

the case when I(N + 1; t+1) is fetched from its original address, and then prove for the case when

I(N + 1; t+ 1) is fetched from one of its duplicate addresses.

Lemma 2 If R(t) and S(t) are true and Af (I(N + 1; t+ 1)) = Ao(I(N + 1; t+ 1)), then S(t+ 1)

is also true.

Proof:

Since I(N+1; t+1) is fetched from its original address, I(N+1; t) cannot be a likely branch. We

need to consider only the following two cases.

To appear: IEEE Transactions on Computers 16

Case 1: I(N + 1; t) is not a branch or is an unlikely branch which is not taken.

PIF performs Af (I(1; t+ 1)) = Af (I(1; t)) + 1 for this case.

Adding 1 to both sides of S(t) results in Af (I(1; t)) + 1 = Ao(I(N + 1; t)) +N + 1.

Because ITI allocates insertion slots only for likely branches and I(N + 1; t) is not a likely

branch, the original addresses of I(N + 1; t) and I(N + 1; t + 1) must be adjacent to each

other. In other words, Ao(I(N + 1; t)) + 1 = Ao(I(N + 1; t + 1)). Hence, Af (I(1; t+ 1)) =

Af(I(1; t)) + 1 = Ao(I(N + 1; t)) +N + 1 = Ao(I(N + 1; t+ 1))+N . Therefore, S(t+ 1) is

true.

Case 2: I(N + 1; t) is an unlikely branch but is taken.

PIF performs REFILL(Ao(target(I(N + 1; t)))) at time t. Correctness of S(t+ 1) follows

from Lemma 1. Note that Ao(target(I(N + 1; t))) is an original (and therefore legal) address

for REFILL.

2

The case where I(N + 1; t+ 1) is fetched from an insertion slot is fairly di�cult to prove. We

will �rst prove an intermediate lemma.

Lemma 3 If Af(I(N + 1; t + 1)) 6= Ao(I(N + 1; t + 1)), then there must be a k that satis�es all

the following four conditions.

(1) 0 � k � N � 1.

(2) I(N + 1; t� k) is a likely branch.

(3) There can be no likely branches between I(N + 1; t� k + 1) and I(N + 1; t) inclusively.

(4) There is no incorrectly predicted branch between I(N + 1; t� k) and I(N + 1; t) inclusively.

Proof:

Since I(N + 1; t+ 1) is not fetched from its original address, it must be fetched from an insertion

slot. Therefore, there must be at least one likely branch among the N instructions fetched before

I(N + 1; t+ 1). The one that is fetched closest to I(N + 1; t+ 1) satis�es (1), (2), and (3).

We can prove (4) by contradiction. Assume that there was an incorrectly predicted branch

between I(N+1; t�k) and I(N+1; t) inclusively. Then, a REFILL was performed after (t�k�1)

at an original address. Because there was no likely branch between I(N+1; t�k+1) and I(N+1; t)

inclusively, I(N + 1; t+ 1) must be fetched from its original address. This is a contradiction to the

To appear: IEEE Transactions on Computers 17

precondition of this Lemma: Af (I(N + 1; t+ 1)) 6= Ao(I(N + 1; t+ 1)). Therefore, our assumption

that there was an incorrectly predicted branch between I(N + 1; t� k) and I(N + 1; t) (inclusively)

cannot be true.

2

Lemma 4 If Af (I(N + 1; t+ 1)) 6= Ao(I(N + 1; t+ 1)) and R(t) and S(t) are true, then S(t+ 1)

is also true.

Proof:

We will use the k found in Lemma 3.

Case 1: k = 0.15

I(N + 1; t) is a likely branch. In this case, PIF performs Af (I(1; t+ 1)) = Ao(target(I(N +

1; t)))+N . R(t) implies that I(N; t) = PS(I(N+1; t); 1). Because PIF performs Af (I(N +

1; t+1)) = Af (I(N; t)) for this case, I(N+1; t+1) = PS(I(N+1; t); 1) = target(I(N+1; t))

and Ao(I(N+1; t+1)) = Ao(target(I(N+1; t))). Therefore, Af (I(1; t+1)) = Ao(target(I(N+

1; t))) +N = Ao(I(N + 1; t+ 1)) +N .

Case 2: 1 � k � N � 1.

(1) Because I(N + 1; t � k) was a likely branch, PIF performed Af (I(1; t � k + 1)) =

Ao(target(I(N + 1; t� k))) +N .

(2) Because I(N+1; t�k) was a likely branch, I(N; t�k) = target(I(N+1; t�k)). Therefore,

Ao(I(N + 1; t� k + 1)) = Ao(I(N; t� k)) = Ao(target(I(N + 1; t� k)).

(3) Because there was no likely branch between I(N +1; t�k+1) and I(N +1; t) inclusively,

Af(I(1; t+ 1)) = Af (I(1; t� k + 1)) + k.

(4) From (1), (2) and (3), Af (I(1; t+ 1)) = Ao(I(N + 1; t� k + 1)) +N + k.

(5) Because there was no likely branch between I(N +1; t�k+1) and I(N +1; t) inclusively,

Ao(I(N + 1; t� k + 1)) + k = Ao(I(N + 1; t+ 1)).

(6) From (4) and (5), Af(I(1; t+ 1)) = Ao(I(N + 1; t+ 1)) +N .

2

15Case 1 could be included in Case 2 of the proof. We separate the two cases to make the proof more clear.

To appear: IEEE Transactions on Computers 18

Lemma 2 and Lemma 4 collectively ensure that, if S(i) and R(i) are true for 0 � i � t, S(t+1)

is also true. We proceed to show that R(t+ 1) is also true.

Lemma 5 If R(t), S(t), and S(t+ 1) are true, then R(t+ 1) is also true.

Proof:

Case 1: I(N + 1; t) is an incorrectly predicted branch.

For this case, PIF performs a REFILL. Lemma 1 ensures that I(i; t+1) = PS(I(N+1; t+

1); N � i+ 1); i = 1::N after a REFILL.

It remains to be shown that the argument to REFILL is an original address. If I(N+1; t) is

an unlikely branch, the argument to REFILL is Ao(target(I(N +1; t))) which is an original

address.

If I(N + 1; t) is a likely branch, the argument to REFILL is Af (I(1; t)) + 1. According to

Lemma 2 and Lemma 4, Af (I(1; t))+ 1 = Ao(I(N + 1; t)) +N + 1. Because I(N + 1; t) is a

likely branch, ITI ensures that Ao(I(N + 1; t)) +N + 1 = (Ao(fallthru(I(N + 1; t)))).

Case 2: I(N + 1; t) is not an incorrectly predicted branch.

(1) From Lemma 2 and Lemma 4, Af (I(1; t+ 1)) = Ao(I(N + 1; t+ 1)) +N .

(2) According to ITI, an original instruction can �nd its predicted successors in the next

sequential instructions. Therefore, I(1; t+ 1) must be PS(I(N + 1; t+ 1); N) to be placed in

Ao(I(N + 1; t+ 1)) +N .

(3) Because I(N + 1; t) is not an incorrectly predicted branch, PIF performs "for k =

1::N do Af (I(k+1; t+1)) Af(I(k; t))". Therefore, R(t) implies that I(i; t+1) = PS(I(N+

1; t+ 1); N � i+ 1) for i = 2::N .

(4) From (2) and (3), R(t+ 1) is true.

2

Proof of Theorem 2 By induction on t. It follows from Lemma 1 that R(0) and S(0) are true.

From Lemma 2, Lemma 4, and Lemma 5, if R(t) and S(t) are true, R(t+ 1) and S(t+ 1) are also

true.

2

To appear: IEEE Transactions on Computers 19

3.5 Interrupt/Exception Return

The problem of interrupt/exception return arises when interrupts and exceptions occur to instruc-

tions in insertion slots. For example, assume that the execution of code in Figure 8(e) involves

an instruction sequence, E ! F ! H 0 ! I 0 ! E0 ! F 0. Branch F is correctly predicted to be

taken. The question is, if H 0 caused a page fault, how much instruction sequencing information

must be saved so that the process can resume properly after the page fault is handled? If one saved

only the address of H 0, the information about F being taken is lost. Since H 0 is a not a branch,

the hardware would assume that I 0 was to be executed after H 0. Since I 0 is a likely branch and

is taken, the hardware would incorrectly assume that G and H resided in the insertion slots of I 0.

The instruction execution sequence would become H 0! I 0! G! H ! :::, which is incorrect.

The problem is that resuming execution from H 0 violated the restriction that an empty se-

quencing pipeline always starts fetching from an original instruction. The hardware does not have

the information that H 0 was in the �rst branch slot of F and that F was taken before the page

fault occurred. Because interrupts and exceptions can occur to instructions in all insertion slots

of a branch and there can be many likely branches in the slots, the problem cannot be solved by

simply remembering the branch decision for one previous branch.

A popular solution to this problem is to save all the previous N fetch addresses plus the fetch

address of the re-entry instruction. During exception return, all the N + 1 fetch addresses will be

used to reload their corresponding instructions to restore the instruction sequencing state to before

the exception. The disadvantage of this solution is that it increases the number of states in the

pipeline control logic and can therefore slow down the circuit. The problem becomes more severe

for pipelines with a large number of slots.

In Inline Target Insertion, interrupt/exception return to an instruction I is correctly performed

by REFILL(Ao(I)). Ao(I(N+1; t)) is always available in the form of Af (I(1; t))�N (Theorem 2).

One can record the original addresses when delivering an instruction to the execution units. This

guarantees that the original address of all instructions active in the execution units are available.

Therefore, when an interrupt/exception occurs to an instruction, the processor can save the original

address of that instruction as the return address. Lemma 1 ensures that R(t+ 1) and S(t+ 1) are

true after REFILL from an original address.

Figure 10 shows the e�ect of an exception on the sequencing pipeline. Figure 10(a) shows the

To appear: IEEE Transactions on Computers 20

timing of a correct instruction sequence E ! F ! H 0 ! I 0 ! E0 ! F 0 from Figure 8(e) without

exception. Figure 10(b) shows the timing with an exception to H 0. When H 0 reaches the end of the

sequencing pipeline (EX stage) at t, its Ao(H
0) is availble in the form of Af (I(1; t) = E0)� 2. This

address will be maintained by the hardware until H 0 �nishes execution16. When an exception is

detected, Ao(H
0) is saved as the return address. During exception return, the sequencing pipeline

resumes instruction fetch from H , the original copy of H 0. Note that the instruction sequence

produced is H ! I ! E0, which is equivalent to the one without exception.

Note that the original copies must be preserved to guarantee clean implementation of inter-

rupt/exception return. In Figure 8(e), if normal control transfers always enter the section at E0,

there is an opportunity to remove E and F after Inline Target Insertion to reduce code size. How-

ever, this would prevent clean interrupt/exception return if one occurs to E0 or F 0. Section 4.2

presents an alternative approach to reducing code expansion.

3.6 Extension to Out-of-order Execution

Inline Target Insertion can be extended to handle instruction sequencing for out-of-order execution

machines [46] [47] [45] [18] [19] [41] . The major instruction sequencing problem for out-of-order ex-

ecution machines is the indeterminate timing of deriving branching conditions and target addresses.

It is not feasible in general to design an e�cient sequencing pipeline where branches always have

their conditions and target addresses at the end of the sequencing pipeline. To allow e�cient

out-of-order execution, the sequencing pipeline must allow the subsequent instructions to proceed

whenever possible.

To make Inline Target Insertion and its correctness proofs applicable to out-of-order execution

machines, the following changes should be made to the pipeline implementation.

1. The sequencing pipeline is designed to be long enough to identify the target addresses for

program-counter-relative branches and for those whose target addresses can be derived with-

out interlocking.

2. When a branch reaches the end of the sequencing pipeline, the following conditions may occur:

16The real original address does not have to be calculated until an exception is detected. One can simply save

Af (I(1; t)) and only calculate Ao(I(N + 1; t)) when an exception actually occurs. This avoids requiring an extra

subtractor in the sequencing pipeline.

To appear: IEEE Transactions on Computers 21

(a) The branch is a likely one and its target address is not available yet. In this case, the

sequencing pipeline freezes until the interlock is resolved.

(b) The branch is an unlikely one and its target address is not yet available. In this case, the

sequencing pipeline proceeds with the subsequent instructions. Extra hardware must be

added to secure the target address when it becomes available to recover from incorrect

branch prediction. The execution pipeline must also be able to cancel the e�ects of the

subsequent instructions emerging from the sequencing pipeline for the same reason.

(c) The branch condition is not yet available. In this case, the sequencing pipeline proceeds

with the subsequent instructions. Extra hardware must be added to secure the repair

address to recover from incorrect branch prediction. The execution pipeline must be

able to cancel the e�ects of the subsequent instructions emerging from the sequencing

pipeline for the same reason.

If a branch is program counter relative, both the predicted and alternative addresses are available

at the end of the sequencing pipeline. The only di�erence from the original sequencing pipline model

is that the condition might be derived later. Since the hardware secures the alternative address, the

sequencing state can be properly recovered from incorrectly predicted branches. If the branch target

address is derived from run-time data, the target address of a likely branch may be unavailable

at the end of the sequencing pipeline. Freezing the sequencing pipeline in the above speci�cation

ensures that all theorems hold for this case. As for unlikely branches, the target address is the

alternative address. The sequencing pipeline can proceed as long as the alternative address is

secured when it becomes available. Therefore, all the proofs above hold for out-of-order execution

machines.

4 Experimentation

The code expansion cost and instruction sequencing e�ciency of Inline Target Insertion can only be

evaluated empirically. This section reports experimental results based on a set of production quality

software from UNIX17 and CAD domains. The purpose is to show that Inline Target Insertion is

17UNIX is a trademark of AT&T.

To appear: IEEE Transactions on Computers 22

an e�ective method for achieving high instruction sequencing e�ciency for pipelined processors.

All the experiments are based on the an instruction set architecture which closely resembles MIPS

R2000/3000[25] with modi�cations to accommodate Inline Target Insertion. The IMPACT-I C

Compiler, an optimizing C compiler developed for deep pipelining and multiple instruction issue

at the University of Illinois, is used to generate code for all the experiments [4][21][6][7].

4.1 The Benchmark

Table 3 presents the benchmarks chosen for this experiment. The C lines column describes the

size of the benchmark programs in number of lines of C code (not counting comments). The runs

column shows the number of inputs used to generate the pro�le databases and the performance

measurement. The input description column briey describes the nature of the inputs for the

benchmarks. The inputs are realistic and representative of typical uses of the benchmarks. For

example, the grammars for a C compiler and for a LISP interpreter are two of ten realistic inputs

for bison and yacc. Twenty �les of several production quality C programs, ranging from 100 to

3000 lines, are inputs to the cccp program. All the twenty original benchmark inputs form the input

to espresso. The experimental results will be reported based on the mean and sample deviation

of all program and input combinations shown in Table 3. The use of many di�erent real inputs to

each program is intended to verify the stability of Inline Target Insertion using pro�le information.

The IMPACT-I compiler automatically applies trace selection and placement, and has removed

unnecessary unconditional branches via code restructuring [4][6].

4.2 Code Expansion

The problem of code expansion has to do with the frequent occurrence of branches in programs.

Inserting target instructions for a branch adds N instructions to the static program.18 In Figure 8,

target insertion for F and I increases the size of the loop from 5 to 9 instructions. In general, if Q is

the probability for static instructions to be likely branches (Q = 18% among all the benchmarks),

Inline Target Insertion can potentially increase the code size by N � Q (180% for Q = 18% and

18One may argue that the originals of the inserted instructions may be deleted to save space if the ow of control

allows. We have shown, however, preserving the originals is crucial to the clean return from exceptions in insertion

slots (see Section 3.5).

To appear: IEEE Transactions on Computers 23

N = 10). Because large code expansion can signi�cantly reduce the e�ciency of hierarchical

memory systems, the problem of code expansion must be addressed for pipelines with a large

number of slots.

Table 4 shows the static control transfer characteristics of the benchmarks. The static cond.

(static uncond.) column gives the percentage of conditional (unconditional) branches among all

the static instructions in the programs. The numbers presented in Table 4 con�rm that branches

appear frequently in static programs. This shows for the need for being able to insert branches in

the insertion slots (see Section 3.4). The high percentage of branches suggests that code expansion

must be carefully controlled for these benchmarks.

A simple solution is to reduce the number of likely branches in static programs using a threshold

method. A conditional branch that executes fewer number of times than a threshold value is

automatically converted into an unlikely branch. An unconditional branch instruction that executes

a fewer number of times than a threshold value can also be converted into an unlikely branch whose

branch condition is always satis�ed. The method reduces the number of likely branches at the

cost of some performance degradation. A similar idea has been implemented in the IBM Second

Generation RISC Architecture[2].

For example, if there are two likely branches A and B in the program. A is executed 100 times

and it redirects the instruction fetch 95 times. B is executed 5 times and it redirects the instruction

fetch 4 times. Marking A and B as likely branches achieves correct branch prediction 99 (95+4)

times out of a total of 105 (100+5). The code size increases by 2 � N . Since B is not executed

nearly as frequently as A, one can mark B as an unlikely branch. In this case, the accuracy of

branch prediction is reduced to be 96 (95+1) times out of 105. The code size only increases by

N . Therefore, a large saving in code expansion could be achieved at the cost of a small loss in

performance.

The idea is that all static likely branches cause the same amount of code expansion but their

execution frequency may vary widely. Therefore, by reversing the prediction for the infrequently

executed likely branches reduces code expansion at the cost of slight loss of prediction accuracy.

This is con�rmed by results shown in Table 5. The threshold column speci�es the minimum

dynamic execution count per run, below which, likely branches are converted to unlikely branches.

The E[Q] column lists the mean percentage of likely branches among all instructions and the SD[Q]

To appear: IEEE Transactions on Computers 24

column indicates the sample deviations. The code expansion for a pipeline with N slots is N �E[Q].

For example, for (N = 2) with a threshold value of 100, one can expect a 2.2% increase in the static

code size. Without code expansion control (threshold=0), the static code size increase would be

36.2% for the same sequencing pipeline. For another example, for a 11-stage sequencing pipeline

(N = 10) with a threshold value of 100, one can expect about 11% increase in the static code size.

Without code expansion control (threshold=0), the static code size increase would be 181% for the

same sequencing pipeline. Note that the results are based on control intensive programs. The code

expansion cost should be much lower for programs with simple control structures such as scienti�c

applications.

4.3 Instruction Sequencing E�ciency

The problem of instruction sequencing e�ciency is concerned with the total number of dynamic

instructions scratched from the pipeline due to all dynamic branches. Since all insertion slots are

inserted with predicted successors, the cost of instruction sequencing is a function of only N and

the branch prediction accuracy. The key issue is whether the accuracy of compile-time branch

prediction is high enough to ensure that the instruction sequencing e�ciency remains high for large

values of N .

Evaluating the instruction sequencing e�ciency with Inline Target Insertion is straighforward.

One can pro�le the program to �nd the frequency for the dynamic instances of each branch to go

in one of the possible directions. Once a branch is predicted to go in one direction, the frequency

for the branch to go in other directions contributes to the frequency of incorrect prediction. Note

that only the correct dynamic instructions reach the end of the sequencing pipeline where branches

are executed. Therefore, the frequency of executing incorrectly predicted branches is not a�ected

by Inline Target Insertion.

In Figure 11(a), the execution frequencies of F and I are both 100. E and F redirect the

instruction fetch 80 and 99 times respectively. By marking F and I as likely branches, we predict

them correctly for 179 times out of 200. That is, 21 dynamic branches will be incorrectly predicted.

Since each incorrectly predicted dynamic branch creates N nonproductive cycles in the sequencing

pipeline, we know that the instruction frequencing cost is 21*N . Note that this number is not

changed by Inline Target Insertion. Figure 11(b) shows the code generated by ITI(2). Although

To appear: IEEE Transactions on Computers 25

we do not know exactly how many times F and F 0 were executed respectively, we know that their

total execution count is 100. We also know that the total number of incorrect predictions for F

and F 0 is 20. Therefore, the instruction sequencing cost of Figure 11(b) can be derived from the

count of incorrect prediction in Figure 11(a) multiplied by N .

Let P denote the probability that any dynamic instruction is incorrectly predicted. Note

that this probability is calculated for all dynamic instructions, including both branches and non-

branches. The average instruction sequencing cost can be estimated by the following equation:

relative sequencing cost per instruction = 1 + P �N (1)

If the peak sequencing rate is 1=K cycles per instruction, the actual rate would be (1 + P �N)=K

cycles per instruction19.

Table 4 highlights the dynamic branch behavior of the benchmarks. The dynamic cond. (dy-

namic uncond.) column gives the percentage of conditional (unconditional) branches among all

the dynamic instructions in the measurement. The dynamic percentages of branches con�rm that

branch handling is critical to the performance of processors with large number of branch slots. For

example, 20% of the dynamic instructions of bison are branches. The P value for this program

is the branch prediction miss ratio times 20%. Assume that the sequencing pipeline has a peak

sequencing rate of one cycle per instruction (K = 1) and it has three slots (N = 3). The required

prediction accuracy to achieve a sequencing rate of 1.1 cycles per instruction can be calculated as

follows:

1:1 >= 1 + (1� accuracy) � 0:2 � 3 (2)

The prediction accuracy must be at least 83.3%.

Table 6 provides the mean and sample deviation of P for a spectrum of threshholds averaged

over all benchmarks. Increasing the threshhold e�ectively converts more branches into unlikely

branches. With N = 2, the relative sequencing cost per instruction is 1.036 per instruction for

threshhold equals zero (no optimization). For a sequencing pipeline whose peak sequencing rate

is one instruction per cycle, this means a sustained rate of 1.036 cycles per instruction. For a

sequencing pipeline which sequences k instructions per cycle, this translates into 1:036=k (.518

19This formula provides a measure of the e�ciency of instruction sequencing. It does not take external events such

as instruction misses into account. Since such external events freeze the sequencing pipeline, one can simply add the

extra freeze cycles into the formula to derive the actual instruction fetch rate.

To appear: IEEE Transactions on Computers 26

for k = 2) cycles per instruction. When the threshhold is set to 100, the relative sequencing

cost per instruction is 1.04. With N = 10, the relative sequencing cost per instruction is 1.18

for threshhold equals zero (no optimization). When the threshhold is set to 100, the sequencing

cost per instruction instruction becomes 1.20. Comparing Table 5 and Table 6, it is obvious that

converting infrequently executed branches into unlikely branches reduces the code expansion at

little cost of instruction sequencing e�ciency.

5 Conclusion

We have de�ned Inline Target Insertion, a cost-e�ective instruction sequencing method extended

from the work of McFarling and Hennessy[29]. The compiler and pipeline implementation o�ers

two important features. First, branches can be freely inserted into branch slots. The instruction

sequencing e�ciency is limited solely by the accuracy of compile-time branch prediction. Second,

the execution can return from an interruption/exception to a program with one single program

counter. There is no need to reload other sequencing pipeline state information. These two features

make Inline Target Insertion a superior alternative (better performance and less software/hardware

complexity) to the conventional delayed branching mechanisms.

Inline Target Insertion has been implemented in the IMPACT-I C Compiler to verify the com-

piler implementation complexity. The software implementation is simple and straightforward. The

IMPACT-I C Compiler is used in experiments reported in this paper. A code expansion control

method is also proposed and included in the IMPACT-I C Compiler implementation. The code

expansion and instruction sequencing e�ciency of Inline Target Insertion have been measured for

UNIX and CAD programs. The experiments involve the execution of more than a billion in-

structions. The size of programs, variety of programs, and variety of inputs to each program are

signi�cantly larger than those used in the previous experiments.

The overall compile-time branch prediction accuracy is about 92% for the benchmarks in this

study. For a pipeline which requires 10 branch slots and fetches two instructions per cycle, this

translates into an e�ective instruction fetch rate of 0.6 cycles per instruction(see Section 4.3). In

order to achieve the performance level reported in this paper, the instruction format must give

the compiler complete freedom to predict the direction of each static branch. While this can be

To appear: IEEE Transactions on Computers 27

easily achieved in a new instruction set architecture, it could also be incorporated into an existing

architecture as an upward compatible feature.

It is straightforward to compare the performance of Inline Target Insertion and that of Branch

Target Bu�ers. For the same pipeline, the performance of both are determined by the branch

prediction accuracy. Hwu, Conte and Chang[20] performed a direct comparison between Inline

Target Insertion and Branch Target Bu�ers based on a similar set of benchmarks. The conclusion

was that, without context switches, Branch Target Bu�ers achieved an instruction sequencing

e�ciency slightly lower than Inline Target Insertion. Context switches could signi�cantly enlarge

the di�erence[28]. All in all, Branch Target Bu�ers have the advantages of binary compatibility

with existing architectures and no code expansion. Inline Target Insertion has the advantage of

not requiring extra hardware bu�ers, better performance, and performance insensitive to context

switching.

The results in this paper do not suggest that Inline Target Insertion is always superior to

Branch Target Bu�ering. But rather, the contribution is to show that Inline Target Insertion is a

cost-e�ective alternative to Branch Target Bu�er. The performance is not a major concern. Both

achieve very good performance for deep pipelining and multiple instruction issue. The compiler

complexity of Inline Target Insertion is simple enough not to be a major concern either. This has

been proven in the IMPACT-I C Compiler implementation. If the cost of fast hardware bu�ers and

context switching are not major concerns but binary code compatibility and code size are, then

Branch Target Bu�er should be used. Otherwise, Inline Target Insertion should be employed for

its better performance characteristics and lower hardware cost.

Acknowledgements

The authors would like to thank Michael Loui, Guri Sohi, Nancy Warter, Sadun Anik, Thomas

Conte, and all members of the IMPACT research group for their support, comments and sugges-

tions. We also like to thank the anonymous referees for their comments which were extremely

helpful in improving the quality of this paper. This research has been supported by the National

Science Foundation (NSF) under Grant MIP-8809478, Dr. Lee Hoevel at NCR, the Joint Services

Engineering Programs (JSEP) under Contract N00014-90-J-1270, the National Aeronautics and

To appear: IEEE Transactions on Computers 28

Space Administration (NASA) under Contract NASA NAG 1-613 in cooperation with the Illi-

nois Computer laboratory for Aerospace Systems and Software (ICLASS), and the O�ce of Naval

Research under Contract N00014-88-K-0656.

References

[1] Advanced Micro Devices, "Am29000 Streamlined Instruction Processor, Advance Informa-

tion," Publication No. 09075, Rev. A, Sunnyvale, California.

[2] Bakoglu et al, "IBM Second-Generation RISC Machine Organization," Proceedings of the

International Conference on Computer Design, pp.138-142, 1989.

[3] J. S. Birnbaum and W. S. Worley, "Beyond RISC: High Precision Architecture", Spring

COMPCON, 1986.

[4] P. P. Chang and W. W. Hwu, "Trace Selection for Compiling Large C Application Pro-

grams to Microcode", Proceedings of the 21st Annual Workshop on Microprogramming and

Microarchitectures, pp.21-29, November, 1988.

[5] P. P. Chang and W. W. Hwu, "Forward Semantic: A Compiler-Assisted Instruction Fetch

Method For Heavily Pipelined Processors", Proceedings of the 22nd Annual International

Workshop on Microprogramming and Microarchitecture, pp.188-198, August, 1989.

[6] P. P. Chang and W. W. Hwu, "Control Flow Optimization for Supercomputer Scalar Pro-

cessing", Proceedings of the 1989 International Conference on Supercomputing, June, 1989.

[7] P. Chang, "Aggressive Code Improving Techniques Based on Control Flow Analysis", M.S.

Thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana-

Champaign, Advisor W. W. Hwu, 1989.

[8] P. Chow and M. Horowitz, "Architecture Tradeo�s in the Design of MIPS-X", Proceedings

of the 14th Annual International Symposium on Computer Architecture, June, 1987.

[9] J. A. DeRosa and H. M. Levy, "An Evaluation of Branch Architectures", Proceedings of the

15th International Symposium on Computer Architecture, May, 1988.

[10] D. R. Ditzel and H. R. McLellan, "Branch Folding in the CRISP Microprocessor: Reduc-

ing Branch Delay to Zero", Proceedings of the 14th Annual International Symposium on

Computer Architecture, pp.2-9, June, 1987.

[11] J. Emer and D. Clark, "A Characterization of Processor Performance in the VAX-11/780",

Proceedings of the 11th Annual Symposium on Computer Architecture, June, 1984.

[12] C. C. Foster and E. M. Riseman, "Percolation of Code to Enhance Parallel Dispatching and

Execution", IEEE Transactions on Computers, Vol. C-21, pp.1411-1415, December, 1972.

[13] T. R. Gross and J. L. Hennessy, "Optimizing Delayed Branches", Proceedings of the 15th

Microprogramming Workshop, pp.114-120, October, 1982.

To appear: IEEE Transactions on Computers 29

[14] J. L. Hennessy, N. Jouppi, F.Baskett, and J. Gill, "MIPS: A VLSI Processor Architecture",

Proceedings of the CMU Conference on VLSI Systems and Computations, October 1981.

[15] M. Hill and etal, "Design Decisions in SPUR", IEEE Computer, pp.8-22, November, 1986.

[16] R. W. Horst, R. L. Harris, and R. L. Jardine, "Multiple Instruction Issue in the NonStop

Cyclone Processor", Proceedings of the International Symposium on Computer Architecture,

May 1990.

[17] P. Y. T. Hsu and E. S. Davidson, "Highly Concurrent Scalar Processing", Proceedings of the

13th International Symposium on Computer Architecture, pp. 386-395, June 1986.

[18] W. W. Hwu and Y. N. Patt, "Checkpoint Repair for High Performance Out-of-order Execu-

tion Machines", IEEE Transactions on Computers, vol.C-36, no.12, pp.1496-1514, December,

1987.

[19] W. W. Hwu, "Exploiting Concurrency to Achieve High Performance in a Single-chip Microar-

chitecture", Ph.D. Dissertation, Computer Science Division Report, no. UCB/CSD 88/398,

University of California, Berkeley, January, 1988.

[20] W. W. Hwu, T. M. Conte, and P. P. Chang, "Comparing Software and Hardware Schemes For

Reducing the Cost of Branches", Proceedings of the 16th Annual International Symposium

on Computer Architecture, pp.224-231, May, 1989.

[21] W. W. Hwu and P. P. Chang, "Inline Function Expansion for Compiling Realistic C Pro-

grams", ACM SIGPLAN '89 Conference on Programming Language Design and Implemen-

tation, June, 1989.

[22] W. W. Hwu and P. P. Chang, "E�cient Instruction Sequencing with Inline Target Insertion",

Technical Report CSG-103, Center for Reliable and High-Performance Computing, University

of Illinois, Urbana-Champaign, 1990.

[23] Intel, "i860(TM) 64-bit Microprocessor", Order No. 240296-002, Santa Clara, California,

April 1989.

[24] N. P. Jouppi, and D. W. Wall, "Available Instruction-Level Parallelism for Superscalar and

Superpipelined Machines", Proceedings of the Third International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pp.272-282, April, 1989.

[25] G. Kane, MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cli�s, NJ, 1987.

[26] P. M. Kogge, The Architecture of Pipelined Computers, pp.237-243, McGraw-Hill, 1981.

[27] D. J. Kuck, Y. Muraoka, and S. Chen, "On the Number of Operations Simultaneously Exe-

cutable in Fortran-likePrograms and Their Resulting Speedup", IEEE Transactions on Com-

puters, Vol. C-21, pp.1293-1310, December, 1972.

[28] J.K.F. Lee and A. J. Smith, "Branch Prediction Strategies and Branch Target Bu�er Design",

IEEE Computer, pp.6-22, January, 1984.

To appear: IEEE Transactions on Computers 30

[29] S. McFarling and J. L. Hennessy, "Reducing the Cost of Branches", The 13th International

Symposium on Computer Architecture Conference Proceedings, pp.396-404, June, 1986.

[30] C. Melear, "The Design of the 88000 RISC Family", IEEE MICRO, pp.26-38, April, 1989.

[31] A. Nicolau and J. A. Fisher, "Measuring the Parallelism Available for Very Long Instruction

Word Architectures", IEEE Transactions on Computer, vol.C-33, no.11, pp.968-976. Novem-

ber, 1984.

[32] Y. N. Patt, W. W. Hwu, and M. C. Shebanow, "HPS, A New Microarchitecture: Ratio-

nale and Introduction", Proceedings of the 18th International Microprogramming Workshop,

pp.103-108, December, 1985.

[33] D. A. Patterson and C. H. Sequin, "A VLSI RISC", IEEE Computer, pp.8-21, September,

1982.

[34] A. R. Pleszkun, J. R. Goodman, W.-C. Hsu, R. T. Joersz, G. Bier, P. Woest, and P. B.

Schechter, "WISQ: A Restartable Architecture Using Queues", Proceedings of the 14th In-

ternational Symposium on Computer Architecture Conference, pp.290-299, June, 1987.

[35] A. R. Pleszkun, and G. S. Sohi, "Multiple Instruction Issue and Single-chip Processors", Pro-

ceedings of the 21st Annual Workshop on Microprogramming and Microarchitecture, Novem-

ber, 1988.

[36] A. R. Pleszkun, and G. S. Sohi, "The Performance Potential of Multiple Functional Unit

Processors", Proceedings of the 15th Annual International Symposium on Computer Archi-

tecture, pp.37-44, May, 1988.

[37] G. Radin, "The 801 Minicomputer", Proceedings of the Symposium on Architectural Support

for Programming Languages and Operating Systems, pp.39-47, March, 1982.

[38] R. Rudell, "Espresso-MV: Algorithms for Multiple-Valued Logic Minimization", Proc. Cust.

Int. Circ. Conf., May, 1985.

[39] J. E. Smith, "A Study of Branch Prediction Strategies", Proceedings of the 8th International

Symposium on Computer Architecture, pp.135-148, June, 1981.

[40] J. E. Smith and Pleszkun, "Implementation of Precise Interrupts in Pipelined Processors",

Proceedings of the 11th Annual Symposium on Computer Architectures, June, 1985.

[41] M. D. Smith, M. Johnson, and M. A. Horowitz, "Limits on Multiple Instruction Issue",

Proceedings of the Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pp.290-302, April, 1989.

[42] G. S. Sohi, and S. Vajapeyam, "Tradeo�s in Instruction Format Design for Horizontal Ar-

chitectures", Proceedings of the Third International Conference on Architectural Support for

Programming Languages and Operating Systems, pp.15-25, April, 1989.

[43] SUN Microsystems, The SPARC(TM) Architecture Manual, SUN Microsystems, Part No.

800-1399-07, Revision 50, Mountain View, California, August 1987.

To appear: IEEE Transactions on Computers 31

[44] G. S. Tjaden and M. J. Flynn, "Detection and Parallel Execution of Independent Instruc-

tions", IEEE Transactions on Computers, vol.c-19, no.10, pp. 889-895, October, 1970.

[45] R. D. Acosta, J. Kjelstrup, and H. C. Torng, "An Instruction Issuing Approach to Enhancing

Performance in Multiple Functional Unit Processors", IEEE Transactions on Computers, vol.

C-35, no.9, pp.815-828, September, 1986.

[46] R. M. Tomasulo, "An E�cient Algorithm for Exploiting Multiple Arithmetic Units", IBM

Journal of Research and Development, vol.11, pp.25-33, January, 1967.

[47] S. Weiss and J. E. Smith, "Instruction Issue Logic in Pipelined Supercomputers", IEEE

Transactions on Computers, vol.C-33, pp.1013-1022, IEEE, November, 1984.

To appear: IEEE Transactions on Computers 32

Scheme Hardware features Compiler features

Delayed branches None Fill slots with

independent code

Delayed branches Uniform prediction Fill slots with

with squashing and squashing independent code or

instructions from

the predicted path

Pro�led delayed branches Prediction bit Execution pro�ling

with squashing and squashing Fill slots with

instructions from

the predicted path

Table 1: A summary of delayed branching mechanisms.

N + 1 The number of stages in the instruction sequencing pipeline

I(k; t) The dynamic instruction occupying the kth pipeline stage at cycle t

Af (I) The fetch address of dynamic instruction I

Ao(I) The original address of dynamic instruction I

PS(I; k) The kth predicted successor of I

CS(I; k) The kth correct successor of dynamic instruction I

R(t) I(i; t) = PS(I(N + 1; t); N � i+ 1); i = 1::N

S(t) Af(I(1; t)) = Ao(I(N + 1; t)) +N

Table 2: A summary of important de�nitions used in the proofs.

To appear: IEEE Transactions on Computers 33

name C lines runs input description

bison 6913 10 grammar for a C compiler, etc

cccp 4660 20 C programs (100-3000 lines)

cmp 371 16 similar/dissimilar text �les

compress 1941 20 same as cccp

eqn 4167 20 papers with .EQ options

espresso 11545 20 original benchmarks [38]

grep 1302 20 exercised various options

lex 3251 4 lexers for C, Lisp, awk, and pic

make 7043 20 make�les for cccp, compress, etc

tar 3186 14 save/extract �les

tbl 4497 20 papers with .TS options

tee 1063 18 text �les (100-3000 lines)

wc 345 20 same as cccp

yacc 3333 10 grammar for a C compiler, etc

Table 3: Benchmarks.

static static dynamic dynamic

benchmark cond. uncond. cond. uncond.

bison 0.12 0.17 0.19 0.01

cccp 0.10 0.11 0.17 0.04

cmp 0.09 0.15 0.16 0.04

compress 0.09 0.14 0.11 0.01

eqn 0.08 0.12 0.21 0.02

espresso 0.09 0.12 0.13 0.02

grep 0.15 0.19 0.30 0.05

lex 0.15 0.16 0.30 0.01

make 0.12 0.14 0.18 0.01

tar 0.10 0.17 0.12 0.00

tbl 0.18 0.20 0.21 0.05

tee 0.09 0.15 0.29 0.07

wc 0.07 0.10 0.22 0.02

yacc 0.14 0.15 0.23 0.01

Table 4: Static and dynamic characteristics. The high percentage of static unconditional branches

is due to the code layout optimization in IMPACT-I CC to reduce the number of likely branches.

Note that very few static unconditional branch are executed frequently. This optimization improves

the e�ciency of both Inline Target Insertion and Branch Target Bu�ers [20].

To appear: IEEE Transactions on Computers 34

threshold E[Q] SD[Q]

0 18.1% 3.7%

1 4.8% 2.1%

10 2.1% 1.6%

20 1.8% 1.5%

40 1.5% 1.3%

60 1.3% 1.2%

80 1.2% 1.1%

100 1.1% 1.0%

200 0.9% 0.8%

400 0.6% 0.6%

600 0.5% 0.5%

Table 5: Percentage of likely branches among all static instructions. Unconditional branches are

treated as likely branches in this table.

threshold E[P] SD[P]

0 0.018 0.010

1 0.018 0.010

10 0.019 0.010

20 0.019 0.010

40 0.020 0.010

60 0.020 0.010

80 0.020 0.010

100 0.020 0.010

200 0.023 0.010

400 0.023 0.010

600 0.025 0.011

Table 6: Probability of prediction miss among all dynamic instructions.

To appear: IEEE Transactions on Computers 35

(a):

MaxElement = 0;

for (i = 0; i < IMax; i++) f

if (Array[i] > MaxElement) MaxElement = Array[i];

g ...

(b):

r1 i

r2 temporary for Array[i]

r3 IMax

r4 MaxElement

Figure 1: (a) An example C program for �nding the largest element in Array. (b) The register

assignment.

To appear: IEEE Transactions on Computers 36

(a)

A: r4 0

B: r1 0

C: r3 IMax

D: if (r1 � r3) goto J [unlikely]

E: r2 Array(r1)

F: if (r2 � r4) goto H [likely]

G: r4 r2

H: r1 r1 + 1

I: if (r1 < r3) goto E [likely]

J: MaxElement r4

K: ...

(b)

80% 0%99%

K

J

I

H

G

F

E

D

C

B

A

Figure 2: (a) A machine language program generated from the C program shown in Figure 1. (b)

A simpli�ed view of the machine language program.

WB

RR
write

Register

fetch

Register

Decode and

FA
memory

Instruction ALU and

branch
decision

Next fetch

address
logic

EXIF ID

IR OR

Figure 3: A block diagram and a simpli�ed view of a pipelined processor. FA, IR, OR, RR are

pipeline registers Fetch Address, Instruction Register, Operand Register, and Result Register.

To appear: IEEE Transactions on Computers 37

IF ID EX WB

1 E

2 F E

3 G F E

4 H G F E

5 I H G F

6 J I H G

7 K J I H

8 E I

9 F E

Figure 4: A timing diagram of the pipelined processor in Figure 3 executing the sequence of

instructions E ! F ! G ! H ! I ! E ! F of Figure 2. Instructions J and K are scratched

from the pipeline because I is taken.

IF1 IF2 ID EX1 EX2 WB

1 I1
2 I2 I1
3 I3 I2 I1
4 I4 I3 I2 I1
5 I5 I4 I3 I2 I1
6 I6 I1

Figure 5: A timing diagram of a pipelined processor which results from further dividing the IF

and EX stages of the processor in Figure 3.

IF ID EX WB

1 I2,I1
2 I4,I3 I2,I1
3 I6,I5 I4,I3 I2,I1
4 I8,I7 I1

Figure 6: A timing diagram of the pipelined processor which processes two instructions in parallel.

To appear: IEEE Transactions on Computers 38

target of C

fallthru of C

fallthru of C

slots

no insertion

slots

N insertion

(b) unlikely branch handling

(a) Likely branch handling

copy

of C

adjusted target

target of C

br D

D: d1

d2

dN

.
:

d1

d2

dN

.
:

C:

D:

C: br D

Figure 7: Handling branches in the ITI Algorithm.

To appear: IEEE Transactions on Computers 39

copy a predicted successor into a branch slot

(b)(a)

likelylikely step 1

I

H

G

F

E

I

H

G

F

E

(e)

F'

I'

E'

H'

I

H

G

F

E

E'

H'

I

H

G

F

E

(d)

I

H

G

F

E

(c)
iteration 1

step 3step 2 step 3

iteration 2

Figure 8: A running example of Inline Target Insertion.

(a) IF ID EX WB

1 E

2 F E

3 H 0 F E

4 I 0 H 0 F E

5 E0 I 0 H 0 F

(b) IF ID EX WB

1 E

2 F E

3 H 0 F E

4 I 0 H 0 F E

REFILL(Ao(G))

5 I H G F

Figure 9: (a) Timing diagram of a pipelined processor executing the sequence, E ! F ! H 0 ... of

instructions in Figure 8(e). (b) A similar timing diagram for the sequence, E ! F ! G ...

To appear: IEEE Transactions on Computers 40

(a) IF ID EX WB

1 E

2 F E

3 H 0 F E

4 I 0 H 0 F E

5 E0 I 0 H 0 F

6 F 0 E0 I 0 H 0

(b) IF ID EX WB

1 E

2 F E

3 H 0 F E

4 I 0 H 0 F E

5 E0 I 0 H 0 F

REFILL(Ao(H))

6 E0 I H

7 F 0 E0 I H

Figure 10: (a) Timing diagram of a pipelined processor executing the sequence E ! F ! H 0 !

I 0 ! E0 of instructions in Figure 8(e). (b) Timing diagram of a pipelined processor executing the

sequence E ! F ! H 0! I ! E of instructions in Figure 8(e) because of an interrupt at I 0.

(b)

x3 + x4 = 100

x1 + x2 = 100

x4

x3

x2

x1

100

100

80%99%
ITI

(a)

I

H

G

F

E E

F

G

H

I

H'

E'

I'

F'

Figure 11: Evaluating the e�ciency of instruction sequencing.

