
Pro�le-Assisted Instruction Scheduling

William Y. Chen Scott A. Mahlke Nancy J. Warter Sadun Anik Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois, Urbana-Champaign, IL

Abstract

Instruction schedulers for superscalar and VLIW processors must expose su�cient instruction-level

parallelism to the hardware in order to achieve high performance. Traditional compiler instruction

scheduling techniques typically take into account the constraints imposed by all execution scenarios in

the program. However, there are additional opportunities to increase instruction-level parallelism for the

frequent execution scenarios at the expense of the less frequent ones. Pro�le information identi�es these

important execution scenarios in a program. In this paper, two major categories of pro�le information

are studied: control-ow and memory-dependence. Pro�le-assisted code scheduling techniques have been

incorporated into the IMPACT-I compiler. These techniques are acyclic global scheduling and software

pipelining. This paper describes the scheduling algorithms, highlights the modi�cations required to use

pro�le information, and explains the hardware and compiler support for dealing with hazards that arise

from aggressive use of pro�le information. The e�ectiveness of these pro�le-based scheduling techniques

is evaluated for a range of superscalar and VLIW processors.

1 Introduction

Instruction scheduling typically takes into account the constraints imposed by all possible execution scenarios

of the program. The constraints are determined using static analysis methods, such as live-variable analysis,

reaching de�nitions, loop detection, and data-dependence analysis [1]. These static analysis methods do

not distinguish between frequent and infrequent execution scenarios. Although this approach ensures that

instructions are scheduled correctly, it may prevent the compiler from achieving a better schedule for frequent

scenarios because of the constraints from infrequent scenarios.

There are two run-time variables that determine execution behavior: conditional branches and memory

accesses. If these variables can be predicted, the compiler can determine the frequent scenarios and aggres-

sively schedule them. For instance, if the compiler can predict which path of a conditional branch is usually

taken, it can aggressively schedule along that path ignoring constraints from the other path. Likewise, if it

can predict that two memory accesses usually do not conict, it can assume that they do not conict and

1

move one access above the other.

In order to aggressively schedule the frequently executed scenarios, the infrequently executed scenarios

could be penalized. For example, an instruction may be moved above a branch from the more frequently

executed path. Thus, the infrequently executed scenario will execute an instruction unnecessarily. Because

one path is optimized at the cost of another, inaccurate predictions may actually reduce the programs

performance. While the compiler can use control ow and memory dependence analysis to estimate some run-

time behavior, these techniques currently cannot be used to accurately estimate which execution scenarios

to aggressively schedule. Pro�ling is a technique for instrumenting programs in order to collect run-time

information. There are two types of pro�ling that can be used to predict execution scenarios: control-

ow and memory-dependence. Control-ow pro�ling collects information about the relative frequency of

execution paths. Memory-dependence pro�ling summarizes the frequency of address conicts between two

memory references.

In this paper we discuss how to collect pro�le information and how to modify instruction scheduling to

use control-ow and memory-dependence pro�ling. In addition to explaining the usefulness of each form

of pro�ling, we address the scheduling hazards due to mispredicting branches and memory dependences

and discuss software and hardware solutions for handling such hazards. To demonstrate the e�ectiveness

of control-ow and memory-dependence pro�ling for instruction scheduling, we have modi�ed the acyclic

global code scheduler and the software pipeline scheduler in the IMPACT-I compiler to take advantage

of pro�le information. These pro�le-assisted scheduling techniques and their relative performance bene�ts

are presented. We conclude with a discussion of additional uses of pro�ling information for assisting other

compiler transformations.

2 Pro�le Collection

Pro�le information is collected through probes inserted within the program. Figure 1 shows the phases of

pro�le collection in the compilation process. Probes are inserted into the program intermediate representa-

2

USER
INPUT

USER
INPUT

USER
INPUT

PROBED
PROGRAM

PROBED
EXECUTABLE

PROFILE
INFORMATION

PROBING
LIBRARY

PROBE
INSERTION COMPILE

EXECUTE

EXECUTABLE

PROGRAM

COMPILER
FRONTEND

COMPILER
BACKEND

INTERMEDIATE
 CODE

PROFILE COLLECTION

COMPILE

CONDENSER

INTERMEDIATE
CODE WITH
PROFILE

REMAPPER

PROFILE INSTRUMENTATION

. .

Figure 1: Pro�le collection phases.

tion. Linking the probed program with the probing library forms the probed executable which when executed

outputs the pro�le information. The pro�le information is collected for user speci�ed inputs through multiple

runs of the probed executable. Finally, the compiler takes the pro�le information collected and uses it to

perform aggressive instruction scheduling.

In this section, we describe the instrumentation for control-ow and memory-dependence pro�ling. For

control-ow pro�ling, the instrumentation provides the compiler with the relative frequency of alternative

execution paths. For memory dependence pro�ling, the instrumentation summarizes the frequency of address

matching between two memory references.

2.1 Control-Flow Pro�ling

For the purpose of instruction scheduling, control-ow pro�ling provides the following information averaged

over all the pro�le runs: the execution frequency of each basic block and the branch taken frequency of

two-way and multi-way branches. These are maintained in a structure known as a weighted ow graph. A

weighted ow graph is a quadruplet fV;E; count; arc countg, where each node in V is a basic block, each

3

arc in E is a control-ow path between two basic blocks, count(v) is a function that returns the execution

count of a basic block v, and arc count(e) is a function that returns the taken count of a control-ow path

e.

Control-ow pro�ling is setup automatically by the compiler. Using the weighted ow graph of the

program, the code generator annotates the program to keep track of the execution frequency of each basic

block and of the condition of each branch. For di�erent runs of the same program, a condenser summarizes

and averages the pro�le information. Lastly, the condensed pro�le information is mapped back into the

weighted ow graph by a remapper.

The following steps are taken by the code generator to produce a probed executable for pro�le collection.

A unique function id (fnid) is set upon entry into the function, and resets after each function call. A unique

basic block id (bbid) is also assigned to each basic block within a function. Within each basic block, a

call to the probing function is inserted. The probing function also identi�es between conditional branches,

unconditional branches, and register jumps by the branch type (br). In the case of a conditional branch,

the branch condition (cond) is passed into the probing function. For register jumps, the value switched on

(cond) is used by the probing function. When the basic block is executed, the probing function uses the

unique fnid-bbid pair to increment the basic block execution frequency and the unique fnid-br pair along

with cond to determine the branching frequency. The output of the code generator is then linked in with

the probing function to generate a probed executable of the program.

An example of probe insertion is shown in Figure 2. The C source and corresponding assembly code are

given in Figure 2a. Figure 2b shows the instrumented assembly code. When entering the function, fnid is

set to a unique number, 2 in this case. Then for each basic block within the function, a bbid is assigned at

the beginning. Depending on the type of the branch instruction, the appropriate cond and br values are set.

Finally, a call to the probing function (the probing function is presented in Figure 3) is inserted at the end

of the basic block before the branch. When the probing function is invoked, the data structure for keeping

pro�le weights is indexed by fnid and bbid to obtain the correct entry. The basic block counter, bb count ,

is incremented by one to take into account that the ow of control has entered this basic block. If the basic

4

bb1 (bb_count=100,
 br_count=30)

bb2 (bb_count=30,
 br_count=30)

bb3 (bb_count=70,
 br_count=70)

bb4 (bb_count=100,
 br_count=0)

c)

if (i < max)
i ++;

else
max = i;

func();

a)

bge (i>=max) bb3
add i <- i,1
jmp bb4
mov max <- i
jsr func()

bb1:
bb2:

bb3:
bb4:

b)

mov fnid <- 2
mov bbid <- 1
mov br <- cond_br
mov cond <- (i>=max)
jsr probe(fnid,bbid,br,cond)
bge (i>=max) bb3

mov bbid <- 3
mov max <- i

mov bbid <- 2
add i <- i,1

mov bbid <- 4

bb1:

bb2:

bb3:

bb4:

mov br <- uncond_br
jsr probe(fnid,bbid,br,cond)
jmp bb4

jsr probe(fnid,bbid,br,cond)
mov br <- null

mov br <- null

jsr func()
jsr probe(fnid,bbid,br,cond)

mov fnid <- 2

7030

7030

100

7030

100

d)

bb1

bb2 bb3

bb4

Figure 2: Insertion of probes for control-ow pro�ling. a) The original source and assembly code. b)
Assembly code segment with probes inserted. c) Pro�le output indicating basic block execution frequency
and branch taken frequency for all basic blocks. d) The weighted ow graph with the pro�le information.

block ends in a branch instruction, br is used to update the branch taken count, br count. In the case of a

conditional branch, br count is updated only when the branch is taken (cond equals to 1).

The user is required to execute and supply the instrumented program with the appropriate input �les.

The probed program is executed once for each input. Each execution produces a summary of the pro�le

result for that particular run. Figure 2c shows a possible pro�le statistic. Individual pro�le results are

combined into a single average �le which can be mapped into the original intermediate code using the unique

fnid and bbid . The �nal weighted ow graph is shown in Figure 2d. The number shown within each box is

the basic block execution weight, and the number on the arc is the number of times that particular path of

control has been taken.

2.2 Memory-Dependence Pro�ling

The basic concept behind memory-dependence pro�ling is to collect the frequency of address matches between

pairs of loads and stores. Memory dependence analysis is used to answer the question of whether two

references are independent of one another. In the case of a de�nite dependence, the addresses between the

reference pair always match. In the case of a de�nite independence, the addresses between the reference pair

5

Probe(fnid,bbid,br,cond) {

if (br is a conditional branch)

if (br is a unconditional branch)

if (br is a register jump)

if (branch is taken (cond==1))

increment HASH(fnid,bbid,cond)

}

increment bb_count indexed by fnid and bbid

increment br_count indexed by fnid and bbid

increment br_count indexed by fnid and bbid

Figure 3: Probing function.

never match. For memory dependence pro�ling, the cases for de�nite dependence and de�nite independence

are disregarded since their address match frequency is known. Memory dependence pro�ling concentrates

on the ambiguous reference pairs for which memory dependence analysis cannot provide a conclusive results.

Because memory-dependence pro�ling is much more expensive than control-ow pro�ling in terms of data

storage and execution overhead, memory-dependence pro�ling is performed for only the most important exe-

cution paths identi�ed by control-ow pro�ling. Based on the control-ow pro�le information, the program is

divided into several regions. Instruction scheduling is considered only within each region. The compiler �rst

marks those ambiguous store/load pairs which an aggressive instruction scheduler would reorder to improve

performance. 1 Only the conict status of these relevant store/load pairs are recorded during dependence

pro�ling. After dependence pro�ling, the compiler utilizes the conict frequency and a conict threshold

value to make the �nal instruction scheduling decisions.

The subroutine check address, shown in Figure 4, is created to assist dependence pro�ling. An example

of its use is shown in Figure 5. The inputs are the load id (lid), store id (sid), load address (laddr), and store

address (saddr). A table containing the mapping between the lid/sid and the load/store type is statically

constructed before the memory-dependence pro�ling phase. This mapping table is read into the database

by the probed executable during pro�ling. The probing function uses the lid and the sid to �nd the access

1In our implementation, a pseudo instruction scheduling phase is used to determine the bene�t of reordering ambiguous

store/load pairs. To accomplish this, all memory dependences between ambiguous store/load pairs are removed during the

pseudo instruction scheduling phase.

6

check_address(lid,sid,laddr,saddr) {

}

ld_access_size = access size of load(lid)

st_access_size = access size of store(sid)

if (laddr == saddr)

return

if (laddr < saddr)

if ((laddr + ld_access_size) > saddr)

return

if (saddr < laddr)

if ((saddr + st_access_size) > laddr)

return

return

increment conflict counter indexed by lid and sid

increment conflict counter indexed by lid and sid

increment conflict counter indexed by lid and sid

Figure 4: Check address function.

types of the memory instructions. It is then used to determine whether the two memory accesses overlap

and to keep the access conict statistics.

During probe insertion, for each of the ambiguous store/load pairs that the compiler determined to

be bene�cial to reorder, a check address subroutine call is placed in the code sequence right after the load

(Figure 5c). The address for the store is calculated before the store instruction and preserved up to the point

of check address. The load id and store id along with the memory addresses for the pair are passed into the

probing function. The computed store address is immediately reset afterward to prevent false matches later

on.

When the probed program is executed, the probing function keeps count of then address overlaps for

all the store/load pairs of interest. A possible pro�le output is shown in Figure 5d. Similar to control-ow

pro�ling, results from di�erent runs are averaged. However, the pro�le result is not remapped into the

intermediate code. The pro�le information is instead read into a separate data structure to facilitate code

reordering during instruction scheduling.

7

*a = 5

t = *b

st (r1) <- 5

ld r4 <- (r2)

st (r1) <- 5

mov lid <- ld_1

mov sid <- st_2

mov laddr <- r2

mov saddr <- r3

jsr check_address

ld r4 <- (r2)

st_2(ld_1,0)

a) b) c) d)

.

. . .

mov r3 <- r1

mov r3 <- 0

Figure 5: Example insertion of probes for memory-dependence pro�ling. a) The original source code. b)
Corresponding assembly code. c) Assembly code with probes inserted. d) Pro�le output indicating address
overlap frequency for the store/load pair. In this case, a zero means the addresses did not overlap for the
given user input.

3 Scheduling with Control-ow Pro�le Information

Control ow pro�le information can be used to assist two basic components of global instruction scheduling

techniques. The �rst component is inter-basic block code motion. Inter-basic block code motion is used to

overlap and reorder instructions among groups of connected basic blocks. By examining large groups of basic

blocks, global instruction schedulers increase the opportunity for achieving a compact schedule. The second

component is loop iteration overlap. Loop iteration overlap refers to overlaying the execution of consecutive

iterations of a loop during global scheduling. Overlapping loop iterations provides global schedulers with an

additional dimension (across iterations) to schedule.

3.1 Inter-basic block code motion

Control ow pro�le information can be used to e�ectively guide code motion among basic blocks. The

possible types of code motion associated with instruction scheduling are illustrated in Figure 6. Code

motion is broken down based on the direction of the motion, upward or downward, and the nature of the

control ow graph, split or join point. A particular movement of an instruction, A, consists of removing A

from its source basic block (src) and inserting a copy of A into one or more destination basic blocks (dst).

8

A

BB1

BB2 BB3

(b) Upward code motion above split

A
BB1

BB2 BB3

(c) Downward code motion below split

BB3

A
BB1 BB2

(d) Downward code motion below join

BB3
A

BB1 BB2

(a) Upward code motion above join

Figure 6: Inter-basic block code motion.

For example, the code motion illustrated in Figure 6a has a src of BB3 and one dst, BB1.

Guiding code motion with control-ow pro�le information. The scheduling objective of moving

instructions among basic blocks is to achieve a tighter schedule and thereby reduce the execution time of

the program. This objective can be expressed with the following two equations.

4bb = cyclesafter � cyclesbefore (1)

net cycles = 4src +
X

j

4dstj (2)

The performance e�ect that a particular code motion has on a basic block is the di�erence between the

number of cycles to execute the basic block before and after scheduling (Equation 1). The overall e�ect on

performance is then computed by summing the individual e�ects of all basic blocks impacted by the code

motion (Equation 2). Many global schedulers utilize a sequence of code motions to achieve performance

9

A

BB1

BB2 BB3
10

100

90

10 90

BB2 : -3 cycles
BB1 : +1 cycles

Figure 7: Example of an undesirable upward code motion.

improvements. Equation 2 can be generalized to reect a sequence of i code motions as shown below.

net cycles =
X

i

(4srci +
X

j

4dstij) (3)

The problem with this approach is that undesirable scheduling decisions are likely to be made since

the relative execution frequencies of src and dst are not known. For example, consider the code motion in

Figure 7. In this example, the scheduler attempts to achieve a more compact schedule by moving instruction

A from BB2 to BB1. As a result, the execution time of BB2 is reduced by 3 cycles while increasing the

execution time of BB1 by 1 cycle. Using Equation 3, an overall reduction in net execution time is predicted.

However, assuming the program execution is as speci�ed by the basic block and arc weights in Figure 7, a

net increase of 70 cycles is observed by performing the code motion.

Control-ow pro�le information can be used to greatly improve code motion heuristics. Control-ow

pro�le information identi�es to the scheduler likely preceding and succeeding basic blocks. Code motion is

then favored among these blocks, since a likely performance gain is expected. Also, code motions which

increase the performance of a frequently executed basic block while reducing an infrequently executed basic

block may be avoided. Equation 1 augmented with basic block weights obtained from control-ow pro�ling

is given below.

4bb = (cyclesafter � cyclesbefore)� weightbb (4)

Using Equation 4 in the previous example (Figure 7), the scheduler can easily predict a performance loss by

moving instruction A into BB1, and therefore would choose not to perform this code motion.

10

The four types of code motion illustrated in Figure 6 cannot be freely performed by an instruction

scheduler. Each requires some additional compiler [2][3] and/or architectural support [4][5][6][7] to handle

hazards associated with the code movement. The hazards associated with each form of code motion and

some available solutions are briey discussed in the remainder of this section.

Hazards with upward code motion above a join. Upward code motion above a join point introduces

execution paths which no longer execute the moved instruction. In Figure 6a, moving instruction A from

BB3 to BB1 removes A from the BB2-BB3 execution path. Therefore, to correctly update execution along

all paths of execution, the moved instruction is copied to all incoming basic blocks of a join. In this manner,

the instruction is executed along all paths of execution into the join both before and after code motion.

Hazards with upward code motion above a split. Upward code motion above a control split point

introduces two di�cult problems. These problems arise because code motion above a split involves executing

an instruction before it is certain it should have executed. This is known as speculative execution. All side

e�ects of the instruction must be properly handled when the instruction is unnecessarily executed.

The �rst hazard is that a moved instruction may destroy a value used along an alternative path of ex-

ecution. For example in Figure 6b, instruction A may overwrite a value which is live (referenced before

rede�ned) in BB3. This hazard may be overcome with either compile-time renaming or hardware renam-

ing. With compile-time renaming, the scheduler modi�es the destination of the speculative instruction to a

new variable, and substitutes any uses of the destination with the new variable. With hardware renaming,

alternative destination registers (shadow registers) are provided to bu�er the results of speculative instruc-

tions [4]. In both cases the hazard is avoided by providing the speculative instruction with a new destination,

so the contents of the original destination are not destroyed.

The second hazard is that a speculative instruction may cause an exception which should not have

occurred in the original program. For example in Figure 6b, instruction A may be a load instruction and the

conditional branch at the end of BB1 tests whether the address of the load is zero or not. The speculative

load instruction is executed regardless of the branch condition, therefore, whenever the branch results in a

jump to BB3, the load will produce an illegal address signal. However, for these cases, the load was not

11

supposed to be executed, so any exceptions raised by A should be ignored. Improper exception hazards may

be handled with a variety of methods which vary in complexity and e�ectiveness.

The simplest solution to overcome signalling improper exceptions is to limit candidates for speculative

execution to those instructions which may never result in an exception. A second solution is to expand

a processor's instruction set to include non-excepting or silent versions for all instructions which normally

except [8] [5] [7]. When the scheduler generates speculative instructions, it converts the opcode of the

speculative instruction to its silent counterpart. With additional compiler and architectural support, ex-

ceptions for speculative instructions may be delayed until it is con�rmed the speculative instruction should

have executed [4] [6]. In this manner, no exceptions in the original program are hidden with speculative

execution.

Hazards with downward code motion below a split. Downward code motion below a split in-

troduces execution paths which no longer execute the moved instruction. This is the same hazard which

code motion above a join causes. In Figure 6c, moving instruction A from BB1 to BB2 removes A from the

BB1-BB3 execution path. To correctly update all execution paths, the moved instruction is copied to all

outgoing basic blocks of a split.

Hazards with downward code motion below a join. Downward code motion below a join introduces

another di�cult problem. Again, the problem arises because the moved instruction is executed along more

paths of control than it was before scheduling. In Figure 6d, instruction A is originally executed when BB1

is entered. However, after code motion, A is executed when either BB1 or BB2 are entered. The side e�ects

of the moved instruction must be properly handled when the instruction is unnecessarily executed. The

methods of dealing with downward code motion below a join are completely di�erent from those for dealing

with upward code motion above a split.

To eliminate the unnecessary execution of the moved instruction, the scheduler applies code restructur-

ing [2]. The restructuring involved introduces a new basic block for each block which enters the join. The

join point is then adjusted to after the moved instruction, and instructions prior to the moved instruction are

copied into each of the new basic blocks. In this manner, the moved instruction executes on the same control

12

paths before and after code motion. Alternatively, the hazard may be overcome with architectural support

for predicated execution [9]. With predicated execution, instructions are executed based on the value of a

boolean input ag. When the boolean value is true, the instruction is executed normally. When the boolean

value is false, the instruction is converted into a no op instruction. Therefore, the scheduler may associate a

predicate with each moved instruction and place an assertion to that predicate in the original block of the

instruction if one does not exist. Again, the moved instruction executes on the same control paths before

and after code motion.

3.2 Overlapping iterations

Another form of code motion is to move instructions across loop iteration boundaries and thus, overlap

the execution of di�erent iterations. Originally, the steady-state of a loop's execution is determined by the

critical path through one iteration. The steady-state can be reduced if delays along the critical path are

hidden by executing instructions from di�erent iterations. Software pipelining is a systematic approach for

overlapping loop bodies to reduce steady-state execution time.

One drawback to some software pipelining techniques is that the length of the steady-state schedule

is �xed for all paths through the loop [10][11][12][13]. This can particularly limit the performance if the

most frequently executed path is much shorter than other paths through the loop. Control-ow pro�ling

information can be used to determine which paths to include in the software pipelined loop body. Figure 8a

shows the weighted control ow graph of a simple loop. The loop body consists of four instructions, where

instruction A is a conditional branch.2 Since instruction C is only executed 10% of the time, only the path

fA, B, Dg is software pipelined.

When control paths are excluded from the software pipeline, a mispredicted branch can break the software

pipeline. The simplest approach to handling this hazard is to empty the software pipeline, execute the code

along the taken path, and re�ll the pipeline. Figure 8b shows the software pipelined loop using this hazard

resolution technique. This is a software hazard resolution technique since the compiler generates the necessary

2To keep the example simple, the loop back branch and its handling are ignored.

13

A

B C

D

(a)

C

D

D C

D

A

B

D

A

B

D

A

B

D

(b)

A’

B’

D

A

B’

D

A’

B’

D

C

C

(c)

A’ : condition of A true -> clear predicate p and
 branch taken

B’ : predicate p set -> execute B

 condition of A false -> set predicate p and
 branch not taken

 predicate p clear -> squash B

90 10

 3
stages

II

Figure 8: Using control-ow pro�le for software pipelining. a) Weighted control-ow graph. b) Software
hazard resolution. c) Hardware hazard resolution.

code to empty the pipeline and to execute the code along the taken path. Note that this example is overly

simpli�ed to illustrate the order in which instructions are executed when a branch misprediction hazard

occurs. Thus, explicit branch instructions other than A are not shown, but, their corresponding control ow

arcs are shown.3

In this simple example, there are only two stages in the software pipeline until the steady-state execution

is reached. Typically, the number of stages is higher (in [15] the average number of stages is �ve). Thus, it

can be costly to recover from a mispredicted branch using a software resolution technique.

It would be ideal if the execution could jump out of the pipeline, execute the taken path code, and

jump back into the pipeline. In order to do so, the instructions in the pipeline that are along the not

taken path of the branch need to be squashed. Squashing implies that the instructions are fetched but not

executed. Predicated hardware support can be used to squash instructions in the software pipeline [9][12].

Figure 8c shows the software pipeline schedule assuming predicated hardware support. In this example, A0

is assumed to be a conditional branch instruction that also asserts a predicate p. Instruction B
0 executes

3When the loop back branch is considered, code is also required to handle early exits from the software pipeline [14].

14

B if predicate p is asserted, otherwise B is squashed. When the condition of A is false, the predicate p

is asserted and instruction B executes. When the condition of A is true, the predicate p is not asserted

and control branches to execute instruction C. After C executes, control branches back to the instruction

following the mispredicted branch. Since the predicate p is not asserted, instruction B will not execute but

other instructions scheduled with B
0 will. An algorithm for generating the software pipeline using hardware

hazard resolution is presented in Section 5.2.

4 Scheduling with Memory-dependence Pro�le Information

The freedom of global instruction scheduling is limited by memory dependences. These dependences restrict

the ability of the scheduler to move loads upward past stores. Because loads often occur on critical paths

in the program, the loss of these code reordering opportunities can limit the e�ectiveness of compile-time

code scheduling. Due to the practical limitations of current memory dependence analysis techniques, many

independent pairs of memory references are marked as dependent because the dependence analyzer cannot

conclusively determine that the two references always have di�erent addresses. Also, two dependent memory

references may actually have the same address only occasionally during execution.

Memory-dependence pro�ling can be used to estimate how often pairs of memory references access the

same location. There are many cases in which the dependence analyzer indicates a dependence between

two memory references, but the pro�le information reports that the references rarely or never have the

same address. In these cases, the reference pair is reordered as if there were no dependence and conict

detection and repair code are added to maintain correct program execution. An important bene�t of memory-

dependence pro�ling is that it minimizes the negative impact of the added repair code. Using the pro�le

information, the invocation frequency of the correction code is kept low, therefore reduces the repair cost.

Repair code is invoked when reordered load and store addresses overlap. Detection of overlapping ad-

dresses can be performed through software [16] or through hardware support. An example of software

detection is to insert explicit address comparison operations within the instruction stream to detect when

15

i1: ld r2 <- (r3+4)

i2: add r5 <- r2+1

i3: st (r3+4) <- r5

i4: ld r4 <- (r2)

i5: beq (r4,-1) L1

i6: ld r6 <- (charct)

i7: add r7 <- r6+1

i8: st (charct) <- r7

Update
file
pointer

end of
file?

char
count
update

i1: ld r2 <- (r3+4)

i6: pld r6 <- (charct)

i2: add r5 <- r2+1

i7: add r7 <- r6+1

i4: pld r4 <- (r2)

i3: st (r3+4) <- r5

 check r4, L2
i5: beq (r4,-1) L1
 check r6, L3

i8: st (charct) <- r7

L2: ld r4 <- (r2)
 return

L3: ld r6 <- (charct)
 add r7 <- r6+1
 return

repair code

a) b)

Figure 9: An example code segment taken from UNIX utility, wc, using MCB. a) Original code segment. b)
Code re-ordering using MCB support with repair code.

a load and store address are the same. Software comparison of addresses assumes that only memory in-

structions of the same type can be reordered. An advantage of the software detection is that the compare

instruction can be freely scheduled into an available resource slot. The disadvantage of the software detection

is that extra resource slot is needed for the compare instruction, and that multiple compare instructions are

necessary if a load is scheduled above multiple ambiguous stores.

An architectural support, referred to as the memory conict bu�er (MCB), eliminates the comparison

overhead of the software method. The major components of the MCB are a set of address registers to store

the addresses of the loads which have bypassed ambiguous stores (preloads), compare units to match the

store addresses with the saved load addresses, and a number of status bits to keep track of the occurrence

of address overlap. If an address overlap occurs, a predetermined status bit is set. This signals the need to

invoke the repair code to re-execute the load instruction and the instructions which depend on it.

The status bit is examined by a new conditional branch opcode, called a check instruction. When a

check instruction is executed, the status bit speci�ed by the instruction is examined. If the status bit is set,

the processor branches to the repair code. A branch instruction at the end of the repair code brings the

execution back to the instruction immediately after the check. Normal execution resumes from this point.

The use of MCB for store/load movement is shown in Figure 9. In the original code segment, i5 and i6

cannot be disambiguated with i4 . Using the MCB, the resulting code segment is shown in Figure 9b. The

16

check instructions are placed in the instruction sequence to invoke the repair code when the load and store

addresses do match.

5 Uses of Pro�ling in IMPACT

Pro�ling is used extensively in the IMPACT-I compiler. The IMPACT-I compiler is a prototype optimizing

compiler designed to generate e�cient code for superscalar and VLIW processors. In this section we present

an acyclic scheduling technique, superblock scheduling that uses control-ow and memory-dependence pro�l-

ing. We also present a cyclic scheduling technique, modulo scheduling that uses control-ow pro�ling. While

memory-dependence pro�ling can be used for cyclic scheduling, it has not been incorporated into the modulo

scheduling technique yet.

5.1 Acyclic scheduling

Pro�le-based acyclic scheduling in the IMPACT-I compiler is based on an e�cient structure referred to as

the superblock [17]. A superblock is a sequence of instructions in which control may only enter at the top,

but may leave at one or more exit points. Equivalently, a superblock is a linear sequence of basic blocks in

which control may only enter at the �rst basic block. Control-ow pro�le information is utilized directly to

form superblocks.

Superblock formation consists of two major steps. First, traces are identi�ed within the function. A

trace is a contiguous set of basic blocks which are likely to execute in sequence [2]. Traces are selected by

identifying a seed basic block and growing the trace forward (backward) to likely preceding (succeeding)

basic blocks until either there is no likely predecessor (successor) or until the likely predecessor (successor)

has already been placed into a trace [18]. Each basic block is a member of exactly one trace. An example of

trace selection applied to a group of basic blocks is shown in Figure 10a. In this example, three traces are

identi�ed in the code segment consisting of the following basic blocks: (1,2,5,6), (3), and (4).

Second, to create superblocks from traces, control entry points into the middle of a trace must be

eliminated. Side entrances can be eliminated by duplicating a set of the basic blocks in the trace. This set

17

BB1

BB3

BB4

0

10

99

10

BB1

BB2

BB5

BB6

1

90
10

100

90
0

90

1

90

90

100

0

1

BB3

BB4

0

10

10
BB2

BB5

BB6

90
10

100

90
0

90

90

900

BB6’
10

0.1

0.9

90

89.1

9.9

(a) (b)

Figure 10: An example of superblock formation, (a) trace selection, (b) tail duplication.

is the union of all blocks which are side entry points and those blocks within the trace to which control may

subsequently transfer. The control transfers into the side of the trace are then moved to the corresponding

duplicated basic block. This process of converting traces to superblocks is referred to as tail duplication. An

example of tail duplication is shown in Figure 10b. The trace consisting of basic blocks (1,2,5,6) contains two

control entry points to basic block 6. Tail duplication replicates basic block 6 (basic block 60) and adjusts

the control transfers from basic blocks 3 and 4 to basic block 60. After removing all side entrances, trace

(1,2,5,6) becomes a superblock.

With superblock scheduling, control-ow pro�le information is utilized to identify likely execution paths

in the code. List scheduling is then applied to the resultant superblocks. By scheduling the superblock as a

single unit, a more compact schedule can be achieved along the execution path included in the superblock.

Since superblock scheduling can result in both upward and downward code motion, hazards associated with

each type of code motion must be handled. Upward code motion hazards are handled with compile time

18

renaming and non-excepting opcodes for all excepting opcodes in the instruction set. Downward code motion

hazards are handled with compile-time code restructuring. The reader is referred to Section 3.1 for more

details regarding handling hazards for inter-basic block code motion.

Memory-dependence pro�le information is utilized in superblock scheduling to achieve a more compact

schedule for each superblock. With conict information available for store/load pairs, dependences among

store/load pairs in the same superblock with infrequent conicts are removed. Therefore, the superblock

scheduler may freely re-order these memory accesses to obtain a tighter schedule. Hazards associated with re-

ordering store/load pairs are handled using the MCB architectural support along with the compiler generated

conict correction code is discussed in Section 4.

The superblock scheduling algorithm used in the IMPACT-I compiler is shown in Figures 11 { 13. The

algorithm is broken down into 3 parts. An initialization step (Figure 12) is �rst performed. Initialization

includes dependence graph construction in which the appropriate store/load dependences are omitted based

on the memory-dependence pro�le information. Also, a check instruction is inserted into the superblock for

each load which may possibly be converted into a preload. The second part of the algorithm (Figure 11)

performs list scheduling and deals with scheduling hazards as they occur. Check instructions are removed

during scheduling when their corresponding load was not converted into a preload. Note that when dealing

with downward code motion hazards, a test is performed to ensure that the the superblock to which a

new instruction must be inserted has not been scheduled. This test is necessary for VLIW processors with

strict timing requirements; however, it is not necessary for superscalar processors. The �nal part of the

algorithm (Figure 13) generates the necessary conict correction code for all preloads. Correcting a conict

involves re-executing the preload instruction and all subsequent instructions before the check which directly

or indirectly use the result of the preload.

Experimental methodology. To study the e�ectiveness of superblock scheduling, execution driven

simulation is performed for a range of superscalar and VLIW processors. The benchmarks used in this

study are described in Table 1. Each benchmark is pro�led on a variety of inputs to obtain representative

control-ow and memory-dependence pro�le information. An input di�erent from those used for pro�ling is

19

schedule(superblock) f
schedule initialization(superblock)

issue time = 0

while (unscheduled set of instructions is not empty) f
issue time += 1

active set = set of unscheduled instructions that are ready

sort active set according to instruction priority

for each instruction in active set, I f
if (I cannot be scheduled at issue time)

continue

/� checks for loads not scheduled as preloads are unnecessary �/
if ((I is a check) and (corresponding load not scheduled as a preload)) f

delete I from set of unscheduled instructions

continue

g
mark required resources of I busy in resource usage map

delete I from set of unscheduled instructions

I!issue time = issue time

/� check for control-ow hazards associated with an upward code motion �/
br moved above = I!prev br - fset of scheduled branchesg
if (br moved above not empty) f

mark I as speculative

for each branch in br moved above, BR f
if (dest(I) live when BR is taken) f

old dest(I) = dest(I)

rename dest(I)

substitute use of old dest(I) in superblock with dest(I)

if (old dest(I) live along any unscheduled BR in superblock)

insert a new copy instruction J (old dest(I) = dest(I)) into set of unscheduled instructions

break

g
g

g
/� check for control-ow hazards associated with an downward code motion �/
br move below = I!post br - fset of unscheduled branchesg
for each branch in br move below, BR f

if (dest(I) not live when BR is taken)

continue

if ((target superblock of BR has single predecessor) or (target superblock of BR is already scheduled))

insert a copy of I into target superblock of BR

else f
create a new superblock, new sb

insert jump instruction to target of BR into new sb

modify target of BR to new sb

insert a copy of I into new sb

g
g
/� check for memory-dependence hazards associated with an upward code motion �/
st move above = I!prev st - fset of scheduled storesg
if (st move above not empty)

mark I as a preload

g
g
insert conict correction code(superblock)

g

Figure 11: Superblock scheduling algorithm.

20

schedule initialization(superblock) f
construct dependence graph, G

for each memory ow dependence in G, dep f
if (conict frequency(dep)< threshold)

remove dep from G

g
clear resource usage map

for each instruction in superblock, I f
I!priority = computed priority of I

I!prev br = all branches lexically before I in superblock

I!post br = all branches lexically after I in superblock

if (I is a load) f
I!prev st = all ambiguous stores lexically before I in superblock

I!post st = all ambigous stores lexically after I in superblock

if (I!prev st not empty) f
insert a check instruction for I immediately after I

add a memory ow dependence from all elements of I!prev st to the check

add a memory anti dependence from the check to all elements of I!post st

add a control dependence from all elements of I!prev br to the check

g
g
add I to set of unscheduled instructions

g
g

Figure 12: Initialization algorithm for superblock scheduling.

insert conict correction code(superblock) f
for each preload instruction in superblock, I f

ow dep = list of instructions ow dependent on I scheduled prior to the check of I

create new superblock, new sb

insert a copy of I into new sb, convert I to normal load

insert a copy of all instructions in ow dep into new sb

insert a jump instruction whose target is the instruction following the check of I into new sb

modify target of check of I to new sb

g
g

Figure 13: Correction code algorithm routine for superblock scheduling.

21

Benchmark Size (Lines) Benchmark Description

cccp 4787 GNU C preprocessor
cmp 141 compare �les
compress 1514 compress �les
eqn 2569 format math formulas for tro�
eqntott 3461 boolean equation minimization
espresso 6722 truth table minimization
grep 464 string search
lex 3316 lexical analyzer generator
qsort 136 quick sort
tbl 2817 format tables for tro�
wc 120 word count
xlisp 7747 lisp interpreter
yacc 2303 parser generator

Table 1: Non-numeric benchmarks.

Instruction Class Latency Instruction Class Latency

integer ALU 1 FP ALU 3
integer multiply 3 FP conversion 3
integer divide 10 FP multiply 3
branch 2 FP divide 10
memory load 2 memory store 1

Table 2: Instruction latencies.

then used to perform the simulation for all the experiments reported in this work.

The basic processor used in this study is a RISC processor which has an instruction set similar to

the MIPS R2000 [19]. The processor is assumed to have in-order execution with register interlocking and

deterministic instruction latencies (Table 2). The processor contains 64 integer registers and 32 oating point

registers. Non-excepting versions of all instructions excluding store instructions and architectural support

for the memory conict bu�er [20] are further assumed in the processor.

Experimental results. The performance of superblock scheduling is compared for 4-issue and 8-issue

superscalar processors. The issue width is the maximum number of instructions the processor can fetch and

issue per cycle. No limitation is placed on the combination of instructions that may be issued in the same

cycle. For each con�guration, the program execution time, assuming a 100% cache hit rate, is reported as a

speedup relative to the program execution time for the base con�guration. The base con�guration used is

22

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

S
p
e
e
d
u
p

1

2

3

4

5

6

7

8

9

4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8

Control-Flow and Memory-

Dependence Profiling

AAAA
AAAA
AAAA

Control-Flow Profiling

AAAA
AAAA
AAAA

No Profiling

cccp cmp compress eqn eqntott espresso grep lex qsort tbl wc xlisp yacc

Figure 14: Performance comparison of acyclic scheduling with varying levels of pro�le information.

an 1-issue processor with conventional basic block code scheduling.

The performance improvement observed with control-ow and memory-dependence pro�le information

available to the scheduler is shown in Figure 14.4 Basic block scheduling provides little speedup for both the

4-issue and 8-issue processor. With control-ow pro�le information available, large speedup improvements

result for all benchmarks. The superblock structure provides the scheduler with many more opportunities

to extract instruction-level parallelism. Furthermore, by directly exposing important execution paths to the

scheduler with superblocks, intelligent inter-basic block code motion decisions are made.

With memory-dependence pro�le information also available to the scheduler, additional performance

improvement is observed. The largest improvements were observed for cmp and grep for an 8-issue processor.

The additional freedom to re-order ambiguous store/load pairs enabled the scheduler to obtain a much

tighter schedule in the critical sections of these programs. For those benchmarks in which no measurable

performance was observed, cccp, eqntott, lex, and tbl, few stores were found in the frequently executed code

4Note that in this study super-linear speedups are possible. This is because both the issue width of the processor and the

scheduling scheme are varied.

23

sections. Therefore, little opportunity is available in these benchmarks to improve performance by reordering

store/load pairs.

5.2 Cyclic scheduling

Modulo Scheduling is a software pipelining technique that schedules loops whose body consists of a simple

basic block [10]. In order to schedule loops with conditional constructs, the conditional constructs must be

converted into straight-line code. If-conversion can be used to convert conditional constructs into straight-

line code [21][12][15]. In this paper we discuss modulo scheduling with if-conversion assuming predicated

hardware support [9][12]. As discussed in Section 3.2, predicated hardware support allows for e�cient hazard

resolution. When the branch is taken (mispredicted), the taken path code is executed and control branches

back to the instruction following the branch. The predicates ensure that the not taken path code is squashed.

Control-ow pro�ling information is used to modulo schedule the most frequently executed paths in the

loop. After the most frequently executed paths have been selected, if-conversion is applied to these paths.

For conditional branches where both successor basic blocks are included in the modulo schedule, the branch

is converted to a predicate assert operation and operations along both paths are predicated. For conditional

branches where only one successor is in the modulo schedule, the branch is converted into a branch and

predicate assert operation and only the not taken path (the path in the modulo schedule) is predicated.

In modulo scheduling, the interval at which loop iterations are initiated, the iteration interval (II), is �xed

for every iteration of the loop [10]. The scheduler determines the lower bound on II and then tries to �nd a

schedule for this II. The scheduler �rst tries to schedule operations involved in dependence cycles and then

list schedules the remaining operations. If no schedule can be found, the II is incremented and the process

is repeated until a schedule is found or the II reaches a prede�ned limit. The minimum II is determined by

the resource and dependence cycle constraints. In this paper, we focus on loops without dependence cycles.

Figures 15 - 19 present the algorithms used to modulo scheduled pro�led loops without dependence

cycles. These algorithms are discussed at a fairly high level of abstraction. For more detailed information,

refer to [22]. In these algorithms, we refer to the elements to schedule as operations before scheduling and

24

modulo schedule(pro�le loop) f
construct dependence graph, G

determine minimum II due to resource constraints

while (schedule II(pro�le loop, II) not found)

increment II

/� use MVE to rename registers that span more than one II (N = number of times to unroll loop) �/
N = MVE(pro�le loop)

kernel = create kernel(pro�le loop, N)

rename registers in kernel according to MVE

/� determine number of stages in prologue and epilogue �/
S = dlatest issue time=IIe� 1

softpipe = create prologue epilogue(kernel, S)

for instruction in softpipe, I f
if I has a branch and assert operation and not loop back branch f

schedule taken path code

branch back to instruction following I

g
g
generate remainder loop to execute the remainder of (loop bound - S)/N iterations

append softpipe to remainder loop

g

Figure 15: Modulo scheduling algorithm without dependence cycles.

instructions after scheduling, where an instruction consists of all the operations scheduled at the same cycle.

The basic modulo scheduling algorithm is presented in Figure 15. The �rst step in this algorithm is to

�nd an II that can be scheduled. The routine schedule II in Figure 16 attempts to �nd a schedule for a given

II. Note that if an operation cannot be scheduled in the cycle that it is ready, it is delayed until it can be

scheduled. If it is delayed more than II cycles, it cannot be scheduled and schedule II fails.

After scheduling II, the software pipeline can be constructed. Each stage in the software pipeline is

II cycles long. The software pipeline consists of three parts, the kernel, the prologue, and the epilogue.

The kernel represents the steady-state execution. Since some register lifetimes may span more than one II,

the kernel is unrolled to satisfy the longest lifetime. Modulo variable expansion (MVE) is used to rename

registers with lifetimes that span more than one II [11]. The algorithm to generate the kernel is presented

in Figure 17. The prologue and epilogue are used to �ll and empty the software pipeline. The algorithm to

generate the prologue and epilogue is shown in Figure 18. The prologue and epilogue are created in a fashion

that ensures that registers are aligned properly at the prologue-kernel boundary and at the kernel-epilogue

boundary.

Note that the algorithm in Figure 18 only creates one epilogue which is executed at the end of the kernel

25

schedule II(pro�le loop, II) f
clear resource usage map

for each operation in pro�le loop, op f
op!priority = computed priority of op

add op to set of unscheduled operations

g
sort unscheduled set according to operation priority

issue time = 0

while (unscheduled set of operations is not empty) f
issue time = issue time + 1

active set = set of unscheduled operations that are ready

for each operation in active set, op f
schedule op at earliest available resource

if(op cannot be scheduled within II cycles)

return schedule not found

mark required resources of op busy in modulo II resource usage map

delete op from set of unscheduled operations

op!issue time = issue time

g
g

Figure 16: List scheduling algorithm to schedule II.

create kernel(pro�le loop, N) f
for operation in pro�le loop, op f

/� �ll II instructions in II schedule �/
place op in instruction of II schedule at op� > issue time mod II

g
for N times f

for instruction in II schedule, I f
for operation in I, op f

copy operation(op)

g
g

g
g

Figure 17: Algorithm to create kernel code of software pipeline.

26

code. To ensure that the loop executes the correct number of times, a remainder loop is prepended to the

software pipeline schedule as shown at the end of the algorithm in Figure 15.

The only di�erence between the modulo scheduling algorithms with and without pro�ling is that the

taken path of the branch must be copied every time the branch and assert operation is copied. Figure 19

shows the copy operation algorithm. After the software pipeline has been constructed, the taken paths of

each branch and assert operation are scheduled taking into account the dependence and resource constraints

of the pipelined schedule. Once the taken path is scheduled, a branch operation is inserted to branch to the

instruction following the instruction containing the branch and assert operation.

During scheduling, the constraints of the excluded paths are ignored. This is possible since 1) speculative

execution is not allowed, and 2) control branches back to the instruction following the branch and assert

operation. Since speculative execution is not allowed, control dependent operations will not be moved above

the branch and assert operation. Disallowing speculative execution will not a�ect the size of II, but may

lengthen the number of stages in the pipeline. Since control branches back to the instruction following the

branch and assert operation, operations moved from above to below the branch during scheduling will always

be executed. Furthermore, since the paths merge at the instruction after the branch, the branch operation

prevents operations from being moved above the merge point. Operations below the merge point that are

control dependent on the branch will be predicated.

Experimental methodology. To evaluate the e�ectiveness of using control-ow pro�ling for cyclic

code, we applied modulo scheduling with if-conversion to a range of superscalar and VLIW processors with

predicated hardware support. The benchmarks used in this study are 25 loops selected from the Perfect

Suite [23]. These loops have no cross-iteration dependences and have at least one conditional construct. The

loops are assumed to execute a large number of times and thus only the steady-state (kernel) execution is

calculated for the modulo scheduled loops.

The base processor used in this study is a RISC processor which has an instruction set similar to the

Intel i860 [24]. Intel i860 instruction latencies are used. The processor has an unlimited number of registers

and an ideal cache.

27

create prologue epilogue(kernel, S) f
S unroll = S mod N

S peel = remainder of S/N

/� create prologue �/
issue time = 0

for S peel times f
for instructions starting at (N - S peel) stage in kernel, I f

for operation in I, op f
if(op!issue time � issue time)

copy operation(op)

g
issue time = issue time + 1

g
g
for S unroll times f

for instruction in kernel, I f
for operation in I, op f

if(op!issue time � issue time)

copy operation(op)

g
issue time = issue time + 1

g
g
prepend prologue to beginning of kernel

/� create epilogue �/
issue time = (S + N)�II
for S unroll times f

for instruction in kernel, I f
for operation in I, op f

if(op!issue time > issue time - (S + N)�II)
copy operation(op)

g
issue time = issue time + 1

g
g
for S peel times f

for instructions starting at beginning of kernel, I f
for operation in I, op f

if(op!issue time > issue time - (S + N)�II)
copy operation(op)

g
issue time = issue time + 1

g
g
append epilogue to kernel

g

Figure 18: Algorithm to create prologue and epilogue code of software pipeline.

copy operation(op) f
copy op

if (op is a branch and assert operation) f
copy taken path of op

change branch destination of op to point to copy of taken path

g
g

Figure 19: Algorithm to copy operations.

28

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Issue Rate

S
p
e
e
d
u
p

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 8

AAAA
AAAA
AAAA

Control-

Flow

Profiling

AAAA
AAAA
AAAA

No

Profiling

Figure 20: Performance improvement for modulo scheduling using pro�le optimization.

Experimental results. The bene�t of control-ow pro�ling for modulo scheduling with predicated

hardware support is illustrated by comparing the speedup with and without pro�ling information for su-

perscalar/VLIW processors with issue rates 2, 4, and 8.5 No limitation is placed on the combination of

instructions that can be issued in the same cycle. For each machine con�guration, the loop execution time

is reported as a speedup relative to the loop execution time for the base machine con�guration. The base

machine con�guration is an issue-1 processor with traditional local and global optimization support and

basic-block code scheduling. The base machine does not support predicated execution.

The bene�t of using control-ow pro�le information to improve the performance modulo scheduling with

predicated hardware support is shown in Figure 20. The speedups are calculated using the harmonic mean.

Overall, pro�ling improves the performance by approximately 12% for the issue-2 machine, 11% for the

issue-4 machine, and 7% for the issue-8 machine.

It is interesting to note the e�ect of control-ow pro�ling. By eliminating paths before modulo scheduling,

the scheduling constraints along excluded paths can be ignored and a tighter II can be found. There are two

5Induction variable reversal was not applied to these loops before modulo scheduling [25]

29

types of scheduling constraints, dependences and resources. With predicated hardware support, reducing the

resource constraints can be particularly important since all instructions along all control paths are fetched.

Thus, the resource constraint is determined by the most heavily used resource along all paths. By eliminating

some of the less frequently executed control ow paths, the minimum II is reduced. As shown in Figure 20,

this particularly bene�ts the lower issue rates which incur more resource conicts.

One �nal point to note is that while this technique has been presented as a way to exclude infrequently

executed paths, it can also be used to exclude paths which contain software pipeline preventing code. For

instance, loops with subroutine calls are often not software pipelined. However, if the subroutine is only called

only some execution paths, they can be excluded and the remaining paths can be e�ciently scheduled.

6 Related Work

Pro�le information provides valuable data about the dynamic behavior of a program. Control-ow pro�le

information has been used to assist compile-time code transformations both by the research and the product

development communities. In the area of handling conditional branches in pipelined processors, it has

been shown that pro�le-based branch prediction at compile time performs as well as the best hardware

schemes [26] [27]. In the area of global code scheduling, trace scheduling is a popular global microcode

compaction technique [2]. For trace scheduling to be e�ective, the compiler must be able to identify the

frequently executed sequences of basic blocks in a ow graph. It has been shown that control-ow pro�ling

is an e�ective way to do this [3] [18].

Instruction placement is a code optimizationwhich arranges the basic blocks of a ow graph in a particular

linear order to maximize the sequential locality and to reduce the number of executed branch instructions.

It has been shown that control-ow pro�ling is an e�ective way to guide instruction placement [28] [29].

Control-ow pro�le information can help in identifying the frequently accessed variables [30] in a program

resulting in increased e�ciency for register allocation. Function inline expansion eliminates the overhead of

function calls and enlarges the scope of global code optimizations. Control-ow pro�ling can be extended

30

to measure the frequency of subroutine calls in order to determine the best expansion sequence [31]. In the

area of classic code optimization, by eliminating the constraints imposed on frequent execution paths by

infrequent paths, control-ow pro�ling has been shown to improve the performance of classic global and loop

optimizations [32].

7 Conclusion and Future Work

This paper extends the use of control-ow pro�ling information to acyclic global scheduling and software

pipelining. By systematically eliminating the constraints imposed by the infrequent execution paths on the

frequently executed paths, the overall program performance can be improved through better scheduling. In

acyclic instruction scheduling, pro�le information provides the compiler the means to predict the performance

implications of code movement across basic blocks. As described in Section 3.1, this allows the compiler to

decrease the overall program execution time by utilizing scheduling techniques which improve the execution

time of certain paths in the program at the cost of others. Without pro�le information, such scheduling

techniques cannot be used because of the possibility of optimizing the performance of a infrequently executed

path at the expanse of a frequently executed path.

In cyclic instruction scheduling, the �nal instruction schedule is constrained by the resource requirements

of the loop body. In this case pro�le information can be used to eliminate the infrequently executed basic

blocks from the schedule. Software pipelining only the frequently executed path in a loop body results in a

tighter schedule improving the overall program performance.

The use of memory-dependence pro�ling in the IMPACT compiler allowed speculative movement of

memory load operations above stores in an e�cient way. The pro�le information lets the compiler perform

this optimization for load-store pairs which are unlikely to conict. This minimizes the performance penalty

introduced by the repair code which is invoked in the case of a conict.

There are many other optimizations within the compilation process which can bene�t from pro�le in-

formation. Examples include compiler-assisted data prefetching and data locality optimizations. Some of

31

the problems associated with compiler-assisted data prefetching are increased instruction count, memory

bandwidth, and data cache pollution. Due to cache mapping conicts, it is a di�cult task to determine at

compile-time which accesses actually need to be prefetched and when to prefetch them. Prefetching data

that is already in the cache unnecessarily adds a prefetch instruction and associated address calculation

instructions to the code and wastes memory bandwidth. Prefetching data too early can displace useful data

in the cache. A memory-access pro�ler can gather information about data access and reuse patterns and

which can be used to estimate which references actually need to be prefetched and when.

The techniques presented in this paper and the current research in compiler optimizations improve the

performance of a program by predicting its runtime behavior at compile time. For optimizations where

performance of one execution scenario of a program is improved at the cost of other scenarios, the accuracy

of the compiler predictions translate into program execution performance. Pro�le information provides the

compiler with an e�cient means of predicting the program behavior.

References

[1] A. Aho, R. Sethi, and J. Ullman,Compilers: Principles, Techniques, and Tools. Reading, MA: Addison-
Wesley, 1986.

[2] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE Transactions on

Computers, vol. c-30, pp. 478{490, July 1981.

[3] J. Ellis, Bulldog: A Compiler for VLIW Architectures. Cambridge, MA: The MIT Press, 1985.

[4] M. D. Smith, M. S. Lam, and M. A. Horowitz, \Boosting beyond static scheduling in a superscalar
processor," in Proceedings of the 17th International Symposium on Computer Architecture, pp. 344{
354, May 1990.

[5] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An architectural
framework for multiple-instruction-issue processors," in Proceedings of the 18th International Symposium
on Computer Architecture, pp. 266{275, May 1991.

[6] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, \Sentinel scheduling for
superscalar and VLIW processors," in Proceedings of the 5th International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 238{247, October 1992.

[7] D. Weaver, SPARC-V9 Architecture Speci�cation. SPARC International Inc., 1992.

[8] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, \A VLIW architecture
for a trace scheduling compiler," in Proceedings of the 2nd International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 180{192, April 1987.

[9] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, \The Cydra 5 departmental supercomputer," IEEE
Computer, pp. 12{35, January 1989.

32

[10] B. R. Rau and C. D. Glaeser, \Some scheduling techniques and an easily schedulable horizontal ar-
chitecture for high performance scienti�c computing," in Proceedings of the 20th Annual Workshop on

Microprogramming and Microarchitecture, pp. 183{198, October 1981.

[11] M. S. Lam, \Software pipelining: An e�ective scheduling technique for VLIW machines," in Proceed-

ings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation,
pp. 318{328, June 1988.

[12] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, \Overlapped loop support in the Cydra 5," in Proceedings of

the Third International Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 26{38, April 1989.

[13] B. Su and J. Wang, \GURPR*: A new global software pipelining algorithm," in Proceedings of the 24th

International Conference on Microarchitecture, pp. 212{216, November 1991.

[14] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, \Code generation schema for modulo scheduled
loops," in Proceedings of the 25th Annual International Symposium on Microarchitecture, pp. 158{169,
December 1992.

[15] N. J. Warter, G. E. Haab, K. Subramanian, and J. W. Bockhaus, \Enhanced modulo scheduling for
loops with conditional branches," in Proceedings of the 25th Annual International Symposium on Mi-

croarchitecture, pp. 170{179, December 1992.

[16] A. Nicolau, \Run-time disambiguation: coping with statically unpredictable dependencies," IEEE

Transactions on Computers, vol. 38, pp. 663{678, May 1989.

[17] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G. Ouellette,
R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, \The Superblock: An e�ective
structure for VLIW and superscalar compilation," Journal of Supercomputing, February 1993.

[18] P. P. Chang and W.W. Hwu, \Trace selection for compiling large C application programs to microcode,"
in Proceedings of the 21st International Workshop on Microprogramming and Microarchitecture, pp. 188{
198, November 1988.

[19] G. Kane, MIPS R2000 RISC Architecture. Englewood Cli�s, NJ: Prentice-Hall, Inc., 1987.

[20] W. Y. Chen, S. A. Mahlke, W. W. Hwu, and T. Kiyohara, \Assisting compile-time code reordering
with the memory conict bu�er," tech. rep., Center for Reliable and High-Performance Computing,
University of Illinois, Urbana, IL, May 1992.

[21] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren, \Conversion of control dependence to data
dependence," in Proceedings of the 10th ACM Symposium on Principles of Programming Languages,
pp. 177{189, January 1983.

[22] N. J. Warter and W. W. Hwu, \Enhanced modulo scheduling," Tech. Rep. in preparation, Center for
Reliable and High-Performance Computing, University of Illinois, Urbana, IL, 1993.

[23] M. Berry and et. al , \The PERFECT club benchmarks: E�ective performance evaluation of supercom-
puters," Tech. Rep. CSRD-827, Center for Supercomputing Research and Development, University of
Illinois, Urbana, IL, May 1989.

[24] Intel, i860 64-Bit Microprocessor. Santa Clara, CA, 1989.

[25] N. J. Warter, D. M. Lavery, and W. W. Hwu, \The bene�t of predicated execution for software pipelin-
ing," in Proceedings of the 26rd Hawaii International Conference on System Sciences, pp. 497{506,
January 1993.

33

[26] S. McFarling and J. Hennessy, \Reducing the cost of branches," in Proceedings of the 13th International

Symposium on Computer Architecture, pp. 396{403, June 1986.

[27] W. W. Hwu, T. M. Conte, and P. P. Chang, \Comparing software and hardware schemes for reducing
the cost of branches," in Proceedings of the 16th International Symposium on Computer Architecture,
pp. 224{233, May 1989.

[28] W. W. Hwu and P. P. Chang, \Achieving high instruction cache performance with an optimizing
compiler," in Proceedings of the 16th International Symposium on Computer Architecture, pp. 242{251,
May 1989.

[29] K. Pettis and R. C. Hansen, \Pro�le guided code positioning," in Proceedings of the ACM SIGPLAN

1990 Conference on Programming Language Design and Implementation, pp. 16{27, June 1990.

[30] D. W. Wall, \Global register allocation at link time," in Proceedings of the 1986 SIGPLAN Symposium

on Compiler Construction, pp. 264{275, June 1986.

[31] W. W. Hwu and P. P. Chang, \Inline function expansion for compiling realistic C programs," in Proceed-
ings of the ACM SIGPLAN 1989 Conference on Programming Language Design and Implementation,
pp. 246{257, June 1989.

[32] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist classic code optimiza-
tions," Software Practice and Experience, vol. 21, pp. 1301{1321, December 1991.

34

