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SUMMARY
This paper describes critical implementation issues that must be addressed to develop a fully

automatic inliner. These issues are: integration into a compiler, program representation, hazard
prevention, expansion sequence control, and program modi�cation. An automatic inter-�le inliner
that uses pro�le information has been implemented and integrated into an optimizing C compiler.
The experimental results show that this inliner achieves signi�cant speedups for production C
programs.
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INTRODUCTION

Large computing tasks are often divided into many smaller subtasks which can be more easily

developed and understood. Function de�nition and invocation in high level languages provide a

natural means to de�ne and coordinate subtasks to perform the original task. Structured pro-

gramming techniques therefore encourage the use of functions. Unfortunately, function invocation

disrupts compile-time code optimizations such as register allocation, code compaction, common

subexpression elimination, constant propagation, copy propagation, and dead code removal.

Emer and Clark reported, for a composite VAX workload, 4.5% of all dynamic instructions are

function calls and returns [1]. If we assume equal numbers of call and return instructions, the above

number indicates that there is a function call instruction for every 44 instructions executed. Eicke-

meyer and Patel reported a dynamic call frequency of one out of every 27 to 130 VAX instructions

1
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[2]. Gross, et al., cited a dynamic call frequency of one out of every 25 to 50 MIPS instructions [3].

Patterson and Sequin reported that function call is the most costly source language statement [4].

All these previous results argue for an e�ective approach to reducing function call costs.

Inline function expansion (or simply inlining) replaces a function call with the function body.

Inline function expansion removes the function call/return costs and provides enlarged and spe-

cialized functions to the code optimizers. In a recent study, Allen and Johnson identi�ed inline

expansion as an essential part of a vectorizing C compiler [5]. Schei
er implemented an inliner

that takes advantage of pro�le information in making inlining decisions for the CLU programming

language. Experimental results, including function invocation reduction, execution time reduction,

and code size expansion, were reported based on four programs written in CLU [6].

Several code improving techniques may be applicable after inline expansion. These include

register allocation, code scheduling, common subexpression elimination, constant propagation, and

dead code elimination. Richardson and Ganapathi have discussed the e�ect of inline expansion and

code optimization across functions [7].

Many optimizing compilers can perform inline expansion. For example, the IBM PL.8 compiler

does inline expansion of low-level intrinsic functions [8]. In the GNU C compiler, the programmers

can use the keyword inline as a hint to the compiler for inline expanding function calls [9]. In

the Stanford MIPS C compiler, the compiler examines the code structure (e.g. loops) to choose

the function calls for inline expansion [10]. Parafrase has an inline expander based on program

structure analysis to increase the exposed program parallelism [11]. It should be noted that the

careful use of the macro expansion and language preprocessing utilities has the same e�ect as inline

expansion, where inline expansion decisions are made entirely by the programmers.

Davidson and Holler have developed an automatic source-to-source inliner for C [12] [13]. Be-
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cause their inliner works on the C source program level, many existing C programs for various

computer systems can be optimized by their inliner. The e�ectiveness of their inliner has been

con�rmed by strong experimental data collected for several machine architectures.

In the process of developing an optimizing C compiler, we decided to allocate about 6 man-

months to construct a pro�le-guided automatic inliner [14]. We expect that an inliner can enlarge

the scope of code optimization and code scheduling, and eliminate a large percentage of function

calls. In this paper, we describe the major implementation issues regarding a fully automatic

inliner for C, and our design decisions. We have implemented the inliner and integrated it into

our prototype C compiler. The inliner consists of approximately 5200 lines of commented C code,

not including the pro�ler that is used to collect pro�le data. The inliner is a part of a portable C

compiler front-end that has been ported to Sun3, Sun4 and DEC-3100 workstations running UNIX

operating systems.

CRITICAL IMPLEMENTATION ISSUES

The basic idea of inlining is simple. Most of the di�culties are due to hazards, missing infor-

mation, and reducing the compilation time. We have identi�ed the following critical issues of inline

expansion:

(1) Where should inline expansion be performed in the compilation process?

(2) What data structure should be employed to represent programs?

(3) How can hazards be avoided?

(4) How should the sequence of inlining be controlled to reduce compilation cost?

(5) What program modi�cations are made for inlining a function call?

A static function call site (or simply call site) refers to a function invocation speci�ed by the
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static program. A function call is the activity of invoking a particular function from a particular

call site. A dynamic function call is an executed function call. If a call site can potentially invoke

more than one function, the call site has more than one function call associated with it. This is

usually due to the use of the call-through-pointer feature provided in some programming languages.

The caller of a function call is the function which contains the call site of that function call. The

callee of a function call is the function invoked by the function call.
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Figure 1: Separate compilation paradigm.

Integration into the compilation process: The �rst issue regarding inline function expansion

is where inlining should be performed in the translation process. In most traditional program devel-

opment environments, the source �les of a program are separately compiled into their corresponding

object �les before being linked into an executable �le (see Figure 1). The compile time is de�ned

as the period of time when the source �les are independently translated into object �les. The link
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time is de�ned as the duration when the object �les are combined into an executable �le. Most of

the optimizations are performed at compile time, whereas only a minimal amount of work to link

the object �les together is performed at link time. This simple two-stage translation paradigm is

frequently referred to as the separate compilation paradigm.

A major advantage of the separate compilation paradigm is that when one of the source �les

is modi�ed, only the corresponding object �le needs to be regenerated before linking the object

�les into the new executable �le, leaving all the other object �les intact. Because most of the

translation work is performed at compile time, separate compilation greatly reduces the cost of

program recompilation when only a small number of source �les are modi�ed. Therefore, the two-

stage separate compilation paradigm is the most attractive for program development environments

where programs are frequently recompiled and usually a small number of source �les are modi�ed

between each recompilation. There are programming tools, such as the UNIX make program, to

exploit this advantage.

Our extension to the separate compilation paradigm to allow inlining at compile time is illus-

trated in Figure 2. Performing inline function expansion before the code optimization steps ensures

that these code optimization steps bene�t from inlining. For example, functions are often created

as generic modules to be invoked for a variety of purposes. Inlining a function call places the

body of the corresponding function into a speci�c invocation, which eliminates the need to cover

the service required by the other callers. Therefore, optimizations such as constant propagation,

constant folding, and dead code removal can be expected to be more e�ective with inlining. 1

Performing inline function expansion at compile time requires the callee function source (or

1Note that it is possible to do link-time inline expansion and still perform global optimization. In the MIPS

compiler, for instance, a link phase with function inlining can optionally occur before the optimizer and subsequent

compilation phases [15]. The same e�ect is achieved: inline expansion is performed before the optimization steps.
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Figure 2: Inlining at compile time.
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intermediate) code to be available when the caller is compiled. Note that the callee functions can

reside in di�erent source �les than the callers. As a result, the caller and callee source �les can

no longer be compiled independently. Also, whenever a callee function is modi�ed, both the callee

and caller source �les must be recompiled. This coupling between the caller and callee source �les

reduces the advantage of the two-step translation process. 2

In practice, some library functions are written in assembly languages; they are available only

in the form of object �les to be integrated with the user object �les at link time. These library

functions are not available for inline function expansion at compile time. Dynamically linked

libraries represent a step further in the direction of separating the library functions from the user

programs invoking them. The dynamically linked library functions are not available for inline

function expansion at all.

Program representation: The second issue regarding inline function expansion is what data

structure should be employed to represent the program. In order to support e�cient inlining,

the data structure should have two characteristics. First, the data structure should conveniently

capture the dynamic and static function calling behavior of the represented programs. Second,

e�cient algorithms should be available to construct and manipulate the data structure during the

whole process of inline function expansion. Weighted call graphs, as described below, exhibit both

desirable characteristics.

A weighted call graph captures the static and dynamic function call behavior of a program. A

2To support program development, the inliner can generate a make�le that correctly recompiles the program when

a source �le is modi�ed. The make�le speci�es all the source �les that an object �le depends on after inlining. When

a source �le is modi�ed, all the �les that received function bodies from the modi�ed source �le will be recompiled

by invoking the make�le. The problem of program development and debugging with inlining is beyond the scope of

this paper and is currently being investigated by the authors. Currently, the inliner serves as a tool to enhance the

performance of a program before its production use.
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weighted call graph (a directed multigraph), G = (N, E, main), is characterized by three major

components: N is a set of nodes, E is a set of arcs, and main is the �rst node of the call graph.

Each node in N is a function in the program and has associated with it a weight, which is the

number of invocations of the function by all callers. Each arc in E is a static function call in the

program and has associated with it a weight, which is the execution count of the call. Finally, main

is the �rst function executed in this program. The node weights and arc weights are determined

by pro�ling.

An example of a weighted call graph is shown in Figure 3. There are eight functions in this

example: main, A, B, C, D, E, F, and G. The weights of these functions are indicated beside the

names of the functions. For example the weights of functions A and E are 5 and 7 respectively.

Each arc in the call graph represents a static function call whose weight gives its expected dynamic

execution count in a run. For example, the main function calls G from two di�erent static locations;

one is expected to execute one time and the other is expected to execute two times in a typical run.

Inlining a function call is equivalent to duplicating the callee node, absorbing the duplicated

node into the caller node, eliminating the arc from the caller to the callee, and possibly creating

some new arcs in the weighted call graph. For example, inlining B into D in Figure 3 involves

duplicating B, absorbing the duplicated B into D, eliminating the arc going from D to B, and

creating a new system call arc. The resulting call graph is shown in Figure 4.

Detecting recursion is equivalent to detecting cycles in the weighted call graph. For example, a

recursion involving functions A and E in Figure 3 can be identi�ed by detecting the cycle involving

nodes A and E in the weighted call graph. Identifying functions which can never be reached during

execution is equivalent to �nding unreachable nodes from the main node. For example, Function

B is no longer reachable from the main function after it is inline expanded into Function D (see
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Figure 4). This can be determined by identifying all the unreachable nodes from the main node in

the weighted call graph. E�cient graph algorithms for these operations are widely available [16].

When the inline expander fails to positively determine the internal function calling characteris-

tics of some functions, there is missing information in the call graph construction. The two major

causes of the missing information are calling external functions and calling through pointers. Call-

ing external functions occurs when a program invokes a function whose source �le is unavailable

to the inline expander. Examples include privileged system service functions and library functions

distributed without source �les. Because these functions can perform function calls themselves, the

call graphs thus constructed are incomplete. Practically, because some privileged system services

and library functions can invoke user functions, a call to an external function may have to be

assumed to indirectly reach all nodes whose function addresses have been used in the computation

in order to detect all recursions and all functions reachable from main.

A special node EXTERN is created to represent all the external functions. A function which

calls external functions requires only one outgoing arc to the EXTERN node. In turn, the

EXTERN node has many outgoing arcs, one to each function whose address has been used in

the computation to re
ect the fact that these external functions can potentially invoke every such

function in the call graph.

Calling through pointers is a language feature which allows the callee of a function call to be

determined at the run time. Theoretically, the set of potential callees for a call through pointer

can be identi�ed using program analysis. A special node PTR is used to represent all the functions

which may be called through pointers. Calls through pointers are not considered for inlining in

our implementation. Rather than assigning a node to represent the potential callee of each call

through pointer, PTR is shared among all calls through pointers. In fact, PTR is assumed to reach
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all functions whose addresses have been used in the computation. This again ensures that all the

potential recursions and all the functions reachable from the main can be safely detected.

Hazard detection and prevention: The third issue regarding inline function expansion is how

the hazardous function calls should be excluded from inlining. Four hazards have been identi�ed

in inline expansion: unavailable callee function bodies, multiple potential callees for a call site,

activation stack explosion, and variable number of arguments. A practical inline expander has to

address all these hazards. All the hazardous function calls are excluded from the weighted call

graph and are not considered for inlining by the sequence controller.

The bodies of external functions are unavailable to the compiler. External functions include

privileged system calls and library functions that are written in an assembly language. In the case

of privileged system calls, the function body is usually not available regardless of whether the inline

expansion is performed at compile time or link time.

Multiple potential callees for a call site occur due to calling through pointers. Because the

callees of calls through pointers depend on the run-time data, there is, in general, more than one

potential callee for each call site. Note that each inline expansion is equivalent to replacing a call

site with a callee function body. If there is more than one potential callee, replacing the call site

with only one of the potential callee function bodies eliminates all the calls to the other callees by

mistake. Therefore, function calls originating from a call site with multiple potential callees should

not be considered for inline expansion. If a call through pointer is executed with extremely high

frequency, one can insert IF statements to selectively inline the most frequent callees. This may

be useful for programs with a lot of dispatching during run time, such as logic simulators.

Parameter passing, register saving, local variable declarations, and returned value passing as-
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sociated with a function can all contribute to the activation stack usage. A summarized activation

stack usage can be computed for each function. A recursion may cause activation stack over
ow

if a call site with large activation record is inlined into one of the functions in the recursion. For

example, a recursive function m(x) and another function n(x) are de�ned as follows.

m(x) { if (x > 0) return(m(x-1)); else return(n(x)); }

n(x) { int y[100000]; ..... }

For the above example, two activation stacks are shown in Figure 5, one with inline expansion

and one without. Note that inlining n(x) into the recursion signi�cantly increases the activation

stack usage. If m(x) tends to be called with a large x value, expanding n(x) will cause an explosion

of activation stack usage. Programs which run correctly without inline expansion may not run after

inline expansion. To prevent activation stack explosion, a limit on the control stack usage can be

imposed for inline expanding a call into a recursion.

In C, a function can expect a variable number of parameters. Moreover, the parameter data

types may vary from call to call (e.g., printf). In the current implementation of our compiler, these

calls are excluded from being inlined. This is done by writing the names of this type of functions

in a �le, and specifying this �le as a compiler option. 3

Sequence control: The fourth issue regarding inline function expansion is how the sequence of

inlining should be controlled to minimize unnecessary computation and code expansion. In this

step, we do not consider the hazardous function calls. The sequence control in inline expansion

determines the order in which the arcs in the weighted control graph, i.e., the static function

calls in the program, are inlined. Di�erent sequence control policies result in di�erent numbers of

3We are currently developing the program analysis required to e�ciently handle varargs functions, which is im-

portant for programs such as graphics and windowing packages.
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expansions, di�erent code size expansion, and di�erent reduction in dynamic function calls. All

these considerations a�ect the cost-e�ectiveness of inline expansion, and some of them con
ict with

one another.

The sequence control of inline expansion can be naturally divided into two steps: selecting

the function calls for expansion and actually expanding these functions. The goal of selecting the

function calls is to minimize the number of dynamic function calls subject to a limit on code size

increase. The goal of expansion sequence control is to minimize the computation cost incurred by

the expansion of these selected function calls. Both steps will be discussed in this section.

100

990 10

L

F

BA

Figure 6: An example of restricted inlining.

In this section, we will limit the discussion to a class of inline expansion with the following

restriction. If a function F has a callee L and L is to be inlined into F, then all functions absorbing

F will also absorb L. Note that this restriction can cause some extra code expansion, as illustrated

in the following example. Function F calls L (100 times) and is called by A (990 times) and B (10

times) (see Figure 6). In this call graph, there is not enough information to separate the number
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of times F calls L when it is being invoked by A and by B. Assume F is to be absorbed into both

A and B. If F calls L 99 times when it is invoked by A and 1 time when by B, then L should be

absorbed into A but not B (see Figure 7). With our restriction, however, L will be absorbed into

both A and B (see Figure 7). Obviously absorbing L into B is not cost-e�ective in this case.

B

with restrictionwithout restriction

F

B

F

L

A

F

L

L

F

L

F

A

F

L

Figure 7: Lost opportunity.

The problem is, however, that there is not enough information in the call graph to attribute the

F!L weight to A and B separately. Therefore, the decision to absorb L only into A would be based

on nonexisting information. Also, to accurately break down the weights, one needs to duplicate

each arc as many times as the number of possible paths via which the arc can be reached from the

main function. This will cause an exponential explosion of the number of arcs in the weighted call

graph.

After detecting all the hazards due to recursion, the call graph can be simpli�ed by breaking all
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the cycles. The cycles in the call graph can be broken by excluding the least important arc from

each cycle in the call graph. If the least important arc is excluded from inlining to break a cycle

involving N functions, one can lose the opportunity to eliminate up to 1/N of the dynamic calls

involved in the recursion. This is usually acceptable for N greater than 1.

W=I

W

inlined I times

Figure 8: Handling single-function recursions.

If N is equal to 1, breaking the cycle will eliminate all the opportunity of reducing the dynamic

calls in the recursion. If the recursion happens to be the dominating cause of dynamic function

calls in the entire program, one would lose most of the call reduction opportunity by breaking the

cycle. There is, however, a simple solution to this problem (see Figure 8). One can inline the

recursive function call I times before breaking the cycle. In this case, one loses only 1/I of the call

reduction opportunity by breaking the cycle. The weighted call graph becomes a directed acyclic

graph after all the cycles are broken. All the following discussions assume this property.

It is desirable to expand as many frequently executed function calls, i.e. heavily weighted arcs in

the call graph, as possible. However, unlimited inline expansion may cause code size explosion. In

order to expand a function call, the body of the callee must be duplicated and the new copy of the

callee must be absorbed by the caller. Obviously, this code duplication process in general increases
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program code size. Therefore, it is necessary to set an upper bound on the code size expansion.

This limit may be speci�ed as a �xed number and/or as a function of the original program size.

The problem with using a �xed limit is that the size of the programs handled varies so much that it

is very di�cult to �nd a single limit to suit all the programs. Setting the upper limit as a function

of the original program size tends to perform better for virtual memory and favor large programs.

We chose to set the limit as a percentage of the original program size through a compiler option.

Code size expansion increases the memory required to store the program and a�ects instruction

memory hierarchy performance. Precise costs cannot be obtained during inline expansion because

the code size depends on the optimizations to be performed after inline expansion. The combination

of copy propagation, constant propagation, and unreachable code removal will reduce the increase

in code size. Some original function bodies may become unreachable from the main function and

can be eliminated after inlining. Also, a detailed evaluation has shown that code expansion due to

inlining does not necessarily reduce the instruction cache performance [17]. Therefore, the cost of

inlining is estimated based on the intermediate code size increase rather than the accurate e�ect

on the the instruction memory system performance .

Accurate bene�ts of inline expansion are equally di�cult to obtain during inline expansion. In-

line expansion improves the e�ectiveness of register allocation and algebraic optimizations, which

reduces the computation steps and the memory accesses required to execute the program. Because

these optimizations are performed after inline expansion, the precise improvement of their e�ec-

tiveness due to inline expansion cannot be known during inline expansion. Therefore, the bene�t

of inline expansion will be estimated only by the reduction in dynamic function calls.

The problem of selecting functions for inline expansion can be formulated as an optimization

problem that attempts to minimize dynamic calls given a limited code expansion allowance. In
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terms of call graphs, the problem can be formulated as collecting a set of arcs whose total weight

is maximized while the code expansion limit is satis�ed. It appears that the problem is equivalent

to a knapsack problem de�ned as follows: There is a pile of valuable items each of which has a

value and a weight. One is given a knapsack which can only hold up to a certain weight. The

problem is to select a set of the items whose total weight �ts in the knapsack and the total value is

maximized. The knapsack problem has been shown to be NP-complete [18]. However, this straight

forward formulation is unfortunately incorrect for inlining. The code size of each function changes

during the inlining process. The code size increase due to inlining each function call depends on

the decision made about each function call. The decision made about each function call, in turn,

depends on the code size increase. This dilemma is illustrated in Figure 9.

L

F

A

inlining only F

inlining both F and L

F

L

A

F

L

A

Figure 9: Inter-dependence between code size increase and sequencing.
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If L is to be inlined into F, the code expansion due to inlining F into A is the total size of F

and L. Otherwise, the code expansion is just the size of F. The problem is that the code increase

and the expansion decision depend on each other. Therefore, inline expansion sequencing is a even

more di�cult than the knapsack problem. Nevertheless, we will show that a selection algorithm

based on the call reduction achieves good results in practice.

The arcs in the weighted call graph are marked with the decision made on them. These arcs

are then inlined in an order which minimizes the expansion steps and source �le accesses incurred.

Di�erent inline expansion sequences can be used to expand the same set of selected functions.

For example, in Figure 10, Function D is invoked by both E and G. Assume that the selection

step decides to absorb D, B, and C into both E and G. There are at least two sequences which

can achieve the same goal. One sequence is illustrated in Figure 10, where E!D and G!D are

eliminated �rst. Note that by absorbing D into both E and G (and therefore eliminating E!D and

G!D in two expansion steps), four new arcs are created: E!B, E!C, G!B, and G!C. It takes

four more steps to further absorb B and C into both E and G to eliminate all these four new arcs.

Therefore, it takes a total of 6 expansion steps to achieve the original goal.

A second sequence is illustrated in Figure 11, where B and C are �rst absorbed into D, elimi-

nating D!B and D!C. Function D, after absorbing B and C, is than absorbed into E and G. This

further eliminates E!B and E!C. Note that it only takes a total of 4 expansion steps to achieve

the original goal. The general observation is that if a function is to be absorbed by more than one

caller, inlining this function into its caller before absorbing its callees can increase the total steps

of expansion.

For the class of inlining algorithms considered in this paper, the rule for minimizing the expan-

sion steps can be stated as follows: If a function F is absorbed into more than one caller, all the
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callees to be inlined into F must be already inlined. It is clear that any violation against this rule

will increase the number of expansions. It is also clear that an algorithm conforming to this rule

will perform N expansion steps, where N is the number of function calls to be inlined. Therefore,

an algorithm conforming to the rule is an optimal one as far as the number of expansion steps is

concerned.

In a directed acyclic call graph, the optimal rule can be realized by an algorithm manipulating

a queue of terminal nodes. The terminal nodes in the call graph are inlined into their callers if

desired and eliminated from the call graph. This produces a new group of terminal nodes which

are inserted into the queue. The algorithm terminates when all the nodes are eliminated from the

call graph. The complexity of this algorithm is O(N), where N is the number of function calls in

the program eligible for inlining.

We implemented a simpler sequence control method that approximates the optimal queue-based

algorithm. Inline expansion is constrained to follow a linear order. The functions are �rst sorted

into a linear list according to their weights. The most frequently executed function leads the linear

list. A function X can be inlined into another function Y if and only if X appears before Y in the

linear list. Therefore, all inline expansions pertaining to function X must already have been done

before function Y is processed. The rationale is that functions which are executed frequently are

usually called by functions which are executed less frequently.

Program modi�cations: The �fth issue regarding function inline expansion is what the es-

sential operations for inlining a function call are. This task consists of the following parts: 1)

callee duplication, 2) variable renaming, 3) parameter handling, and 4) elimination of unreachable

functions.
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To avoid con
icts between the local, parameter, and static variables of the caller and those of

the callee, our C compiler creates a global name space for the entire program in the intermediate

representation. This is achieved by a renaming mechanism invoked before inlining.

The inliner handles formal parameters by assigning the actual parameter values to them. The

return value has to be assigned to new local temporary variables so that it can be used by the

caller. These assignments are often eliminated later by constant and copy propagation and dead

code elimination.

Because programs always start from the main function, any function which is not reachable

from the main function will never be used and can be removed. A function is reachable from the

main function if there is a directed path in the call graph from the main function to the function,

or if the function may serve as an exception handler, or be activated by some external functions.

In the C language, this can be detected by identifying all functions whose addresses are used in

computations.

EXPERIMENTS

Table 1 shows the set of classic local and global code optimizations that we have implemented

in our prototype C compiler. These code optimizations are common in commercial C compilers.

We have also implemented a priority-based global register allocator which uses pro�le information

to allocate important variables into processor registers. This register allocator assigns variables to

caller-save and callee-save registers intelligently to remove part of the function calling overhead.

Table 2 shows a set of eight C application programs that we have chosen as benchmarks. The

size column indicates the sizes of the benchmark programs in terms of number of lines of C code.

The description column brie
y describes each benchmark program.
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local global

constant propagation constant propagation

copy propagation copy propagation

common subexpression elimination common subexpression elimination

redundant load elimination redundant load elimination

redundant store elimination redundant store elimination

constant folding loop invariant code removal

strength reduction loop induction strength reduction

constant combining loop induction elimination

operation folding global variable migration

dead code removal dead code removal

code reordering loop unrolling

Table 1: Code optimizations.

name size description

cccp 4787 GNU C preprocessor

compress 1514 compress �les

eqn 2569 typeset mathematical formulas for tro�

espresso 6722 boolean minimization

lex 3316 lexical analysis program generator

tbl 2817 format tables for tro�

xlisp 7747 lisp interpreter

yacc 2303 parsing program generator

Table 2: Benchmarks.

name runs description

cccp 20 C source �les (100-5000 lines)

compress 20 C source �les (100-5000 lines)

eqn 20 ditro� �les (100-4000 lines)

espresso 20 boolean minimizations (original espresso benchmarks)

lex 5 lexers for C, Lisp, Pascal, awk, and pic

tbl 20 ditro� �les (100-4000 lines)

xlisp 5 gabriel benchmarks

yacc 10 grammars for C, Pascal, pic, eqn, awk, etc.

Table 3: Characteristics of pro�le input data.
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Table 3 describes the input data that we have used for pro�ling. The runs column lists the

number of inputs for pro�ling each benchmark program. The description column brie
y describes

the nature of these input data. Executing each benchmark program with an input produces a

pro�le data �le. For each benchmark program, its pro�le data �les are summarized into one pro�le

data �le, which is used to guide the automatic inline expander. To evaluate performance, we use

a di�erent input data than those used for pro�ling to measure the execution time of the compiled

program.

name external pointer intra-�le inter-�le inlined

cccp 143 1 191 4 23

compress 104 0 27 0 1

eqn 192 0 81 144 17

espresso 289 11 167 982 19

lex 203 0 110 234 6

tbl 310 0 91 364 46

xlisp 91 4 331 834 28

yacc 218 0 118 81 14

Table 4: Static characteristics of function calls.

name external pointer intra-�le inter-�le inlined

cccp 1015 140 1414 3 1183

compress 25 0 4283 0 4276

eqn 5010 0 6959 33534 37440

espresso 728 60965 55696 925710 689454

lex 13375 0 63240 4675 56991

tbl 12625 0 9616 37809 35504

xlisp 4486885 479473 10308201 8453735 14861487

yacc 31751 0 34146 3323 33417

Table 5: Dynamic characteristics of function calls.

Table 4 describes the static or compile-time characteristics of function calls.4 The external

4We report call sites that are visible to the compiler.
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column shows the numbers of static call sites that call functions whose source codes are not available

to the compiler. The pointer column shows the number of static call sites that call through pointers.

The intra-�le column shows the number of static call sites that call functions in the same source

�le. The inter-�le column shows the number of static call sites that call functions in a di�erent

source �le. The inlined column shows the number of static call sites that are inlined expanded.

Table 5 describes the dynamic or execution-time characteristics of function calls.

Note that several benchmark programs have large fraction of calls to external functions, such as

cccp, xlisp, and yacc. Currently, we do not have access to the source code of the C library functions.

Including these C library functions in inline expansion will reduce the relative importance of external

function calls. Our inliner can inline call sites that are shown in both the inter-�le and intra-�le

columns. Tables 4 and 5 show that inlining a small percentage of static call sites removes a large

percentage of dynamic calls. Since the number of static call sites inlined directly correspond to the

compile time spent on inlining, this result clearly shows that pro�le information allows the compiler

to spend only a small portion of the compile time budget to eliminate most of the dynamic calls.

name global global+inline ratio

cccp 172564 215420 1.25

compress 72300 73228 1.00

eqn 130376 157528 1.21

espresso 311544 338508 1.09

lex 156148 165468 1.06

tbl 181064 214036 1.18

xlisp 267268 354092 1.32

yacc 141268 164584 1.17

Table 6: Code expansion (DEC-3100).

Table 6 indicates the code expansion ratios of the benchmark programs. The global column

shows the program sizes in bytes before inline expansion. The global+inline column shows the
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name global global+inline

cccp 1.00 1.06

compress 1.00 1.05

eqn 1.00 1.12

espresso 1.00 1.07

lex 1.00 1.02

tbl 1.00 1.04

xlisp 1.00 1.46

yacc 1.00 1.03

average 1.00 1.11

Table 7: Speedups (DEC-3100).

program sizes in bytes after inline expansion. The ratio column shows the code expansion ratios.

The average code expansion ratio for the benchmark programs is about 1.16.

Table 7 shows the speedups of the benchmark programs. The speedup is calculated based on the

real machine execution time on a DEC-3100 workstation. The global+inline column is computed

by dividing the execution time of non-inlined code by the execution time of inlined code. Note

that intelligent assignment of variables to caller-save and callee-save registers has already removed

part of the overhead of function calls in non-inlined code. The average speedup for the benchmark

programs is about 1.11.

Table 8 shows the speedup comparison of code produced by MIPS CC 5 and GNU CC 6 with

our �nal inlined code. The code produced by MIPC CC and GNU CC is slightly slower than our

inline code. The speedup is calculated based on the real machine execution time on a DEC-3100

workstation. Note that MIPS CC performances link-time inline expansion and GNU CC performs

intra-�le inline expansion, both before code optimization. The purpose of Table 8 is to calibrate our

�nal inlined code with the code generated by other optimizing compilers. Because the compilers

5MIPS CC release 2.1 -O4
6GNU CC release 1.37.1 -O
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name IMPACT global+inline MIPS -O4 GNU -O

cccp 1.00 0.93 0.92

compress 1.00 0.98 0.94

eqn 1.00 0.92 0.91

espresso 1.00 0.98 0.87

lex 1.00 0.99 0.96

tbl 1.00 0.98 0.93

xlisp 1.00 0.88 0.76

yacc 1.00 1.00 0.90

Table 8: Speed comparison with other compilers (DEC-3100).

have di�erent optimization capabilities, the speedup comparison should not be used to compare

the inline capabilities of these compilers.

CONCLUSION

An automatic inliner has been implemented and integrated into an optimizing C compiler. The

inliner consists of 5200 lines of commented C statements and accounts for about 3% of the source

code in our compiler. In the process of designing and implementing this inliner, we have identi�ed

several critical implementation issues: integration into a compiler, program representation, hazard

prevention, expansion sequence control, and programmodi�cation. In this paper, we have described

our implementation decisions. We have shown that this inliner eliminates a large percentage of

function calls and achieves signi�cant speedup for a set of production C programs.
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