
An Execution Pro�ler for Window-oriented Applications

Aloke Gupta and Wen-Mei W. Hwu

Center for Reliable and High-performance Computing

University of Illinois, Urbana-Champaign
hwu@crhc.uiuc.edu

SUMMARY

Execution pro�les are important in analyzing the performance of computer programs on a
given computer system. However, accurate and complete pro�les are di�cult to arrive at for
programs that follow the client-server model of computing, as in the popular X Window System.
In X Window applications, considerable computation is invoked at the display server and this
computation is an important part of the overall execution pro�le. The pro�ler presented in this
paper generates meaningful pro�les for X Window applications by estimating the time spent
in servicing the messages in the display server. The central idea is to analyze a protocol-level
trace of the interaction between the application and the display server and thereby construct an
execution pro�le from the trace and a set of metrics about the target display server. Experience
using the pro�ler for examining bottlenecks is presented.

Key Words: Execution pro�ling, Window systems, Distributed processing, Client-server

computing, X Window System, Protocol-level pro�ling.

INTRODUCTION

Execution pro�les are an important aid in analyzing the performance of computer programs

on a given computer system [1, 2]. Such pro�les are helpful in providing information about the

dynamic, or run-time, behavior of the program. This run-time information can lead to insights

about the performance bottlenecks in a program, which allows the programmers to better focus

their e�orts when tuning the program performance.

However, accurate and complete pro�les are di�cult to arrive at for programs that follow the

client-server model of computing. In this model, which is followed by programs in the XWindow

1

System [3, 4], the client programs request various services from servers by exchanging messages

with them. In the client program, the routines that invoke the computation at the server are

merely stub routines that send the appropriate request message to the server. The request may

invoke substantial computation at the server, but the execution time of this computation may

not be reected in the pro�led execution time of the stub routine.

This paper describes Xprof , an execution pro�ler for X Window applications. The X Win-

dow System follows the client-server paradigm. A display server , the X server , manages the

actual display hardware and controls access to the graphics and windowing functions on the

display. It also receives the user input from the mouse and keyboard. The application pro-

grams, or clients , achieve graphical and windowing functions by means of high-level messages

exchanged with the display server by following a network protocol [5]. The display server alone

has access to the actual display hardware and renders the high-level requests on it. The in-

teraction between the client and server programs is network transparent in the sense that the

communication protocol is followed even when the client program runs on the same processor

host as the display server.

Distributed systems have come into widespread use recently [6, 7]. Such systems often

consist of groups of autonomous computers, or nodes , connected together over a local area

network, or LAN . The node computers often perform dedicated specialized tasks, but are

also exible enough to share di�erent tasks among themselves. As shown in Figure 1, the

distributed system may contain, among others, �le servers for maintaining the disk storage

in the system, computation servers , which are fast numerical processing oriented machines,

and display servers , which are the window-oriented display units with or without the ability

to perform user computations. In Figure 1 the display servers that also have general purpose

2

Bitmap Display

(Display Server)

LAN

(Local Area
Network)

Server
File

Server
File

Workstation

(Computation/
Display Server)

Workstation

(Computation/
Display Server)

Computation
Server

Computation
Server

Bitmap Display

(Display Server)

Figure 1: Distributed System Model.

computation capability are referred to as workstations , and the ones that are optimized as

dedicated display servers are referred to as bitmap displays . In the X Window domain, the

latter are commonly referred to as X terminals .

A meaningful pro�le of an X Window application program, or client, must account for the

following three aspects:

1. The execution pro�le of the client program itself. This can be measured by a traditional

execution pro�ler [1, 2].

2. The time spent in servicing the requests at the display server.

3. The time spent in transferring the client-server communication messages over the con-

nection between them. This is especially meaningful when the two programs are run on

3

di�erent machines and connect over a network.

The pro�ler described in this paper, Xprof, estimates the time spent in the display server

and in the network connection and constructs an execution pro�le of the requests made by

a client program. It achieves this by analyzing a trace of the interaction between the client

and the display server programs at the X protocol level. It assigns a computation cost to each

request on the basis of its attributes by consulting a set of parameters about the display server.

The network time for each request is estimated on the basis of the size of the request message

and the speed and latency of the network connection.

The principal advantages of this protocol-level pro�ling strategy, which may be applied

to analyze all systems that follow the client-server paradigm are as follows. First, one can

identify the most time consuming part of the client application by taking all the aspects into

account, including the time spent in the server and the network. Second, by combining the

results of Xprof with the results of a conventional execution pro�le of the application program,

one can identify how the computation is being distributed between the client and the display

server. Third, our technique permits cross-display-server pro�ling. One can take a trace from

a particular client-server con�guration and generate pro�les for other display servers for the

same client. This allows application developers to tune their applications for many display

servers at the same time. Also, system designers can use the tool to predict the performance

of applications on new or hypothetical hardware.

Other advantages of this strategy include the following. Since the trace collection is done

at a protocol level, there is no need to recompile the client or server programs for tracing.

This feature is especially useful since the user does not have to recompile the X server or the

4

X libraries, both of which are fairly large and complex pieces of software, for pro�ling. Also,

even though the tracing procedure causes some slow down in the processing of the requests,

this may not matter for the client programs that tend to make asynchronous requests. The

trace collector may be run on a third processor host to minimize the conict for computation

resources. Furthermore, for most client programs, if the tracing program is slow, it a�ects the

arrival distribution of the messages but not their information content. Thus the post-processing

done on the trace by Xprof can still provide a meaningful picture of the computation invoked

by them.

REVIEW OF PROFILER STRATEGIES

Client pro�le Procedure-level pro�lers such as Prof and Gprof are frequently used to de-

rive the execution pro�les of conventional programs [1, 2]. These pro�lers entail recompiling

the source code of the program to insert pro�ling code within the object code and are use-

ful in studying the computation bottlenecks within the client program. As shown in Figure 2,

procedure-level pro�lers generate information about the procedure calling pattern within a pro-

gram. However, for a client program in the client-server model, these procedure-level pro�lers

lose the information about the execution time of requests at the server. This is because the

routines that invoke the computation at the server, such as procedure P9 in Figure 2, are

merely stub routines that send the appropriate request messages to the server.

Server pro�le The traditional pro�lers can also be used to instrument the display server.

There are several disadvantages to this approach. First, the display server is usually a fairly

large program and its size can grow appreciably when it is recompiled for pro�ling. Secondly,

5

Client Network

P2 P3

P1

Server

P4 P5 P6 P7

P8 P9

P10

P11 P12

P13 P14 P15

P16

P17 P18 P19 P20

P21 P22

Figure 2:

the server pro�le fails to give any information about the link between the requests from a

speci�c client and the corresponding execution in the server. Thirdly, the pro�le usually gives a

total information about the functions invoked and the total time spent in them. Since requests

are frequently made with di�erent attributes, it is not possible to analyze the distribution of

the weight of each request as executed in the server.

In an e�ort to identify server bottlenecks, we instrumented the X Window display-server

for a Sun 4/IPC Sparcstation using the popular procedure-level pro�ler Gprof. However, the

pro�les generated were not very meaningful. It turned out that the procedure calling pattern

within the X Window server is quite complex with a number of self-referential loops in the

calling graph and with multiple calling paths for many of the leaf procedures. Gprof uses a

statistical approach for estimating the pro�le in order to keep pro�ling overhead low. In doing

6

so, it propagates execution time up along the calling graph equally along each calling path. For

a simple calling sequence this approach works well, but, for the X server pro�led, the resulting

pro�le could not be used to draw any meaningful conclusions.

Another approach is to measure the execution times of frequently invoked requests. In

this strategy, followed by the X Window program x11perf , a special measurement program

measures the runtimes for the requests for a set of values of the possible attributes. The

information collected is very useful for comparing the performance of two di�erent display

servers. However, the data obtained are of limited utility for gauging the performance of a

given application program since the user has to make a judgement about which of the requests

are critical to the program and for which attribute values. Xprof makes a partial use of this

approach by using a measurement program to generate a set of parameters for the target display

server and making using of these, in addition to a protocol trace, to construct an execution

pro�le.

Network pro�le Traditionally, network tra�c is studied by measuring the load on a network

by using a network monitor that logs all the packets on the network [8, 9]. Such measurements

can give a good idea of the transport time of the request messages and the overall distributions

of arrival time and byte-size of the packets. As with x11perf, it is di�cult to relate such

measurement to the performance of the actual application programs. However, there is a close

correlation between the X protocol tra�c and the actual tra�c on the underlying network

[10]. Therefore, the network aspect of an X Window application may also be deduced from the

protocol trace. Such a study has been done by Linton and Dunwoody [11].

7

Xprof Xprof automates the process of evaluating the performance of an application pro-

gram on a target display server by consulting a set of performance parameters collected by

an associated measurement program Xmeasure. Thus, it combines the information about the

client-server interaction, in the trace, with the information about the display server to arrive at

a meaningful execution pro�le. It also estimates the the time spent in network communication

on the basis of the size of each request, in bytes, and the speed and latency of the network. It is

thus able to arrive at a meaningful execution pro�le of the application with respect to the dis-

play server processing and the network communication overhead and identi�es the contribution

of each request type to this execution time.

MESSAGES IN THE X WINDOW SYSTEM

The X protocol supports a rich variety of message types for client-server communication

[5, 3]. There are, broadly speaking, four broad categories of messages, i.e., Requests , Replies ,

Events , and Errors . Request messages are sent by the client program to the display server

to request various windowing and graphics functions. Replies are sent from the display server

to the client programs in response to requests that ask for some information from the server.

Events are sent from the server to the client programs and are usually a consequence of real-time

activities of the user, such as mouse movements and key presses. Lastly, errors are warning

messages of various types that are sent from the server to the client. Figure 3 shows this

broad hierarchy of messages types. The subtypes of each message category are not enumerated

because the number of message types de�ned in the X Window System is over two hundred.

The X Window protocol manual describes the details of each message type [5].

8

.

Server-to-client

Reply ErrorEvent

Client-to-Server

Request

Figure 3: X protocol messages.

Requests The Request messages invoke computation on the server, as requested by the client.

These messages are analyzed in detail by Xprof for their statistical distribution and for the

processing invoked on the server. Asynchronous, or one-way , request messages form the bulk

of the messages traded in a typical X Window session. Since they do not require a reply from

the server they can be pipelined on the network connection. The synchronous, or round-trip,

messages, on the other hand, block until a reply is received and thus incur the overhead of

network latency.

Message attributes Each of the messages has a number of attributes associated with it,

e.g., the byte-size of each message is simply the actual size of the messages, in bytes. Event

and Error messages are always 32 bytes long, but Requests and Replies can range in length

from 32 bytes to 64 Kbytes depending on their information content. Other attributes depend

on the type of the message, e.g., the CopyArea request has associated with it the information

about the location and size of the source and the location of the destination of the area copy.

Similarly the line drawing request, PolyLine, invokes the attributes regarding the line length,

line width, �llstyle etc.

9

Server

Display

Collector

Trace

File
Trace

Program
Client X

Protocol

X

Protocol

Figure 4: Trace Collection.

TRACE COLLECTION: XSCOPE

As discussed earlier, in the XWindow System application programs, or clients , communicate

with a display server program to request windowing and graphics services on the display. The

communication is speci�ed by a high-level protocol. A trace of the protocol messages is enough

to characterize the computation invoked by the client program at the display server. Xprof is

designed to analyze such a trace. An advantage of this approach is that there is no need to

recompile the applications, or the display server, for collecting the pro�les. An existing program,

Xscope1, was selected as the trace collection program. It is distributed with the source code of

the X Window System and is thus available on all the X Window platforms.

As shown in Figure 4, the tracing program, Xscope, is set up to communicate with the

display server and to act as a \dummy server". The client programs communicate with it as

if dealing with an X server. Xscope passes on all the messages to and from the actual display

server after logging them in a �le. The degree of detail of the trace collection may be set up as a

1Xscope was written by James Peterson of MCC.

10

command line option. Each of the three programs in Figure 4 may run on their own computation

hosts. The slow down of the client-program, caused by the trace collection, depends on the

speed of the trace-collector host. In practice, clients that make high-level requests, such as

geometrical �gures, incur very little performance degradation, but clients that request large

data transfers with the server may be slowed down by an order of magnitude.

TRACE ANALYSIS: XPROF

The protocol-level trace, collected by Xscope, is analyzed by Xprof , the trace analyzer and

pro�ler program. This program constructs a statistical analysis of the messages exchanged and

also constructs an execution pro�le of the session on the basis of parameters describing the

target display server and the network connection.

After running Xprof on a trace, the end-user may chose to re�ne the trace analysis in order

to bring out the details of interest. These re�nements would be made in terms of better selection

of the sizes of the data structures that are used to accumulate statistics or by supplying more

precise values of the pro�ling parameters for the critical requests. These steps are discussed,

in greater detail, in the section entitled \Re�ning the measurements". The analysis process is

summarized in Figure 5.

Pro�le generator For an application program running in a client-server environment, the

total execution time, T of the program can be expressed as the sum of the total time spent in

the client program itself and the time spent in servicing the requests, i.e.,

T = Tclient + Tserver (1)

When the client and server programs execute, asynchronously, on di�erent computation

11

Network parameters

Display-server and

Customizations

profile
Execution

Analysis
Statistical

Generator

Profile

Analyzer

Trace

file

Trace

Figure 5: Overview of trace analysis.

hosts, their activities go on with some degree of concurrency and so the actual execution time

would be less than the term T calculated above. Therefore, the above equation is actually an

approximation of the total program execution time.

So,

T = Tclient + Tserver � Toverlap (2)

The time spent in the server, Tserver is the sum of the time spent in servicing the client

requests and the time spent in processing real-time events such as mouse movement and key

strokes, i.e.,

Tserver = Trequests + Tevents (3)

For an X Window application, Xprof estimates the Trequests in Equation 3 on the basis of

the contribution of each type of request. Let R be the set of all request messages sent to the

12

display server and let ri be the ith message. If Tri is the time spent in servicing the message ri

then the total time of processing requests, Trequests, is given by the following equation:

Trequests =
X

ri2R

Tri (4)

Tri can be expressed as the sum of the time actually spent in executing the requested operation

on the display server, i.e., T server
ri

. and the time spent in transporting the request message

across the network, i.e., Tnet
ri

.

Tri = T
server
ri

+ T
net
ri

(5)

Server time For computing the server time term T
server
ri

the information content, or at-

tributes, of each message must be taken into account. A particular invocation of a request may

be made from a wide range of values for various attributes of the message, e.g., in order to

draw a line, the width and the length of the line drawn are both important in determining the

execution time of the request. Other attributes include the line-style, i.e., whether to draw the

line continuous or dashed. Thus,

T
server
ri

= f(attributesri) (6)

The computation of T server
ri

is discussed, in greater detail, in the section \Pro�ler Details"

The statistical analysis of messages is also discussed there. The application of the computation

is studied in the section \Results".

Network time The network time term, Tnet
ri

is relatively easy to compute in terms of the

size of each request in bytes and the average network speed and latency. The network latency

matters only for synchronous requests, which block until they receive a reply from the display

13

server. With each request one can associate a boolean variable, blockingri, which is true if the

request type is synchronous and false otherwise. Then, for the ith request,

T
net
ri

= (bytesizeri=netspeed) + (blockingri � netlatency) (7)

Steps in processing the trace input The pro�ler, Xprof, thus analyzes the protocol-level

trace and makes use of the metrics supplied to it about the target display server and the

network connection. For each instance of the requests, as seen in the trace, Xprof goes through

the following steps.

Step 1: Read in the timestamp, the byte-size of the request message and the relevant at-

tributes. Compute the operation size, or op-size, for the message.

Step 2: Update the histograms of byte-size, op-size, and arrival time distributions.

Step 3: Compute T
net
ri

for the request on the basis of its byte-size and enter it in the data

structure for this request type.

Step 4: Compute T
server
ri

for the request on the basis of its op-size and other attributes and

enter it in the data structure for this request type.

Some messages a�ect the state of the display server, e.g., messages that change the graphics

context a�ect the attributes of future graphical requests. Xprof maintains the server state and

computes the attributes of a�ected requests from it.

When the trace analysis is complete, Xprof prints out the statistical distribution of the

messages and a summary of the time spent in serving each type of request.

14

COLLECTION OF SERVER METRICS: XMEASURE

The Xmeasure program is used the collect the server parameters for a given display server.

It runs measurements for each of the requests de�ned in the X Window protocol, for a wide

range of attribute values. This program is thus similar to the X Window program x11perf

and is designed to output its results in a format suitable for parsing by Xprof. For each

request, the measurements are made for a wide range of attribute values critical to that request.

Each measurement is made by requesting a large number of operations within two, carefully

measured, synchronization points. The rate of the operation execution is printed out along

with the attributes.

For each request type, the key attribute identi�ed is the op-size, which is de�ned appro-

priately for the request. The op-size is a measure of the grain of the computation invoked on

the server and thus di�erent from the \byte-size" of the request packet. For instance, for a

data transfer request, such as PutImage, or CopyArea, the op-size would be the area of the

target. For a line drawing request the line length is taken to be its op-size. Table 1 shows some

measurement results for typical request invocations on three popular color workstations, i.e.,

Sun 4/IPC, DECStation 3100, and HP 9000.

The xmeasure results, or server parameters are supplied to Xprof in the form of a description

language. Each entry in the parameters description �le has the following format:

Request Name [attribute 1 =< value 1 >] [attribute 2 =< value 2 >] : : :

: : : [attribute n =< value n >] (opsize; rate) (8)

where attributes 1 through n are the attributes appropriate to that message and the \rate"

is the number of operations per second that were measured for the speci�ed op-size. Any

15

Table 1: Xmeasure measurements for common client requests
Request Size Typical Time per operation (ms)

Attributes Sun 4/IPC DS 3100 HP 9000/350

PutImage 10x10 depth=8 0.29 0.84 1.46
100x100 depth=8 10.50 11.39 51.23
300x300 depth=8 89.45 96.25 537.63

PolyLine length=10 width=0 0.035 0.046 0.105
length=100 width=0 0.043 0.056 0.159
length=300 width=0 0.087 0.092 0.361

PolyText8 strlen=8 font=6x13 0.32 0.38 2.60
strlen=32 font=6x13 1.07 1.13 6.71

ClearArea 10x10 depth=8 0.43 0.31 3.36
100x100 depth=8 1.69 1.48 3.37
300x300 depth=8 10.19 9.51 5.21

CopyArea 10x10 depth=8 0.31 0.38 6.55
100x100 depth=8 1.86 1.84 4.81
300x300 depth=8 15.36 15.36 6.79

PolyFillRectangle 10x10 �llstyle=Solid .049 .055 .189
100x100 �llstyle=Solid 1.17 1.07 0.49
300x300 �llstyle=Solid 9.58 9.01 2.84

number of entries may be given for a particular request, say for di�erent values of op-sizes and

attributes.

It turns out that the op-size is adequate to characterize the performance of most of the

Request types. The graphics requests 2 are a notable exception to this general observation. At

an early stage of the design, it was decided to limit the types of possible graphics attributes,

handled by Xprof, to four. These are as follows:

1. Gxmode refers to the boolean function that is used to combine source and destination

pixels. Typically an application will either choose to replace the destination pixel with a

completely new value, or, combine the old value with the new value of the destination and

write it back. The second type of operation is usually more expensive than the �rst type

2There are 8 graphics requests, i.e., PolyPoint, PolyLine, PolySegment, PolyRectangle, PolyArc, FillPoly,

Poly�llRectangle, and PolyFillArc.

16

because of the extra memory access involved. Therefore, this attribute is maintained for

these two types.

2. Linewidth is the width of a line, in pixels. Zero width has a special meaning in the

X Window System and o�ers a hint to the server that it may use a hardware algorithm,

if any, to draw a line of width 1. All other linewidths are generally drawn by a software

algorithm. Any number of linewidths could be invoked by an application. Owing to

practical considerations, this variable is allowed to have up to four values. Computation

time for other line widths is interpolated from the runtimes for the available line widths.

3. Fillstyle may call for solid �lling, in the default case, or specify �lling a region with a

standard tile or with a supplied pixmap. Again, one value of this attribute is allowed to

have value of solid �ll and the others are all clubbed together.

4. Linestyle may require solid lines or various types of dashed lines. The solid linestyle is

treated as one value of this attribute and the others are treated together.

Figure 6 shows the entries for the requests for creating windows and for line drawing. These

were gathered from an actual measurement run for the Sun 4/IPC Sparcstation.

17

CreateWindow (0,4717.030)

...

PolyLine gxmode=GXcopy linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (100,19161.61)

PolyLine gxmode=GXcopy linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (300,10428.97)

PolyLine gxmode=GXxor linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (100, 8423.40)

PolyLine gxmode=GXxor linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (300, 3309.19)

...

PolyLine gxmode=GXxor linestyle=LineDoubleDash fillstyle=FillOpaqueStippled \

linewidth=10 (100, 45.31)

PolyLine gxmode=GXxor linestyle=LineDoubleDash fillstyle=FillOpaqueStippled \

linewidth=10 (300, 20.67)

...

PolyText8 fontname=6x13 (8, 3121.67)

PolyText8 fontname=6x13 (32, 934.63)

...

Figure 6: Typical entries for server parameters.

PROFILER DETAILS

Server time The approach followed in Xprof is to estimate the server execution time, i.e.,

T
server
ri

, for a given request by interpolating from a supplied list containing information about

execution speeds of the requests for typical values of op-size and other attributes. This informa-

tion is provided to Xprof in the format discussed earlier and is typically generated by running

the program Xmeasure on the target workstation.

Thus, the problem of estimating the cost of a request reduces to one of selecting and inter-

polating from values supplied in a list of information about the costs of a set of standardized

requests. Since there is a very large number of possible attributes for each request and each

could have possibly limitless values, it is necessary to limit the range of attributes that are

actually measured and used. The design choice made in Xprof is to use the op-size as the sole

attribute for the vast majority of requests. The graphics requests are measured for all four

18

typedef union _MsgCost {

CostCell *window; /* Pointer to a list of costs */

CostCell **gfx; /* Array of graphics cost lists */

CostCell **txt; /* Array of text cost lists */

} MsgCost;

typedef struct _CostCell {

float size; /* Size for which this measurement was made */

float speed; /* Speed in size units per second */

struct _CostCell *nextcost; /* Next data point for size and speed thereof */

} CostCell;

Figure 7: C data structures for maintaining the measured cost of a message in Xprof.

attributes discussed earlier. In the current implementation the linewidth is allowed to have

up to 4 values and the other attributes are allowed to have up to two values each. Thus, 32

variations of the graphics attributes are possible for each value of op-size chosen. The text

rendering requests are also maintained for upto 32 possible fonts.

As described earlier, for each set of attribute values, Xmeasure makes many di�erent mea-

surements for the possible values of op-sizes. Thus, it is necessary to devise a way of storing

and retrieving the measured information. Xprof maintains the display-server measurements in

an array of lists as shown in Figure 7 and Figure 8.

Figure 8 shows the request CreateWindow as representative of most request messages, which

have associated with them a linked list of size and speed pairs. Graphics requests, such as

PolyLine, have an array of lists | one list for each combination of allowed attribute values.

Initially, each list is empty. During initialization, the entries, as shown in Figure 6 are read and

the size-pair entry is entered in the appropriate list, which is maintained in ascending order of

size for easy searching. In terms of the C language, there is an array of pointers called MsgCost

that has one entry for each request. For the graphics and text requests, the array entry points

19

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CreateWindow

PolyLine

.

.

.

0

1

31

PolyText8

.

.

.

.

.

.

0
font = 6x13

1

31

linestyle=LineSolid
gxmode=GXcopy

�llstyle=FillSolid

lineWidth =0

gxmode=GXxor
linestyle=LineSolid
�llstyle=FillSolid

linewidth =0

op-size=0
speed=4717.03

op-size=100
speed=19161.61

op-size=100
speed=8423.40

op-size=100
speed=45.31

linewidth=10

�llstyle=OpqStpld
linestyle=DblDash
gxmode=GXxor

op-size=8

speed=3121.67

op-size=300
speed=10428.97

op-size=300
speed=3309.19

op-size=300
speed=10.67

op-size=32

speed=934.63

Figure 8: Message costs as maintained by Xprof. Data shown are for the earlier example, as
measured for the Sun 4/IPC workstation.

20

to an array of lists comprised of the CostCell structure. All other requests have an entry that

points to a single list of CostCell structures.

During trace analysis, for each request encountered, Xprof searches for an entry matching

its size and attributes in the MsgCost array. There are three possible outcomes of this search.

First, an exact match may be found for the given request's attributes and op-size. In this

case the Tri term is easily computed from the speed of the matching entry. Second, an exact

match for the attributes may be found, but the entry for the exact op-size may not be found

in the linked list. In this case, the solution is to interpolate the term for speed from the entries

that match the desired op-size most closely. Third, in the worst case, there may be no exact

match for the attributes desired. In this case, for each of the nonmatching attributes, Xprof

substitutes another, measured, attribute on the basis of heuristics. For example, in the current

implementation of Xprof, the gxmode gxand would be replaced by the more common gxmode

gxxor , which is also a two operand function. Similarly the gxmode gxset would be replaced by

gxcopy , which is a one operand operation too. In this way a set of attributes is obtained for

which there is an entry in the MsgCost array and a cost is computed as in the earlier cases. A

warning message is printed out detailing the substitutions made.

Example The following example illustrates the computation of Tri . Say, Xprof sees the

following three PolyLine requests in the trace. In each case the op-size refers to the length of

the line in pixels. Also, PolyLine is a graphics request and so the various graphics attributes

need to be taken into account. Figure 8 is used to calculate the computation time for each case.

1. Op-size=100, gxmode=GXcopy, linestyle=LineSolid, �llstyle=FillSolid, linewidth=0: In

this case, the matching entry in the PolyLine cost array is at index 0. From Figure 8, the

21

appropriate list entry for op-size of 100 yields a speed of 19161.61 operations per second.

From this, the time spent can be computed as 1/19161.61, i.e.,

Tr1 = 0:0522ms

2. Op-size=200, gxmode=GXcopy, linestyle=LineSolid, �llstyle=FillSolid, linewidth=0:

Again, the index is 0. However there is no exact match for the op-size, since there is no

list entry for lines of these attributes and length 200. The solution is to interpolate from

the supplied speeds for op-size. 100 and 300. Op-size 100 implies an execution time of

0.0522 ms and op-size 300 implies 0.0959 ms. Therefore,

Tr2 = 0:0522+
0:0959� 0:0522

300� 100
� (200� 100) = 0:07385ms

3. Op-size=100, gxmode=GXxor, linestyle=LineDoubleDash, �llstyle=FillStippled,

linewidth=10:

For this set of attributes, there is no entry corresponding to the �llstyle, i.e., FillStippled.

According to the substitution heuristic, this attribute is to be substituted by the attribute

FillOpaqueStippled. This substitution leads to a match at index 31. From Figure 8 we

�nd that an operation of size 100 is executed with a speed of 45.31 operations per second.

From this,

Tr3 = 1=45:31 = 22:07ms

Statistical Distributions Xprof collects the statistical distributions of the interarrival time

and op-size distributions of each X message type, i.e., all requests, replies, events, and errors.

The grain size for the measurement can be set at runtime as discussed below.

22

typedef struct {

Boolean invoked; /* Has this structure been invoked before? */

long number; /* Total number of these messages seen */

long total_bytes; /* Total number of bytes seen for this message */

long last_time; /* The time stamp of previous message */

Grain size_grain; /* Size grain for this measurement */

Detailed detailed; /* Are we maintaining detailed information? The

following are updated only if this is set */

long *iat_distbn; /* Interarrival time distribution */

long min_iat, max_iat; /* Range of values of the raw data */

long *size_distbn; /* Size distribution */

long min_size, max_size;

} MsgStats;

Figure 9: C language structure to maintain message statistics.

Figure 9 shows the data structure employed to collect the statistics for each of the message

types. Since each X message type has a copy ofMsgStats associated with it, the total number of

instances of the MsgStats data structure is over two hundred. Thus, it is important to keep the

size of the data structures within reasonable bound. In order to achieve this, the two arrays for

collecting the distributions of inter-arrival time and size, i.e., iat distribution and size distbn,

are allocated dynamically from heap memory at run time.

The distribution of inter-arrival time can be expected to have a very wide range of values.

Therefore, early in the design process, it was decided to collect the corresponding histogram on a

log scale. The dimension of the corresponding array was set at 32. Given that the grain size for

the measurement of time, on a Unix system, is 10ms, this choice is enough to cover interarrival

times of, approximately, up to a year, which should be adequate for most applications. This

choice of size of the iat distbn array implies an overhead of about 128 bytes 3 for each data

structure, which is quite reasonable.

3Assuming that the computer uses 4 bytes for each long integer

23

The choice of the size of the histogram array for the operation size, or op-size, is a trickier

proposition. The range of op-sizes is di�erent for each message type. Also, the op-sizes are

distributed fairly uniformly within that range. Thus, to be meaningful, these measurements

should allow for the di�erent ranges and also be measured on a linear scale. The design choice

made was to set the array size of size distbn at 4096, which is changeable at run-time, and

allow for di�erent grain-size of measurement for each request. A good choice of grain-size for a

request would thus be one that distributes its range uniformly over the array.

Since each request has a di�erent grain for its size measurement, the information about the

grain is also maintained in the MsgStats, in the size grain variable, and the size histogram is

interpreted only with reference to this grain. Default size-grains are set up at initialization time

and may be set by the user. To illustrate the choice of a suitable size-grain, it may be noted

that some requests, such as PolyLine generally request small operations and so a size-grain of

1 is adequate for such requests. The PutImage request, on the other hand, can request the

copying of data of up to 64 Kilobytes and would need a size-grain of 16, for the above choice

of 4096 buckets, to accommodate all possible values. As an extreme example, the ClearArea

request can request the clearing of very large sections of the display screen. For clearing an

entire screen of a display that is 1024 by 1024 pixels with 8 bits per pixel, the server needs to

process 1 Megabyte of data, which implies that a grain-size of 256 is needed for this operation.

Xprof has built-in default values for the grain of each message type, which are adequate for

most cases.

Given a choice of 4096 for the number of buckets in the size distribution, this array accounts

for 16 Kilobytes 4 of heap memory per message measured. Since over 200 instances of this

4Assuming that the computer uses 4 bytes for each long integer

24

structure may be needed, the total space usage amounts to over 3 Megabytes. In order to

reduce this, worst-case, memory requirement two further optimizations are made.

First, the variable detailed determines whether the user is interested in collecting the his-

togram at all. If not, the distribution arrays are not allocated, or maintained, at run time. This

may be true if the user is not interested in certain requests or is only interested in the execution

pro�le and not in the message distributions. This variable can be set for each message type

individually.

Second, the boolean variable invoked , which is false by default, is used to track whether the

message has been encountered at all in the trace. The allocations of the size distbn array, from

heap memory, are actually made the �rst time the message is seen. Since a typical X Window

session uses only a subset of the possible message types, this feature can save a lot of heap

memory. In practice, 30-50 message types are typically seen in a trace. This implies a memory

usage of 480-800 Kilobytes of usage, which is a vast improvement over the worst case usage of

over 3 Megabytes calculated earlier.

Thus, the customizable parameters, for the histograms, are the size-grains for the operation

size | on a per-message basis, the choice of whether to maintain the detailed histograms,

and the sizes of the histograms arrays. Default values for each are built into Xprof and are

customizable by the user.

REFINING THE MEASUREMENTS

Since Xprof is a trace-driven pro�ler, it is possible to rerun it on the same trace in order

to bring out information of interest to the user. For instance, after running Xprof once on the

trace input, the user may �nd that the trace involves requests with combinations of attributes

25

that are not covered in the server parameters list. For such a case, the user may choose to

collect the necessary data, by running Xmeasure on the target display server for the necessary

combination of attributes, and then augment the server parameter list. Then, Xprof may be

rerun to generate a more accurate pro�le of the trace.

Several run-time variables may be tweaked in order to re�ne the statistical analysis of the

messages. Some of these are discussed below. First, the array size of the size distbn array may

be changed at run-time. This choice is driven by the available physical memory to run Xprof.

The default choices embedded in Xprof reect the resources available on current generation

machines. Second, the size grain may be modi�ed on a per message basis. This choice depends

on the range of sizes, seen in the trace for each message type, and may thus be re�ned after

the trace has been analyzed once through. Third, the detailed variable mentioned earlier may

be used to selectively turn o� the statistical measurements, but not the pro�ling, of certain

requests. Such a choice would not a�ect the computation requirement of Xprof, but may

reduce its dynamic memory usage substantially.

Each request type has an associated action function that processes each instance of the

request, as seen in the trace, by following the steps described in the earlier section \Trace

Analysis: Xprof". If, for some reason, the user wants to rewrite the actions, a template �le is

included with the source code. Thus, users could extend Xprof to support future extensions to

the X protocol or, say, change the de�nitions of the op-size for a request, as they choose.

In some cases, users may want to set up Xprof to consume trace data in real-time. In order

to support such a usage, Xprof captures the following signals in the Unix environment. 5

5These signals are communicated to Xprof by using the kill command from a Unix shell, e.g., for sending

SIGHANGUP, the user would type: kill -1 [Xprof-process-number] , and for sending SIGKILL:

kill -2 [Xprof-process-number].

26

1. SIGHANGUP: This signal causes Xprof to print out the results accumulated up to the

current point.

2. SIGKILL: This causes Xprof to reset its data structures to their initial values, clear all

histogram arrays, and to reread the server parameter �le.

RESULTS

The output generated by Xprof consists of the estimated execution pro�le for the requests,

at the server, and the statistical distribution for the messages and the message categories, i.e.,

Requests, Replies, Events, and Errors.

In the following tables, detailed pro�ler results are shown for the Xtex program, as computed

by Xprof. The application was run on a Sun 4/IPC Sparcstation system with release 4 of

version 11 of the X Window System. Xtex is a previewer for documents formatted by the

LaTEXdocument processing software. The trace was collected for the sequential display of all

the pages of a 19 page technical report. Trace analysis was done using the server parameter list

for the Sun 4/IPC Sparcstation | as collected by the measurement program Xmeasure. The

network parameters were set to a data transfer speed of 100 KBytes/sec and a latency of 10

ms.

Execution pro�le for requests The execution pro�le consists of a list of all the requests

that are made during the execution of the program, with the total estimated time of execution

for each. This time is broken down in terms of the computation and communication parts. The

number of messages received, in each category, and the mean execution time per request are

also printed out.

27

Table 2: Excerpt of the execution pro�le of Xtex.
Network speed = 100.00 KBytes/sec, Latency = 10.00 ms

Request Time %of Compute Network No. of %of Time/call
Name (ms) total part(%) part(%) msgs total (ms)

PolyFillRectangle 3137.490 50.68% 47.22% 3.45% 508 5.92% 6.176
PolyText8 2130.350 34.41% 7.12% 27.29% 7389 86.12% 0.288
MapSubwindows 102.985 1.66% 1.66% 0.01% 5 0.06% 20.597
MapWindow 100.388 1.62% 1.59% 0.03% 23 0.27% 4.365
QueryFont 227.464 3.67% 1.07% 2.60% 16 0.19% 14.216

: : :

Grand Total 6191.332 100.00% 62.12% 37.88% 8580 100.00% 0.722

Table 2 shows the execution pro�le for Xtex for the �ve most time consuming requests,

which together account for over 90% of the execution time. Not surprisingly, the text rendering

messages, PolyText8 , account for a large number of the messages: over 86%. Yet, the computa-

tion part for these messages is responsible for only about 7% of the pro�led execution time. The

dominant message, from the viewpoint of the display server, is the PolyFillRectangle request.

It turns out that, in the design of Xtex, this request is invoked to clear a page before rendering

text on it. Clearly, text rendering itself is not the computation bottleneck for this application.

However, when we look at the network part, the PolyText8 requests take up 27% out of the

38% of the time spent in network communication. The overall performance of this program, on

the hardware studied, could be improved by reducing the computation cost of clearing a page,

and the network cost of communicating the text rendering requests.

In order to get an idea of the server-side computation, the user may be interested in looking

only at the computation pro�le. Table 3 shows the estimated pro�le with network speeds

and latency values that e�ectively make the network component irrelevant. Such an analysis

emphasizes the computation bottlenecks in the pro�le.

28

Table 3: Excerpt of the execution pro�le of Xtex.
Network speed = 1000000.00 KBytes/sec, Latency = 0.00 ms

Request Time %of Compute Network No. of %of Time/call
Name (ms) total part(%) part(%) msgs total (ms)

PolyFillRectangle 2923.832 76.02% 76.02% 0.00% 508 5.92% 5.756
PolyText8 440.879 11.46% 11.46% 0.00% 7389 86.12% 0.060
MapSubwindows 102.585 2.67% 2.67% 0.00% 5 0.06% 20.517
MapWindow 98.548 2.56% 2.56% 0.00% 23 0.27% 4.285
QueryFont 66.184 1.72% 1.72% 0.00% 16 0.19% 4.136

: : :

Grand Total 3846.058 100.00% 99.99% 0.01% 8580 100.00% 0.448

Message statistics Xprof prints out the statistical distribution for the message categories,

as well as for the individual messages. In addition, it can be set up to print out the detailed

histograms from which these statistics are derived. The statistics are printed for the interarrival

time and size distributions of the messages.

Message categories Table 4 shows the overall distributions for the Request messages, in

the Xtex trace. The interarrival distribution has a large number of zero entries in it owing to

the bu�ering of messages within the X library, which makes a lot of messages arrive together

at the server. Hence, the arrival distribution for the actual message packets can be arrived at

by discarding the zero values. This distribution is also computed and printed. For the Request

messages, the sizes refer to the actual byte sizes of the requests. The total bytes for each request

message are also computed and printed as shown in Table 5. Similar printouts are made for

the other categories of messages, i.e., Replies, Events, and Errors, but, in order to save space,

those are not shown here.

Table 4 shows that, the Xtex message are bu�ered frequently by the X protocol. Most

message are relatively small, with a mean size of about 24 bytes. Table 5 shows that the

PolyText8 request accounts for over 80% of the network tra�c for Xtex. This explains why

29

Table 4: Message statistics for Xtex

***** Statistics for Requests *****

Inter-arrival time distribution (ms):

Number Range Mode Median Mean Std. Dev.

(All points) 8580 0-8990 0 0 13.22 165.58

(Zeros removed) 150 30-8990 630 310 756.13 1003.27

Size distribution:

Number Range Mode Median Mean Std. Dev.

(All points) 8580 4-96 24 23 24.07 9.41

Table 5: Total bytes for each request in the trace of Xtex
Request messages Total Bytes Number

PolyFillRectangle 21368 bytes (10.35%) 508 (5.92%)
PolyText8 168964 bytes (81.80%) 7389 (86.12%)
MapSubwindows 40 bytes (0.02%) 5 (0.06%)
MapWindow 184 bytes (0.09%) 23 (0.27%)
QueryFont 128 bytes (0.06%) 16 (0.19%)

: : :

Grand Total 206548 bytes 8580

these requests have a relatively high network component in the execution pro�le. The average

size of these requests is about 23 bytes, which is pretty close to that for the overall pro�le.

Individual messages The last section of the Xprof output lists the distributions of each

message type individually. Table 6 shows the distribution for the PolyText8 request, for Xtex.

As noted earlier, for the overall request distribution, the e�ect of bu�ering of the messages can

be seen here in the large number of entries for zero arrival time. In the size distribution, the

op-size, for this request, is the length of the requested string of text. The distribution shows

that the text requests are made, on the average, for very short string lengths of about 3.5

characters. Since, as noted earlier, the average PolyText8 message is about 23 bytes long, this

means that the message is not very e�cient at transmitting the strings. Longer string lengths

in each request might improve the network performance.

30

Table 6: Statistics for PolyText8 messages in the trace of Xtex

***** Statistics for PolyText8 *****

Inter-arrival time distribution (ms):

Number Range Mode Median Mean Std. Dev.

(All points) 7389 0-21340 0 0 13.99 284.42

(Zeros removed) 108 150-21340 630 310 957.41 2152.07

Size distribution:

Number Range Mode Median Mean Std. Dev.

(All points) 7389 1-43 3 2 3.46 2.35

Table 7: Cross-server pro�ler results for Xtex.
Message Execution Pro�le

Request distribution Sun 4/IPC DecStation 3100 HP 9000/350
Name No. of % of Time % of Time % of Time % of

messages total total total total

PolyFillRectangle 508 5.92% 2.92s 75.99% 2.67s 72.39% 1.14s 14.98%

PolyText8 7389 86.12% 0.44s 11.50% 0.59s 16.20% 4.28s 56.32%

MapSubWindows 5 0.06% 0.10s 2.67% 0.03s 0.72% 0.14s 1.84%

MapWindows 23 0.27% 0.99s 2.56% 0.12s 3.20% 0.33s 4.39%

QueryFont 16 0.19% 0.66s 1.72% 0.11s 2.92% 0.42s 5.60%

All Messages 8580 3.85s 3.69s 7.60s

Cross-server pro�ling Table 7 is a summary of a cross-server pro�ling study of the perfor-

mance of the Xtex trace on several di�erent architectures. In addition to the Sun 4/IPC, Xprof

was run on the trace with server parameter lists for the DECStation 3100 and HP 9000/350

computer systems, each of which is a color workstation, with 8 bit color and running release

4 of version 11 of the X Window System. In order to emphasize the computation part at the

display server, the pro�le was run for network parameters that e�ectively make the network

component irrelevant.

The data show that the PolyFillRectangle requests are the computation bottleneck for both

the Sun and DEC machines. For the HP, however, the PolyText8 requests are dominant in

the pro�le. Note that on the HP, the text rendering is about 8 times slower than on the other

31

Table 8: Client-server pro�les for the Sun4/IPC.
Application Client Time Server Time Total Pro�le Actual Time Ratio

(Gprof) (Xprof) (Gprof+Xprof) (wallclock) (Pro�le/Actual)

XImage 255.0 s 57.84 s 312.84 s 320.0 s 97.8 %

Xtex 2.5 s 3.85 s 6.37 s 7.0 s 91.0 %

machines. So, its pro�le is skewed towards the text rendering function. However, because it

has a fast implementation of PolyFillRectangle, its total time for Xtex is only about 2 times

that for the other two machines. This example clearly demonstrates the importance of correctly

identifying the critical server functions, for a given workload, to optimize the server performance.

For all three machines, just a few requests account for 70-90% of the computation time on the

display server.

Client-server load partitioning In order to get an idea of the distribution of computation

between the client and server programs, the client program may be pro�led by a conventional

procedure-level pro�ler. The client pro�le time may then be compared to the server pro�le

time, as estimated by Xprof. Table 8 shows the results of such a measurement. In addition to

Xtex, data are shown for Ximage, which is a scienti�c visualization tool that is used to display

the result of scienti�c computation in the form of color pictures. It can be set up to display a

succession of such pictures as an animation sequence. The data set chosen was a sequence of

60 pictures, each 300x300 pixels in 8 bit color. The sequence was run through 10 times in order

to generate the trace.

The data in Table 8 demonstrate that Xprof complements the client-side pro�le by providing

an accurate server-side pro�le. For the applications shown, the sum of the client time, as

measured by Gprof, and the server-time, as measured by Xprof, is very close to the actual wall

32

PolyFillRect.PolyText8 QueryFont

20%

40%

60%

80%
Net speed 100 KB/s
Total time: 6.19s

Network
Server

PolyFillRect.PolyText8 QueryFont

20%

40%

60%

80%
Net speed 1000 KB/s
Total time: 4.33s

Network
Server

Figure 10: E�ect of network speed on Xtex pro�le

clock time. Since both the application and the display server were run on the same cpu host,

the network time is not relevant to this measurement.

E�ect of network speed In the client-server model of computing, processing is partitioned

between the client and server programs. However, the overall performance also depends on

the network connection between the two processes. In this section we study the impact of the

network parameters on the Xtex application. The pro�les are constructed for the Sun4/IPC

with the client and server communicating over a network with latency of 10ms and a speed

of either 100 KBytes/s or 1000 KBytes/s. The y axis in Figure 10 is normalized to the total

processing time since the objective is to see how the overall request service time is divided

between the network and the display server.

Figure 10 shows that Xtex is not a�ected too much by the network speed for the trace

studied. The critical function PolyFillRectangle is not a�ected much by the network speed at

all. This is because it is a graphics request without much data content. The text rendering

request PolyText8 is a�ected more by the network speed. In fact this request constitutes over

80% of the request bytes. Overall, this application slows down about 50% for a 10 times

33

slowdown in the network.

LIMITATIONS OF XPROF

The pro�ling approach developed in this paper makes use of a protocol-level trace, which has

no knowledge of the lines of code that gave rise to the protocol messages. So, the current imple-

mentation of Xprof cannot connect the critical server functions to speci�c lines of client code.

In order to collect such information, the trace would need to be generated by an instrumented

version of the client program, which would emit the source code information along with the

protocol messages. This would involve the recompilation of the client program source code with

a compiler that inserts the appropriate trace routines in the object code.

There are several extensions to the server cost model that could add to the pro�ling infor-

mation available from Xprof. Currently, the cost of server events, such as mouse movements,

is ignored. The server cost model could be extended to include the cost of processing the

real-time events. This aspect will become more important as sophisticated input mechanisms,

such as speech and handwriting recognition become widely used for computer input. Also, the

computation of the request service time only takes the direct cpu cost into account. However,

X clients can create X resources in the server, which use up server memory. If enough resources

are created, the virtual memory needed by the server may exceed the physical memory avail-

able. The resulting swapping may a�ect execution time signi�cantly. Thus the user may be

interested in the dynamic allocation pro�le of the X resources. The trace analyzer in Xprof

could be extended to generate such a dynamic pro�le to help the user understand the server-

resource consumption pattern for a certain client. For this, the server parameter information

would need to be augmented with information such as the number of bits per pixel and the

34

bytes per word for the target display-server.

The estimation of the cost of a request, as described in the section \Pro�ler Details" may in-

volve two kinds of approximations, i.e., interpolation of the operation size or the substitution of

an attribute by another. In either case a warning message is printed out. These approximations

could yield erroneous results and must be understood well by the user. First, the interpolation

function is linear. If the actual cost function is non-linear with respect to the operation size,

the computed cost may be wide o� the mark. The best defense against this is to measure the

actual speed of the request for the needed operation size and augment the server parameter

information. Second, the substitution of a non-measured attribute by a measured attribute is

done on the basis of certain heuristics. These heuristics may not be valid in some instances.

For example, there may exist special hardware support for one class of attributes but not for

others. The user should examine the warning messages carefully and alter the substitution

heuristics, if necessary. A more precise solution would be to measure the costs of the requests

for the attributes of direct interest.

The network cost model, in the current implementation of Xprof, gives the user an idea

of the order of magnitude of the communication time on the basis of supplied network speed

and latency. A more sophisticated network simulation could model the performance of actual

network protocols, such as the collision sensing protocols in wide use in local area networks

today.

35

CONCLUSIONS

In this paper we describe Xprof, a protocol-level pro�ling pro�ler that generates meaningful

pro�les of X Window applications. The pro�ler estimates the time spent in servicing the request

messages in the display server and the network connection by analyzing the protocol-level

trace of messages exchanged between the application and the display server. In addition, the

statistical distributions of the arrival-time and the operation sizes of the requests are analyzed.

The resulting pro�le provides a detailed picture of the server-side execution of the application

program.

The pro�les generated by Xprof may be useful to many di�erent audiences. For instance:

1. Xprof supports cross-display-server pro�ling. Thus, users of display servers, such as work-

stations, could evaluate the performance of di�erent workstations for their own applica-

tions by pro�ling traces of interest to them for several target servers. All they need is

the server parameter data for each workstation, which can be generated by Xmeasure in

a standardized manner.

2. Developers of X Window based software can identify bottlenecks in their software and

tune it for di�erent platforms. Conventional pro�lers do not give a coherent picture of

the overall execution pro�le of a client-server program.

3. Designers of display servers can get a good idea of the critical requests made by typical

applications and tune their systems to execute such requests faster.

4. Administrators of distributed systems can get a better idea of the partitioning of compu-

tation between the client and display server programs and also the network load imposed

by typical applications.

36

As distributed systems come into widespread use, the client-server paradigm of computing

will become increasingly important. The protocol-level pro�ling methodology followed in Xprof

may be used to design pro�les for any general client-server system. Information gained from such

pro�les would be of great help in designing strategies for task partitioning and load balancing.

37

References

[1] S. Graham, P. Kessler, and M. McKusick, \An execution pro�ler for modular programs,"
Software Practice and Experience, vol. 13, pp. 671{685, 1983.

[2] AT&T Bell Laboratories, Murray Hill, N.J., UNIX programmer's manual, January 1979.

[3] R. Scheier and J. Gettys, \The X window system," ACM Transactions on Graphics,
vol. 5, pp. 79{109, April 1986.

[4] J. Gettys, P. Karlton, and S. McGregor, \The X window system, version 11," Software

Practice and Experience, vol. 20, pp. S2/35{S2/67, October 1990.

[5] R. Scheier, X Window System Protocol: X Version 11, Release 4. MIT X Consortium,
Massachusetts Institute for Technology, Laboratory for Computer Science, 1988.

[6] G. Champine and D. Geer, Jr., \Project Athena as a distributed computer system," IEEE
Computer, vol. 23, pp. 40{51, September 1990.

[7] S. Mullender, G. van Rossum, A. Tannenbaum, R. van Renesse, and H. van Staveren,
\Amoeba: A distributed operating system for the 1990s," IEEE Computer, vol. 23, May
1990.

[8] M. Lorence and M. Satyanarayanan, \IPwatch: A tool for monitoring network locality,"
Operating Systems Review, vol. 24, pp. 58{80, January 1990.

[9] D. Mirchandani and P. Biswas, \Ethernet performance of remote DECwindows applica-
tions," Digital Technical Journal, vol. 2, pp. 84{94, Summer 1990.

[10] R. Droms and W. Dyksen, \Performance measurements of the X window system commu-
nication protocol," Software Practice and Experience, vol. 20, pp. S2/119{S2/136, October
1990.

[11] J. Dunwoody and M. Linton, \A dynamic pro�le of window system usage," Proceedings of
the 2nd International Conference on Computer Workstations, pp. 90{99, March 1988.

38

