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Abstract

This paper describes a compiler-assisted approach to providing multiple instruction rollback
capability for general purpose processor registers. The objective is achieved by having the com-
piler remove all forms of N -instruction anti-dependencies. Pseudo register anti-dependencies are
removed by loop protection, node splitting, and loop expansion techniques; machine register anti-
dependencies are prevented by introducing anti-dependency constraints in the interference graph
used by the register allocator. To support separate compilation, inter-procedural anti-dependency
constraints are added to the code generator to guarantee the termination of machine register anti-
dependencies across procedure boundaries. The algorithms have been implemented in the IMPACT
C compiler. Experiments illustrating the e�ectiveness of this approach are described.
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I. Introduction

A. Multiple Instruction Retry

The capability of retrying a few instructions is desirable in situations requiring rapid recovery

from transient processor failures. This involves preserving the state of memory locations and CPU

registers. If all errors can be detected immediately, single instruction retry is su�cient. This has

been successfully implemented in commercial machines, such as the IBM 4341 [1] and VAX 8600

processor [2]. If the target position of the rollback is an established checkpoint rather than a

point within a sliding window [3], the state of memory locations can be preserved by copying the

old values of all updated locations to a push-down stack, and the state of CPU registers can be

preserved by copying to a backup register �le. When an error occurs, the contents of the backup

register �le is copied to the working register �le and the contents of the push-down stack is applied

to the memory system in reverse order. This approach is implemented in the IBM 3081 processor

with a checkpoint interval of 10-20 instructions [4, 5].

If the target position of the rollback is within a sliding window, the general approach is to

delay the e�ect of write operations by N instructions. The delayed writes to main memory can be

achieved by providing a delayed write bu�er [3] or by modifying the cache coherence protocol [6];

the delayed writes to CPU registers are usually achieved by replicating the entire register �le [7]

or by providing another delayed write bu�er [3]. The basic assumption is that the usage pattern

can not be predicted. However, if the program is written in a high level language, the usage of the

general purpose registers is controlled by the compiler. This paper describes the use of compiler

technology to preserve the state of CPU registers within a sliding window in order to facilitate

multiple instruction retry.
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B. Error Model

The design of a speci�c processor is not our focus, but rather the capability to perform fast

recovery from transient processor faults by means of instruction retry. Our approach is particularly

appropriate for RISC-type machines with large register �les. To clarify which errors are considered

in the multiple instruction retry scheme, we describe our assumptions:

1. The maximum error detection latency is N instructions.

2. There is an external device or a bu�er inside the CPU that records the executed instructions
with capacity C � N . This is to facilitate the rollback of the program counter.

3. There are delayed write bu�ers [3] for the memory system and I/O with capacity C � N .
Otherwise, the memory system and I/O can not rollback to states consistent with CPU
registers.

4. The CPU state can be restored by loading the correct contents of the register �le and the
program counter.

5. The register �le contents do not spontaneously change and data is not written to an incorrect
register location.

The scheme allows any error which does not result in an illegal path in the control 
ow graph.

Such errors include CPU errors, incorrect data read from memory, I/O, and register locations,

incorrect data writes to memory, I/O, and correct register locations, and incorrect branch decisions.

As long as the instruction execution sequence forms a path in the control 
ow graph, data hazards

can be classi�ed into on-path hazards due to anti-dependencies and branch hazards due to incorrect

branches [8]. Since all branch hazards can be treated as on-path hazards [8], in this paper we focus

on techniques to remove all forms of N -instruction anti-dependencies.

C. Anti-Dependencies and Our Approach

There are generally three types of dependencies between instructions: 1) 
ow dependency

(read after write), 2) anti-dependency (write after read), and 3) output dependency(write after
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Figure 1. Types of dependencies and their impact on rollback capability.

write) [9]. The 
ow dependency and the output dependency do not impair rollback capability,

but the anti-dependency does. These situations are illustrated by the simple sequential code in

Figure 1. Assume that an error requiring multiple instruction rollback is detected at the cross

mark and there are no other instructions containing variable x except those shown in the �gures.

In Figure 1(a), there is a 
ow dependency from instruction Ii to Ij based on variable x (denoted by

Ii�
f

x
Ij). If the program counter is rolled back to a point before the execution of instruction Ii, the

program will produce the correct result since variable x is dead and it will be reloaded in instruction

Ii. If the program counter is rolled back to a point after the execution of Ii, the program will also

produce the correct result since x now contains the correct value. Similar arguments hold for the

points after Ii in Figure 1(b) and all points in Figure 1(c). However, for the points before Ii in

Figure 1(b), x now contains the incorrect value c+ d rather than its expected value. Therefore, to

achieve complete rollback capability, the anti-dependencies within N instructions must be removed.

Anti-dependencies come from two sources: 1) when the intermediate code generator assigns

live values to pseudo registers (or symbolic registers) [10], and 2) when the register allocator assigns

pseudo registers to machine registers. An example of the former case is the x variable in Figure 1(b).

If variable x in both instructions Ii and Ij is assigned to pseudo register tk by the intermediate
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code generator, it generates an anti-dependency on tk . This type of anti-dependency is a pseudo

register anti-dependency . The latter case may introduce machine register anti-dependencies even

when two values reside in di�erent pseudo registers. For example, in Figure 1(a), if the pseudo

register tm for variable a and the pseudo register tn for variable c are assigned to the same machine

register rk, then an anti-dependency occurs between instructions Ii and Ij in rk.

Compiler techniques have been used to assist in error recovery at the process level. For

example, checkpoint decision [11] and multi-processor state compression [12] can be achieved by

having the compiler insert appropriate code in the program. Also, algorithm-based error detection

[13] can be implemented by having the compiler analyze the source code. This paper is di�erent in

that it introduces a coherent method to provide a particular property of programs for purposes of

instruction retry error recovery. Most of the compiler techniques used in this paper, such as node

splitting and loop expansion, are variations of well known techniques that have been applied for

other purposes [10, 14]. Our contribution is the formulation of the register state preservation for

error recovery problem as an anti-dependency removal problem, the provision of a compiler-based

solution, and an implementation with experimental results.

Section II describes the removal of N -instruction pseudo register anti-dependencies by loop

protection, node splitting , and loop expansion techniques. Section III describes the prevention of

N -instruction machine register anti-dependencies by introducing anti-dependency constraints in the

interference graph used by the register allocator [15, 16]. Since the machine register anti-dependency

can exist across procedure boundaries, the inter-procedural anti-dependency constraints are intro-

duced in Section IV to support separate compilation. The algorithms have been implemented in

the MIPS code generator of the IMPACT C compiler [17]. Experiments evaluating the performance

of our implementation are reported in Section V. Section VI describes techniques to enhance the
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run time performance of the code.

II. Pseudo Register Anti-Dependencies

A. The Problem

The input we consider is a 
ow graph G(V;E) where V is the set of nodes and E the set of

edges. Each node Ii 2 V represents an instruction. If there is a direct control 
ow from instruction

Ii to instruction Ij , then there is an edge (Ii; Ij) 2 E. De�ne the distance d(Ii; Ij) to be the

smallest number of instructions on any path from Ii to Ij . The distance from a node to itself

is 0. An instruction Ii is called self-anti-dependent on variable x if Ii�axIi, e.g., Ii : x = x + a.

The objective is to remove all pseudo register anti-dependencies within distance N (i.e., Ii�axIj and

d(Ii; Ij) � N) while still maintaining the semantics of the code.

The pseudo register anti-dependencies can be resolved by code transformation, pre-pass code

scheduling [18], or a combination of both. The former approach renames pseudo registers but

maintains the relative order of instructions; the latter approach changes the order of instructions

but does not rename pseudo registers. Both approaches require the insertion of extra code. This

paper utilizes the code transformation approach. After the transformation, only register allocation

and code emission as described in the next section are allowed; otherwise, the N -instruction anti-

dependencies may reemerge if other phases of the compiler, such as loop optimization, change the

instruction sequence.
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Figure 2. Resolvability of anti-dependencies.

B. Resolvability

The basic approach to resolving an anti-dependency is to rename the pseudo registers. For

example, in Figure 2(a), there is an anti-dependency I2�
a

t1
I3 that needs to be resolved if N = 3.

This can be done by simply renaming the t1 in I3, I4, and I5 to t8 since the value in t1 is dead

at the entry of I3. However, some 
ow graphs do not allow proper renaming. For example, in

Figure 2(b), the anti-dependency I3�at1I2 can not be resolved since any renaming of the t1 in I2 will

result in a renaming of t1 in I3 to the same new pseudo register in order to maintain the semantics.

Similarly, I2�at3I3 can not be resolved. This problem can occur even in acyclic graphs. For example,

in Figure 2(c), the anti-dependency I4�
a

t1
I3 can not be resolved since any renaming of t1 in I3 will

result in the same renaming of t1 in I6. If the t1 in I6 is renamed, so is the t1 in I1 and hence the

t1 in I2 and I4.

The problems presented in Figure 2(b) and 2(c) are formally described as follows. For each

pseudo register x, initialize the set of symbols Zx = �. If an instruction Ii de�nes x, put a symbol

Id
i
in Zx; if it uses x, put a symbol Iu

i
in Zx. De�ne an equivalence relation �x on Zx as follows:

if the renaming of x in Ii will result in the renaming of x in Ij , then Id
j
�x Iu

i
. For example,
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if x is de�ned in Ij , x is used in Ii, and the de�nition of x in Ij belongs to the set of reaching

de�nitions [10] of Ii (i.e., all de�nitions that can reach Ii without being rede�ned along the path),

then we have Id
j
�x I

u

i
. Naturally, the equivalence relation �x is re
exive, symmetric, transitive,

and can partition the set Zx into disjoint subsets [19]. An anti-dependency Ii�
a

x
Ij is unresolvable if

and only if Iu
i
�x I

d

j
since the renaming of x in one instruction requires all occurrences of x in all

the other elements belonging to the same subset to be renamed to the same new pseudo register

in order to maintain the correct semantics. This is exactly what happened in Figure 2(c). Since

Id1 �t1
Iu4 , I

d

1 �t1
Iu6 and Id3 �t1

Iu6 , by symmetry and transitivity, we obtain Iu4 �t1
Id3 . Therefore,

the anti-dependency I4�
a

t1
I3 is unresolvable.

To handle the unresolvable N -instruction anti-dependencies, we can transform the original

code by the following two methods: 1) node splitting , and 2) loop expansion. The former breaks

the �x relation between the nodes; the latter e�ectively increases the distance between the two

instructions that cause the anti-dependency. Before presenting the two methods, we describe the

loop structure of the program that guides the application of node splitting and loop expansion. We

also describe a preparation step called loop protection that inserts code in the program to prevent

the loop structure from being destroyed by node splitting.

C. Loop Structure

A backedge is an edge (It; Ih) such that Ih dominates It (i.e., any path from the initial node of

the program to It must go through Ih) [10]. Ih is called the header and It the tail . The natural loop

induced by the backedge (It; Ih) is the node Ih plus the set of nodes that can reach It without going

through Ih [10]. In this paper, we de�ne a loop Lh to be the union of all natural loops induced by

backedges that have the same header h. In other words, a loop has a single header and at least one
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Figure 3. Program loop structure.

backedge associated with it.

Most of the programs written in structured high level languages use nested iteration constructs

such as the while loop. Therefore, we only consider programs with nested loops. If this is not the

case, nop insertion can always be used to resolve the anti-dependencies. The relationship among

the loops can be represented by a tree. The root of this tree represents the entire 
ow graph,

each interior node indicates a loop, and each leaf node is an instruction. For example, the tree in

Figure 3(b) describes the loop structure of the 
ow graph in Figure 3(a). Instruction I6 belongs

to loop L2 (the inner loop) which in turn belongs to loop L3 (the outer loop). Obviously, loop L3

belongs to the entire 
ow graph represented by the node L0.

The level of an anti-dependency Ii�
a

x
Ij is the highest level of the tree such that the paths

causing d(Ii; Ij) � N are entirely contained in a loop of that level, assuming that the root L0 is

at level 0. For example, in Figure 3, I5�axI6 is in level 2 (L2), I6�axI7 is in level 1 (L3), and I3�axI4

is in level 0 (L0). Our general approach is to successively reduce the levels of the N -instruction
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anti-dependencies until all of them occur at the top level and get resolved.

To determine the actual processing sequence of the loops, we de�ne a relation � on loops as

follows: Li � Lj if the nodes in Li is a proper subset of Lj . Li is called an inner loop of Lj and Lj

an outer loop of Li. The relation � is transitive and de�nes a partial ordering of the loops. The

loops can then be sorted into an array by a topological sort algorithm [20]. The generated array

gives the processing sequence of the loops, which is not unique. However, as long as we process from

the beginning to the end of the array, inner loops must be processed before their corresponding

outer loops. For example, the processing sequence of the loops in Figure 3 could be L1, L2, L3, L0,

or L2, L1, L3, L0.

D. Loop Protection

Some anti-dependencies need to be resolved by node splitting or loop expansion, as described

in the next two subsections. However, if the anti-dependency is to be resolved by node splitting and

a loop header is one of the nodes to split, more loops and anti-dependencies will be generated which

in turn requires more splitting. To prevent this situation, the loop should be protected relative to

the pseudo register that causes the anti-dependency. Also, when we use loop expansion to resolve

an anti-dependency, the targeted pseudo register may not be able to be renamed freely because it

is used outside the current loop. This situation also requires the loop to be protected.

If a pseudo register tk causes an anti-dependency in a loop, the protection is done by renaming

every tk in the loop to a newly generated pseudo register ti, and inserting nodes at one or more of

the following positions:

1. Header position: right before the loop header and inside the loop, performing ti = tk .

2. Preheader position: right before the loop header but outside the loop, performing ti = tk.

3. Tail position: between each tail node and header, performing tk = ti.



10

4. Exit position: between each exit node and its target, performing tk = ti.

The nodes inserted at the header or preheader positions are called save nodes and the nodes inserted

at the tail or exit positions are called restore nodes . The insertion is performed only if tk is live at

that point. For example, for loop L1 in Figure 3(a), the header and preheader positions are both

between I1 and I2, but the former is inside the loop receiving all incoming edges and the latter is

outside the loop receiving only the incoming edge from I1. The tail position is between I3 and I2,

and the exit positions are between I2 and I5, and between I3 and I4.

To determine which positions require node insertion, the following de�nitions should �rst be

understood. The extended loop eLh(tk) relative to pseudo register tk consists of all nodes in Lh and

all nodes Ii satisfying the following conditions: 1) tk 2 live in(Ii), where live in(Ii) is the set of live

variables at the entry point of Ii [10], 2) Ii has only one successor, 3) Ii has only one predecessor

Ij , and 4) Ij is in eLh. For example, the extended loop of L1 in Figure 3(a) consists of I2, I3, and

I4, if tk is live at the entry point of I4. If tk is dead at every exit point of eLh(tk), the extended

loop is safe. The stripped graph Gh(V h; Eh) is a subgraph of G(V;E) such that V h = V and

Eh = E � fall backedgesg. The outer-stripped graph bGh( bVh; bEh) is a subgraph of G(V;E) such

that bVh = V and bEh = E � fall backedges associated with loops that are outer loops of Lhg. The

hazard set H(G) of a graph G consists of all pseudo registers tk such that Ii�
a

tk
Ij , d(Ii; Ij) � N ,

and Iu
i
�tk

Id
j
, using only nodes and edges in G. In other words, the hazard set is the set of

pseudo registers that result in unresolvable anti-dependencies. The split set S(G; tk) of a graph G

consists of all nodes in G that need to be split relative to pseudo register tk using the node splitting

algorithm to be described in the next subsection.

To prevent the loop header Ih from being split due to register tk, Lh has to be protected by
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using the preheader and exit positions if Ih 2 S(G; tk). tk may or may not be in H( bGh). To provide

the renaming capability after the loop is expanded for tk 2 H( bGh), Lh has to be protected by using

the header, tail, and exit positions, if 1) eLh(tk) is not save; or 2) the header Ih of Lh is in S( bGh; tk).

Every iteration of the expanded loop then has a unique set of save and restore nodes so that the

pseudo registers can be renamed freely.

E. Node Splitting

Since the loop body must be made resolvable before the loop can be considered, we describe

the node splitting technique before loop expansion. Various forms of the node splitting technique

have been used in optimizing compilers [10]. In our approach, the purpose of node splitting is to

break the Iu
i
�tk

Id
j
relation if tk is in the current hazard set.

A node Ii will be in the split set S(Gh; tk) if tk 2 live in(Ii) and there exists more than one

de�nition of tk that can reach Ii. After the splitting, two copies of the originally connected nodes

are connected if they are compatible, i.e., they have the same reaching de�nition of tk. For each

tk 2 H(Gh), the algorithm splits all nodes in S(Gh; tk) and matches the split nodes by a set of

edges. It then renames all pseudo registers. Note that the header will not be in the split set since

the loop has been protected.

Figure 4(a) shows the resulting 
ow graph after the code segment in Figure 2(c) is processed

by the node splitting algorithm relative to the pseudo register t1. The use of t1 in I2 has a unique

reaching de�nition from I1; therefore, I2 is not to be split. The situation is the same in node I4.

However, both de�nitions in I1 and I3 can reach I6. Therefore, we have a non-trivial node splitting

at I6 resulting in the I6 and I7 in Figure 4(a). The �nal pseudo register renaming is done by

changing the t1 in I1, I2, I4, and I7 to t11, and the t1 in I3 and I6 to t12.
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I1 : t11 = t2 + t3

?
I2 : if (t11 > t4)

q

+

I3 : t12 = t5 � t6

?

I6 : t10 = t12 + t7

I4 : t7 = t11 � t8

?
I5 : if (t7 < t9)

?

I7 : t10 = t11 + t7

9

(a) node splitting for �g. 2(c)

I1 : t2 = t3 + t4

?

I6 : t8 = t2 + t3

?

I7 : t9 = t8 � t5

?

I8 : if (t4 < t6)

?

I9 : t7 = t2 � t8

?

I2 : t1 = t2 + t9

?

I3 : t3 = t1 � t5

?
I4 : if (t4 < t6)

?

I5 : t7 = t2 � t1

R

(b) loop expansion for �g. 2(b)

Figure 4. Examples of node splitting and loop expansion.

The node splitting technique functions correctly due to the following three reasons: 1) all

the N -instruction anti-dependencies in the inner loops have been resolved since we process the

loops from inside out, 2) the live ranges of the variations of tk (i.e., the de�nitions of tk before

the renaming) do not intersect, and 3) the de�nition always occurs before its use unless there is

an unresolved inner loop, which is impossible because it contradicts the �rst condition. Since an

anti-dependency requires a read before write, they must belong to di�erent live ranges and can be

renamed to di�erent pseudo registers.

If there are no back edges outside the current loop body, i.e., at the root level of the loop

structure, the anti-dependency can simply be resolved by removing all unnecessary save and restore

nodes (usually, too many are generated by loop protection and node splitting). However, if there is

a back edge outside this loop body, anti-dependencies may occur in the following cases: 1) between

the use of a variation of tk and its de�nition, going through the back edge, or 2) between the nodes

at an upper level. The latter will eventually be resolved since we are working from inside out. The
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former is the subject of loop expansion.

F. Loop Expansion

Loop expansion is used to increase the distance between the nodes that cause an anti-

dependency. The algorithm is outlined in Figure 5. The expansion itself is simply done by repli-

cating all nodes and internal edges, connecting the tail of each iteration to the header of the next

iteration, and connecting the tail of the last iteration to the header of the �rst iteration. Notice

that the loop to be expanded is the extended loop eLh rather than Lh. Otherwise, the uses of tk

outside the loop may prevent the de�nitions of tk in the loop to be freely renamed. Usually, the

restore nodes outside the loop body are in eLh�Lh, and will be split due to expansion. The number

of times the loop needs to be expanded, i.e., the constant T , is particularly important (T = 1 means

no expansion).

There are two kinds of anti-dependencies that need to be considered. One is through the back

edge (It; Ih) and occurs only when there is a 
ow dependency in the loop body; another does not

go through the back edge and occurs when there is an anti-dependency in the loop body itself.

Therefore, we have two formulas shown in Figure 5 to calculate the number of times to expand.

The constant D is the shortest distance from Ih to any tail node It. The formula for Tf(Ii; Ij)

is derived from the fact that, after the expansion, the distance between Ii and Ij is increased to

d(Ii; It) + (Tf(Ii; Ij)� 1)� (D+ 1) + 1 + d(Ih; Ij) which should be greater than N . Similarly, the

formula for Ta(Ii; Ij) is derived from the fact that, after the expansion, the distance between Ii and

Ij is increased to d(Ii; It) + (Ta(Ii; Ij)� 2)� (D + 1) + 1 + d(Ih; Ij) which should be greater than

N . For both cases, Tf = Ta = 2, if d(Ii; It) + d(Ih; Ij) � N . The �nal T is just the maximum of

the two numbers Tf and Ta.
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if (H( bGh) 6= �) f
de�ne a set of 
ow dependencies F = fIj�

f

x
IijIi 2 Lh; Ij 2 Lhg;

for all 
ow dependencies Ij�
f

x
Ii 2 F , �nd the maximum Tf(Ii; Ij) and denote it Tf :

Tf(Ii; Ij) =

8><
>:

1 if d(Ii; Ij) > N

2 if d(Ii; It) + d(Ih; Ij) + 1 > Nj
N�d(Ii;It)�d(Ih;Ij)�1

D+1

k
+ 2 otherwise

de�ne a set of anti-dependencies A = fIi�
a

x
Ij jIi 2 Lh; Ij 2 Lhg;

for all anti-dependencies Ii�
a

x
Ij 2 A, �nd the maximum Ta(Ii; Ij) and denote it Ta:

Ta(Ii; Ij) =

8><
>:

1 if x is dead at the entry of Ih
2 if d(Ii; It) + d(Ih; Ij) + 1 > Nj
N�d(Ii;It)�d(Ih;Ij)�1

D+1

k
+ 3 otherwise

T = max(Tf ; Ta);

expand the loop eLh to T consecutive iterations;
rename all pseudo registers;

g

Figure 5. The loop expansion algorithm.

The loop expansion technique is illustrated in Figure 4(b). The loop shown is an expanded

loop of Figure 2(b) with T = 2, assuming the last use of t1 is in I5. Instructions I6, I7, I8, and

I9 are copied from I2, I3, I4, I5 with t8 replacing the t1 in I6, I7, and I9, and t9 replacing the

t3 in I2 and I7. The distance for the anti-dependency I3�
a

t1
I2 has been increased by 3, i.e., the

length of the loop body. Since all anti-dependencies go through the iteration boundary after the

node splitting step, the distance can be increased inde�nitely by increasing T . Therefore, the

N -instruction anti-dependencies are resolved.

III. Machine Register Anti-Dependencies

The machine register anti-dependencies may be resolved by register allocation, post-pass code

scheduling [21], or a combination of both. The former approach modi�es the existing register

allocation algorithm by including an additional anti-dependency constraint. This approach may
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result in more register spillage and produce more memory accesses. The latter approach changes

the order of instructions to improve performance. However, the inserted nop instructions needed

to resolve remaining dependencies may slow down the code execution compared to the former

approach. This paper examines the former approach.

A. Machine Model

The CPU model we consider in this paper does not have out-of-order execution, multiple

instruction issuing, run-time register reordering, or register windows. Pipelining is allowed as long

as the hardware can guarantee a precise instruction boundary when the detected error requires a

rollback. The states of the program counter are preserved by an external recording device or by

shadow registers such as described in the micro rollback scheme [3]. The program status word is

either not used in user space or is preserved by shadowing registers. Depending on the speci�c

micro architecture, the stack pointer may be considered a special register (e.g., many 16-bit CPUs)

or a general purpose register (e.g., most of the 32-bit CPUs). Our objective is to assign the general

purpose registers such that the �nal code does not have any N -instruction machine register anti-

dependency on the general purpose registers.

B. Register Allocation

Most register allocators that can handle global register assignment use graph coloring [15, 22].

By way of an interference graph, the register allocator guarantees that two values that may be

simultaneously live do not occupy the same machine register. This type of constraint is called a

live range constraint . If there are not enough registers available, spill code is generated to put aside

some live values to main memory. For example, the solid lines in Figure 6(b) represent the live

range constraints for the 
ow graph in Figure 6(a). The edge between t1 and t2 indicates that they
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I1 : t1 = 10

?

I2 : t2 = t1 � 3

?

I3 : t3 = t1 � t2

?

I4 : t4 = t3 � t2

?

I5 : t5 = t1 � t3

(a) a 
ow graph

t1

t2

t3t4

t5

(b) the interference graph

I1 : r1 = 10

?

I2 : r2 = r1 � 3

?

I3 : r3 = r1 � r2

?

I4 : r2 = r3 � r2

?

I5 : r1 = r1 � r3

(c) only live range constraints

I1 : r1 = 10

?

I2 : r2 = r1 � 3

?

I3 : r3 = r1 � r2

?

I4 : r4 = r3 � r2

?

I5 : r4 = r1 � r3

(d) both types of constraints

Figure 6. Adding the anti-dependency constraints to the interference graph.

may be live simultaneously, i.e., in instructions I2, I3, and I4. If we have no less than 3 registers

available, the code in Figure 6(c) could be generated; otherwise, some values such as t3 may need

to be spilled.

However, Figure 6(c) is not free of N -instruction machine register anti-dependencies if N = 2.

Registers r1 and r2 are de�ned right after their use. Therefore, another type of constraint, called

an anti-dependency constraint , is incorporated in the interference graph to prevent this situation.

The anti-dependency constraint is stated as follows:

Any value de�ned in the current instruction can not occupy a register that has been

assigned to some value used within the previous N instructions.
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The anti-dependency constraints for the 
ow graph in Figure 6(a) are represented by the

dashed lines in Figure 6(b). If both types of edges exist between two nodes, only the solid line is

shown. The resulting code is shown in Figure 6(d). Note that the minimum number of registers

required has been increased from 3 to 4. If we have less than 4 registers available, some values such

as t3 need to be spilled.

Spill code may result in another problem: if two values in two consecutive instructions are both

spilled and use the same spill register, an anti-dependency may immediately follow. For example,

in Figure 6(a), if all machine registers hold live values at instruction I2, two register values have

to be spilled to make room for registers t2 and t3. Suppose that the values of r4 and r5 are to be

spilled, r1 holds the value of t1, and r15 is the spill register. The following spill code is generated

for instructions I2 and I3:

r15 = r4
save r15 to memory
r4 = r1 � 3
r15 = r5
save r15 to memory
r5 = r1 � r4

The anti-dependency on r15 between the second and the fourth instructions is easily seen if N � 2.

We can increase the number of reserved spill registers ( currently it is 3 in our implementation ), so

that consecutive spill instructions can use di�erent spill registers. However, this reduces the number

of usable registers which may cause more spilling. In this paper, we employ a simple approach by

inserting nops between consecutive spill instructions to increase their distance. Similar situations

exist for the stack pointer and frame pointer adjustment at the beginning and end of a procedure

or before and after a procedure call.
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caller A

Ii : store rk

Im : call B

callee B

Ij : rk = 3

In : return

q

�

Figure 7. Inter-procedural anti-dependency Ii�
a

rk
Ij .

IV. Inter-Procedural Anti-Dependency Constraints

In typical register allocation algorithms, the live range constraint is maintained across proce-

dure boundaries by one of the following methods:

1. Caller-saved registers: the registers containing live values are saved before a procedure call
and restored after the call.

2. Callee-saved registers: the registers that may be changed in the callee are saved by the callee
at the entry point and restored at the exit point.

3. Inter-procedural register allocation [22]: if every procedure is under the control of the current
compiling session, registers may be allocated across procedure boundary.

The machine register anti-dependencies are not terminated even if the above methods are

used. For example, in Figure 7, register rk is used in both the caller procedure A and the callee

procedure B. It is saved before the calling of B. However, the initialization of rk at the beginning

of B results in an immediate anti-dependency if N is large enough.

To handle this problem, extra constraints are added to the following four regions:

1. Before a procedure call: the pseudo registers that are used within N instructions before the
procedure call can only be assigned to register set R00.

2. Entry point of a procedure: the pseudo registers that are de�ned within N instructions after
the entry of the procedure can only be assigned to register set R0.

3. Exit point of a procedure: the pseudo registers are used within N instructions before the
return statement can only be assigned to register set R00.
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4. After a procedure call: the pseudo registers that are de�ned within N instructions after the
procedure call can only be assigned to register set R0.

As long as R0
T
R00 = �, no anti-dependency will occur across the procedure boundary. If an

instruction belongs to more than one of the above regions, it should follow all the rules that apply.

Since the IMPACT C compiler always adjusts the stack pointer at the entry and exit points

of a procedure, the above inter-procedural anti-dependency constraints are implemented by �rst

splitting the stack pointer adjustment instruction '$sp = $sp�a' into two instructions '$r = $sp�a;

$sp = $r' and then inserting any necessary nops to maintain the following conditions:

1. at least N instruction between '$r = $sp� a' and '$sp = $r' at the entry;

2. at least N instructions between '$sp = $r' at the entry and any procedure call;

3. at least N instructions between any procedure call and '$r = $sp + a' at the exit;

4. at least N instructions between '$r = $sp + a' and '$sp = $r' at the exit;

5. at least N instructions between '$sp = $r' at the entry and '$r = $sp + a' at the exit; and

6. at least N instructions between any two procedure calls.

Machine register $r is a reserved register just for the stack handling purpose. Other unresolved anti-

dependencies, such as between the preservation of a callee-saved register and its �rst assignment,

are also solved by nop insertion.

V. Performance Evaluation

A. Implementation

The algorithms were implemented in the MIPS code generator of the IMPACT C compiler [17].

The algorithms for resolving pseudo register anti-dependencies (loop protection, node splitting, and
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Table 1. Original run time and size of benchmarks.

program run time (seconds) number of static instructions

QUEEN 17.0 148

WC 11.3 181

QSORT 9.8 252

CMP 17.7 262

PUZZLE 15.0 932

NOP 27.5 2307

COMPRESS 41.3 1853

loop expansion) are called right before the register allocation phase. The machine register anti-

dependency constraints are added after the live range constraints have been generated but before

graph coloring. The nop insertion algorithm is called right before the assembly code output routine.

We set a threshold for the maximum number of instructions of the procedure. Once the

number of nodes in the graph exceeds this threshold, the algorithm enters the simpli�ed mode

which bypasses the rest of pseudo register anti-dependency processing except the breaking of self-

anti-dependent instructions. In the experiments the threshold was set at 800 instructions.

B. Benchmarks

Seven programs were cross-compiled on a SPARCserver 490 and run on a DECstation 3100.

The original run time and size are listed in Table 1. The size is the number of assembly instructions

emitted by the code generator, not including the library routines and other �xed overhead. QUEEN

is based on the eight-queen program but with 12 queens as input. QSORT implements the quick

sort algorithm to process a randomly generated array. Both QUEEN and QSORT use recursive

calls. WC, CMP, and COMPRESS are well-known UNIX utilities. PUZZLE is a game. Finally,

NOP is the nop insertion routine mentioned above.
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C. Performance Data

There are several potential sources of performance degradation in our code transformation

approach: 1) loop protection inserts save and restore nodes in the 
ow graph, 2) the machine

register anti-dependency constraints result in the ine�ciency in register usage and hence more spill

code, 3) the nops inserted for consecutive spill code, stack pointer updates, and inter-procedural

anti-dependency constraints will degrade the performance, and 4) the increased code size may

increase the cache miss ratio.

We compiled each benchmark program for N = 1 to 10, and selectively disabled the machine

register anti-dependency solver and the nop inserter to generate a total of 31 versions (including

the original version). Run time and size information for each benchmark are shown in Figure 8 to

Figure 14. The x-axis is the parameter N . The y-axis is the percentage overhead. The dotted line

is for the versions with machine register anti-dependency solver and nop inserter disabled, i.e., it

shows the overhead that should be attributed to the pseudo register anti-dependency solver. The

dashed line is for the versions with nop inserter disabled, i.e., it shows the combined overhead of

pseudo register and machine register anti-dependency solver. The solid line gives the complete

overhead �gures. Note that the N � 3 versions for NOP and the N � 1 versions for COMPRESS

have some functions compiled in simpli�ed mode. That is, the run time shown is usually an over-

estimate of the true number, and the size shown is usually an under-estimate. Also note that the

libraries have not been recompiled by our compiler.

For most of the benchmarks, the time and size overhead tends to increase with N as expected.

However, this is not strictly true. For example, in Figure 8(a), the N = 5 version is slightly faster

than the N = 4 version. There are several sources for this irregularity: 1) measurement accuracy
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Figure 8. Run time and size overhead of QUEEN.
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(b) Size overhead

Figure 9. Run time and size overhead of WC.
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Figure 10. Run time and size overhead of QSORT.
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Figure 11. Run time and size overhead of CMP.
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Figure 12. Run time and size overhead of PUZZLE.

(about 0.1 to 0.2 seconds), 2) the post-pass code reorganizer of the MIPS machine sometimes

changes the execution order for di�erent N , 3) the register allocator is not always optimal, 4) the

inherent jump optimizer in the pseudo register anti-dependency solver sometimes makes di�erent

decisions for di�erent N . In Figure 11(a) and Figure 12(a), the versions with N � 1 run faster than

the original version due to the latter three reasons mentioned above. Since register allocation is an

NP-complete problem [23], the third reason may explain why for CMP and PUZZLE the versions

generated by the pseudo register anti-dependency solver have larger run time overhead than those

generated by applying one or two more phases. The heuristic algorithm may generate more spill

code for the interference graph with only live-range constraints than for the interference graph with
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Figure 13. Run time and size overhead of NOP.
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Figure 14. Run time and size overhead of COMPRESS.

both live-range and anti-dependency constraints.

In general, the di�erence between the dotted and the dashed lines of the run time �gures

increases with N . This is because larger N requires a register to hold a value longer before it can

be used again. In other words, providing a larger register �le can reduce the run time overhead

attributed to the machine register anti-dependency constraints.

In summary, the run time overhead of this compiler-assisted approach is comparable to the

write bu�er hardware approach [3] for the examples examined with an additional bene�t of change-

able N . However, the cost is the increased compilation time and the larger executable code size.

If more registers are provided, the performance will improve, with the dotted lines in Figure 8(a)
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{ Figure 14(a) as lower bounds.

VI. Execution and Compile Time Performance Enhancements

The authors have observed that by modifying the processor to include a simple read bu�er (

not write bu�er ), compiler-assisted multiple instruction retry can be implemented with negligible

run time performance degradation [8]. The enhancements described in this section provide for

reduced performance degradation without utilizing a read bu�er.

A. Save/Restore Node Ordering

During loop protection, the order of inserted nodes has an important impact on performance.

If the save node is always inserted right before the header, and the restore node right after the tail

or trailer, it produces immediate anti-dependent distances among the save/restore nodes, which

may result in more copies of the current loop ( or parent loops ), during loop expansion.

We implemented the following techniques to resolve this problem : 1) when a save node is

to be inserted at the preheader position, it is inserted right before the most recent save node, or

before the header if there is no such node; and 2) when a restore node is to be inserted at the exit

position, it is inserted right before the most recent restore node, or after the tail node if there is no

such node.

For example, consider program WC, loop 1, d(Ih; It) = 7. For N = 9, the save/restore node

pairs are (S1 : t87 = t9;R1 : t9 = t87), and (S2 : t88 = t10;R2 : t10 = t88). If the order is S1, S2,

[L1], R2, R1, then d(S1; R1) = 11, but d(S2; R2) = 9 = N , which creates a new hazard on register

t10 for the outer loop. However, if we reverse the order of save nodes, i.e., S2, S1, [L1], R2, R1,

then d(S1; R1) = d(S2; R2) = 10 > N .
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B. Node Splitting

When performing node-splitting on a loop, only nodes inside the loop were considered due

to loop protection. A straightforward approach would split a node according to the number of

reaching de�nitions. If a hazard node is split into several copies, all of them are hazard nodes and

become reaching de�nitions for later references. This may result in further splitting.

For any given node �, let L be the number of incoming edges, and M be the number of

original reaching de�nitions that can reach �, among which K de�nitions are hazard. We have

implemented an improved approach in which the number of copies, S, for node � after splitting

satis�es the following formula : S = 1) K, if M = K; or 2) K + 1, if M > K. This reduces the

number of copies for splitting by viewing the de�nition in the hazard node and its split nodes as

the same reaching de�nition.

C. Loop Expansion

If loop L is protected from inside on register tk , every iteration of loop L executes a pair of

extra instructions. Observing that if every path leading from loop header to loop tails has at least

one instruction de�ning tk , we can move the save/restore nodes for tk out of loop L. This is because

such instructions form new live ranges for tk such that within the loop tk can be renamed to the

same new registers for di�erent iterations.

D. Inter-Procedural Anti-Dependency

Condition 5 and condition 6 in Section IV can be removed by providing two registers $r,

$r̂, so that the stack pointer adjustment instruction at the entry can use $r, and at the exit can

use $r̂. In other words, the instruction '$sp = $sp � a' at the entry is split into two instructions
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'$r = $sp�a; $sp = $r', and the instruction '$sp = $sp+a' at the exit is split into two instructions

'$r̂ = $sp+ a; $sp = $r̂'.

Another performance improvement is based on condition 1 and condition 4 in Section IV

relating to the prologue and epilogue segments in IMPACT C. The prologue segment includes

code to adjust the stack pointer and to save the values of some local registers to memory, while

the epilogue segment includes code to retrieve the original values of the same local registers from

memory and to adjust the stack pointer. Figure 15(a) shows the prologue segment of the second

function, merge sort , of QSORT for N = 10. Figure 15(b) illustrates how the register assignment

and code rescheduling are used to eliminate 19 nops in the prologue segment. Instruction 'move $sp,

$30' has been moved after all instructions for saving local registers. The instructions to store local

registers are rescheduled according to the �rst de�nitions of corresponding registers. For example,

register $16 is �rst de�ned after the prologue segment. The instruction to save $16 is moved ahead.

Register $30 is used as a temporary stack pointer in the segment to reduce the number of nops

between the last instruction for saving local registers and the instruction 'move $sp, $30'. Similar

improvement is performed for the epilogue segment.

Furthermore, in addition to the three reserved spill registers, we can also utilize dead reg-

isters at speci�c locations for the purpose of spilling. A post-pass code rescheduling and register

assignment is incorporated into the nop insertion phase. For example, among the test programs,

QSORT has the worst performance degradation, 30.2% for N = 10 as shown in Figure 10(a). The

second function, merge sort , which can recursively call itself contributes to most of the run time

overhead. By applying the additional post-pass code scheduling, the performance degradation has

been reduced to 16.7%. The number of nops inserted is reduced from more than 150 to 40.
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move      $sp,         $30
sw          $31,        124($sp)

sw          $17,        96($sp)
sw          $16,        92($sp)

sw          $20,        108($sp)
sw          $19,        104($sp)

sw          $23,        120($sp)
sw          $22,        116($sp)
sw          $21,        112($sp)

sw          $18,        100($sp)

subu        $30,        $sp,       128

merge_sort :
$_merge_sort_1 :
prologue_begin :

(a) (b)

prologue_end :
move      $16,        $4
sw          $5,           52($sp)

move      $sp,         $30

subu       $30,        $sp,       128
sw          $16,        92($30)
sw          $17,        96($30)
sw          $31,        124($30)
sw          $23,        120($30)
sw          $22,        116($30)
sw          $21,        112($30)
sw          $20,        108($30)
sw          $19,        104($30)
sw          $18,        100($30)

merge_sort :
$_merge_sort_1 :
prologue_begin :

move      $0,          $0

prologue_end :
move      $16,        $4
move      $3,          $5
sw          $3,           52($sp)

10  nops

10  nops

Figure 15. Post-pass code rescheduling and register assignment for QSORT, N = 10.

VII. Conclusion

This paper described a compiler-based alternative to a hardware delayed write bu�er to pre-

serve the state of the register �le for N instructions. This objective is achieved by having the

compiler remove all anti-dependencies within N instructions. Our method uses loop protection,

node splitting, and loop expansion algorithms to remove pseudo register anti-dependencies; the

anti-dependency constraints are added to the interference graph to prevent machine register anti-

dependencies; the remaining anti-dependencies are resolved by nop insertion. The algorithms have

been implemented in the IMPACT C compiler. The experimental results indicate that the run time

performance of this software approach is comparable to that of the write bu�er hardware approach,

with an additional bene�t of changeable N .
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