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Abstract 

Benchmarking in its various forms has become a pop- 
ular approach to evaluating system performance and 
design decisions. There are at  least three levels of be- 
havior of a computer system measured by the bench- 
marking technique: the level of benchmark program 
and input set selection, the level of benchmark char- 
acteristics, and the level of system behavior in re- 
sponse to the benchmarks. Traditionally, only the 
system behavior has been measured. In order to make 
strong conclusion about benchmarking results, how- 
ever, the nature of the benchmark programs must 
be characterized. This paper addresses this issue by 
presenting ways of measuring benchmark character- 
istics independent of system design. These bench- 
mark characteristics include memory access behav- 
ior, control transfer behavior, and data dependencies. 
Measuring benchmark characteristics independent of 
the design parameters provides for cross-design and 
cross-architecture comparisons using the same bench- 
mark set. They also serve as the basis for interpret- 
ing benchmarking results. Instruction memory access 
behavior and control transfer behavior are extracted 
from real programs and presented in this paper to 
illustrate the usefulness of benchmark characteriza- 
tion. 

1 Introduction 

The evaluation of the performance of a computer 
system typically uses the technique of benchmark- 
ing. In this technique, the performance of the system 
is measured for a set of programs, or bewhmarks ,  
that are executed on the actual system or a simu- 
lation of the system. Various forms of benchmark- 
ing, such as trace driven simulation, detailed simu- 
lation based on executable files, microcode-assisted 
measurement, hardware monitoring, and software 
probing, have been used extensively in the evalua- 
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tion of experimental computer architectures, such as 
in [l,  2, 3, 4, 5 ,  6 ,  7,  8 ,  9,  10, 11, 12, 13, 141 

Traces are records of the dynamic system behav- 
ior in response to benchmarks. These traces are used 
as the input to simulators that generate system-level 
performance metrics [a, 31. The amount of the col- 
lected information in these traces often makes mea- 
surement of long-term or global system behavior in- 
tractable. For example, on a contemporary 5 MIPS 
machine that accesses memory approximately twice 
per instruction, a second of real time results in  a ref- 
erence string of length 2 references/inst. x 5 MIPS x 
4 bytes/reference =- 40Mbytes long. This paper 
presents behavior measurement techniques based on 
information that is proportional to the static rather 
than dynamic program size. Instead of collecting 
traces, graph and density-function representations of 
the program are annotated with information froin ex- 
ecution. This reduces substantially the amount of 
storage needed and increases the space of tractable 
system behavior measurement. 

Benchmarking usually involves collecting a set of 
programs that are believed to be representative of 
the workload the system will encounter. Since some 
of these programs might process data, a set of rep- 
resentative inputs for each program is also collected. 
As each benchmark program is executed, it makes 
requests of the system that exercise various system 
features. These requests in turn force the system 
into certain behavioral patterns. This behavior of 
the system is then measured and interpreted as its 
performance. Hence, there are at  least three levels 
of performance of a computer system measured by 
the benchmarking technique: the level of benchmark 
input set selection, the level of benchmark character- 
istics and compiler decisions, and the level of system 
behavior in response to the benchmarks. Tradition- 
ally, only the end-product performance of the system 
has been measured and this performance has been 
taken as the performance of the system in general. 
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This paper addresses this issue by presenting ways of 
measuring benchmark characteristics separate from 
system performance. 

The performance of the system under benchmarks 
is often measured in terms of system-level, observ- 
able performance metrics, such as throughput and 
turnaround time [15, 161. These metrics are func- 
tions of the characteristics of the benchmarks used 
for the performance study. Since they measure the 
system's performance, the metrics are also a function 
of the system design parameters. Measuring the char- 
acteristics of the benchmarks independent of the de- 
sign parameters provides for cross-architecture com- 
parisons using the same benchmark set. Additionally, 
the system-level performance metrics can potentially 
be approximated using analytical formulas involving 
the benchmark characteristics and the design param- 
eters. These analytical formulas can provide insight 
into how benchmark performance and system design 
parameters impact the system's performance. 

The remainder of this paper is divided into three 
parts. The following section discusses the method- 
ology selected to measure benchmark characteristics. 
The third section presents implementation issues. An 
example of the approach is presented in section four. 
Finally, conclusions and future directions are pre- 
sented. 

2 A Methodology for 
Benchmark Characterization 

This section presents the methodology of benchmark 
characterization. The benchmark characteristics pro- 
posed in this paper are selected to be general, highly 
architecture-parameter independent rulers by which 
the system's performance can be estimated. These 
characteristics, or General Ruler Independent of Pa- 
rameters, ( GRIPs),  are defined below. 

2.1 Locality measures 

An abstract reference stream of items is a time se- 
quence, w ( t )  = ri, over a set of possible item values, 
ri E R. The items (r i ' s )  may be the addresses of 
instructions or data  items generated during the exe- 
cution of a benchmark program, for example. Mod- 
ern computers exploit the temporal and spatial lo- 
cality behavior of reference streams by using special 
fast buffers to achieve high performance (e.g., cache 
memories) [l]. For this reason, many of the GRIPs 
presented below are based on locality measures. 

Some definitions concerning reference streams will 
be required below: 

DEFINITION 2.1: Define next(w(t)) = IC ,  if IC is 
the smallest integer such that w ( t )  = w( t  + le). 

I 

DEFINITION 2.2: The number of unique references 
between w ( t )  and next(w(t)), is defined as, 
u ( w ( t ) )  = I [ {  w(t  + k) I i 5 le < next(w(t))}II. 

I 

DEFINITION 2.3: Define fT(z), the znterreference 
temporal density function, fT(z),, to be the proba- 
bility of there being z unique references between suc- 
cessive references to the same item, 

fT(z) = P [ZL(w(t)) = .I 
t 

I 

The interreference temporal density function is a 
measure of temporal locality of a reference stream. 
The performance of buffers managed under stack- 
ing replacement policies (e.g., LRU) depends directly 
on this measure of temporal locality. The hit ratio 
for a fully associative buffer of size N is h ( N )  = 
zylN fT(y) (see [171). 
DEFINITION 2.4: The interreference spatial density 
function, fs(z), is defined as, 

next(w(t)) 
f"(Z)=C P [ I w ( t ) - w ( t + k ) l = z ] .  

t k = l  

I 

The interreference spatial density function is a mea- 
sure of the probability that between references to the 
same item, a reference to an item 2 units away occurs. 
Hence, the function captures the intrikic interference 
between items in direct-mapped caches. 

Another useful representation of a reference stream 
of items is as a .  How to construct such a graph is 
illustrated in the following two definitions. 

DEFINITION 2.5: The (directed) reference graph, 
G = (V,  E ) ,  of a reference stream is defined as V = R 
and, 

E = { (ri, r j )  I w ( t )  = ri and w( t  + 1) = rj } 

I 

DEFINITION 2.6: Let ni(r i )  be the number of oc- 
currences w ( t )  = ri ,  for 0 5 t 5 T .  Further- 
more, let nij (ri, r j )  be the number of occurrences of 
w( t  + 1) = r j ,  if w( t )  = ri. Then, the weighted ref- 
erence graph, G' = ( V , E ) ,  is defined such that each 
node, ri E V ,  is weighted with P[ri] = ni/T,  and each 
edge, ( r i , r j )  E E is weighted with P[rjlri] = nij/ni. 

I 
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Based on these graph definitions, groups of items that 
are referenced together can be defined. The strongly- 
connected components of the reference graph, called 
the phases, are such partitions of the reference 
stream, outlined in the following definition. 

DEFINITION 2.7: The set of phases for a reference 
stream is defined as 0 = {&, 4 2 , .  . .d;.  . . dP}, where 

4i = { Ti I {(Ti, ri+i), ( w 1 ,  r i + z ) ,  

. . . , ( r k - l , r k ) ,  ( T k ,  . i l l  c E I ,  
and, 41 n 42 n . . . n dP = 0. 

I 

In a phase, any node can be reached from any other 
node through a sequence of edge traversals. During 
program execution, the items in a newly-encountered 
phase are guaranteed to not have been referenced be- 
fore. Intrinsic cold-start buffer behavior can therefore 
be predicted using phase transitions, since the previ- 
ous contents of a buffer are useless when a new phase 
is encountered. The interphase density function de- 
fined below is intended to capture this phase behavior 
of benchmarks. 

DEFINITION 2.8: The interphase density function, 
f$(z), is the probability that a phase of size z is en- 
countered in the reference stream, 

I 

2.2 Control flow GRIPs 

The control flow behavior of a benchmark program 
can be characterized in terms of a reference stream 
of instructions, w(t)  = ij, ij E I, and its correspond- 
ing weighted reference graph, GI = (VI ,  E I ) .  The 
instruction reference stream can be grouped into sets 
of instructions that must execute sequentially. These 
sets are called basic blocks, and the instruction ref- 
erence stream can be redefined in terms of them, 
w’(q = Bj,Bi E B. [18]. Some of the GRIPs for 
control flow are defined below in terms of the bench- 
mark program’s basic block weighted reference graph, 
GBB = (VBB, EBB) ,  also called the weighted control 
graph [19]. 

When the program is mapped into the linear mem- 
ory space of a computer, the graph nature of the 
program is preserved using branch instructions. The 
graph nature still affects the performance of the sys- 
tem, especially for pipelined processors. Methods to 
reduce the penalty of this mapping have used both 
hardware and software approaches [lo, 11, 12, 6, 13, 

14, 81. Software branch prediction schemes use the 
weights of the control flow graph to predict a branch’s 
behavior to be either taken or not-taken for the dura- 
tion of the program’s execution [6, 8, 201. It has been 
shown that these schemes perform as well as hard- 
ware schemes [8], yet the calculation of their perfor- 
mance is architecture-independent. The control flow 
GRIP branch prediction accuracy, A, is a variant of 
the accuracy of these software schemes. 

DEFINITION 2.9: The prediction probability of Bi, 
Pp(Bi)  is defined as, 

Pp(Bi) = max{ P [  BjIBi] I (Bi, B j )  E EBB }. 

I 

DEFINITION 2.10: The branch prediction accuracy, 
A ,  is defined as, 

N 
A = P(Bi)Pp(Bi). 

i = l  

I 

Hence, the branch prediction accuracy is the proba- 
bility that a prediction based on the most likely be- 
havior of a branch instruction is correct. Since some 
architectures have separate penalties for incorrectly 
predicting conditional- and unconditional branches, 
another GRIP, FCB, is defined as the fraction of dy- 
namic branches that are conditional branches. 

The fetching of instructions in modern computers 
and the hardware-based prediction of branches of- 
ten invoive buffering [ll, 6, 81. The performance of 
instruction buffering techniques, such as instruction 
caches and branch target buffers, can estimated us- 
ing the above locality measures for the instruction 
reference stream. Hence, fT(z) is defined to be the 
temporal locality GRIP and f,”(z), the spatial local- 
ity GRIP for the instruction stream. Also, ff(z), the 
interphase density function, is included as a GRIP. It 
is important to mention an architecture-specific pa- 
rameter that maps basic blocks into actual machine 
instructions. This parameter is the average length 
of basic blocks, LBB, and it is measured in terms of 
machine instructions instructions. 

The GRIPs for control flow are summarized in Ta- 
ble l. These GRTPs will be measured for benchmarks 
in an example characterization presented in Section 4. 

2.3 Data flow GRIPs 

The characterization of the data flow behavior of a 
benchmark program involves the concept of variables. 
A variable is a dynamic instance of a data item. The 
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Table 1: Control flow GRIPs 

n GRIP I Benchmark characteristic measured 
Predictability of branches 
Fraction of conditional branches 
Instruction stream temporal locality 
Instruction stream spatial locality 
Instruction stream phase behavior 

lifetime of variables, their locality, and the data de- 
pendencies that exist between them are the subject 
of this section. 

Variables go through a life cycle in which they are 
created, used, and then discarded or written out. 
Register allocation is often performed using the tech- 
nique of graph coloring [21, 221. In this technique, a 
register is assigned to two different variables if the two 
variables are not live (i.e., active) at  the same time. 
In essence, the number of registers required can be 
estimated by the variable life density funct ion.  

DEFINITION 2.1 1 : Define the variable life density 
function, fVL(nv), as the probability that n v  vari- 
ables are live a t  any time during execution of the 
benchmark program. 

I 

Hence, if there are m registers available for allocation 
by the compiler, then the register utilization will be xi<, f v L ( i ) ,  and the amount of spill code required 
will be xi,,,, f V L ( i ) .  (This is similar to an approach 
described in [23].) The number of live variables can 
be measured using techniques described in Section 3. 

Since buffering is used for data accesses, a set of 
GRIPs is defined for the locality of data references. 
Define fg(x) t o  be the interreference temporal den- 
sity function, and fi(x) as the interreference spatial 
density function for the data reference stream. Note 
that unlike the instruction stream, the variable life 
density function must be used in conjunction with the 
locality density functions to predict the performance 
of buffers after register allocation. Also, phase be- 
havior will be measured with, f$(x), the interphase 
density function for the data reference stream. 

The data dependence behavior of a benchmark pro- 
gram can be captured using a instruction dependence 
graph. In this graph, the nodes are the (compiler- 
intermediate) instructions, i j  E I, and the edges are 
due to flow dependencies. The following definition 
states this more formally. 

DEFINITION 2.12: If R(ij) is the set of variables read 
by instruction ur(t1) = i j ,  and W ( & )  is the set of vari- 

ables written by instruction w ( t 2 )  = i k ,  for ij , i k  E I ,  
and t l  < t 2 ,  then, the instruction dependence graph 
is a graph, G I ~  = (VI, E ID) ,  such that VI = I and 

EID = { ( i k ,  i j )  I w(ij) n R ( i k )  # 0) 

(see [IS]). 
I 

The dynamic scheduling of instructions using an al- 
gorithm such as Scoreboarding or the Tomasulo algo- 
rithm is dictated by the structure of the dynamic data 
dependencies [24, 25, 4,  51. A possible GRIP to cap- 
ture the schedulability of a benchmark would be the 
probability of there being dependencies of distance 
i intermediate instructions. However, the overlap of 
dependencies and the branch behavior of the instruc- 
tion stream is not captured by this GRIP. Emma and 
Davidson present a set of reductions that can be per- 
formed on the instruction dependence graph to elim- 
inate overlap. After these reductions, the probability 
of a dependence spanning j taken branches while hav- 
ing a distance of i intermediate instructions is suffi- 
cient to characterize the performance of out-of-order 
execution schemes [26, 271. This statistic is the prob- 
ability of such a dependence occurring, pf? ,  and can 
be calculated from the instruction dependence graph 
after a set of graph reductions are performed [27]. 
This then will serve as the scheduling GRIP for data 
flow. 

The GRIPs for data flow are summarized in Ta- 
ble 2. 

2.4 Other GRIPs 

Three areas of benchmark characterization that are 
not covered in detail in this paper deserve some dis- 
cussion. These three areas are operating system per- 
formance, 1/0 system performance, and large-grain 
parallelism. 

The performance of a benchmark program under 
the interruptions and scheduling policies of an oper- 
ating system is different from that of the program 
running alone. There are two ways of viewing this 
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Table 2: Data flow GRIPs 

I Benchmark characteristic measured I] GRIP 

interaction. From the operating system viewpoint, 
the benchmark program is actually an input. Hence, 
the operating system may be thought of as a meta 
benchmark program with the characteristics of the 
benchmarks running under it as its input set. From 
the benchmark program’s viewpoint, the operating 
system satisfies requests and disturbs buffer usage. 
These two effects can be characterized using selec- 
tive flushing of buffers via simulated multitasking, as 
in [l,  281. Therefore, an operating system can be 
viewed as a benchmark and characterized using the 
same GRIPs. Additionally, the multitasking quan- 
tum can be used as a system parameter to modify 
the role the locality measures play in the approxima- 
tions of system-level performance parameters. 

The 1/0 system’s performance is similar to the op- 
erating system in the sense that it views the entire 
set of benchmark programs as its input set. Since 
the sequence of references to a peripheral determines 
its performance, the performance of peripherals has 
to be modeled for each peripheral architecture. This 
is analogous to the modeling of cache behavior by 
locality measures, since cache behavior also depends 
on reference stream sequencing. Hence, the charac- 
terizations are tractable but beyond the scope of this 
paper. 

Large-grain parallelism is usually expressed explic- 
itly by the programmer as a conscious decision. Mea- 
suring this parallelism can be done by intercepting the 
synchronization primitives and then constructing the 
expressed dynamic parallelism. Again, these charac- 
terizations are tractable but beyond the scope of this 
paper. 

3 Implementation issues 

Several ways of measuring GRIPs are available. For 
example, microcode-based measurement techniques 
exist that modify the microcode of a machine to moni- 
tor the instruction stream [2,3]. In essence, the traces 
generated by these techniques are reference streams 
of items. These streams can be analyzed to produce 
reference graphs and identify phases. However, the 

length of the traces are excessive. 
’This paper uses techniques where the reference 

graph is constructed on-the-fly without the interme- 
diate step of recording the reference string. Previous 
work has implemented the construction of the con- 
trol flow graph on-the-fly using the compiler to insert 
probe instructions at  the entrance of each of the pro- 
gram’s basic block. As the program executes, the 
weighted control graph is constructed and stored for 
later analysis [19, 8, 291. 

This paper proposes an extension to the compiler- 
based profiling technique to measure the instruction 
dependence graph and the locality measures. Static 
analysis of dependence information can be done at  
compile time to produce a list of variables that are 
born and killed for each basic block [18]. However, 
static dependence analysis cannot deal efficiently with 
variables that span function call invocations and 
aliased pointer references [30]. These instances cause 
unknowns to appear in the static dependence infor- 
mation. The compiler-based dependence profiler in- 
serts probe instructions at  the site of these unknowns 
to measure their variables. As each basic block is 
executed, a script describing the birth and death of 
variables is executed by the profile analyzer. The un- 
knowns are represented as ‘wait for variable identity’ 
commands in this script that instruct the analyzer 
to insert the identity of the variable in its dynamic 
copy of the script. As each basic block completes ex- 
ecution, the analyzer uses the dynamic copy of the 
script to update the instruction dependence graph 
that it builds. Also measured using this technique 
is the variable life density function, fvL. 

After the weighted control graph has been con- 
structed, branch behavior can easily be measured. 
The branch prediction accuracy, A ,  can be calculated 
directly from the weighted control graph using the 
equation from Section 2.2. The dynamic fraction of 
conditional branches, F C B ,  can be calculated by sum- 
ming the weights of the basic blocks in the weighed 
control graph that end with conditional branches. 

Phases and cycles in the control flow and depen- 
dence graphs can be detected during the execution 
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of the program using a stack of recently-seen items. 
A separate stack maintained using the least-recently- 
used replacement policy (see [17]) can be employed to 
find the interreference temporal and spatial density 
functions. The algorithm for locality measurement 

Calclocmeasures (Ti)  : 
begin 

if not first  tame r; encountered then 
begin 

d t depth(r;) 
remove r; f r o m  the stack 
for 
begin 

all r, with depth(rj) < d 

dist + (a(rj! - a(?-;)( 
f S ( d i s t )  t f S ( d i s t )  + 1 

end 
P ( d )  P ( d )  + 1 

end 
push(r;) 

end 

Figure 1: The algorithm for calculating the 
locality distributions. 

is outlined in Figure 1, where a(.) is the address of 
a node, and depth(.) is the stack depth of a node. 
The approximate distributions, f”(x) and fT(z) are 
normalized after execution terminates. 

4 Example benchmark characterization 

As an illustration of the benchmark characterization 
idea, this section presents the control flow GRIPs for 
several benchmarks. The benchmark programs were 
selected to be highly data-driven so as to make their 
control flow behavior very diverse. The benchmarks 
are presented in Table 3. A description of the inputs 
that were used for the programs is also presented. 

The GRIPs presented in Table 1 were measured us- 
ing the techniques outlined in Section 3. The scalar 
GRIPs, A and FCB,  are presented in Table 4. The 
locality measures, f T ( z ) ,  f , ” ( z )  and $(z) are pre- 
sented in graph form in Figures 2, 3, 4, and 5. 

Table 4: Scalar control flow GRIPs 

[Benchmark I[ A [ FCB I] 

uacc-make 

The value of A shows that all these benchmarks 
have highly predictable branches. For example, a typ- 
ical static branch in yacc-awk can be correctly pre- 
dicted 95% of the time by always choosing the most 
preferred direction. Hardware or software branch pre- 
diction mechanisms should be able to achieve this pre- 
diction accuracy. Any result significantly less than 
this value indicates the existence of system perfor- 
mance problems. In the case of hardware prediction 
schemes, the problem may be due to either insuffi- 
cient branch target buffer entries or frequent context 
switches. The measured instruction-stream locality 
can then be used to estimate by how much the branch 
target buffer size should be increased. As for software 
prediction schemes, the problem may be due to the 
use of inaccurate profile information. With the A 
values, one knows what to expect from the measured 
branch prediction performance. Also, with such a 
high predictability, software and hardware prediction 
schemes can be expected to exhibit the same behav- 
ior. This is confirmed by the measurements presented 
in [8]. 

The spatial locality measure of yacc-awk (Figure 4 )  
indicates that it is highly sequential. The likelihood of 
a basic block reference being within 30 basic blocks of 
any other reference is very high. This is of course de- 
pendent on the code layout decision made by the com- 
piler. The code layout used in this measurement is in- 
telligently done based on profile information. There- 
fore, one can expect the spatial locality to be lower 
for the same benchmark when compiled by a less in- 
telligent compiler. With such a high spatial locality, 
one can expect the instruction buffers and caches with 
large blocks to perform well. 

The temporal locality of yacc-make indicates that 
a cache which accommodates approximately 15 basic 
blocks will accommodate its working set. The entire 
program consists of almost 1300 basic blocks. With 
only 1% of the program active at  a time, yacc-make 
has very high locality. With five instructions per 
basic block and four bytes per instruction, a 0.5KB 
cache will be adequate for accommodating the work- 
ing set. Therefore, one expects to find the perfor- 
mance of instruction cache to saturate when the cache 
size increases beyond 0.5K bytes. Again, one knows 
what to expect before performing any architecture- 
parameter-specific measurement. 

It is interesting to correlate the spatial and tempo- 
ral localities. Although the results for grep  are not 
strongly correlated, there is a strong correlation be- 
tween the spatial and temporal locality measures for 
yacc-awk and yacc-make. This phenomenon is due in- 
part to the intelligent compiler code layout scheme, 
trace layout .  This scheme emits instructions in the 



Table 3: The programs studied 

Benchmark 11 Description I Input descriDtion I # Basic blocks fl 
grep-c 

grep-words 
yacc-awk 

, i  vacc-make 

grep:  A general regular- grep -c ’++I grep.c 
expression parser grep -1 ’ [aeiou] (2,4>’ /usr/dict/words 

yacc:  a LALR(1) 
parser generator 

The grammar for awk 
The grammar for make 

order of their execution based on the program’s per- 
formance for a large input set [31, 19, 71. Hence, 
references a certain distance apart in time tend to be 
the same distance apart in space. 

The comparison of the temporal locality for the 
same benchmark program using different inputs is 
also interesting. For example, grep-c (Figure 2 )  has 
33% of its references separated by five unique ref- 
erences, whereas grep-words has only 11%. On the 
other hand, grep-c has fT(22) x 0, whereas grep- 
words has fT(22) x 18%. Though the temporal local- 
ities are input dependent a t  these two points, buffers 
of size greater than 50 basic block lengths will per- 
form equally well for both benchmarks. Hence, if a 
design decision is made to be robust, it will be insen- 
sitive to the benchmark program input selection. 

Finally, the interphase density functions show a 
preference for large phases. For example, ff’(79) = 
99% for grep-c. A similar execution probability oc- 
curs for a phase of size 513 for yacc-awk, and at  a size 
of 74 for grep-words. This indicates that the penalty 
of intrinsic cold-start misses would be very high, but 
infrequent. However, this also suggests that context 
switching would have a large impact on buffer perfor- 
mance. Perhaps further subdividing phases by using 
the weights of the weighted control graph might pro- 
vide more insight the effect of context switching. 

5 Conclusions 

This paper presents a method for characterizing 
benchmark programs. Two key features distinguish 
the ideas presented in this paper from those presented 
in the past. One is that all the characteristics are 
stored as data structures whose sizes are proportional 
to that of the static size of the benchmark program. 
In contrast, trace driven simulation is based on the 
analysis of dynamic execution traces whose size is 
proportional to the dynamic instruction count of the 
benchmark program. This makes it possible to char- 
acterize each benchmark with many realistic inputs. 
The other key feature is the separation of benchmark 
characteristics from architecture-specific parameters. 
Benchmark characterization is presented as a tech- 

nique that can provide some insight into the perfor- 
mance of a system without actually having to simu- 
late the system. This provides a uniform ground for 
comparing different architectures. It is also a tool to 
help interpret the results of simulation and measure- 
ments. 

Several areas of benchmark characterization were 
presented. Control flow and data flow characteriza- 
tions were explained in detail. To illustrate the ideas, 
the results of control flow characterization were pre- 
sented and discussed. The control flow characteris- 
tics presented include branch predictability, instruc- 
tion stream spatial-, and temporal locality locality. 
The implication of these characterization results on 
the evaluation of architecture design decisions were 
also presented. 

A profiler and its supporting software tools are be- 
ing constructed to implement the ideas presented in 
this paper. The extraction of control flow GRIPs 
has been completed and was used to derive the re- 
sults presented in Section 4. The extraction of data 
flow GRIPs is under development. Once completed, 
this profiler will be distributed to the architecture re- 
search community. 
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Figure 2: The locality measures, f,'(x), ff(z), and ff(x), for grep-c 

I5 



0.5 

- 
- 
- 
- 
- 
- 
- 

- 
- 

0.4 

- 

T 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I I I I  

0.3 

0.2 
fT 

0.1 

0 
0 10 20 30 40 50 60 

Number of unique references 

0.5 1 

0.1 

0 
0 10 20 30 40 50 60 70 

f! 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

0 10 20 30 40 50 60 70 80 

Phase length 
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