
Benchmark Characterization for Experiment a1 System Evaluation

Thomas M. Conte Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois
conteQcsg.uiuc.edu

Abstract

Benchmarking in its various forms has become a pop-
ular approach to evaluating system performance and
design decisions. There are at least three levels of be-
havior of a computer system measured by the bench-
marking technique: the level of benchmark program
and input set selection, the level of benchmark char-
acteristics, and the level of system behavior in re-
sponse to the benchmarks. Traditionally, only the
system behavior has been measured. In order to make
strong conclusion about benchmarking results, how-
ever, the nature of the benchmark programs must
be characterized. This paper addresses this issue by
presenting ways of measuring benchmark character-
istics independent of system design. These bench-
mark characteristics include memory access behav-
ior, control transfer behavior, and data dependencies.
Measuring benchmark characteristics independent of
the design parameters provides for cross-design and
cross-architecture comparisons using the same bench-
mark set. They also serve as the basis for interpret-
ing benchmarking results. Instruction memory access
behavior and control transfer behavior are extracted
from real programs and presented in this paper to
illustrate the usefulness of benchmark characteriza-
tion.

1 Introduction

The evaluation of the performance of a computer
system typically uses the technique of benchmark-
ing. In this technique, the performance of the system
is measured for a set of programs, or bewhmarks ,
that are executed on the actual system or a simu-
lation of the system. Various forms of benchmark-
ing, such as trace driven simulation, detailed simu-
lation based on executable files, microcode-assisted
measurement, hardware monitoring, and software
probing, have been used extensively in the evalua-

0073-1129/90/0000/0006$01.00 Q 1990 IEEE

tion of experimental computer architectures, such as
in [l, 2, 3, 4, 5 , 6 , 7, 8 , 9, 10, 11, 12, 13, 141

Traces are records of the dynamic system behav-
ior in response to benchmarks. These traces are used
as the input to simulators that generate system-level
performance metrics [a, 31. The amount of the col-
lected information in these traces often makes mea-
surement of long-term or global system behavior in-
tractable. For example, on a contemporary 5 MIPS
machine that accesses memory approximately twice
per instruction, a second of real time results in a ref-
erence string of length 2 references/inst. x 5 MIPS x
4 bytes/reference =- 40Mbytes long. This paper
presents behavior measurement techniques based on
information that is proportional to the static rather
than dynamic program size. Instead of collecting
traces, graph and density-function representations of
the program are annotated with information froin ex-
ecution. This reduces substantially the amount of
storage needed and increases the space of tractable
system behavior measurement.

Benchmarking usually involves collecting a set of
programs that are believed to be representative of
the workload the system will encounter. Since some
of these programs might process data, a set of rep-
resentative inputs for each program is also collected.
As each benchmark program is executed, it makes
requests of the system that exercise various system
features. These requests in turn force the system
into certain behavioral patterns. This behavior of
the system is then measured and interpreted as its
performance. Hence, there are at least three levels
of performance of a computer system measured by
the benchmarking technique: the level of benchmark
input set selection, the level of benchmark character-
istics and compiler decisions, and the level of system
behavior in response to the benchmarks. Tradition-
ally, only the end-product performance of the system
has been measured and this performance has been
taken as the performance of the system in general.

6

http://conteQcsg.uiuc.edu

This paper addresses this issue by presenting ways of
measuring benchmark characteristics separate from
system performance.

The performance of the system under benchmarks
is often measured in terms of system-level, observ-
able performance metrics, such as throughput and
turnaround time [15, 161. These metrics are func-
tions of the characteristics of the benchmarks used
for the performance study. Since they measure the
system's performance, the metrics are also a function
of the system design parameters. Measuring the char-
acteristics of the benchmarks independent of the de-
sign parameters provides for cross-architecture com-
parisons using the same benchmark set. Additionally,
the system-level performance metrics can potentially
be approximated using analytical formulas involving
the benchmark characteristics and the design param-
eters. These analytical formulas can provide insight
into how benchmark performance and system design
parameters impact the system's performance.

The remainder of this paper is divided into three
parts. The following section discusses the method-
ology selected to measure benchmark characteristics.
The third section presents implementation issues. An
example of the approach is presented in section four.
Finally, conclusions and future directions are pre-
sented.

2 A Methodology for
Benchmark Characterization

This section presents the methodology of benchmark
characterization. The benchmark characteristics pro-
posed in this paper are selected to be general, highly
architecture-parameter independent rulers by which
the system's performance can be estimated. These
characteristics, or General Ruler Independent of Pa-
rameters, (GRIPs), are defined below.

2.1 Locality measures

An abstract reference stream of items is a time se-
quence, w (t) = ri, over a set of possible item values,
ri E R. The items (r i ' s) may be the addresses of
instructions or data items generated during the exe-
cution of a benchmark program, for example. Mod-
ern computers exploit the temporal and spatial lo-
cality behavior of reference streams by using special
fast buffers to achieve high performance (e.g., cache
memories) [l]. For this reason, many of the GRIPs
presented below are based on locality measures.

Some definitions concerning reference streams will
be required below:

DEFINITION 2.1: Define next(w(t)) = IC , if IC is
the smallest integer such that w (t) = w(t + le).

I

DEFINITION 2.2: The number of unique references
between w (t) and next(w(t)), is defined as,
u (w (t)) = I [{ w(t + k) I i 5 le < next(w(t))}II.

I

DEFINITION 2.3: Define fT(z), the znterreference
temporal density function, fT(z),, to be the proba-
bility of there being z unique references between suc-
cessive references to the same item,

fT(z) = P [ZL(w(t)) = .I
t

I

The interreference temporal density function is a
measure of temporal locality of a reference stream.
The performance of buffers managed under stack-
ing replacement policies (e.g., LRU) depends directly
on this measure of temporal locality. The hit ratio
for a fully associative buffer of size N is h (N) =
zylN fT(y) (see [171).
DEFINITION 2.4: The interreference spatial density
function, fs(z), is defined as,

next(w(t))
f"(Z)=C P [I w (t) - w (t + k) l = z] .

t k = l

I

The interreference spatial density function is a mea-
sure of the probability that between references to the
same item, a reference to an item 2 units away occurs.
Hence, the function captures the intrikic interference
between items in direct-mapped caches.

Another useful representation of a reference stream
of items is as a . How to construct such a graph is
illustrated in the following two definitions.

DEFINITION 2.5: The (directed) reference graph,
G = (V, E) , of a reference stream is defined as V = R
and,

E = { (ri, r j) I w (t) = ri and w(t + 1) = rj }

I

DEFINITION 2.6: Let ni(r i) be the number of oc-
currences w (t) = ri , for 0 5 t 5 T . Further-
more, let nij (ri, r j) be the number of occurrences of
w(t + 1) = r j , if w(t) = ri. Then, the weighted ref-
erence graph, G' = (V , E) , is defined such that each
node, ri E V , is weighted with P[ri] = ni/T, and each
edge, (r i , r j) E E is weighted with P[rjlri] = nij/ni.

I

7

Based on these graph definitions, groups of items that
are referenced together can be defined. The strongly-
connected components of the reference graph, called
the phases, are such partitions of the reference
stream, outlined in the following definition.

DEFINITION 2.7: The set of phases for a reference
stream is defined as 0 = {&, 4 2 , . . .d;. . . dP}, where

4i = { Ti I {(Ti, ri+i), (w 1 , r i + z) ,

. . . , (r k - l , r k) , (T k , . i l l c E I ,
and, 41 n 42 n . . . n dP = 0.

I

In a phase, any node can be reached from any other
node through a sequence of edge traversals. During
program execution, the items in a newly-encountered
phase are guaranteed to not have been referenced be-
fore. Intrinsic cold-start buffer behavior can therefore
be predicted using phase transitions, since the previ-
ous contents of a buffer are useless when a new phase
is encountered. The interphase density function de-
fined below is intended to capture this phase behavior
of benchmarks.

DEFINITION 2.8: The interphase density function,
f$(z), is the probability that a phase of size z is en-
countered in the reference stream,

I

2.2 Control flow GRIPs

The control flow behavior of a benchmark program
can be characterized in terms of a reference stream
of instructions, w(t) = ij, ij E I, and its correspond-
ing weighted reference graph, GI = (VI , E I) . The
instruction reference stream can be grouped into sets
of instructions that must execute sequentially. These
sets are called basic blocks, and the instruction ref-
erence stream can be redefined in terms of them,
w’(q = Bj,Bi E B. [18]. Some of the GRIPs for
control flow are defined below in terms of the bench-
mark program’s basic block weighted reference graph,
GBB = (VBB, EBB) , also called the weighted control
graph [19].

When the program is mapped into the linear mem-
ory space of a computer, the graph nature of the
program is preserved using branch instructions. The
graph nature still affects the performance of the sys-
tem, especially for pipelined processors. Methods to
reduce the penalty of this mapping have used both
hardware and software approaches [lo, 11, 12, 6, 13,

14, 81. Software branch prediction schemes use the
weights of the control flow graph to predict a branch’s
behavior to be either taken or not-taken for the dura-
tion of the program’s execution [6, 8, 201. It has been
shown that these schemes perform as well as hard-
ware schemes [8], yet the calculation of their perfor-
mance is architecture-independent. The control flow
GRIP branch prediction accuracy, A, is a variant of
the accuracy of these software schemes.

DEFINITION 2.9: The prediction probability of Bi,
Pp(Bi) is defined as,

Pp(Bi) = max{ P [BjIBi] I (Bi, B j) E EBB }.

I

DEFINITION 2.10: The branch prediction accuracy,
A , is defined as,

N
A = P(Bi)Pp(Bi).

i = l

I

Hence, the branch prediction accuracy is the proba-
bility that a prediction based on the most likely be-
havior of a branch instruction is correct. Since some
architectures have separate penalties for incorrectly
predicting conditional- and unconditional branches,
another GRIP, FCB, is defined as the fraction of dy-
namic branches that are conditional branches.

The fetching of instructions in modern computers
and the hardware-based prediction of branches of-
ten invoive buffering [ll, 6, 81. The performance of
instruction buffering techniques, such as instruction
caches and branch target buffers, can estimated us-
ing the above locality measures for the instruction
reference stream. Hence, fT(z) is defined to be the
temporal locality GRIP and f,”(z), the spatial local-
ity GRIP for the instruction stream. Also, ff(z), the
interphase density function, is included as a GRIP. It
is important to mention an architecture-specific pa-
rameter that maps basic blocks into actual machine
instructions. This parameter is the average length
of basic blocks, LBB, and it is measured in terms of
machine instructions instructions.

The GRIPs for control flow are summarized in Ta-
ble l. These GRTPs will be measured for benchmarks
in an example characterization presented in Section 4.

2.3 Data flow GRIPs

The characterization of the data flow behavior of a
benchmark program involves the concept of variables.
A variable is a dynamic instance of a data item. The

x

.
Table 1: Control flow GRIPs

n GRIP I Benchmark characteristic measured
Predictability of branches
Fraction of conditional branches
Instruction stream temporal locality
Instruction stream spatial locality
Instruction stream phase behavior

lifetime of variables, their locality, and the data de-
pendencies that exist between them are the subject
of this section.

Variables go through a life cycle in which they are
created, used, and then discarded or written out.
Register allocation is often performed using the tech-
nique of graph coloring [21, 221. In this technique, a
register is assigned to two different variables if the two
variables are not live (i.e., active) at the same time.
In essence, the number of registers required can be
estimated by the variable life density funct ion.

DEFINITION 2.1 1 : Define the variable life density
function, fVL(nv), as the probability that n v vari-
ables are live a t any time during execution of the
benchmark program.

I

Hence, if there are m registers available for allocation
by the compiler, then the register utilization will be xi<, f v L (i) , and the amount of spill code required
will be xi,,,, f V L (i) . (This is similar to an approach
described in [23].) The number of live variables can
be measured using techniques described in Section 3.

Since buffering is used for data accesses, a set of
GRIPs is defined for the locality of data references.
Define fg(x) t o be the interreference temporal den-
sity function, and fi(x) as the interreference spatial
density function for the data reference stream. Note
that unlike the instruction stream, the variable life
density function must be used in conjunction with the
locality density functions to predict the performance
of buffers after register allocation. Also, phase be-
havior will be measured with, f$(x), the interphase
density function for the data reference stream.

The data dependence behavior of a benchmark pro-
gram can be captured using a instruction dependence
graph. In this graph, the nodes are the (compiler-
intermediate) instructions, i j E I, and the edges are
due to flow dependencies. The following definition
states this more formally.

DEFINITION 2.12: If R(ij) is the set of variables read
by instruction ur(t1) = i j , and W (&) is the set of vari-

ables written by instruction w (t 2) = i k , for ij , i k E I ,
and t l < t 2 , then, the instruction dependence graph
is a graph, G I ~ = (VI, E ID) , such that VI = I and

EID = { (i k , i j) I w(ij) n R (i k) # 0)

(see [IS]).
I

The dynamic scheduling of instructions using an al-
gorithm such as Scoreboarding or the Tomasulo algo-
rithm is dictated by the structure of the dynamic data
dependencies [24, 25, 4, 51. A possible GRIP to cap-
ture the schedulability of a benchmark would be the
probability of there being dependencies of distance
i intermediate instructions. However, the overlap of
dependencies and the branch behavior of the instruc-
tion stream is not captured by this GRIP. Emma and
Davidson present a set of reductions that can be per-
formed on the instruction dependence graph to elim-
inate overlap. After these reductions, the probability
of a dependence spanning j taken branches while hav-
ing a distance of i intermediate instructions is suffi-
cient to characterize the performance of out-of-order
execution schemes [26, 271. This statistic is the prob-
ability of such a dependence occurring, pf? , and can
be calculated from the instruction dependence graph
after a set of graph reductions are performed [27].
This then will serve as the scheduling GRIP for data
flow.

The GRIPs for data flow are summarized in Ta-
ble 2.

2.4 Other GRIPs

Three areas of benchmark characterization that are
not covered in detail in this paper deserve some dis-
cussion. These three areas are operating system per-
formance, 1/0 system performance, and large-grain
parallelism.

The performance of a benchmark program under
the interruptions and scheduling policies of an oper-
ating system is different from that of the program
running alone. There are two ways of viewing this

9

Table 2: Data flow GRIPs

I Benchmark characteristic measured I] GRIP

interaction. From the operating system viewpoint,
the benchmark program is actually an input. Hence,
the operating system may be thought of as a meta
benchmark program with the characteristics of the
benchmarks running under it as its input set. From
the benchmark program’s viewpoint, the operating
system satisfies requests and disturbs buffer usage.
These two effects can be characterized using selec-
tive flushing of buffers via simulated multitasking, as
in [l, 281. Therefore, an operating system can be
viewed as a benchmark and characterized using the
same GRIPs. Additionally, the multitasking quan-
tum can be used as a system parameter to modify
the role the locality measures play in the approxima-
tions of system-level performance parameters.

The 1/0 system’s performance is similar to the op-
erating system in the sense that it views the entire
set of benchmark programs as its input set. Since
the sequence of references to a peripheral determines
its performance, the performance of peripherals has
to be modeled for each peripheral architecture. This
is analogous to the modeling of cache behavior by
locality measures, since cache behavior also depends
on reference stream sequencing. Hence, the charac-
terizations are tractable but beyond the scope of this
paper.

Large-grain parallelism is usually expressed explic-
itly by the programmer as a conscious decision. Mea-
suring this parallelism can be done by intercepting the
synchronization primitives and then constructing the
expressed dynamic parallelism. Again, these charac-
terizations are tractable but beyond the scope of this
paper.

3 Implementation issues

Several ways of measuring GRIPs are available. For
example, microcode-based measurement techniques
exist that modify the microcode of a machine to moni-
tor the instruction stream [2,3]. In essence, the traces
generated by these techniques are reference streams
of items. These streams can be analyzed to produce
reference graphs and identify phases. However, the

length of the traces are excessive.
’This paper uses techniques where the reference

graph is constructed on-the-fly without the interme-
diate step of recording the reference string. Previous
work has implemented the construction of the con-
trol flow graph on-the-fly using the compiler to insert
probe instructions at the entrance of each of the pro-
gram’s basic block. As the program executes, the
weighted control graph is constructed and stored for
later analysis [19, 8, 291.

This paper proposes an extension to the compiler-
based profiling technique to measure the instruction
dependence graph and the locality measures. Static
analysis of dependence information can be done at
compile time to produce a list of variables that are
born and killed for each basic block [18]. However,
static dependence analysis cannot deal efficiently with
variables that span function call invocations and
aliased pointer references [30]. These instances cause
unknowns to appear in the static dependence infor-
mation. The compiler-based dependence profiler in-
serts probe instructions at the site of these unknowns
to measure their variables. As each basic block is
executed, a script describing the birth and death of
variables is executed by the profile analyzer. The un-
knowns are represented as ‘wait for variable identity’
commands in this script that instruct the analyzer
to insert the identity of the variable in its dynamic
copy of the script. As each basic block completes ex-
ecution, the analyzer uses the dynamic copy of the
script to update the instruction dependence graph
that it builds. Also measured using this technique
is the variable life density function, fvL.

After the weighted control graph has been con-
structed, branch behavior can easily be measured.
The branch prediction accuracy, A , can be calculated
directly from the weighted control graph using the
equation from Section 2.2. The dynamic fraction of
conditional branches, F C B , can be calculated by sum-
ming the weights of the basic blocks in the weighed
control graph that end with conditional branches.

Phases and cycles in the control flow and depen-
dence graphs can be detected during the execution

10

of the program using a stack of recently-seen items.
A separate stack maintained using the least-recently-
used replacement policy (see [17]) can be employed to
find the interreference temporal and spatial density
functions. The algorithm for locality measurement

Calclocmeasures (Ti) :
begin

if not first tame r; encountered then
begin

d t depth(r;)
remove r; f r o m the stack
for
begin

all r, with depth(rj) < d

dist + (a(rj! - a(?-;)(
f S (d i s t) t f S (d i s t) + 1

end
P (d) P (d) + 1

end
push(r;)

end

Figure 1: The algorithm for calculating the
locality distributions.

is outlined in Figure 1, where a(.) is the address of
a node, and depth(.) is the stack depth of a node.
The approximate distributions, f”(x) and fT(z) are
normalized after execution terminates.

4 Example benchmark characterization

As an illustration of the benchmark characterization
idea, this section presents the control flow GRIPs for
several benchmarks. The benchmark programs were
selected to be highly data-driven so as to make their
control flow behavior very diverse. The benchmarks
are presented in Table 3. A description of the inputs
that were used for the programs is also presented.

The GRIPs presented in Table 1 were measured us-
ing the techniques outlined in Section 3. The scalar
GRIPs, A and FCB, are presented in Table 4. The
locality measures, f T (z) , f , ” (z) and $(z) are pre-
sented in graph form in Figures 2, 3, 4, and 5.

Table 4: Scalar control flow GRIPs

[Benchmark I[A [FCB I]

uacc-make

The value of A shows that all these benchmarks
have highly predictable branches. For example, a typ-
ical static branch in yacc-awk can be correctly pre-
dicted 95% of the time by always choosing the most
preferred direction. Hardware or software branch pre-
diction mechanisms should be able to achieve this pre-
diction accuracy. Any result significantly less than
this value indicates the existence of system perfor-
mance problems. In the case of hardware prediction
schemes, the problem may be due to either insuffi-
cient branch target buffer entries or frequent context
switches. The measured instruction-stream locality
can then be used to estimate by how much the branch
target buffer size should be increased. As for software
prediction schemes, the problem may be due to the
use of inaccurate profile information. With the A
values, one knows what to expect from the measured
branch prediction performance. Also, with such a
high predictability, software and hardware prediction
schemes can be expected to exhibit the same behav-
ior. This is confirmed by the measurements presented
in [8].

The spatial locality measure of yacc-awk (Figure 4)
indicates that it is highly sequential. The likelihood of
a basic block reference being within 30 basic blocks of
any other reference is very high. This is of course de-
pendent on the code layout decision made by the com-
piler. The code layout used in this measurement is in-
telligently done based on profile information. There-
fore, one can expect the spatial locality to be lower
for the same benchmark when compiled by a less in-
telligent compiler. With such a high spatial locality,
one can expect the instruction buffers and caches with
large blocks to perform well.

The temporal locality of yacc-make indicates that
a cache which accommodates approximately 15 basic
blocks will accommodate its working set. The entire
program consists of almost 1300 basic blocks. With
only 1% of the program active at a time, yacc-make
has very high locality. With five instructions per
basic block and four bytes per instruction, a 0.5KB
cache will be adequate for accommodating the work-
ing set. Therefore, one expects to find the perfor-
mance of instruction cache to saturate when the cache
size increases beyond 0.5K bytes. Again, one knows
what to expect before performing any architecture-
parameter-specific measurement.

It is interesting to correlate the spatial and tempo-
ral localities. Although the results for grep are not
strongly correlated, there is a strong correlation be-
tween the spatial and temporal locality measures for
yacc-awk and yacc-make. This phenomenon is due in-
part to the intelligent compiler code layout scheme,
trace layout . This scheme emits instructions in the

Table 3: The programs studied

Benchmark 11 Description I Input descriDtion I # Basic blocks fl
grep-c

grep-words
yacc-awk

, i vacc-make

grep: A general regular- grep -c ’++I grep.c
expression parser grep -1 ’ [aeiou] (2,4>’ /usr/dict/words

yacc: a LALR(1)
parser generator

The grammar for awk
The grammar for make

order of their execution based on the program’s per-
formance for a large input set [31, 19, 71. Hence,
references a certain distance apart in time tend to be
the same distance apart in space.

The comparison of the temporal locality for the
same benchmark program using different inputs is
also interesting. For example, grep-c (Figure 2) has
33% of its references separated by five unique ref-
erences, whereas grep-words has only 11%. On the
other hand, grep-c has fT(22) x 0, whereas grep-
words has fT(22) x 18%. Though the temporal local-
ities are input dependent a t these two points, buffers
of size greater than 50 basic block lengths will per-
form equally well for both benchmarks. Hence, if a
design decision is made to be robust, it will be insen-
sitive to the benchmark program input selection.

Finally, the interphase density functions show a
preference for large phases. For example, ff’(79) =
99% for grep-c. A similar execution probability oc-
curs for a phase of size 513 for yacc-awk, and at a size
of 74 for grep-words. This indicates that the penalty
of intrinsic cold-start misses would be very high, but
infrequent. However, this also suggests that context
switching would have a large impact on buffer perfor-
mance. Perhaps further subdividing phases by using
the weights of the weighted control graph might pro-
vide more insight the effect of context switching.

5 Conclusions

This paper presents a method for characterizing
benchmark programs. Two key features distinguish
the ideas presented in this paper from those presented
in the past. One is that all the characteristics are
stored as data structures whose sizes are proportional
to that of the static size of the benchmark program.
In contrast, trace driven simulation is based on the
analysis of dynamic execution traces whose size is
proportional to the dynamic instruction count of the
benchmark program. This makes it possible to char-
acterize each benchmark with many realistic inputs.
The other key feature is the separation of benchmark
characteristics from architecture-specific parameters.
Benchmark characterization is presented as a tech-

nique that can provide some insight into the perfor-
mance of a system without actually having to simu-
late the system. This provides a uniform ground for
comparing different architectures. It is also a tool to
help interpret the results of simulation and measure-
ments.

Several areas of benchmark characterization were
presented. Control flow and data flow characteriza-
tions were explained in detail. To illustrate the ideas,
the results of control flow characterization were pre-
sented and discussed. The control flow characteris-
tics presented include branch predictability, instruc-
tion stream spatial-, and temporal locality locality.
The implication of these characterization results on
the evaluation of architecture design decisions were
also presented.

A profiler and its supporting software tools are be-
ing constructed to implement the ideas presented in
this paper. The extraction of control flow GRIPs
has been completed and was used to derive the re-
sults presented in Section 4. The extraction of data
flow GRIPs is under development. Once completed,
this profiler will be distributed to the architecture re-
search community.

The authors would like to thank Sadun Anik, David
Griffith and all members of the IMPACT research
group for their support, comments and suggestions.
This research has been supported by the National Sci-
ence Foundation (NSF) under Grant MIP-8809478, a
donation from NCR, the National Aeronautics and
Space Administration (NASA) under Contract NASA
NAG 1-613 in cooperation with the Illinois Com-
puter laboratory for Aerospace Systems and Software
(ICLASS), and the Office of Naval Research under
Contract N00014-88-K-0656.

References

[l] A. J. Smith, “Cache memories,” A G M Comput-
ing Surveys, vol. 14, no. 3, pp. 473-530, 1982.

[a] S. W. Melvin and Y. N. Pat t , “The use of mi-
crocode instrumentation for development, de-
bugging and tuning of operating system kernels,”

I2

in Proc. ACM SIGMETRICC ’88 Conf. on Mea-
surement and Modeling of ()mput. Sys., (Santa
Fe, NM), pp. 207-214, May 988.

[3] A. Agarwal, R. L. Sites, and M. Horowitz,
“ATUM: a new technique for capturing address
traces using microcode,” in Proc. 13th Annu.
Symp. on Comput. Arch., pp. 119-127, June
1986.

[4] N . P. Jouppi and D. W. Wall, “Available
instruction-level parallelism ,for superscalar and
superpipelined machines,” in Proc. Third Int ’I
Conf. on Architectural Support for Prog. Lung.
and Operating Systems., pp. 272-282, Apr. 1989.

[5] M. D. Smith, M. Johnson, and M. A. Horowitz,
“Limits on multiple instruction issue,” in Proc.
Third Int’l Conf. on Architectural Support for
Prog. Lung. and Operating Systems., pp. 290-
302, Apr. 1989.

[6] S. McFarling and J . L. Hennessy, “Reducing the
cost of branches,’’ in Proc. 13th Annu. Symp.
on Comput. Arch., (Tokyo, Japan), pp. 396-403,
June 1986.

[7] W. W. Hwu and P. P. Chang, “Achieving high
instruction cache performance with an optimiz-
ing compiler,” in Proc. 16th Annu. Symp. on
Comput. Arch., (Jerusalem, Israel), pp. 242-251,
June 1989.

[8] W. W. Hwu, T. M. Conte, and P. P. Chang,
“Comparing software and hardware schemes for
reducing the cost of branches,” in Proc. 16th
Annu. Symp. on Comput. Arch., (Jerusalem, Is-
rael), pp. 1-1, June 1989.

[9] D. Ferrari, G. Serazzi, and A. Zeigner, Measure-
ment and tuning of computer systems. Prentice
hall, 1989.

[lo] J . E. Smith, “A study of branch predition strate-
gies,” in Proc. 8th Annu. Symp. on Comput.
Arch., pp. 135-148, June 1981.

[ll] J . K. F. Lee and A. J. Smith, “Branch predic-
tion strategies and branch target buffer design,”
IEEE Computer, Jan. 1984.

[la] D. R. Ditzel and H. R. McLellan, “Branch
folding in the CRISP microprocessor: reducing
branch delay to zero,” in Proc. 14th Annu. Symp.
on Comput. Arch., pp. 2-9, June 1987.

[13] J . A. DeRosa and H . M. Levy, “An evaluation
of branch architectures,” in Proc. 14th. Annu.
Symp. on Comput. Arch., pp. 10-16, June 1987.

[14] D. J . Lilja, “Reducing the branch penalty in
pipelined processors,” IEEE Computer, July
1988.

[15] J . P. Buzen, “Fundimental operational laws of
computer system performance,” Acta In format-
ica, vol. 7, pp. 167-182, 1977.

[16] H . M. Levy and D. W. Clark, “On the use of
benchmarks for measuring system performance,”
Computer architecture news, Dec. 1982.

[17] R. L. Mattson, J . Gercsei, D. R. Slutz, and I. L.
Traiger, “Evalutation techniques for storage hi-
erarchies,” IBM Systems J., vol. 9, no. 2, pp. 78-
117, 1970.

[18] A. V. Aho, R. Sethi, and J . D. Ullman, Compil-
ers, principles, techniques, and tools. Reading,
MA: Addison-Wesley, 1986.

[19] W. W. Hwu and P. P. Chang, “Trace selection
for compiling large C application programs to
microcode,’’ in Proc. 21st Annu. Workshop on
Microprogramming and Microarchitectures, (San
Diego, CA.), Nov. 1988.

[20] W. W. Hwu and P. P. Chang, “Forward Seman-
tic: a compiler-assisted instruction fetch method
for heavily pipelined processors,” in Proc. 22st
Annu. Workshop on Microprogramming and Mi-
croarchitectures, (Ireland), Nov. 1989.

[21] G. J . Chaitin, M. A. Auslander, A. K. Chandra,
and J . Cocke, “Register allocation via coloring,”
Computer languages, vol. 6, pp. 47-57, 1981.

[22] G. J . Chaitin, “Register allocation & spilling via
graph coloring,” in Proc. ACM SIGPLAN ’82
Symp. on Compiler Construction, pp. 98-105,
1982.

[23] G. D. McNiven and E. S. Davidson, “Analysis
of memory reference behavior for design of lo-
cal memories,” in Proc. 15th. Annu. Symp. on
Comput. Arch., pp. 56-63, June 1988.

[24] J . E. Thornton, “Parallel operation in the Con-
trol Data 6600,” in Proc. AFIPS FJCC, pp. 33-
40, 1964.

[25] R. M. Tomamlo, “An efficient algorithm for ex-
ploiting multiple arithmetic units,” IBM Journal
of Research and Development, vol. 11, pp. 25-33,
Jan. 1967.

[26] P. G. Emma, Discreie-time modeling of pipeline
computers under flow perturbations. PhD thesis,

r ~ ; . x i m e n t of Electrical and Computer Engi-
--.-:IE~. University of Illinois, Urbana, Illinois,

>:-t Coordinated Science Laboratory Com-
puter Systems Group Report No. CSG-27.

. . - I P. G . Emma and E. S. Davidson, “Characteri-
zation of branch and data dependencies in pro-
grams for evaluating pipeline performance,” RC
11733 52535, Computer Science Dept., IBM T.
J . Watson Research Center, Yorktown Heights,
NY, 1986.

. , --

[28] A. Agarwal, M . Horowitz, and J. Hennessy, “An
analytical cache model,” ACM Trans. Computer
Systems, vol. 7, pp. 184-215, May 1989.

[29] C. B. Stunkel and W. K. Fuchs, “TRAPEDS:
producing traces for multicomputers via exe-
cution driven simulation,” in Proc. ACM SIG-
METRICS ’89 and PERFORMANCE ’89 Int ’I
Conf. on Measurement and Modeling of Comput.
Sys., (Berkeley, CA), pp. 70-78, May 1989.

[30] J . M . Barth, “A practical interprocedural data
flow analysis algorithm,” J . ACM, vol. 21,
pp. 724-736, Sept. 1978.

[31] J . R. Ellis, Bulldog: a compiler for VLIW archz-
tectures. Combridge, MA: The MIT Press, 1986.

14

0.3
0.2 -
0.1 -

Number of unique references 1 1

0 - , , , , n - m 1 I

ff 0.5
0.4
0.3

0.6
ff 0.5

0.4
0.3
0.2
0.1 -

\

0 I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ 1 1 1 1 1 1 1 1 , 1 1 1 1 1 1 , 1 1 1 1 1 1 1 I I I

10 20 30 40 50 60 70

1

Phase length

Figure 2: The locality measures, f,'(x), ff(z), and ff(x), for grep-c

I5

0.5

-
-
-
-
-
-
-

-
-

0.4

-

T

I I I I I I I

0.3

0.2
fT

0.1

0
0 10 20 30 40 50 60

Number of unique references

0.5 1

0.1

0
0 10 20 30 40 50 60 70

f!

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0 10 20 30 40 50 60 70 80

Phase length

Figure 3: The locality measures, fF(z), f;(z), and f,"(z), for grep-words

16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of unique references

0.5 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Phase length

Figure 4: The locality measures, jT(x), f,”(x), and f f (x) , for yacc-awk

17

0 10 20 30 40 50 60 70 80 90 100 110 120

0.5 1
Number of unique references

0 100 200 300 400

1

Phase length

Figure 5: The locality measures, fT(z), f,”(z), and ff(z), for yack-make

