
The Concurrency Challenge
Wen-mei Hwu

University of Illinois at Urbana-Champaign

Kurt Keutzer

University of California, Berkeley

Timothy G. Mattson

Intel

&THESEMICONDUCTOR INDUSTRYhas settled on two

main trajectories for designing microprocessors. The

multicore trajectory began with two-core processors,

with the number of cores doubling with each

semiconductor process generation. A current exem-

plar is the recent Intel Core 2 Extreme microprocessor

with four processor cores, each of which is an out-of-

order, multiple-instruction-issue processor supporting

the full X86 instruction set. The many-core trajectory

begins with a large number of far smaller cores and,

once again, the number of cores doubles with each

generation. A current example is the Nvidia GeForce

8800 GTX graphics processing unit (GPU) with 128

cores, each of which is a heavily multithreaded, single-

instruction-issue, in-order processor that shares its

control and instruction cache with seven other cores.

Although these processors vary in their microarchi-

tectures, they impose the same challenge: to benefit

from the continued increase of computing power

according to Moore’s law, application software must

support concurrent execution by multiple processor

cores. Unless software adapts to utilize these parallel

systems, the fundamental value proposition behind

the semiconductor and computer industries will falter.

In this article, we identify the challenges underlying

the current state of the art of parallel programming and

propose an application-centric methodology to pro-

tect application programmers from these complexities

in future parallel-application developments. For these

multiple-core processors to be useful, the software

industry must adapt and embrace

concurrency. Successful programming

environments for these processors must

be application centric. Concurrent pro-

gramming environments must be natu-

ral and must protect the application

programmer from as many hardware

idiosyncrasies as possible. Finally, solu-

tions should not be ad hoc but should

be derived according to well-established engineering

and architectural principles.

Today’s major programming models
Microprocessors have long employed concurrency

at the hardware level. They have taken one of the four

approaches shown in Figure 1 to hide the complexity

of parallel execution from programmers.1 In this figure,

the top horizontal line depicts the interface to human,

high-level programmers; the middle line depicts the

machine-level programming interface to compilers

and debuggers.

In Figure 1a, the instruction-set architecture (ISA)

and its hardware implementation completely hide the

complexity of concurrent execution from the human

programmer and the compiler. This model is used by

superscalar processors, such as the Pentium 4, where

the hardware’s execution of instructions in parallel

and out of their program order is hidden by a

sequential retirement mechanism. The execution state

exposed through the debuggers and exception han-

dlers to the human programmers is completely that of

sequential execution. Thus, programmers never deal

with any complexity or incorrect execution results due

to concurrent execution. This is still the programming

model for the vast majority of programmers today.

Figure 1b illustrates a model where parallel execu-

tion is exposed at the machine programming level to

the compilers and object-level tools, but not to the

human programmers. The most prominent micropro-

312

Editor’s note:

The evolutionary path of microprocessor design includes both multicore and

many-core architectures. Harnessing the most computing throughput from

these architectures requires concurrent or parallel execution of instructions.

The authors describe the challenges facing the industry as parallel-

computing platforms become even more widely available.

—David C. Yeh, Semiconductor Research Corp.

Design in the Late- and Post-Silicon Eras

0740-7475/08/$25.00 G 2008 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

cessors based on this model are VLIW

(very long instruction word) and Intel

Intanium Processor Family processors.

These microprocessors use traditional

sequential-programming models such

as C and C++. A parallelizing compiler

identifies the parallel-execution opportu-

nities and performs the required code

transformations. Programmers must re-

compile their source and, in some cases,

rewrite their code to use algorithms with

more inherent parallelism. Sometimes,

they also need to adapt their coding style

with constructs that the parallelizing

compiler can more effectively analyze

and manipulate. Vendors often provide

critical math libraries as a domain API

implemented at the machine program-

ming level to further enhance their

processors’ execution efficiency. The

complexities of parallel execution are

exposed to human programmers when-

ever they need to use debuggers or when

they need to optimize their code be-

cause the hardware does not maintain a

sequential state. Acceptance of these

processors in the general-purposemarket

has been hampered by the need to

recompile source code and the need to

deal with parallel execution complexities when

debugging and optimizing programs.

Figure 1c indicates an approach that has been

modestly successful in particular application domains

such as computer graphics, image processing, and

network protocol processing. In this approach, pro-

grammers use a language that is naturally adapted to

the needs of a particular application domain and

makes the expression of parallelism natural; in some

cases, it is even more natural than with a traditional

sequential language. A good example is the network

programming language Click and its parallel exten-

sion, NP-Click.2

There are three main challenges with this approach.

First, programmers resist new languages, but this can

be ameliorated by choosing a popular language in the

application domain. Second, these programming

models are almost always tailored to a particular

multiprocessor family. Programmers are reticent to tie

their applications so strongly to a single architectural

family. Finally, today’s increasingly complex systems

require assembly of diverse application domains.

Integrating a programming environment with a variety

of domain-specific languages is an unsolved problem.

All three models have seen some success in their

target markets. The approach in Figure 1a is waning

because of the power demanded in architectures that

use hardware to manage parallelism. The approach in

Figure 1b generally fails to extract sufficient amounts

of parallelism for multiple-core microprocessors. The

successes of Figure 1c have been too narrow to

capture widespread interest. Thus, the approach in

Figure 1d dominates current practice in programming

multiple-core processors. For general-purpose parallel

programming, MPI (Message Passing Interface) and

OpenMP are the main parallel-programming models.

The new CUDA (Compute Unified Device Architec-

ture) language from Nvidia lets programmers write

massively threaded parallel programs without dealing

with the graphics API functions.3 These models force

application developers to explicitly write parallel

code, either by parallelizing individual application

313

Figure 1. Current programming models of major semiconductor

programmable platforms: Hardware hides all complexity of concurrent

execution (a). Parallelizing compilers and tools help contain the complexity

of concurrent execution (b). Domain-specific languages and environments

let programmers express concurrency in ways natural to a particular

domain (c). Parallel programming models require programmers to write

code for a particular model of concurrent execution (d). (CUDA: Compute

Unified Device Architecture; MPI: Message Passing Interface.) (Source: W.

Hwu et al., ‘‘Implicit Parallel Programming Models for Thousand-Core

Microprocessors,’’ Proc. 44th Design Automation Conf. (DAC 07), ACM

Press, 2007, pp. 754-759 G 2007 ACM Inc. Reprinted by permission.)

July/August 2008

programs or by defining their applications in terms of

multiple independent programs that run concurrently

onmultiple-processor cores. This seriously impacts the

costs of developing, verifying, and supporting software

products. This drastic shift to explicit parallel program-

ming suggests that the concurrency revolution is

primarily a software revolution.4

Underlying problems of
applications software

Creating applications software is more of an art than

anengineering discipline. Compare software engineering

to amore established engineering discipline such as civil

engineering. Civil engineers build bridges using estab-

lished practicewell-founded in thematerial sciences and

basic physics. Civil engineers create detailed plans of

their bridges and have them constructed independently.

However, software engineers don’t have a well-estab-

lished practice to follow. By analogy to civil engineering,

software engineers build bridges to the best of their

understanding and experience. Some of these ‘‘bridges’’

stay up, and other engineers try to understand the

principles that allowed them to stay up. Some fall down,

and other engineers try to understand the design flaws

that caused them to fall down. But the reproducible

practices, the underlying architectural principles and

fundamental laws, are poorly understood.

Thus, we come to the problem of concurrent

software engineering with a weak engineering foun-

dation in sequential software engineering. Any long-

term solution to this problem will need to establish

reproducible practices and software architectures as

opposed to programs that are hand-crafted point

solutions. Parallel programming is complicated,5 and

most programmers are not prepared to deal with that

complexity. As a result, after 30 years of hard work in

the high-performance computing community, only a

tiny fraction of programmers write parallel software.

The complexities of parallel programming impact

every phase of supporting a software product, from

code development and verification to user support

and maintenance.

By reviewing some of the most pertinent challenges

of parallel programming, we can determine the new

engineering principles and software architectures

required for addressing these challenges.

Understanding the system

A program implies a control flow, data structures,

and memory management. These combine to create a

huge number of states that a software system can

occupy at any point in time. This is why software

systems tend to be far more difficult to debug and

verify than hardware systems. Concurrency multiplies

this with an additional set of issues arising from the

multiple threads of control that are active and making

progress at any given time. Understanding the

behavior of the entire system against the backdrop of

so many states is difficult. We have few conceptual

tools beyond Unified Modeling Language (UML)

sequence diagrams to help us. We are largely left to

puzzle through complex interactions in our heads or

on a whiteboard.

Discovering concurrency

To write a parallel application program, developers

must identify and expose the tasks within a system that

can execute concurrently. Once these tasks are

available, their granularity, their ordering constraints,

and how they interact with the program’s data

structures must be managed. Typically, the burden of

discovering and managing concurrency falls on

programmers, forcing them to think carefully about

the entire application’s architecture and their algo-

rithms’ concurrent behavior.

Multithreaded reading

Programmers write code and then read it, building

an execution model in their minds. How they read a

program affects how they understand a program and

how they write code in the first place. In a serial

program, there is a single thread of control working

through their models. The current generation of

programmers have been trained to think in these

terms and read their programs with this single-

threaded approach. A concurrent program, however,

requires a multithreaded reading. At any point in the

code, programmers must understand the state of the

data structures and the flow of control in terms of every

semantically allowed interleaving of statements. With

current programming tools, this interleaving is not

captured in the program’s text. A programmer must

imagine the interplay of parallel activities and ensure

that they correspond to the given functional specifi-

cation.

Nondeterministic execution

The system state in a concurrent program depends

on the way execution overlaps across processor cores.

Because the detailed scheduling of threads is con-

314

Design in the Late- and Post-Silicon Eras

IEEE Design & Test of Computers

trolled by the system and not the programmer, this

leads to a fundamental nondeterminism in program

execution. Debugging and maintaining a program in

the face of nondeterminism is extremely difficult.

Interactions between threads

Threads in all but the most trivial parallel programs

interact. They pass messages, synchronize, update

shared data structures, and compete for system

resources. Reasoning about interactions between

threads is unique to parallel programming and a topic

about which most programmers have little or no

training.

Testing and verification

Applications include test suites to verify correctness

as they are optimized, ported to new platforms, or

extended with new features. Developers face two

major challenges when moving test suites to a parallel

platform. First, a parallel test suite must exercise a

range of thread counts and a more diverse range of

hardware configurations. Second, the tests must deal

with rounding errors that change as the number and

scheduling of threads modify the order of associated

operations. Mathematically, every semantically al-

lowed ordering of statements is equally valid, so it is

incorrect to pick one arbitrary ordering (such as the

serial order) and insist on bitwise conformity to that

result. Addressing these two issues may require major

changes to the testing infrastructure, which can be a

formidable task if the test suite’s original developers

are no longer available to help.

Distributed development teams

Modern software development is a team effort. In

most cases, these teams are distributed across multiple

time zones and organizations. Changes in data

structures and high-level algorithms often cause subtle

problems in modules owned by other team members.

Managing those distributed teams of programmers is

difficult for sequential and concurrent programming.

But concurrent programs add complexities of their

own. First, concurrent modules do not compose very

well. With the commonly available parallel-program-

ming environments, it’s not always possible to use

parallel components to build large parallel systems

and expect correct and efficient execution. Program

components that behave reasonably well in isolation

can result in serious problems when they are

combined into a concurrent program.4 This makes

traditional approaches based on components created

and tested in isolation and later assembled into a

larger system untenable.

Optimization and porting

The purpose of parallel programming is increased

performance. Hence, it is fundamentally a program

optimization problem. For sequential programming,

the architectural parameters involved in performance

optimizations are well-understood in terms of com-

monly accepted hardware models. The optimization

problem is difficult, but the common models with a

well-known hierarchy of latencies—from registers to

cache, to memory—support a mature optimization

technology folded into the compilers. For parallel

programming, the state of affairs is far less mature. The

memory hierarchies are radically different between

platforms. How cores are connected on a single

processor and how many-core processors are con-

nected into a larger platform vary widely. The

optimization problem is consequently dramatically

more complicated.

Current tools for concurrent programming put the

burden of optimization largely on the programmer. To

optimize a parallel program today, a programmer must

understand the capabilities and constraints of the

specific hardware and perform optimizations, deter-

mining their effects with tedious and error-prone

experimentation. Each time the software is moved

between platforms, this experimentation must be

repeated. To a generation of programmers used to

leaving optimization to the compiler, this presents a

huge hurdle to the adoption of parallel programming.

Features versus performance

Parallel programming has been largely an activity

in the high-performance computing (HPC) communi-

ty, where the culture is to pursue performance at all

costs. But for software vendors working outside HPC,

performance takes a back seat to adding and

supporting new features. Consumers purchase soft-

ware on the basis of the available features and how

well these features are implemented, not execution

speed. New concurrent-programming tool chains for

software vendors must keep this perspective in mind.

Economic considerations
Historically, the complexities of parallel program-

ming have limited its commercial adoption. Under-

standing this history is critical if we want to succeed

315July/August 2008

this time around. Figure 2a illustrates the classical

interface between hardware and software.1,6 The top

triangle illustrates the design space to explore, to find a

particular application solution. The bottom triangle

illustrates the design space that must be explored to

find the right target hardware architecture to host the

application.

Implicit in Figure 2a is the misleading notion that

the hardware search space is as important as the

application search space. This is not the case. The

triangles in Figure 2b are sized according to the

relative size of the two industries. According to the

US Department of Commerce, the 2005 revenue of the

semiconductor industry was $138 billion, whereas the

revenue of the applications industry was $1,152 bil-

lion. In economic terms, it is the hardware architec-

tures that should serve the needs of programmers, who

in turn serve the needs of the application industry. This

suggests that to meet the concurrency challenge,

future hardware solutions must be designed from an

application- and software-centric point of view.

An additional consideration is the increasing

influence of consumer and media applications. The

consumer electronics market often facilitates a winner-

take-all dynamic, resulting in reduced diversity.

Ultimately, this could reduce the number of platforms

that programmers need to support.

Addressing the challenge
From these observations, we define

three key principles that underlie our

approach to the concurrency challenge:

& We must approach the concurrency

challenge in an application-driven

and software-centric manner.

& The best way to deal with concur-

rency problems is to obviate them

by using application development

frameworks, parallel libraries, and

tools. Compilers and autotuners

should do the heavy lifting so that

programmers can quickly, or even

automatically, derive high-perfor-

mance solutions to new problems.

& When application programmers

must face the concurrency chal-

lenge directly, we should help them

employ a sound engineering ap-

proach—so that they can create a

design in terms of well-understood

software architectures with proven, replicable

solutions appropriate to that architecture. Pro-

gramming models play an important role, but

they add value only to the extent that they

support the chosen software architecture.

We strive to shield the vast majority of application

programmers from the complexity of parallel pro-

gramming. We advocate an application development

model where programmers classify their problems

within an application-oriented taxonomy that leads

them naturally to known solution strategies. They

then turn these strategies into code by using

frameworks or by adapting program skeletons that

are designed and implemented by expert parallel

programmers. As these application codes move

through the tool chain, compilers and autotuning

tools optimize the code for high-performance,

parallel execution.

Application frameworks

Application programmers should address their

parallel-software problems in familiar terms. Fortunate-

ly, many applications—games, media, signal process-

ing, and financial analytics—are naturally concurrent.

In many cases, application developers are already

familiar with the concurrency in their problems; they

316

Figure 2. Magnification of value and complexity exposed to the

programmers: classic view of hardware and software interface (a),

weighted view according to associated revenues (b). (ISA: instruction-set

architecture.) (Source: W. Hwu et al., ‘‘Implicit Parallel Programming

Models for Thousand-Core Microprocessors,’’ Proc. 44th Design

Automation Conf. (DAC 07), ACM Press, 2007, pp. 754-759 G 2007 ACM Inc.

Reprinted by permission.)

Design in the Late- and Post-Silicon Eras

IEEE Design & Test of Computers

just need technologies to express that concurrency in

ways natural to their application domain.

Consider a photo-retrieval application. An applica-

tion developer solving a face-recognition problem

would use an image-processing application framework

that supports primitives for feature extraction and

classification. The application developer selects the

primitives and specifies the interactions between them

to form a solution to the face-recognition problem.

Feature extraction and classification algorithms con-

tain ample opportunities for data parallelism, but there

is no reason to trouble the application developer with

these details. The framework engineers that develop

and support these primitives will manage any compli-

cations due to the concurrency.

Linking applications and programming

We have been developing a methodology to

systematically link application developers to the

appropriate concurrent software frameworks. We

identified a set of recurrent application solution

strategies that capture a developer’s strategy for a

particular solution, yet are general enough to permit a

variety of implementations specific to the needs of a

particular problem and target architecture. We call

these strategies dwarfs.7 Conceptually, they form a

platform (the arrow in Figure 2b) that provides a high-

level link between applications and hardware.

We have identified 13 dwarfs: dense linear algebra,

sparse linear algebra, spectral methods, n-body

methods, structured grids, unstructured grids, MapRe-

duce, combinational logic, graph traversals, dynamic

programming, backtrack branch and bound, graphical

models, and finite-state machines.

In the face-recognition problem, the MapReduce

dwarf supports image-feature extraction well. An

engineer working on image-feature extraction would

choose MapReduce as the basic solution strategy. A

collection of different MapReduce implementations

would be encapsulated into a single MapReduce

programming framework for feature extraction.8 Like-

wise, developers working in quantum chemistry are

well-versed in dense linear algebra and understand

how their problems are decomposed into dense linear-

algebra operations, just as programmers working in

game physics understand their problem as a compo-

sition of n-body and structured-grid solutions.

The ParLab group at the University of California,

Berkeley has worked with application communities

such as HPC, computational music, and visual

computing to grow the well-known list of seven dwarfs

of high-performance computing to 13.7 Is this list of 13

dwarfs complete? Probably not, but there’s no barrier

to adding more.

Programming support

Although dwarfs provide a critical link between

application-level problems and their solution strate-

gies, translating a solution strategy described by dwarfs

into working parallel code requires many supporting

steps. Fortunately, we can ease this task with

programming frameworks and skeletons, which raise

the abstraction level and make the programming

process considerably easier. In the examples we have

discussed so far, a generic MapReduce programming

framework could easily be tailored to implement

feature extraction, and a broadly applicable dense-

linear-algebra framework could serve to craft quantum

chemistry solutions. A higher-level framework could

define how these solutions are assembled into an

entire application.

We envision that parallel applications (such as a

media-search engine) will be expressed in application

frameworks (such as an image-manipulation frame-

work) and a library of primitives (such as image

retrieval). Each primitive will be implemented with

one or more well-documented solution strategies

(such as the MapReduce dwarf) and corresponding

skeletons that the programmer can adapt to imple-

ment a particular application. A rich set of frameworks

will be developed and documented to cover the needs

of applications. These programming frameworks will

likely be built on languages such as C or C++ with

OpenMP and MPI.

Although our long-term goal is to raise the

abstraction level and spare programmers from the

details of managing concurrency, we realize we

cannot provide complete coverage with frameworks.

Some application programmers will inevitably need to

program at a low level, and hence, parallel program-

ming models will continue to be an important part of

programming systems.

Current parallel-programming models such as MPI,

OpenMP, and the Partitioned Global Address Space

(PGAS) languages have all been shown to work for

both expert parallel programmers and application

programmers. We expect that as many-core systems

evolve, these programming models will evolve as well,

not only to better match the hardware but also to

better support the frameworks we envision.

317July/August 2008

For example, the next release of OpenMP (OpenMP

3.0) will include a flexible task queue mechanism.9

This greatly expands the range of algorithms (and

dwarfs) that can be addressed with OpenMP. We

anticipate a healthy interplay between frameworks

and programming models, so that they can evolve

together to better meet the needs of application

programmers.

Code-optimization space exploration

Both frameworks and programming models will

require lower-level support to create efficient code.

For example, for a given skeleton and user-supplied

fill-in code, there are multiple ways to exploit

concurrency; the best choice is often determined by

the underlying hardware organization.

Ryoo et al., working with the CUDA programming

model and an Nvidia 8800 GPU, found that different

plausible rearrangements of code resulted in signifi-

cant performance differences.10 Different allocations

of resources among the large number of concurrent

threads led to nonlinear performance results as several

application kernels were optimized. Even a simple

computational kernel had multiple dimensions of

optimization based on, for example, loop tiling, thread

work assignment, loop unrolling, or data

prefetch.

Figure 3 shows the execution time of

different versions of SAD (sum of abso-

lute differences between elements of two

image areas).10 Each curve shows the

effect of varying the thread granularity

while keeping other optimization param-

eters fixed. There is a 43 spread across

these different choices of optimization

parameters. Taking these factors into

account is critical to the success of future

programming frameworks. However, it is

unreasonable to expect a human pro-

grammer to explore such a complex

optimization space.

We envision that parameterized pro-

gramming and automatic parameter

space explorations guided by perfor-

mance models (such as autotuners) will

be sufficient to achieve high levels of

performance with reasonable program-

mer effort.10 In particular, autotuners

combined with frameworks should help

nonexpert programmers achieve optimal

performance. Related work has shown that efficient

code for multicore microprocessors from Intel and

AMD can be derived using this methodology.11

TO BE SUCCESSFUL, the programming frameworks we

describe must be retargetable to a range of multiple-

core architectures and produce high-performance

code. To address these often conflicting goals, we

envision that frameworks and parallel-programming

models will be supported by powerful parallel-

compilation technology and autotuning tools to help

automatically optimize a solution for a particular

platform. This will require frameworks that are

parameterized and annotated to describe the compu-

tation’s fundamental properties. A new generation of

parallel compilers and autotuning tools will use these

parameterizations and annotations to optimize soft-

ware well beyond the capabilities from current-

generation compilers and tools.

We understand those who question whether our

proposed application-centric approach—even if it

works well in particular application domains—will

ever cover the full range of future applications. We

answer these skeptics in two ways. First, we believe

that a consumer-oriented, winner-take-all market

318

Figure 3. Performance profiles for different optimization parameters for a

single SAD (sum of absolute differences between elements of two image

areas) program. (Source: S. Ryoo et al., ‘‘Program Optimization Space

Pruning for a Multithreaded GPU,’’ Proc. 6th Ann. IEEE/ACM Int’l Symp.

Code Generation and Optimization (CGO 08), ACM Press, 2008, pp. 195-204

G ACM Inc. Reprinted by permission.)

Design in the Late- and Post-Silicon Eras

IEEE Design & Test of Computers

dynamic will work to our advantage. Just as consol-

idation reduced the number of players in consumer

electronics, over time the same effect will occur for

consumer-oriented application software. We’ve seen

this already, for example, in the dominance of

Microsoft products in the office-productivity domain.

The same effect will happen over time in other

application domains. For example, videogame soft-

ware suppliers (such as Electronic Arts) are playing a

significant role in the software industry, as are their

console makers (such as Sony) and their semicon-

ductor suppliers (such as Nvidia). They are all

influential in their respective industries. Over time,

these roles might evolve into positions of dominance

and the subsequent consolidation will make it easier

for a few application frameworks to support an entire

industry.

Second, we don’t need 100% application coverage

to have a major impact. There will always be classes of

applications that will not decompose into well-

understood problems (such as dwarfs) with well-

understood parallel solutions. In most cases, the same

features that make these applications hard to decom-

pose into dwarfs will also make them hard to

parallelize. Hence, there will always be a need for

research on newmethodologies, compiler techniques,

and tools to address these pathologically difficult

applications. &

Acknowledgments
We acknowledge the support of the Gigascale

Systems Research Center (GSRC).

&References

1. W. Hwu et al., ‘‘Implicit Parallel Programming Models for

Thousand-Core Microprocessors,’’ Proc. 44th Design

Automation Conf. (DAC 07), ACM Press, 2007, pp.

754-759; http://doi.acm.org/10.1145/1278480.1278669

G ACM Inc. Reprinted by permission.

2. N. Shah et al., ‘‘NP-Click: A Productive Software

Development Approach for Network Processors,’’

IEEE Micro, vol. 24, no. 5, Sept./Oct. 2004, pp.

45-54.

3. NVIDIA CUDA Compute Unified Device Architecture

Programming Guide, v1.0, Nvidia Corp., June 2007,

http://developer.download.nvidia.com/compute/cuda/

1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf.

4. H. Sutter and J. Larus, ‘‘Software and the Concurrency

Revolution,’’ ACM Queue, vol. 3, no. 7, Sept. 2005, pp.

54-62.

5. T.G. Mattson, B.A. Sanders, and B.L. Massingill, Patterns

of Parallel Programming, Addison-Wesley Professional,

2004.

6. K. Keutzer et al., ‘‘System Level Design:

Orthogonalization of Concerns and Platform-Based

Design,’’ IEEE Trans. Computer-Aided Design, vol. 19,

no. 12, Dec. 2000, pp. 1523-1543.

7. K. Asanovic et al., The Landscape of Parallel Computing

Research: A View from Berkeley, tech. report UCB/

EECS-2006-183, EECS Dept., Univ. of California,

Berkeley, 2006.

8. J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified Data

Processing on Large Clusters,’’ Proc. 6th Symp.

Operating System Design and Implementation (OSDI

04), Usenix, 2004, pp. 137-150.

9. ‘‘OpenMP Application Program Interface,’’ OpenMP

Architecture Review Board, May 2005, http://www.

openmp.org.

10. S. Ryoo et al., ‘‘Program Optimization Space Pruning for

a Multithreaded GPU,’’ Proc. 6th Ann. IEEE/ACM Int’l

Symp. Code Generation and Optimization (CGO 08),

ACM Press, 2008, pp. 195-204, http://doi.acm.org/10.

1145/1356058.1356084 G ACM Inc. Reprinted by

permission.

11. S. Williams et al., ‘‘Optimization of Sparse Matrix-Vector

Multiplication on Emerging Multicore Platforms,’’ Proc.

ACM/IEEE Conf. Supercomputing (SC 07), ACM Press,

2007, New York, article 38.

Wen-mei Hwu is a professor and

the Sanders-AMD Endowed Chair of

Electrical and Computer Engineering

at the University of Illinois at Urbana-

Champaign. His research interests

include architecture and compilation for parallel-

computing systems. He has a BS in electrical

engineering from National Taiwan University, and

a PhD in computer science from the University of

California, Berkeley. He is a Fellow of both the IEEE

and the ACM.

Kurt Keutzer is a professor of

electrical engineering and computer

science at the University of California,

Berkeley and a principal investigator

in UC Berkeley’s Universal Parallel

Computing Research Center. His research focuses

on the design and programming of ICs. He has a BS

in mathematics from Maharishi International Univer-

319July/August 2008

sity, and an MS and a PhD in computer science from

Indiana University, Bloomington. He is a Fellow of the

IEEE and a member of the ACM.

Timothy G. Mattson is a principal

engineer in the Applications Research

Laboratory at Intel. He research inter-

ests focus on performance modeling

for future multicore microprocessors

and how different programming models map onto

these systems. He has a BS in chemistry from the

University of California, Riverside; an MS in chemistry

from the university of California, Santa Cruz; and

a PhD in theoretical chemistry from the University of

California, Santa Cruz. He is a member of the

American Association for the Advancement of Sci-

ence (AAAS).

&Direct questions and comments about this article to

Wen-mei Hwu, Univ. of Illinois at Urbana-Champaign,

Coordinated Science Lab, 1308 W. Main St., Urbana,

IL 61801; w-hwu@uiuc.edu.

For further information about this or any other comput-

ing topic, please visit our Digital Library at http://www.

computer.org/csdl.

320

Design in the Late- and Post-Silicon Eras

IEEE Design & Test of Computers

&

321

The GSRC: Bridging Academia and Industry

Richard Oehler, AMD

The problem of finding parallelism in application

code and exploiting it through automatic tools has long

been recognized as the Holy Grail of high-performance

computing (HPC). In the late 1970s, many academic

institutions and government laboratories spent consid-

erable time and energy investigating issues and

challenges in this area. Although they found some

success in parallelizing Fortran compilers and compiler

front ends, and a little more success in parallelizing

high-performance math libraries, the general problem

still remains. There are no general-purpose tools that

can parallelize run-of-the-mill commercial code, and

writing (or rewriting) commercial code to exploit

parallelization is very difficult and prone to error.

By the early 1990s, it became clear that the

introduction of chip-level multiprocessing (CMP) would

put renewed emphasis on multithreading and multipro-

cessing capabilities. By the early 2000s, it was also

clear that CPU single-thread performance scaling was

at an end, owing to ever-increasing power and heat

issues and complexity issues. No longer could the

processor chip providers compete only in terms of

frequency (the fastest single thread) to achieve

performance leadership. They would need to rely on

total parallel processing, including multithreading

performance, to win the performance race.

This new direction to achieve application performance

leadership has brought the underlying unsolved paralle-

lization problem to the top of the list of problems that

industry must solve if we are to continue scaling

commercial application performance. Many researchers

in academia and industry have begun to work on this

problem. The interest in solving this problem is far broader

and recognized as critical more than ever before.

To solve this problem, the industry needs coordi-

nated activity by academia and industry. Several

organizations have such charters, and at least one

has embraced concurrency as a long-term research

agenda. In 2006, the Gigascale Systems Research

Center (GSRC) refocused its agenda to include four

themes and a driver. The one most interesting to me

was Design Technologies for Concurrent Systems, led

by Wen-mei Hwu. ‘‘The Concurrency Challenge’’ article

in this issue of IEEE Design & Test describes the

multithreading problem, discusses how the solution

space is being analyzed, and predicts where break-

throughs are likely to occur.

From my perspective, success in this endeavor

requires major industry participation. Participation is

required not only among processor chip or hardware

system developers; it must also include operating

system and tool providers and, most important, the

application writers and developers who will engage

and in many ways drive toward acceptable solutions.

At AMD, we must be prepared to try new low-

overhead approaches to solve the major hardware

issues of synchronization and control over threads,

concurrency and locking protocols, debugging, and

performance-measuring assists. We need to provide

the vehicles on which industry and academia can try

new software approaches to concurrency. Finally, we

must be prepared to share our experiences so that

both industry and academia can reach a common

understanding of the necessary hardware and software

components that will solve the multithreading and

concurrency problems.

Richard Oehler is Server CTO and Corporate Fellow at AMD.

Contact him at rich.oehler@amd.com.

July/August 2008 Copublished by the IEEE CS and the IEEE CASS 0740-7475/08/$25.00 G 2008 IEEE

