
1496 IEEE TRANSACTIONS ON COMPUTERS, VOL, C-36 NO. 12, DECEMBER 1987

Checkpoint Repair for High-Performance
Out-of-Order Execution Machines

WEN-MEI W. HWU, MEMBER, IEEE, AND YALE N. PATT, MEMBER, IEEE

Abstract-Out-or-order execution and branch prediction are machine can repair to any instruction boundary in response to
two mechanisms that can be used profitably in the design of an exception or incorrectly predicted conditional branch.
supercomputers to increase performance. Proper exception han- U t... . . ~~~~~~Unfortunately, the cost of doing so iS grossly prohibitive.dling and branch prediction miss handling in an out-of-order
execution machine do require some kind of repair mechanism There is a fundamental dilemma regarding checkpointing. On
which can restore the machine to a known previous state. In this the one hand, since checkpointing is an overhead function, its
paper we present a class of repair mechanisms using the concept cost in time and additional hardware should be kept as small as
of checkpointing. We derive several properties of checkpoint possible. This means no more checkpoints than absolutely
repair mechanisms. In addition, we provide algorithms for
performing checkpoint repair that incur little overhead in time n O t
and modest cost in hardware. We also note that our algorithms involves discarding usefl work. The further apart the
require no additional complexity or time for use with write-back checkpoints, the more useful work gets thrown away.
cache memory systems than they do with write-through cache In this paper, we derive properties of general checkpoint
memory systems, contrary to statements made by previous repair mechanisms in which the checkpoints are not necessar-
researchers. ily established at every instruction boundary. We specify

Index Terms-Branch prediction repair, checkpoint repair, algorithms for performing checkpoint repair that can be
high-performance computer architecture, high-performance exe- implemented with modest cost in hardware and with little cost
cution, out-of-order exception handling, out-of-order execution. in overhead time. Finally, it is important to note that our

algorithms are effective with memory systems that contain
I. INTRODUCTION write-back caches as well as those that contain write-through

caches. The write-back activity in our algorithrns can be

cuRires ine theipplemenation of a performed without any waiting or extra buffering, correcting
computing engine hasrsultedinthspeciicatioofa the suggestion made in [5] that "either a cache line must be

microarchitecture that exploits concurrency by several mecha- s i t hsaved in the history buffer, or write-back must wait until the
nisms, among them out-of-order execution and branch predic- data has made ItS way into the cache."
tion [11-44]. Unfortunately, both mechanisms can result in This paper is organized in six sections. Section II introduces
situations where the computing engine must repair to known some basic notions: the execution model, the causes of repairs,
previous states. In the case of out-of-order execution, this is the consistent states, and the checkpoints. Section III derives
caused by instruction A faulting after instruction B hasexcaused,byereinstructionA fault

after instruction
B
in tha several properties of checkpoint exception repair (E repair)

executed, where instruction B comes after instruction A in the and spcfe aloitm fo it ipe ntio. SetonIS ~~~~~~~~~~~~~andspecifies algorithms for itS implementation. Section IV
dynamic instruction stream. In the case of branch prediction, 'derives several properties of checkpoint branch prediction
this is caused by a branch prediction miss; that is, instruction~~~repair (B repair) and species algorithms for itS implementa-
A is fetched and executed as a result of a branch prediction, tion. Section V describes three mechanisms for handling both
and it is subsequently discovered that the branch prediction E repair and B repair simultaneously. In Section VI, we
was incorrect. discuss future research directions and offer some concluding

In order to repair the machine to a known previous state, it remarks
is necessary to save the machine state at appropriate points of
execution. We call this checkpointing. If a checkpoint is II. BASIC NOTIONS
established at every dynamic instruction boundary, then the A The Execution Model

It is first necessary to distinguish between the architectural
Manuscript received February 2, 1987; revised June 17, 1987 and July 24, and the implementational execution models. Our work is based

1987. This work was supported in part by Defense Advance Research Projects
Agency (DoD), Arpa Order 4871, monitored by Space and Naval Warfare on an architectural execution model in which a program
Systems Command under Contract N00039-84-C-0089. This work was counter sequences through instructions one by one, finishing
presented in part at the 14th Annual International Symposium on Computer one before starting the next. The dynamic instruction stream
Architecture, June 2-5, 1987, Pittsburgh, PA.
W.-m. W. HIwu was with the Computer Science Division, University of of a program is the sequence of instructions executed

California, Berkeley, CA. He is now with the Department of Electrical and according to the architecture specification.
Computer Engineerinlg, University of Illinois, Urbana-Champaign, IL. Our implementation of this sequential architecture is based

Y. N. Patt is with the Computer Science Division, University of California,oan utf-re[2,[][]xctinmdlwhte
Berkeley, CA. 'o noto-re 2,[1L]eeulnmdlwt h
IEEE Log Number 8717035. following characteristics.

0018-9340/87/1200-1496$O1 .00 ©B 1987 IEEE



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1497

1) Instructions are issued [91 sequentially according to the rO lbc l0I locI4l4 ll5 c l2c 3

architectural specification. In the presence of conditional . 2
branch instructions, the sequential issue continues from the
point determined by the branch predictor. As a result, some of
the instructions issued may be from an incorrectly predicted
branch path. Thus, the issuing instruction stream is the
dynamic instruction stream interspersed with some noise from rarchitetural s
the incorrectly predicted branch paths. 2.0]

2) Instructions do not, in general, finish execution sequen-
tially. As a result, instructions do not in general modify the
machine state (the contents of the architectural registers and
memory locations) sequentially.
An instruction is active if it has been issued but has not yet

finished execution. At each cycle, only the active instructions § 3 nil
can potentially modify the architectural registers and the 2.S
memory locations.
The motivation for using an out-of-order execution model

with branch prediction is to help a pipelined machine to sustain t inst
high-speed execution even when there is a large variation in (a)
the instruction execution time. This motivation is illustrated in
the following example. struon
Example 1: We wish to traverse a linked list and scale each

data value in this list by a common factor. tch

The machine state in this example is the contents of three
registers and six memory locations, as shown in Fig. l(a). The
initial machine state is as follows. Register 0 is undefined.
Register I contains a pointer to the first element of the list.
Register 2 contains the common factor used to scale the data
values in the list (2.0 in this case). Memory locations 0 and 1 Cache Float
contain the first data value and a pointer to the second data
value which is stored in location 4. Memory locations 2 and 3
contain the third data value and a null pointer marking the end
of the list. Memory locations 4 and 5 contain the second data
value and a pointer to the third data value which is stored in
location 2. The program counter indicates that instruction A
(see below) is to be fetched. (b)
The pipelined processor used in this simple example has an loop: rO . (rl)[OJ A

instruction unit and an execution unit, as shown in Fig. l(b). rO . rO * r2 B
The first pipeline stage of the instruction unit fetches instruc- (r1) < rO C
tions. The second pipeline stage of the instruction unit buffers rl (rlnlll D
those instructions with pending dependencies [13] and submits entrance: if (rl 1= nil) goto loop E
the others to the execution unit.

There are three function units shown in the execution unit. exit:
The floating-point unit performs a floating-point multiplication (c)

Fig. l(a). Initial architectural state for the linked list example. (b) Simple
in four cycles, pipelined so that a new multiplication can be pipelined processor for the linked list example. (c) Code loop for the linked
initiated every clock cycle. The cache memory access unit list example.
performs an address indexing operation followed by a cache
access in two cycles, also pipelined so that a new cache access element in the linked list. Instruction E decides whether or not
can be initiated every clock cycle. The branch unit performs a the next iteration should be performed.
comparison to determine the direction of a conditional branch Fig. 2(a) shows the execution timing when neither out-of-
in one cycle. order execution nor branch prediction is allowed. Each
The code loop to be executed in our simple example has five column in Fig. 2(a) shows the dynamic instruction being

instructions in each iteration, as shown in Fig. I(c). Each worked on by each pipeline stage during the corresponding
iteration of the loop works on a different data element as clock cycle. Each row in Fig. 2(a) shows the dynamic
follows. Instruction A reads a data element from memory. instruction being worked on by the corresponding pipeline
Instruction B performs a multiplication between the data stage during each clock cycle. The subscript on each dynamic
element and the scaling factor. Instruction C writes the result instruction indicates the iteration of that instruction, e.g., A2 is
to memory. Instruction D advances the pointer to the next the memory read instruction from the second iteration.



1498 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

stag. cycle -_
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

|fetch Al1 BiE Ci DlEj 2s C2D E1

Issue EA EBiE3 1 EE2A E 62 - 1 EE21

12 cycles per Iteration _

(a)

tae Cycle _
$9 1 2 3 4 5 6 7 8 9l 10 11 12 13 14 15 16 17 18

|fetch Ei Eai F El 2i -1 F s @ii

execute I 1 Si . Ei 62

execute 2 FBAKCi i . F. C 21

execute 3 1 B

execute 4 i> 8

4-1 8 cycles per Iteration

(b)
Fig. 2. (a) Execution timing using no out-of-order execution and no branch

prediction. (b) Execution timing using out-of-order execution but no branch
prediction.



HWU AND PATT: CHFCKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1499

stage cycle _
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1fetch EA E Dm ElEi [B1A B2lC2 21s B sE Os Es

Issue ElE El ED E EAs 1B2 C2 E1 PAG E CE E [ES A4 B4

execute 1 'CR B2[ C: BE5[

execute 2 EDA B1CA C2 83

execute 3 B1E@

execute 4 E
5.,_cycles per Iteration,.

(c)
Fig. 2. (Continued). (c) Execution timing using out-of-order execution and

branch prediction.

At cycle 1, A (read) is fetched. At cycle 2, A1 is issued and iterations finishing out-of-order. It takes only five cycles to
B, (multiply) is fetched. At cycle 3, A, is submitted to the execute each iteration, which is the highest execution rate
cache access unit, B, is issued, and C, (write) is fetched. At achievable, one instruction per cycle.
cycle 4, A I is executed at the second stage of the cache access We will use the execution timing shown in Fig. 2(c) to
unit, B, is buffered to wait for Al to finish execution, C, is illustrate our repair mechanism for the remainder of this
issued, and DI (pointer advance) is fetched. At cycle 5, B1 is paper.
submitted to the floating-point unit, C, is buffered to wait for
B, to finish, DI is issued, and El (branch) is fetched. B. Consistent States and Repairs

Several things are worth pointing out. First, instructions The mechanisms presented in this paper support the
finish in the same order in which they are issued. For example, handling of exceptions and branch prediction misses in out-of-
instructions are issued in the order AI (cycle 2), B, (cycle 3), order execution engines. Examples of exceptions are the
C, (cycle 4), DI (cycle 5), and El (cycle 6). Instructions finish arithmetic overflow trap, the traps to support software
in that same order A1 (cycle 4), B, (cycle 8), C1 (cycle 10), DI implementation of architectural features, and the page fault
(cycle 11), and El (cycle 12). Second, instruction A2 (read [10]. When an exception is detected, our out-of-order execu-
element 2) is not fetched until El provides the branch direction tion engine must cleanly suspend the violating process, handle
at the end of cycle 12. Third, it takes 12 cycles to execute each the exception, and then resume the process.
iteration. A branch prediction miss occurs due to incorrectly predict-

Fig. 2(b) shows the execution timing when there is out-of- ing the direction of a conditional branch and thus resulting in
order execution but no branch prediction allowed. Instructions unwanted instructions issued and perhaps executed out-of-
do not necessarily finish in the same order in which they are order by the microarchitecture. When a branch prediction miss
issued. For example, instruction DI (pointer advance) finishes is detected, our out-of-order execution engine must undo all
at cycle 7 when B, (multiply) is still executing and C, (write) is the existing effects on the machine state by the instructions
still buffered waiting for B, to finish execution. The instruc- fetched and issued from the incorrectly predicted branch path,
tions finish in the order Al (cycle 4), DI (cycle 7), El and B, and then continue fetching and issuing instructions along the
(cycle 8), and Cl (cycle 10). Instruction A2 (read second correct branch path.
value) is not fetched until El provides the branch direction at Before we describe how our schemes can support the
the end of cycle 8. It takes eight cycles to execute each handling of exceptions and branch prediction misses, we first
iteration. introduce the notions of consistent state and precise state.

Fig. 2(c) shows the execution timing when both out-of- The consistent state, CS(IB), where IB is an instruction
order execution and branch prediction are allowed. In this boundary in the issuing instruction stream, is the machine state
case, A2 (read second value) is fetched immediately after El such that no instructions issued after IB affect CS(IB) and all
(branch) with the help of a branch predictor. A2 from the instructions issued before IB have affected CS(IB) with their
second iteration finishes (at cycle 9) one cycle earlier than C1. execution results.
Thus, we have not only instructions from the same iteration Example 2: Fig. 3 illustrates the correspondence between
finishing out-of-order, but also instructions from different the consistent states and the instruction boundaries in the



1500 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 12. DECEMBER 1987

IB 2IB issuing instruction im acUve instructions Issuing instruction strwn

.,t _ IB IIB instructions to be undone
A1 111 , , E, %, B, C lD, ,E,

/ \ _ _ 2 2 222B I C, I,EX A2!B2 D2 E2 A3

page fault
Consistent State CSIIB I Conststent StateCSI

la Ioe_ _4a heedcv 5

loc U SZ~ So

Fig. 3. Correspondence between consistent states and instruction bounda- p ~Is
ries.

Fig. 5. The machine state upon detecting a page fault.

precise instruction boundary for traps or branch prediction misses used, the precise instruction boundary for a branch predic-

j\ ~~~~~~~tionmiss would be just after the last delay slot.
/ ,̂\\ 5 ssungistuuo gra Example 3: Assume that in our linked list example,
/|1W1 1 \ ~fetch direction instruction C2 causes a page fault when writing the multiplica-

W | § | g | | i|1 1 1 1 1 1 1 141tion result to memory. The precise instruction boundary (TB2)
XI 1m1 1 ~~~~~~forthis page fault is between B2 and C2 in the issuing

\ +/ ~~~~~~~~instruction stream (see Fig. 3). The precise state correspond-
t~~~~~~~~~ingto this page fault is CS(1B2) also shown in Fig. 3.

precise Instruction boundary for faults Instructions A l (read), B2 (multiply), C, (write), D, (pointer

Fig. 4. Precise instruction boundaries, advance), E, (branch), A2 (read), and B2 (multiply) are all
issued before lB2 and thus have their execution results
reflected in this precise state. None of the other instructions

issuing instruction stream for our linked list example. CS(IB,), have their execution results reflected in CS(1B2).
is the consistent state corresponding to IB,, the instruction On detecting an exception, an E-repair mechanism first
boundary between instructions E, and A2. restores our out-of-order execution machine to the precise

Instructions A, (read), B, (multiply), C, (write), D, (pointer state for that exception; an exception handling routine is then
advance), and El (branch) are all issued before IB, and thus invoked to handle the exception; the machine finally resumes
have their execution results reflected in this consistent state. execution from the precise state. On detecting a branch
Register 0 contains the multiplication result generated by prediction miss, a B-repair mechanism restores our out-of-
B,(2.0 x 3.5 = 7.0). Register 1 contains the pointer to the order execution machine to the precise state for that branch
second element fetched from memory location 1 by D1. prediction miss and the machine then resumes execution along
Memory location 0 contains the multiplication result written the correct branch path.
by C,. The program counter points to instruction A2 as the The contribution of this paper is to provide E-repair and B-
result of fetching E,. None of the other instructions can have repair mechanisms which are efficient both in space and in
their execution results reflected in CS(IB,). time.
The precise state corresponding to an exception or branch Example 4: Assume again that C2 in our linked list example

prediction miss is the consistent state corresponding to the caused a page fault and this page fault is detected at the end of
precise instruction boundary for the exception or branch cycle 15. The machine state at the end of cycle 15 is shown in
prediction miss as shown in Fig. 4. The precise instruction Fig. 5. The repair mechanism will restore the machine state to
boundary for a trap 110] is just after the violating instruction. CS(1B2) in Fig. 3, which is equivalent to undoing the effects of
The precise instruction boundary for a fault [10] is just instructions C2, D2, E2, and A3.
before the violating instruction. If no delayed branch seman-
tics [111 are used, the precise instruction boundary for a C. Checkpoints and Checkpoint Repair
branch prediction miss is just after the conditional branch Our repair mechanism can quickly restore the machine to
instruction. On the other hand, if delayed branch semantics are the consistent states corresponding to some selected instruc-



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1501

tion boundaries called checkpoints. In order to restore the without proof due to space considerations. The proofs are
machine to a consistent state CS(IB), our checkpoint repair available upon request.
mechanism first quickly restores the machine to CS (check),
where check is a checkpoint several instructions before IB, A. Definitions
and then executes instructions sequentially until CS(IB) is ActiveE(t) is the set of consecutive checkpoints such that
obtained. there are active instructions at time t in the E-repair ranges of
Example 5: In Fig. 5, we select the instruction boundaries both the leftmost and rightmost checkpoints. ActiveE i(t) is

before A1, between El and A2, between E2 and A3 as the ith element of this set and i increases from right to left in
checkpoints. Upon detecting a page fault caused by C2, our the issuing instruction stream.
repair mechanism first quickly restores the machine state to PotentE(t) is the set of potential consistent states main-
the consistent state corresponding to the checkpoint IB1 in Fig. tained for the active checkpoints. At time t, potentE i(t) is the
5. Then we execute instructions A2 and B2 sequentially to potential consistent state maintained for activeE, i.
produce the consistent state corresponding to IB2 in Fig. 5, SchemeE(c) is a repair scheme where a maximum of c
i.e., the precise state for this page fault. checkpoints can be active at the same time. This means that we

The E-repair range of a checkpoint is the sequence of need to maintain c (potential) consistent states in addition to
instructions issued after this checkpoint and before the next the major machine state.
checkpoint. If any instruction in the E-repair range of a A logical space is a copy of the architectural registers and
checkpoint causes an exception, our checkpoint repair mecha- memory locations containing either the machine state or a
nism will first quickly restore the machine to the consistent potentE(t) state. For example, schemeE(c) uses c + 1 logical
state corresponding to that checkpoint and then execute spaces, c for the potentE(t) states and one for the machine
instructions sequentially to bring the machine to the precise state. The techniques for implementing the logical spaces are
state for that exception. For example, instructions A2, B2, C2, described in Section VI.
D2, and E2 form the E-repair range of the checkpoint between
instructions El and A2- B. Data Structures

Branch prediction misses occur much more frequently than Current is the logical space holding the machine state,
exceptions. As an optimization, our B-repair checkpoints are which is the major working space for the out-of-order
always at the precise instruction boundaries for branch execution engine. Without a repair mechanism, the current
prediction misses. Thus, no sequential execution is required' ~~~~~~~~~spaceiS the only logical space in the machine.
for restoring the machine to the precise state for a branch sac Pist nly logical spacei machine. hBackupE is an array of logical spaces holding the potential
prediction miss. Such optimization supports very fast branch

predictionmisshandling. ~~~~consistent states. At time t, backupE,i holds potentE,i(t).
CountE is an array of counters keeping track of the number

D. Pending Consistent State of active instructions in the E-repair of the active checkpoints.
At time t, countE,i shows the number of active instructions in

A pending consistent state PCS(IB), consists of the th '-ear.ag facie,()
contents of the architectural registers and memory locations Exceptisrang araoBoEa gkp o
with the following two properties. First, instructions issued E xcept ion havoccurredn thegF-repirrange' ~~~~~whether or not exceptions have occurred in the E-repair range
before IB either have affected PCS(IB) or will affect it in the
future. Second, instructions issued after IB cannot affectofteaivchkpns.AtmetexpEiidctsfuture.Second, instructions issued after LB cannotaffectwhether or not at least one exception has occurred in the E-
PCS(IB). PCS(IB) becomes consistent state CS(IB) when all
the instructions issued before LB have finished execution. rearaneoacve,()IdentE is a decrementing counter which, at time t, holds the
Our checkpoint repair mechanism maintains a potential identification number assigned to activeE, I.(t)

consistent state for each checkpoint during out-of-order
execution. These pending consistent states evolve with time C. The Algorithm
until they finally become consistent states. The key to our

checkpoint repair mechanism is really the management of Algorithm 1. scheme(c)
these potential consistent states so that they can be used to Initial condition:
repair the machine state upon detecting an exception or a All the elements of countE and exceptE are cleared
branch prediction miss. to 0. The checkE action as defined below is

performed c times to make the contents of all the
III. THE CHECKPOINT E-REPAIR MECHANISM backupE spaces identical to those of the current

In this section, we present a checkpoint F-repair mechanism space. IdentE is initialized to be - c.
and several important properties of this mechanism: 1) the IssueE IssueE is performed when a nlew instruction is
correctness of the mechanism, 2) the minimal number of issued. The input operands are fetched from the
backuwp spaces (defined below) required to avoid draining the current space. The value in identE is carried as a
pipeline before establishing checkpoints, and 3) the boundary checkpoint identification by the new instruction.
beyond which all instructions have finished execution. Tech- CountE,l is incremented by 1.
niques for efficiently implementing registers and cache/main DeliverE DeliverE is performed when instructions finish
memory are also offered. The theorems in this paper are stated execution. The execution result is written to the



1502 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36. NO. 12, DECEMBER 1987

current space. For each instruction delivering Fig. 6(c) shows the snapshot at the end of cycle 14. C2 is the
result, the value in identE is subtracted from the only active instruction in the E-repair range of checkpoint - 3
checkpoint identification carried by the instruction at this moment. When C2 finishes execution at the end of cycle
to get an index i into the arrays. The index is then 15, the value in identE(-4) will be subtracted from the
used to 1) write the execution result to backupE,k, checkpoint identification carried by C2( - 3) to obtain the
for k from 1 to i, 2) decrement countE, ir 1, and 3) index value 1. The execution result of C2 will then be written
if an exception is caused by the instruction, into current and backupE, I. CountE,2 will be decremented by
exceptE, i+ is set to 1. 1 and exceptE,2 will be set to 1.

CheckE CheckE is performed immediately after the ma- Fig. 6(d) shows the snapshot at the end of cycle 15, just
chine issues the last instruction in the E-repair before repair. BackupE,2 contains the consistent state corres-
range of a checkpoint. If CountE c does not ponding to the instruction boundary between El and A2(ac-
contain a 0 at the moment, the instruction issue tiveE,2(6)). Theorem 3 states that backupE,2 in schemeE(2)
stalls. Otherwise backupE, countE, and exceptE always contains a consistent state. BackupE,l contains the
behave like shift registers: the ith element re- potential consistent state (potentE,1(6)) corresponding to the
ceives its new contents from the (i - l)th instruction boundary between E2 and A3(activeE,I(6)). Po-
element, for i from c to 2. BackupE,l receives its tentE, l(t) has not become a consistent state because instruc-
new contents from current. Both countE,l and tions B1, Cl, DI, and El are still active.
exceptE, I are cleared to 0. IdentE is decremented Fig. 6(e) shows the snapshot at the end of cycle 16, just after
by 1. the repair is done. Current receives the consistent state

RepairE RepairE is performed if exceptE, is 1. All active corresponding to the instruction boundary between E1 and A2
instructions are discarded. Current receives its from backupE, 2. Thus, we have restored the machine to a
new contents from backupE,c. After the repair, consistent state corresponding to an instruction boundary
the machine starts executing instructions sequen- before the precise instruction boundary for the page fault.
tially until either an exception is detected (the Fig. 6(f) shows the snapshot before the page fault handler is
exception handler will be invoked in this case) or invoked. A2 and B2 are first sequentially executed. The check2
all the instructions in one E-repair range have operation is then performed twice to force the contents of
finished execution (the machine will resume exe- backupE, I and backupE, 2 identical to those of current. The
cution in full speed). The check action is then machine is now ready for invoking the page fault handler.
performed c times to make the contents of all the There is no inherent rule for selecting E-repair checkpoints
backupE spaces identical to those of the current from all the dynamic instruction boundaries. There are two
space. All elements of countE and exceptE are conflicting factors which affect selecting E-repair check-
cleared to 0. The machine state is now ready for points. First, the farther the checkpoints are from each other,
invoking the exception handler or resuming full- the more useful work will be discarded when performing
speed execution. repairE. Second, the closer the checkpoints are from each

other, the more likely the machine has to stall when
Theorem 1: Algorithm 1 can restore the machine to the performing checkE operation. The checkpoint selection rule

precise state for any exception during out-of-order execution. can be as simple as choosing those instruction boundaries that
Theorem 2: A minimum of two backupE spaces is required are at a constant distance (in terms of number of instructions)

to avoid draining the pipeline before performing checkE. from their immediate neighbors. A more sophisticated scheme
Thus, the microarchitecture has to provide at least three can allow the compiler to select where the checkpoints reside
logical spaces, one current and two backupE spaces. in the issuing instruction stream.

Theorem 3: Every instruction issued before activeE,c(t) has The maximal number of checkpoints allowed in activeE and
finished execution by t. Therefore, backupE,c always contains the number of instructions between the adjacent checkpoints
a consistent state. are the two most important design parameters of schemes
We use the following example to illustrate how schemeE(2) specializing in E repairs. The stalls can be reduced by

can be used in our linked list example to restore the machine to increasing the value of either of the two parameters at different
the precise state for a page fault. prices. By increasing the maximal number of checkpoints
Example 6: Fig. 6(a) shows the initial condition. CountE, I, allowed in activeE, one can reduce the number and duration of

countE,2, exceptE,l, and exceptE,2, are all initialized to 0. stalls by maintaining more potential consistent states. By
The checkE action is performed twice to initialize the contents increasing the distance between adjacent checkpoints, one can
of both backupEl and backupE,2 to a starting state. IndexE is reduce the number and duration of stalls by discarding more
initialized to -2. useful work when performing F repair. Since F repair is a rare

Fig. 6(b) shows the snapshot at the end of cycle 6, just after event, it is a good tradeoff to reduce the number and duration
a new checkpoint is established. BackupE,2, countE,2, and of stalls at the cost of discarding more useful work (up to a
exceptE,2 receive their new contents from backupE,l, reasonable point) when performing F repair. In the extreme
countE,lI, and exceptEl, respectively. BackupEl receives its cases, two backup spaces (the minimum required not to drain
new contents from current. CountElI and exceptE l are the pipeline before performing checkE) are used and the
cleared to 0. IdentE is decremented to - 3. distance between the neighboring checkpoints are set to be so



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1503

acUve instructions Initial condition
issuing acUve Instructions end of cycle 6
Issuing instruction stream

acUveE 1(°} * ~~~~~~~~~~~~~~~~~~~~~~~~~~~IssuingInstruction stream
active,l (0) O
active,2(01 active,2(6) active (6)

-1-2
-2

IocO 3.5 locO 3.5 bc 0 35 locO 35r 0 3I oc 3.5

|oc2 1.7|oc2 1.7ntE2 |lOocC -2 1.7 ldec2E 1.74oc2 1.7 4| O 4 lo4

ioc3 nil boc3 nil leeS ~~~~~~~~~nillc nil nil ni

nstA C nt A cinstA

z~I COuntE.2 L l] CountELi L Z Ident E 77 CoUntL.2 Count ~L ] IdentE

| OI| ExceptE2 |ZO |Z ExceptL, [ZO 1 ExceptEL2 |ZOi| ExceptEL

(a) (b)

active instructions end of cycle 14 actUve instructions end of cycle 15. before repair

issuing instrucUon streamn issuing instrucUon stream

active2(15) acUve- 1(15) active 2(15) acUveP(15)
IIA'Bl I C,IDIEIABgI I ML||AB I C, I D, I El AA2'B2 I C2 I D2 21 | A3 rBTIFIIM42 1 1 1l-2 11 1 113 -41 1 1

loc4r I 1 loc2 ro 2 2|||C

2.0 ~ r2 20 2 2.0 2 .r2 2.0

locO 7.0 locO 7.0 bocO ~~~~~ ~~~7.07ccO7.
ld )4 ol 1e4 el oe 4 loe loc 4 jo lbc 4

ioc2 1.7 loc2 1.7 cc2 1.7 loc~~~~~21.7
locS nil locS nil bcc3 nil loc~~~~~~~~~~3nil ni

loc4 2.3 Icc 2.3 bcc4 2.3 loc~~~~~~~~~~~42.34

73O | CountE.2 | CountE1 I IdentE CoUtE.2 untF1 [ IdentE

LII ExceptL-2 I 73 ExceptLl _2llxet jj73 Ecp~

(c) (d)
Fig. 6. Example for schemeE(2).



1504 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 12, DECEMBER 1987

E active instrucUons end of cycle 16. after repair
instruclonstream active instructions before invoking page fault hander

Issuing instruction stream tssuing instructin steam

active,2(16) active E.1016) active 16) active (11

C3 D2 1~~~~~~~~~13rEr, 2B24 ST ! | | 21 2 ! 2 ! 2 ! E2 | A3 B3 ! C3 ! D3 1 || ! | ! ! ! l | 21 2!2!2!E2|A3Bs!C3|D3 ! A B |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~23IIABIIDEAB2 2 13 K A C

-2 -3 -4 .II-2 -3 -4 -5

0Ioci loc4!1 .1Ioc1 Ioc4 i_oc4 lad' 1oc4-6

loS nfil loc3 ni ilE0c E-oc i 1oc i

r l2 2 2 I 2.3
oc5Ioc2~~~~ i~o5 lo2bc 02-klc o2ie loc241

j Z j CountL2 |iiO j CountE1 j-4 IdentE |Z Oi| CountL2 |O |CountE1 | 6dZ t

|OZj ExceptL2 0O 1 Except1 |iO |J EXCeptE2 O | Except21

(e) (f)
Fig. 6. (Continued).

large (in the order of several tens of instructions) that stalls B. Data Structures
happen extremely rarely. Current is the logical space holding the machine state,

IV. TE CHCKPOIT B-EPAIRMECHNISMwhich is the major working space for the out-of-order
execution engine.

In this section, we present a checkpoint B-repair mecha- BackupB is an array of logical spaces holding the potential
nism. We reduce the performance penalty caused by B repairs consistent states. At time t, backupB.e holds potentB,(t).
by selecting the instruction boundaries just after the condi- PendB is an array of Boolean flags keeping track of whether
tional branch instructions as checkpoints. When a branch or not the branch predictions are still active. At any time t,
prediction miss occurs, our B-repair mechanism quickly pendB indicates whether or not the branch instruction corres-
restores the machine to the precise state for that branch ponding to activeB,j(t) is still active.
prediction miss and the machine then resumes execution from MissB,, is an array of Boolean flags keeping track of
the correct branch path. This avoids discarding any useful whether or not the branch predictions have been proven
work when performing B repairs. Unless otherwise specified, incorrect. At time t, missy indicates whether or not the
the B-repair checkpoints will be just after the conditional branch prediction corresponding to active ,j(t) has been
branch instructions. proven incorrect.

A. Definitions AlterB.i is an array of program counters holding the
alternative addresses (the addresses of the first instructions

Activeg(t) is a set of consecutive checkpoints such that the on the alternative branch path) of the active conditional branch
conditional branches corresponding to both the leftmost and instructions. At time t, alterB i holds the alternative address of
the rightmost checkpoints are still active. ActiveB,l(t) is the ith the branch instruction corresponding to activeB,,(t).
Of this set and i increases from right to left in the issuing Ident8 is a decrementing counter which, at time t, holds the

instruction stream. ~~~~~~~identification number assigned to activeB. l (t).
PotentB(t) is the set of potential consistent states main-

tained for the active checkpoints. At time t, potents, ,(t) is the C. The Algorithm
potential consistent state maintained for activeB,I.

SchemeB(c) IS a repair scheme where a maximum of c loih . cee()
checkpoints are allowed in activeB(t) at any time t. This Initial condition:
means that we need to maintain c (potential) consistent states IdentB and all the elements ofpend8 and missd are
in addition to the major machine state. There can be c all initialized to 0.
conditional branch instructions active at the same time ins ssueB Issuer is performed when a new instruction is
scheme8(c). issued. The input operands are fetched from the



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1505

current space. The value in identB is carried as a before repair. MissB, l is 1, indicating that a branch prediction
checkpoint identification by the new instruction. miss occurred.

DeliverB DeliverB is performed when instructions finish Fig. 7(d) shows the snapshot at the end of cycle 19, just
execution. For each instruction delivering result, after the repair is done. Current receives its new contents
the value in identB is subtracted from the check- from backupB, . We load the program counter in current with
point identification carried by that instruction to the contents of alterB,1. The machine execution will exit the
get an index i into the arrays. The index i is then loop and will continue along that path. The active instructions
used to 1) write the execution result to backUpB,k, issued after activeB, 1(18) (i.e., A4 and B4) are discarded and
for k from 1 to i, 2) if the instruction is a those issued before activeB, 1(18) (i.e., C3) will be allowed to
conditional branch instruction, clear pendB,f , 3) if finish. When C3 finishes execution, it will write into bot'
the instruction is a conditional branch instruction current and backupB,l.
and the prediction made for it is proven incorrect,
set missB, i to 1. V. CHECKPOINT E- AND-B-REPAIR MECHANISMS

CheckB CheckB is performed immediately after a branch
instruction is issued. If pendB,C does not contain a In this section, we present mechanisms that perform both E

0, the instruction issue stalls. Otherwise backupB, repairs and B repairs. Schemes that can handle only E repair
pendB, misSB, and alterB behave like shift regis- or B repair have been defined in Sections III and IV. We now
ters: the ith element receives its new contents from concentrate on how to incorporate the E-repair and B-repair
the (i- l)th element, for ifromcto2. BackupBl submechanisms into an integrated scheme which performs
receives its new contents from current. Both both types of repairs.
pendB,l and missB, 1 are cleared to 0. The alterna-
tive address of the conditional branch instruction is A. Directly Combined Scheme
saved in alterB, I. IdentB is decremented by 1. In the directly combined scheme, we actually provide two

RepairB RepairB is performed if missE,c is 1. Current independent submechanisms, one for E repair and one for B
receives its new contents from backUpB, . The repair. Schemedirect(cE, CB) is a repair scheme characterized as
program counter in current receives its new follows:
contents from alterB, c. All elements ofpendB and
missB are cleared to 0. After the repair, the 1) Two independent submechanisms are used, one for E
machine resumes execution along the alternative repair and one for B repair.
branch path of the incorrectly predicted condi- 2) A maximum of CE checkpoints is allowed in activeE(t) at
tional branch instruction. any time t.

3) A maximum of CB checkpoints is allowed in activeB(t) at

Theorem 4: Algorithm 2 can restore the machine to the any time t.
precise state for any branch prediction miss during out-of-

We need to provide CE + CB + 1 logical spaces to supportorder execution.
Theorem 5: If a machine performs any branch prediction Schemedirect(CE, CB); CE for the potentE states, CB for the

and proceeds with out-of-order execution along the predicted potentB states and one for current.
The properties of schemedirect(cE, CB) are easily derived

path there must be at least one backupB space provided. s f'. . ........ . ...........from those for schemeE(CE) and schemeB(CB). The first
It is worth noting that the branch prediction misses are
handled~~~~~~~~seunily A brnc prdcinms .ilntb property is that schemedirec (CE, CB) can restore the machine tohandled sequentially. A branch prediction miss will not be

handled until te ithe precise state for any exception or branch prediction miss
handled until there' iS no older active conditional branch

during out-of-order execution. This property follows from
instruction in the machine. Therefore, the number of active
instructions in the machine can be very small after a B repair. Theorems 1 and 4

The second property is that at least three backup spaces (twoEven with branch prediction, it iS still very important to have
bcUEsae n n akP)ms epoie o1

short latency for conditional branch instructions to achieve b s a
high performance. avoid draining the active window before the machine can

high performance. * . ~~~~~~~perform checkE and 2) continue issuing and executingWe use the following example to illustrate how schemeB(l)
instructions after issuing a conditional branch instruction. This

can be used in our linked list example to restore the machine to
the precise state for a branch prediction miss. property follows from Theorems 2 and 5.
Example 7: Fig. 7(a) shows the initial condition. PendB,I, The third property is the stall condition. The instruction

mi..... andidentareallin0. issue in schemediect(cE, CB) stalls if at least one of the

a 'erar .nefnd following two conditions occurs.

Fig. 7(b) shows the snapshot at the end of cycle 6, just after 1) When the checkE action is to be performed, countE,CE is
a new checkpoint is established. BackupB,I receives its new not 0.
contents from current. PendB,l has been set to 1. The 2) When the checkB action is to be performed, pendB, CB is
alternative address of the branch, pointing to the loop exit, 15 not 0.
stored in alterB,l . IdentB, l is decremented to - 1.

Fig. 7(c) shows the snapshot at the end of cycle 18, just The directly combined scheme has the advantage of



1506 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

actUve instructions Initial condltion active instrucUons end of cycle 6

issuing instruction stream issuing instruction stream

acUve H (6)

| |A

] Aen Exitulte BA

~ ctv Isrutin edofcyl 1 ctv Instrkucposedoyle1.atrrpiloc IIloc 4

bocl 1oc4 lad Ioc4 ~~~~~~~~ boci loc4 ,~~~~loc oc2 loc42

Pend Bl ldentBI Pend Bl -I I IdentB

|11OZ] Miss Ba Ii|,| Miss Eal
] Alter a, | eit Alter aI

(a) (b)

active instructions end of cycle . E actve instficUons end of cycle 19, aefter repar

issuing instruction stream issuing instrucUon stream

aCtUVeBA(18)

W~~~~~DX E2 A

B,~~~~COD|PenA B -3 |' 2dn | D Pn BI [ - dn

maipuat 7. ExmlefrteeeS(



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1507

simplicity. However, inefficiencies exist due to the lack of Algorithm 3: schemetight(CB, CE)
interaction between the two submechanisms. For example, a
minimum of three backup spaces (rather than two, the absolute Initial condition:
minimum) is required for schemedirect(cE, CB) The elements of Countmerged, exCePtmerged,
B. Merged Schemes pendmerged, and missmerged are cleared to 0. The

elements of altermerged are undefined. The
We now present schemes in which the two (E-repair and B- checktight action as defined below is performed

repair) submechanisms are more closely coupled to handle CB + CE times to make contents of all the
bothE repairs and B repairs. In the tightly merged scheme, the backupmerged spaces identical to those of cur-
consistent states corresponding to all the instruction bounda- rent. Identmerged is initialized to - c.
ries just after the conditional branch instructions are used for Issuetight Issuetight is performed when a new instruction is
both E repairs and B repairs. In the loosely merged scheme, issued. The input operands to the new instruc-
all the consistent states corresponding to the instruction tion are fetched from the current space. The
boundaries just after the conditional branch instructions are value in identmerged is carried as a checkpoint
used for B repairs but only some are used for E repairs. identification by the new instruction.

1) Definitions: Activemerged(t) is the set of consecutive Countmerged, is incremented by 1.
checkpoints such that there are active instructions at time t in Delivertight Delivertight is performed when instructions fin-
the E repair ranges of both the leftmost and rightmost ish execution. The execution result is written to
checkpoints. A ctivemerged, i(t) is the ith element of this set and i the current space. For each instruction deliver-
increases from right to left in the issuing instruction stream. ing a result, the value in identmerged is sub-

Potentmerged(t) is the set of potential consistent states tracted from the checkpoint identification car-
maintained for the active checkpoints. At time t, po- ried by that instruction to get an index i into the
tentmerged, i(t) is the potential consistent state maintained for arrays. The index is then used to 1) write the
activemerged, (t). execution result to backupmerged, for k from 1

2) Data Structures: Current is the logical space holding the to i, 2) decrement countmerged, i+ 1, 3) if an
machine state, which is the major working space for the out- exception is caused by the instruction, ex-
of-order execution engine. ceptmerged, 1i is set to 1, 4) if the instruction is a

Backupmerged is an array of logical spaces holding the conditional branch instruction, pendmerged,i is
potential consistent states. At time t, backupmerged,i holds cleared to 0, 5) if the instruction is a conditional
potentmerged, i(t). branch instruction and the prediction for it is

Countmerged iS an array of counters keeping track of the proven incorrect, missmerged,i is set to 1.
number of active instructions in the E-repair range of the Checktight Checktight is performed immediately after the
active checkpoints. At time t, countmerged,i shows the number machine issues a conditional branch instruc-
of active instructions in the E-repair range of activemerged,i(t). tion. If either countmerged,cB+cE or pend,nerged,cB

Exceptmerged is an array of Boolean flags keeping track of is not 0 at the moment, the instruction issue
whether or not exceptions have occurred in the E-repair range stalls. Otherwise backupmerged, countmerged,
of the active checkpoints. At time t, exceptmerged,i indicates eXceptmerged, pendmerged, MiSSmerged, and al-
whether at least one exception has occurred in the E-repair termerged behave like shift registers: the ith
range of activemerged,P(t). element receives its new contents from the (i -

Pendmerged is an array of Boolean flags keeping track of l)th element, for i from CB + CE to 2.
whether or not the branch predictions are still active. At time Backupmerged, 1 receives its new contents from
t, pendmerged indicates whether or not the branch instruction current. Countmerged, 1, exceptmerged, I
corresponding to active,nerged, (t) is still active. pendmerged, 1, and missmerged, 1 are all cleared to

MiSSmerged is an array of Boolean flags keeping track of 0. The alternative address of the conditional
whether or not the branch predictions have been proven branch instruction is saved in alterB,l.
incorrect. At time t, missnzerged, indicates whether or not the Identmerged is decremented by 1.
branch prediction corresponding to activemerged,i(t) has been Repairtight,E Repairtight,E is performed if exceptinerged,cB+cE
proven incorrect. is 1. Current receives its new contents from

Altermerged is an array of program counters holding the backupmerged,cB+cE5 All active instructions are
alternative addresses of the active conditional branch instruc- discarded. After repairtight,E is performed, the
tions . At time t, altermerged, iholds the alternative address of the machine starts sequentially executing instruc-
branch instruction corresponding to activemerged,i(t). tions until either an exception is detected (the

Identmerged is a decrementing counter which, at time t, holds exception handler will be invoked in this case)
the identification number assigned to activeinerged, 1(t). or all the instructions in one F repair range

3) Tightly Merged Scheme: Whenever a conditional have finished execution (the machine will re-
branch instruction is issued, the tightly merged scheme starts sume execution at full speed). The checkt,ght
to maintain a new potential consistent state. All these potential action is then performed CB1 + CE times to make
consistent states can be used for both B repairs andEF repairs. the contents of all the backupmerged spaces



1508 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

identical to those of current. All elements of if an exception is caused by the instruction,
countmerged, excepttnerged, Pendmerged, and exceptmerged,i+ 1 is set to 1. 4) if the instruc-
missinei-ged are cleared to 0. The machine is then tion is a conditional branch instruction,
ready to invoke the exception handler or to pendmerged,, is cleared to 0, 5) if the instruc-
resume full speed execution. tion is a conditional branch instruction and

Repairright, B Repairtight, B is performed if missinerged,CB is 1 the prediction for it is proven incorrect,
and eXceptmerged, CB+ CE iS 0. Current receives missmerged, i is set to 1. If the index is greater
its new contents from backupmerged,cB. The than CB, discard count is subtracted from
program counter in current receives its new the index before it is used to 1) write the
contents from altermerged, cB. All elements of execution result to backupmerged, k, for k
pendmerged and missmerged are cleared to 0. All from 1 to CB and from CB + 1 to i, 2)
active instructions issued along the incorrect decrement countmerged,i+1, and 3) if an
branch path are discarded. After the repair, the exception is caused by the instruction, ex-
machine resumes execution along the alterna- Ceptmerged, i+ is set to 1.
tive branch path of the incorrectly predicted Checkmerged, minor Checkmerged, minor is performed after issuing a
conditional branch instruction. conditional branch instruction if the decision

4) Loosely Merged Scheme: Whenever a conditional function decides to discard the potential
branch instruction is issued, the loosely merged scheme starts consistent state stored in backUPmerged,cB if
to maintain a new potential consistent state and probably pendmerged,cB is 1, instruction issue stalls.
discards one of the existing potential consistent states. All the Otherwise, part of backupmerged, part of
potential consistent states can be used for B repairs but only countmergedg part of exceptmerged, pendmerged,
some can be used for E repairs. and missmerged behave like shift registers: the
When a conditional branch instruction is issued, a decision ith element receives its new contents from

function is invoked to decide whether or not the consistent the (i- l)th element, for i from CB to 2. The
state stored in backupinerge,cB should be discarded. This sum of count mergedc,cBand count merged,cB+ iS
function can be as simple as using a counter, discard count, to written into countmerged,CB+ 1. The bitwise OR
keep track of the number of consistent states discarded in a of eXceptmerged, cB and eXCePtmerged,cB +1 is
row. If the counter reaches a predetermined value, no written into exceptmerged, cB+1- Note that the
consistent state will be discarded next time when a conditional rest (elements with indexes from CB + 1 to CB
branch instruction is issued. + CE) of backupmerged, (elements with
Algorithm 4. Schemeloose(cB + CE). indexes from CB + 2 to CB + CE) of

countmerged, and exceptmerged remain intact.
Initial Condition: BackUpmerged,1 receives its new contents

All the elements of countmerged, ex- from current. Countmerged, 1 exceptmerged, I

ceptmerged, pendmerged, and missmerged are pendmerged,1, and missmerged,1 are all cleared
cleared to 0. The elements of altermerged are to 0. The alternative address of the condi-
undefined. The checkloose,major action as tional branch instruction is saved in alterB, 1.
defined below is performed CB + CE times to Identmerged is decremented by 1. Discard
make the contents of all the backuploose Count is incremented by 1.
spaces identical to those of the current Checkloose, major Checkloose, major is performed after issuing a
space. Identmerged and discard count are conditional branch instruction if the decision
initialized to be - c and 0, respectively. function decides not to discard the potential

Issueloose Issueloose iS performed when a new instruc- consistent state stored in backUPmerged, cB
tion is issued. The input operands are If either countmerged,cB+cE or pendmerged,cB
fetched from the current space. The value in is not 0 at the moment, the instruction
identmerged,B is carried as a checkpoint iden- issue stalls. Otherwise, backuPmerged,
tification by the new instruction. countmergedd exceptmerged, pendmerged, and
Countmerged, 1iS incremented by 1. missmerged behave like shift registers: the ith

DeliverE Deliverloose is performed when instructions element receives its new contents from the (i
finish execution. The execution result is - I)th element, for i from CB + CE to 2.
written to the current space. For each Ba^ckup merged, receives its new contents
instruction delivering result, the value in from current. Countmerged, 1s exceptmerged, 1s
identolerged is subtracted from the checkpoint pendmerged, 1, and missmerged, 1 are all cleared
identification carried by that instruction to to 0. The alternative address of the condi-
get an index i into the arrays. If the index is tional branch instruction is saved in alterBl .
less than or equal to CB, it is used to 1) write Identmerged is decremented by 1.
the execution result to backupmerged, k, for k Repair,oose,F Repairioose, £ is performed if exceptCB+CE is
from 1 to i, 2) decrement countmerged, 1+1, 3) 1. Current receives its new contents from



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1509

backupmergedCB+CE All active instructions that instruction C2 causes a page fault and therefore ex-
are discarded. After repairloose,E is per- ceptmerged,2 is 1 at this moment.
formed, the machine starts sequentially exe- Fig. 8(d) shows the snapshot at the end of cycle 16, just
cuting instructions until either an exception after an E repair is performed. Repairloose,E is performed by
is detected (the exception handler will be copying the contents of backupmerged,2 to current and discard-
invoked in this case) or all the instructions in ing all the active instructions. The machine is now ready for
one E repair range have finished execution sequentially executing A1, BI, C1, D1, El, A2, and B2 to obtain
(the machine will resume execution at full the precise state for the page fault. Assume that instruction C2
speed). The checkloose, major action is then did not cause a page fault and the execution proceeds to the end
performed CB + CE times to make the of cycle 18 [see Fig. 8(e)]. The prediction made for the
contents of all the backupmerged spaces iden- conditional branch instruction E3 is proven incorrect and
tical to those of current. All elements of therefore Missmerge, is 1 at this moment.
countmerged, exceptmerged, pendmerged, and Fig. 8(f) shows the snapshot at the end of cycle 19, just after
missmerged are cleared to 0. The machine is a B repair is performed. RepairlooseB is performed by copying
now ready to invoke the exception handler the contents of backupmerge, I to current and discarding all the
or to resume full-speed execution. active instructions issued after E3 (i.e., A4 and B4).

Repairloose,B RepairlooseB is performed if missmerged,cB is To summarize, the directly combined scheme offers the
1 and eXceptmerged,cB+cE is 0. Current most simplicity but it consumes the most resources (at least
receives its new contents from three backup spaces required). The tightly merged scheme
backupmerged,cB' The program counter in consumes the minimal resources (at least two backup spaces
current receives its new contents from required) but it suffers from frequent instruction issue stalling.
altermerged,cB All elements of pendmerged and The loosely merged scheme also consumes the minimal
missmerged are cleared to 0. All active in- resources and it does not suffer from frequent instruction issue
structions issued along the incorrect branch stalling. The price we pay for the loosely merged scheme
path are discarded. After the repair, the includes the following two items. First, a piece of logic is
machine resumes execution along the alter- required to decide when to use the checkloose, major and when to
native branch path of the incorrectly pre- use checkloose,minor- Second, the manipulation of backup
dicted conditional branch instruction. spaces and control arrays requires more control lines in the

loosely merged scheme than in the tightly merged scheme.
We use the following example to illustrate how

schemeioose(l, 1) can support the handling of both exceptions VI. IMPLEMENTATION DETAILS
and branch prediction misses in our linked list example. The There are two types of techniques for implementing
decision logic is assumed to perform checkloose,major and multiple logical spaces in an out-of-order execution environ-
checkloose,minor alternatively. Therefore, a checkloose,major is ment. The copy technique provides a full-sized physical
performed after the first conditional branch instruction is storage for each logical space. The difference technique
issued; a checkloose,minor is performed after the second condi- provides only one full-sized physical storage; each logical
tional branch instruction is issued, etc. space is implemented by keeping the difference of the contents
Example 8: Fig. 8(a) shows the initial condition. of that logical space from those of the full-sized physical

Countmerged,li countmerged,2, eXCeptmerged,l, eXceptmerged,29 storage. These two implementation techniques have different
pendmerged, 1, missmerged,I are all cleared to 0. The checkmerged space and time properties which make them favorable for
action is performed twice to make the contents of implementing either registers or cache/main memory [12] but
backupmerged, l and backupmerged, 2 identical to those of cur- not both.
rent. IdentE is initialized to - 2. A Th

Fig. 8(b) shows the snapshot at the end of cycle 11, just A e Copy Technique (for Registers)
after the conditional branch instruction E2 is issued. E2 is the The copy technique physically implements a copy of
second conditional branch instruction issued and therefore a storage for each logical space and provides highly concurrent
checkloose,minor action is performed. The contents of data transfer paths between these copies. The amount of
backupmerged, I become those of current but the contents of hardware thus required makes the copy technique more
backupmerged,2 remain intact. Pendmerged, was 0 before the applicable to registers than to cache/main memory.
action and therefore checkloose,minor is performed without 1) SchemeE(c) and SchemeB(c): Each bit of a register
delay. The sum of countmerged, and countmerged,2 is written entry consists of c + 1 cells: c backup cells and one current
into coulntmerged,2* The bitwise OR of exceptmerged, 1 and cell. All these cells form a shift register [see Fig. 9(a)]: data
exceptmerged,2 iS written into exceptmerged,2. Note that if the can go from the backupE,i_l(backupB, _ ) cell to the backup-
multiplication were to take seven rather than four cycles, E, (baCkUpg,i~) cell and from the current cell to the backup-
countmerged,2 would be 1 at this moment but the instruction F, l(backupB, I) cell. There is a feedback path from the
issue would NOT stall, which is an improvement against the backupE,C(backupB,c) cell to the current cell.
tightly coupled scheme. The input operands are fetched from the current cells of the

Fig. 8(c) shows the snapshot at the end of cycle 15. Assume source registers. The execution results are written into the



1510 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36. NO. 12. DECEMBER 1987

actUve instructions initial condition acUve instrucUons end of cycle 11 after check

issuing instrucUon stream issuing instrucUon stream
activei_(O)
active-,(0) actve,,2 (11) actvel-I (11)

l l l l l l l l l l | |~~~AB C D E. A2 22

v r r$ m3 m mI~~~~~~~~~~~~20
I~~~~~~~~~~~~~U-1W1U :B-

ri locOri locO ri~~~~~~~~lo locO4i Ic

|°| Countmre. ° Countr gdl l - Identme Cout gd2 |°|untt -ged.1 | - Ietie

-92d22.0 r,2 2.0d r2.d220utr2dn2.0

|ocO |Except_ Except_gd. ° Discard3Count. Except 3edo2 cExcept_d. Discard3Count

|d O4loci loPend lac.l lcPend oc o d.1

oc nlloS Miss -3red.1 n O MISS m nid.
| Alter _Wed.l exiden Altert-W.,men d.

(a) (b)

active instructions end of cycle 15, beforeE-repair active instructions end of cycle 16, after 3-repair
issuing instruction stream issuing tnstruction stream

active (1.2(15) active ( 15)

||A Bl IC| DI |El| A2B| A, || ,tA Bl Cl DI E, A2 B2 C2 D E A, BS CDI 32-222 2 - 1112 2 2

|2O -C°Untmened*2 1 3 -4C°Utmne.2 - 1 Idet | ° C°ntered 1 °C°nt-2 -3 -4

r| Oi loc2 Pend ml2 ci iOcj2Pend merg do

r2 2.0| Mlss me ° Mtssr 2.0 222.e2..

lc 3. e0 7. c0 70 < c3.5 .7.0 .0oc 3.
o l oc 4 lc o4ld lc , c c4ld lc
lo2 17Ie . o1.7.7 ioe2 17'lc .

Ioc3 nil loc3 nilladS nfl bac3 nil~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ni

looc 2
loc423oc

nt= ~ tA A lnstA ~ cisA ~ c I ~

[IZCount-pd.~2 [ 1]Count-.. Ident-d [iI Count-[dI2 Count-gd. I Ident.d

Except,g,d,,,2Z~]Except ,,,.2 1 Discard Count 11]Except . rd 1] Except,,._,1j~ Discard Count

LI]Pend -,,d2 [111Pend ,d1

[11]MiSS -,ld2 11]MiSS d.

| exit | Alter -ged.t j Alter _rel

(c) (d)
Fig. 8. Example for scheme,. (2).



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1511

S active Instructions end of cycle 18. before f-repair active instrucUons end of cycle 19, after B-repair

issuing instrucUon stream issuing instruction stream

acUve, 2(18) active, 1(18) active 2(18) active, _
(18)

Cl13D, El A2 B1 C2 D2 E2 ABC D E iB CD E ABC2 D2 E21 As B., D3 E3 ABI

*3L -4 -5 -31-4

backu a ccbacku engedl cc Current a cc ~~~~backu aecbalu d ceCrr1ac_ _" | ~~~~~~~I n
r2 2.0 r2 2.0 r2 2.0 I 2.

bc 0 7.0bc 0 7.0 bc ~0 7.0b .0b .
loci boc4 lad loc4 loc~~~~Iloc 4 lIoct o4lloc44

oc4 4.6 boc4 4.6 loc4 ~~~~~ ~~4.6 4oc44.6
oc5 o2lo5 b2 oS oc loc 52 loc 5o2 loc loc 2

| eCountred.2 2 ount-gd2 Ident med Cnt |md.2| Count_,,,d1 [3-51 Identm,g,d
0 O |]Except-,,d2 Except,,md.2 | 1 Discard Count |IOZ|Except.Mred.2 0 Excepte,,ed,l [1I71 Discard Count

~
O |Pendgd.2 | Pend mred I

i IjEll! Miss me g7d.2 [1O1|]Miss md.1

jI eit~Z j Alter - d| exit | Alter -W.1

(e) ()
Fig. 8. (Continued).

current cells and some backupE(backupB) cells chosen by the

check enable overall control logic (see Algorithms I and 2).
To support checkE(checkB), the shift chain in Fig. 9(a)

backup backuIIIII IImoves data from backupE,i.l(backupB, j_l) to backup-
E,j(backupB,,) and from current to backupE, I(backupB, 1). To
support repairE(repairB), the feedback path moves data from
backupE,,(backupB,,) to current.

repair ennable Example 9: Fig. 9(b) shows a register bit implementation in
(a) schemeE(2). Current and backupE,I share a common bit-line

but each of them owns a private bit-line. The input operands
check enable All are fetched by enabling the current word-line and then sensing

the data from the shared-bit line. The execution results are
iwordIne accessing backupl cell _ _ _ written into the cell(s) by driving the shared bit-line with the

result data and then enabling the current word-line and
probably the backup, word-line (as determined by the overall

iii'crrentcontrol). Note that there is no word-line or bit-line for
backupE,2 because no instruction can deliver a result into the
backupE,2 space according to Theorem 3.

word-line accessing cr ce,.,--ll $ ........Tosupport the checkE action, the check enable line
I-line accesingurren controls the data transfer from backupE,I to backupE,2 and

enable _umsaamauattauesal4. |from current to backupE,I, To support the repairE action, the
repair repair enable line controls the data transfer from backupE,2 to

common bit-line current.
Schemetigh,(cB, CE): Each bit of a register entry consists of

X4 CB + CE + I cells: CB + CE backup cells and one current cell.
(b) All these cells form a shift register [see Fig. 1O(a)]: data can

Fig. 9. Register bit implementation in schemeF(c). go from the backupmerged,i- I cell to the backupmerged,j cell and
from the current cell to the backupmerged I cell. There are two



1512 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36. NO. 12. DECEMBER 1987

check enable IIminor chain check enable

ll .1 i | | L ~~~~~~~maiorchain check -hale
I f X < |<. H51~~~~~I k

back~~~~~~ backuR. current bckp bckp uren

E-repatr ennable

E-repair ennable
B-repair enable

(a) B-repair enable

*- . ......check enable
_ i _ t(a)

check enbeIimiiI.IiumIiminor check enable
word line accessing backup ceU

malor chec-k enable .4 I.

"M F"~~~~~~~~~~~~~~~~~wrd line accessing bacu cell

c irrent~ ~~ ~ ~ ~ ~ ~ ~~~~~~~~ur

word-line accessing cu nt ce

E-repair enable

B-repair enable l

common bit-line

4"|||l E-repair enable

B-repair enable
(b) common bit-line

Fig. 10. Register bit implementation in scheme,&551(c). +
(b)

feedback paths: the E repair path goes from the Fig. I1. Register bit implementation in scheme,,,JO(c)
backupmerged,,CB+cE cell to the current cell and the B repair
path goes from the backupmerged,cB cell to the current cell. and some backupmerged cells chosen by the Deliver,igh, action
The input operands are fetched from the current cells of the defined in Algorithm 3.

source registers. The execution results are written into the To support checki,ooe,major, all the cells in the major chain
current cells and some backupmerged cells chosen by the receive data from their right-hand-side neighbors. To support
Deliver,igh, action defined in Algorithm 3. checkioose,mino, all the cells in the minor chain receive data
To support check,igh,, the shift chain in Fig. 10(a) moves from their right-hand-side neighbors. To support repairloose,E,

data from backupmerged,i- I to backupmerged,i and from current the E repair feedback path moves data from
to backupme,ged, l. To support repair,igh,,E, the E repair backuprmeged,cB+cE cell to the current cell. To support
feedback path moves data from backupmerged,cB+E cell to the repair,oose, B, the B repair feedback path moves data from the
current cell. To support repairtigh,.B, the B repair feedback backupmerged,cB cell to the current cell.
path moves data from the backupmerged,cB cell to the current Fig. I I(b) shows a register bit implementation in
cell. scheme,ooe (2).

Fig. 10(b) shows a register bit implementation in The major advantage of the copy technique is that it does not
schemeligh,(2). consume extra access bandwidth of the register file because

3) Scheme,oose(cB, CE): Each bit of a register entry consists the check and the repair do not actually move data out of and
of CB + CE + I cells: cB + cE backup cells and one current back into the register file.
cell. All these cells form two shift registers [see Fig. I (a)]: For example, the HPSm [2] microprocessor which employs
the minor chain goes from the current cell to the schemeioo,e(2) has a 32-entry general purpose register file. The

backupmerged,cB+cE cell and the minor chain from the current read access is slowed down by about 10 percent due to the
cell to the backupmerged,cB cell. There are two feedback paths: increased capacitance (of the backupmerged, I cell) on the bit-
the E repair path goes from the backupmerged cB+cE cell to the lines. Note that this penalty can be eliminated by assigning
current cell and the B repair path goes from the private bit-lines to the backupmerged, cells at the price of

backupmerged,cB cell to the current cell. increased chip area. The check,oose,,n,jor, checkloose,minor,
The input operands to the instructions are fetched from the repairo,os,E, and repairloose,B actions overlap with the bit-line

current cells of the source registers. The execution results precharging and incur no time overhead.
produced by the instructions are written into the current cells The disadvantage of the copy technique is that it expands the



HWU AND PATT: CHECKPOINT REPAIR FOR HIGH-PERFORMANCE MACHINES 1513

issuing instruction stregn
space by nearly a factor of c + 1 when supporting C
schememerged(c). For example, the register file of the HPSm activeL2 (t) activeEl (t)
microprocessor occupies about 12 percent of the (10.5 x 10.5 w w
mm2 1.6 ,tm CMOS) chip area, where 7 percent is due to

2

l
the copy overhead. N N-1 N-2 N-3

All in all, we consider the copy technique attractive for
implementing register files where access bandwidth is high
and the size is small to begin with. w

order

B. The Difference Technique (for Cache and Main
Memory)

Top W N-3
The current space is implemented with physical storage. w

All the backup spaces are implemented implicitly by keeping I

W N-2
track of the differences between their contents and those of the 2

W Ncurrent space. When a checkpoint repair is performed, the o
appropriate difference is used to restore the contents of the
physical storage to those of the desired backup space. The History Buffer
history buffer in [5] can be modified slightly to keep track of Fig. 12. Example of cache repair using the difference technique.
the differences between the contents of the current space and
those of the backup spaces. state. Since we can guarantee that all the in'consistent main
The difference technique does consume extra bandwidth but memory locations have the dirty bit in their corresponding

it does not physically duplicate the storage, which makes it cache locations set to 1, this is perfectly compatible with the
more applicable to cache/main memory than to registers. definition of a write-back cache.

J)SchemeE(c) and SchemeB(c): We demonstrate, in this Example 10: Fig. 12 illustrates a possible snapshot of
section, how the difference technique can be used with cache scheme(2) at the end of cycle t. W W7, W2, and W3 are
memories to support E repairs and B repairs. A generic design memory writes residing in the E-repair ranges of checkpoints
applicable to both write-through caches and write-back caches N, N - 1, N - 2, and N - 3, respectively. Due to out-of-
is shown below. order execution, the four memory writes finish in the order

Each entry of the history buffer consists of an address, a Wo, W2, W1, and W3. Checkpoints N 2 and N - 3 are
byte mask, data, and a checkpoint identification. The major activeE, 2(t) and activeE, I(t), respectively. Assume except2 is 1
accesses to a cache with history buffer are listed below. at this moment and the machine is to be restored to the

consistent state corresponding to checkpoint N - 2. Theread Performed as if there were no repair mechanism'
difference between the contents of the cache (current) andwrite The original contents of the addressed cache

locrwith the address, the byte mask, those of the desired consistent state is really the changes tnade
location together by W2 and W3. Therefore, we can restore the cache to theand the checkpoint identification are pushed onto'

andthe checkpointu idenficateio aren pushormedoo consistent state by undoing the effects of W2 and W3. Since we
thehisorybufer w it is thave the original data of the locations modified by W2 and W3if there were no repair mechanism.

replace Performed as if there were no repair mechanism. we can undo the effects of W2 and W3 by writing the original
repair Assume that the machine iS to berestoredtonthe data back to the cache.conaiAsistmen statthe macrreisponding restoredto thehecThe first entry popped off the history buffer is the entry for

withiientifiationr.Tes histo bfe iscpoppe W3. It contains a checkpoint identification less thanN - 2 andwith identification k. The history buffer iS popped is therefore used to undo the effects of W3 in the cache. The
until eitherthebufferisemptyoranentsecond entry popped off the history buffer is the entry for W1.checkpoint identification greater than or equal to k

-chckpoint.idnlytifiion reatrie wthanorchequa 'tok It contains a checkpoint identification greater than N - 2 and
- .is found. Only those entries with checkpointis therefore not used to undo the effects of W3 in the cache.identification less than or equal to k are used to

ienficmawriteactionlesswthanto l tokaddreusedbto The third entry popped off the history buffer is the entry for
perform aW2. It contains a checkpoint identification equal to N - 2 andmask, and (original) data in the buffer entry.mask,and1(original) data in the buffer entry. is therefore used to undo the effects of W3 in the cache. The

Our generic design is applicable to both write-through and third entry popped off the history buffer is the entry for Wo. It
write-back caches. When repair for a write-through cache is contains a checkpoint identification equal to (N - 2) + 2,
performed, each history buffer entry used consumes one main which signals the end of the cache repair.
memory write cycle. After repair, both memory and cache 2) Schemettght(cn, CE) and Schemel0ooe(cB, CE):~The fol-
contents will be in the desired consistent state. lowing scenario may occur in schemetigh,(cn, CE) and
When repair for a write-back cache is performed, only scheme,oose(cB, CE), but it can never occur in schemeE(c) or in

those history buffer entries repairing memory locations absent schemeB(c). A B repair is first performed to restore the
from the cache consume main memory write cycles. After machine to a potential consistent state corresponding to
repair, the cache is guaranteed to be in the desired consistent checkpoint A. Several cycles later, an F repair must be
state but the main memory may still remain in an inconsistent performed to restore the machine to a consistent state



1514 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36, NO. 12. DECEMBER 1987

corresponding to a checkpoint before A. The cache desigr grateful for the interactions with J. Swensen, M. Shebanow,
presented in Section VI-B-1 must be modified to support this S. Melvin, C. Chen, A. Despain, D. Karp, G. Uvieghara, P.
interference between B repairs and E repairs. Chang, and J. Wei.
The major accesses to a cache with history buffer are listed REFERENCES

below. 1[] Y. N. Patt, W. Hwu, and M. Shebanow, "HPS, A new microarchitec-
read Performed as if there were no repair mechanism. ture: Rationale and Introduction," in Proc. 18th Annu. Work.
write The original contents of the addressed cache Microprogramming, Pacific Grove, CA, Dec. 1985, pp. 103-108.

[2] H. Hwu and Y. N. Patt, "HPSm, a high performance restricted data
location together with the address, the byte mask, flow architecture having minimal functionality." in 13th Int. Symp.
and the checkpoint identification are pushed onto Comput. Arch. Conf. Proc., Tokyo, Japan, June 1986, pp. 297-306.
the history buffer. The write is then performed as [3] J. K. Lee and A. J. Smith, "Branch prediction strategies and branch

if there wee no r r mtarget buffer design," IEEE Computer, vol. 17, Jan. 1984.
if there were no repair mechanism. 14] R. M. Keller, "Look-ahead processors," Comput. Surveys, vol. 7,

replace Performed as if there were no repair mechanism. pp. 177-195, Dec. 1975.
B-repair Assume that the machine is to be restored to the [5] J. E. Smith and A R. Pleszkun, "Implementation of precise interruptsin pipelined processors," in 12th Int. Symp. Comput. Architecture

consistent state corresponding to the checkpoint Conf. Proc., Boston, MA, June 1985.
with identification k. This history buffer is popped 161 D. W. Anderson, F. J. Sparacio, and F. J. Tomasulo, 'The IBM
until either the buffer is empty or an entry with a System/360 Model 91: Machine philosophy and instruction handling,"IBMJ. Res. Develop., vol. Il1, no. 1, pp. 8-24, 1967.
checkpoint identification greater than or equal to k [7] R. M. Tomasulo, "An efficient algorithm for exploiting multiple
- c is found. Those entries with checkpoint arithmetic units." IBM J. Res. Develop., vol. 11, pp. 25-33, Jan.
identification less than or equal to k are used to 1967.

L8] J. E. Thornton, Design of a Computer-The Control Data 6600.
perform a write action with the address, byte Glenview, IL: Scott, Foresman, and Co., 1970.
mask, and (original) data in the buffer entry. [9] S. Weiss and J. E. Smith, "Instruction issue logic in pipelined
Those entries with identification greater than k supercomputers,"IEEE Trans. Comput., vol. C-33, pp. 1013-1022,Nov. 1984.
must be preserved so that they can be pushed onto [10] DEC, VAX Architecture Handbook, 1981.
the history buffer after the repair is done. lll] S. McFarling and J. Hennessy, "Reducing the cost of branches," in

E-repair Assume that the machine is to be restored to the 13th Int. Symp. Comput. Architecture Conf. Proc., Tokyo, Japan,
June 1986, pp. 396-403.

consistent state corresponding to the checkpoint 1121 A. J. Smith, "Cache memories," Comput. Surveys, vol. 14, pp. 473-
with identification k. The history buffer is popped 530, Sept., 1982.
until either the buffer is empty or an entry with a 1131 D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe,"Dependency graphs and compiler optimizations," in Proc. 8th
checkpoint identification greater than or equal to k POPL, Jan. 1981, pp. 207-218.
- c is found. Those entries with checkpoint [14] W. W. Hwu and Y. N. Patt, "Design choices for the HPSm
identification less than or equal to k are used to microprocessor chip," in Proc. 20th Ann. HICSS, Jan. 1987, pp.
perform a write action with the address, byte
mask, and (original) data in the buffer entry. S _ Wen-mei W. Hwu (M'81) was born in Taipei,

VII. FUTURE RESEARCH AND CONCLUDING REMARKS Taiwan, on July 27, 1961. He received the B.S.
degree in electrical engineering from the National

The central theme of our research is the implementation of Taiwan University, Taipei, Taiwan, in 1983, and
high-performance computing engines. Two techniques we the Ph.D. degree in computer science from the
have found to be effective, out-of-order execution and branch University of California84, heY orked in the
prediction, have forced us to be able to repair our machine to a Corporate Research Group of the Digital Equipment
known previous state. In this paper we have derived several _ Corporation. He is currently an Assistant Professor
important properties of general checkpoint repair, specified Enginthe Departmient of Ellinois Urbana-Cham-
schemes for checkpointing, and defined implementations paign. He is involved in computer architecture research in the areas of
which we suggest are cost effective. Simulation and hardware designing parallel architectures and microarchitectures, compiler code genera-

c d t tele d htion for parallel architectures and microarchitectures, and the hardware/design are being cnutdtevlaetetmadhrwre software tradeoffs in exploiting parallel architectures and microarchitectures.
overhead incurred. Our preliminary design of a high perform- Dr. Hwu is a member of the Association of Computing Machinery.
ance single chip engine HPSm [21, [141 includes logic to
implement the loosely merged scheme. . Yale N. Patt received the B.S. degree in electrical
We are also extending our work to repair mechanisms for engineering from Northeastern University, Boston,

three types of processing systems: tightly coupled multipro- | |MA, and the M.S. and Ph.D. degrees in electrical
engineering from Stanford University, Stanford,cessors with shared memory, loosely coupled multiprocessors CA.

which use message passing, and uniprocessors with vector, He teaches undergraduate and graduate classes at
string, and commercial instructions. th University of Califoria, Berkeley and the San

Francisco State University. He also directs the
ACKNOWLEDGMENT research of Ph.D. students in high-performance

implementation architectures and consults exten-
The authors wish to acknowledge the Digital Equipment sively for the Digital Equipment Corporation, NCR

Corporation and the NCR corporation for their generous Corporation, and Nexgen, Inc., on problems related to implementing high-
support of our research. We also wish to acknowledge our xerformance computing machines. At Berkeley, he is one of the principal

in th AquriusReserch roupat Brkely fo the architects of Aquarius, a heterogeneous MIMD high-performance computingcolleagues in the Aquarius Research Group at Berkeley for the system which is being designed to handle symbolic and numeric computations
stimulating environment that we work in. We are particularly on the same machine.


