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Checkpoint Repair for High-Performance
Out-of-Order Execution Machines
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Abstract—Out-or-order execution and branch prediction are
two mechanisms that can be used profitably in the design of
supercomputers to increase performance. Proper exception han-
dling and branch prediction miss handling in an out-of-order
execution machine do require some kind of repair mechanism
which can restore the machine to a known previous state. In this
paper we present a class of repair mechanisms using the concept
of checkpointing. We derive several properties of checkpoint
repair mechanisms. In addition, we provide algorithms for
performing checkpoint repair that incur little overhead in time
and modest cost in hardware. We also note that our algorithms
require no additional complexity or time for use with write-back
cache memory systems than they do with write-through cache
memory systems, contrary to statements made by previous
researchers.

Index Terms—Branch prediction repair, checkpoint repair,
high-performance computer architecture, high-performance exe-
cution, out-of-order exception handling, out-of-order execution.

I. INTRODUCTION

UR research in the implementation of high-performance

computing engines has resulted in the specification of a
microarchitecture that exploits concurrency by several mecha-
nisms, among them out-of-order execution and branch predic-
tion [1]-[4]. Unfortunately, both mechanisms can result in
situations where the computing engine must repair to known
previous states. In the case of out-of-order execution, this is
caused by instruction A faulting after instruction B has
executed, where instruction B comes after instruction A in the
dynamic instruction stream. In the case of branch prediction,
this is caused by a branch prediction miss; that is, instruction
A is fetched and executed as a result of a branch prediction,
and it is subsequently discovered that the branch prediction
was incorrect. ‘

In order to repair the machine to a known previous state, it
is necessary to save the machine state at appropriate points of
execution. We call this checkpointing. If a checkpoint is
established at every dynamic instruction boundary, then the
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machine can repair to any instruction boundary in response to
an exception or incorrectly predicted conditional branch.
Unfortunately, the cost of doing so is grossly prohibitive.
There is a fundamental dilemma regarding checkpointing. On
the one hand, since checkpointing is an overhead function, its
cost in time and additional hardware should be kept as small as
possible. This means no more checkpoints than absolutely
necessary. On the other hand, repair to the last checkpoint
involves discarding useful work. The further apart the
checkpoints, the more useful work gets thrown away.

In this paper, we derive properties of general checkpoint
repair mechanisms in which the checkpoints are not necessar-
ily established at every instruction boundary. We specify
algorithms for performing checkpoint repair that can be
implemented with modest cost in hardware and with little cost
in overhead time. Finally, it is important to note that our
algorithms are effective with memory systems that contain
write-back caches as well as those that contain write-through
caches. The write-back activity in our algorithms can be
performed without any waiting or extra buffering, correcting
the suggestion made in [5] that ‘‘either a cache line must be
saved in the history buffer, or write-back must wait until the
data has made its way into the cache.”’

This paper is organized in six sections. Section II introduces
some basic notions: the execution model, the causes of repairs,
the consistent states, and the checkpoints. Section III derives
several properties of checkpoint exception repair (E repair)
and specifies algorithms for its implementation. Section IV
derives several properties of checkpoint branch prediction
repair (B repair) and species algorithms for its implementa-
tion. Section V describes three mechanisms for handling both
E repair and B repair simultaneously. In Section VI, we
discuss future research directions and offer some concluding
remarks.

II. Basic NoTions
A. The Execution Model

It is first necessary to distinguish between the architectural
and the implementational execution models. Our work is based
on an architectural execution model in which a program
counter sequences through instructions one by one, finishing
one before starting the next. The dynamic instruction stream
of a program is the sequence of instructions executed
according to the architecture specification.

Our implementation of this sequential architecture is based
on an out-of-order [2], [6]-[8] execution model with the
following characteristics.
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1) Instructions are issued [9] sequentially according to the
architectural specification. In the presence of conditional
branch instructions, the sequential issue continues from the
point determined by the branch predictor. As a result, some of
the instructions issued may be from an incorrectly predicted
branch path. Thus, the issuing instruction stream is the
dynamic instruction stream interspersed with some noise from
the incorrectly predicted branch paths.

2) Instructions do not, in general, finish execution sequen-
tially. As a result, instructions do not in general modify the
machine state (the contents of the architectural registers and
memory locations) sequentially.

An instruction is active if it has been issued but has not yet
finished execution. At each cycle, only the active instructions
can potentially modify the architectural registers and the
memory locations.

The motivation for using an out-of-order execution model
with branch prediction is to help a pipelined machine to sustain
high-speed execution even when there is a large variation in
the instruction execution time. This motivation is illustrated in
the following example.

Example 1: We wish to traverse a linked list and scale each
data value in this list by a common factor.

The machine state in this example is the contents of three
registers and six memory locations, as shown in Fig. 1(a). The
initial machine state is as follows. Register 0 is undefined.
Register 1 contains a pointer to the first element of the list.
Register 2 contains the common factor used to scale the data
values in the list (2.0 in this case). Memory locations 0 and 1
contain the first data value and a pointer to the second data
value which is stored in location 4. Memory locations 2 and 3
contain the third data value and a null pointer marking the end
of the list. Memory locations 4 and 5 contain the second data
value and a pointer to the third data value which is stored in
location 2. The program counter indicates that instruction A
(see below) is to be fetched.

The pipelined processor used in this simple example has an
instruction unit and an execution unit, as shown in Fig. 1(b).
The first pipeline stage of the instruction unit fetches instruc-
tions. The second pipeline stage of the instruction unit buffers
those instructions with pending dependencies [13] and submits
the others to the execution unit.

There are three function units shown in the execution unit.
The floating-point unit performs a floating-point multiplication
in four cycles, pipelined so that a new multiplication can be
initiated every clock cycle. The cache memory access unit
performs an address indexing operation followed by a cache
access in two cycles, also pipelined so that a new cache access
can be initiated every clock cycle. The branch unit performs a
comparison to determine the direction of a conditional branch
in one cycle.

The code loop to be executed in our simple example has five
instructions in each iteration, as shown in Fig. 1(c). Each
iteration of the loop works on a different data element as
follows. Instruction A reads a data element from memory.
Instruction B performs a multiplication between the data
element and the scaling factor. Instruction C writes the result
to memory. Instruction D advances the pointer to the next
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Fig. 1(a). Initial architectural state for the linked list example. (b) Simple
pipelined processor for the linked list example. (¢) Code loop for the linked
list example.

element in the linked list. Instruction £ decides whether or not
the next iteration should be performed.

Fig. 2(a) shows the execution timing when neither out-of-
order execution nor branch prediction is allowed. Each
column in Fig. 2(a) shows the dynamic instruction being
worked on by each pipeline stage during the corresponding
clock cycle. Each row in Fig. 2(a) shows the dynamic
instruction being worked on by the corresponding pipeline
stage during each clock cycle. The subscript on each dynamic
instruction indicates the iteration of that instruction, e.g., 4, is
the memory read instruction from the second iteration.
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Fig. 2. (a) Execution timing using no out-of-order execution and no branch
prediction. (b) Execution timing using out-of-order execution but no branch
prediction.
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(Continued). (c) Execution timing using out-of-order execution and

branch prediction.

Atcycle 1, A, (read) is fetched. At cycle 2, A, is issued and
B, (multiply) is fetched. At cycle 3, A, is submitted to the
cache access unit, B, is issued, and C; (write) is fetched. At
cycle 4, A, is executed at the second stage of the cache access
unit, B, is buffered to wait for 4, to finish execution, C, is
issued, and D, (pointer advance) is fetched. At cycle 5, B, is
submitted to the floating-point unit, C; is buffered to wait for
B, to finish, D, is issued, and E; (branch) is fetched.

Several things are worth pointing out. First, instructions
finish in the same order in which they are issued. For example,
instructions are issued in the order A, (cycle 2), B, (cycle 3),
C) (cycle 4), D, (cycle 5), and E| (cycle 6). Instructions finish
in that same order A, (cycle 4), B, (cycle 8), C, (cycle 10), D,
(cycle 11), and E| (cycle 12). Second, instruction A, (read
element 2) is not fetched until £, provides the branch direction
at the end of cycle 12. Third, it takes 12 cycles to execute each
iteration.

Fig. 2(b) shows the execution timing when there is out-of-
order execution but no branch prediction allowed. Instructions
do not necessarily finish in the same order in which they are
issued. For example, instruction D, (pointer advance) finishes
at cycle 7 when B (multiply) is still executing and C; (write) is
still buffered waiting for B, to finish execution. The instruc-
tions finish in the order A, (cycle 4), D; (cycle 7), E| and B,
(cycle 8), and C; (cycle 10). Instruction A, (read second
value) is not fetched until £, provides the branch direction at
the end of cycle 8. It takes eight cycles to execute each
iteration.

Fig. 2(c) shows the execution timing when both out-of-
order execution and branch prediction are allowed. In this
case, A, (read second value) is fetched immediately after E
(branch) with the help of a branch predictor. 4, from the
second iteration finishes (at cycle 9) one cycle earlier than C;.
Thus, we have not only instructions from the same iteration
finishing out-of-order, but also instructions from different

iterations finishing out-of-order. It takes only five cycles to
execute each iteration, which is the highest execution rate
achievable, one instruction per cycle.

We will use the execution timing shown in Fig. 2(c) to
illustrate our repair mechanism for the remainder of this

paper.
B. Consistent States and Repairs

The mechanisms presented in this paper support the
handling of exceptions and branch prediction misses in out-of-
order execution engines. Examples of exceptions are the
arithmetic overflow trap, the traps to support software
implementation of architectural features, and the page fault
[10]. When an exception is detected, our out-of-order execu-
tion engine must cleanly suspend the violating process, handle
the exception, and then resume the process.

A branch prediction miss occurs due to incorrectly predict-
ing the direction of a conditional branch and thus resulting in
unwanted instructions issued and perhaps executed out-of-
order by the microarchitecture. When a branch prediction miss
is detected, our out-of-order execution engine must undo all
the existing effects on the machine state by the instructions
fetched and issued from the incorrectly predicted branch path,
and then continue fetching and issuing instructions along the
correct branch path.

Before we describe how our schemes can support the
handling of exceptions and branch prediction misses, we first
introduce the notions of consistent state and precise state.
The consistent state, CS(IB), where IB is an instruction
boundary in the issuing instruction stream, is the machine state
such that no instructions issued after IB affect CS(IB) and all
instructions issued before IB have affected CS(IB) with their
execution results.

Example 2: Fig. 3 illustrates the correspondence between
the consistent states and the instruction boundaries in the
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issuing instruction stream for our linked list example. CS(IB)),
is the consistent state corresponding to IB;, the instruction
boundary between instructions E; and A4,.

Instructions A, (read), B, (multiply), C, (write), D, (pointer
advance), and E, (branch) are all issued before IB; and thus
have their execution results reflected in this consistent state.
Register 0 contains the multiplication result generated by
B(2.0 x 3.5 = 7.0). Register 1 contains the pointer to the
second element fetched from memory location 1 by D.
Memory location O contains the multiplication result written
by C;. The program counter points to instruction A, as the
result of fetching E;. None of the other instructions can have
their execution results reflected in CS(IB,).

The precise state corresponding to an exception or branch
prediction miss is the consistent state corresponding to the
precise instruction boundary for the exception or branch
prediction miss as shown in Fig. 4. The precise instruction
boundary for a trap [10] is just after the violating instruction.
The precise instruction boundary for a fault [10] is just
before the violating instruction. If no delayed branch seman-
tics [11] are used, the precise instruction boundary for a
branch prediction miss is just after the conditional branch
instruction. On the other hand, if delayed branch semantics are
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Fig. 5. The machine state upon detecting a page fault.
used, the precise instruction boundary for a branch predic-
tion miss would be just after the last delay slot.

Example 3: Assume that in our linked list example,
instruction C, causes a page fault when writing the multiplica-
tion result to memory. The precise instruction boundary (IB,)
for this page fault is between B, and C, in the issuing
instruction stream (see Fig. 3). The precise state correspond-
ing to this page fault is CS(IB,) also shown in Fig. 3.
Instructions A, (read), B, (multiply), C; (write), D; (pointer
advance), E; (branch), A, (read), and B, (multiply) are all
issued before IB, and thus have their execution results
reflected in this precise state. None of the other instructions
have their execution results reflected in CS(IB,).

On detecting an exception, an E-repair mechanism first
restores our out-of-order execution machine to the precise
state for that exception; an exception handling routine is then
invoked to handle the exception; the machine finally resumes
execution from the precise state. On detecting a branch
prediction miss, a B-repair mechanism restores our out-of-
order execution machine to the precise state for that branch
prediction miss and the machine then resumes execution along
the correct branch path.

The contribution of this paper is to provide E-repair and B-
repair mechanisms which are efficient both in space and in
time.

Example 4: Assume again that C, in our linked list example
caused a page fault and this page fault is detected at the end of
cycle 15. The machine state at the end of cycle 15 is shown in
Fig. 5. The repair mechanism will restore the machine state to
CS(IB,) in Fig. 3, which is equivalent to undoing the effects of
instructions C,, D,, E,, and Aj;.

C. Checkpoints and Checkpoint Repair

Our repair mechanism can quickly restore the machine to
the consistent states corresponding to some selected instruc-
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tion boundaries called checkpoints. In order to restore the
machine to a consistent state CS(IB), our checkpoint repair
mechanism first quickly restores the machine to CS (check),
where check is a checkpoint several instructions before IB,
and then executes instructions sequentially until CS(IB) is
obtained.

Example 5: In Fig. 5, we select the instruction boundaries
before A,, between E; and A,, between E, and A; as
checkpoints. Upon detecting a page fault caused by C,, our
repair mechanism first quickly restores the machine state to
the consistent state corresponding to the checkpoint IB; in Fig.
5. Then we execute instructions A, and B, sequentially to
produce the consistent state corresponding to IB, in Fig. 5,
i.e., the precise state for this page fault.

The E-repair range of a checkpoint is the sequence of
instructions issued after this checkpoint and before the next
checkpoint. If any instruction in the FE-repair range of a
checkpoint causes an exception, our checkpoint repair mecha-
nism will first quickly restore the machine to the consistent
state corresponding to that checkpoint and then execute
instructions sequentially to bring the machine to the precise
state for that exception. For example, instructions A,, B,, C,,
D,, and E, form the E-repair range of the checkpoint between
instructions £ and A4,.

Branch prediction misses occur much more frequently than
exceptions. As an optimization, our B-repair checkpoints are
always at the precise instruction boundaries for branch
prediction misses. Thus, no sequential execution is required
for restoring the machine to the precise state for a branch
prediction miss. Such optimization supports very fast branch
prediction miss handling.

D. Pending Consistent State

A pending consistent state PCS(IB), consists of the
contents of the architectural registers and memory locations
with the following two properties. First, instructions issued
before IB either have affected PCS(IB) or will affect it in the
future. Second, instructions issued after IB cannot affect
PCS(IB). PCS(IB) becomes consistent state CS(IB) when all
the instructions issued before IB have finished execution.

Our checkpoint repair mechanism maintains a potential
consistent state for each checkpoint during out-of-order
execution. These pending consistent states evolve with time
until they finally become consistent states. The key to our
checkpoint repair mechanism is really the management of
these potential consistent states so that they can be used to
repair the machine state upon detecting an exception or a
branch prediction miss.

III. THE CHECKPOINT E-REPAIR MECHANISM

In this section, we present a checkpoint E-repair mechanism
and several important properties of this mechanism: 1) the
correctness of the mechanism, 2) the minimal number of
backup spaces (defined below) required to avoid draining the
pipeline before establishing checkpoints, and 3) the boundary
beyond which all instructions have finished execution. Tech-
niques for efficiently implementing registers and cache/main
memory are also offered. The theorems in this paper are stated
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without proof due to space considerations. The proofs are
available upon request.

A. Definitions

Activeg(t) is the set of consecutive checkpoints such that
there are active instructions at time ¢ in the E-repair ranges of
both the leftmost and rightmost checkpoints. Activeg ;(¢) is
the ith element of this set and 7 increases from right to left in
the issuing instruction stream.

Potentg(f) is the set of potential consistent states main-
tained for the active checkpoints. At time ¢, potent ;(¢) is the
potential consistent state maintained for activeg ;.

Schemeg(c) is a repair scheme where a maximum of ¢
checkpoints can be active at the same time. This means that we
need to maintain ¢ (potential) consistent states in addition to
the major machine state.

A logical space is a copy of the architectural registers and
memory locations containing either the machine state or a
potentg(t) state. For example, schemeg(c) uses ¢ + 1 logical
spaces, ¢ for the potents(t) states and one for the machine
state. The techniques for implementing the logical spaces are
described in Section VI.

B. Data Structures

Current is the logical space holding the machine state,
which is the major working space for the out-of-order
execution engine. Without a repair mechanism, the current
space is the only logical space in the machine.

Backupg is an array of logical spaces holding the potential
consistent states. At time ¢, backupg ; holds potentg ;(¢).

Countg is an array of counters keeping track of the number
of active instructions in the E-repair of the active checkpoints.
At time ¢, countg ; shows the number of active instructions in
the E-repair range of activeg (f).

Exceptr ; is an array of Boolean flags keeping track of
whether or not exceptions have occurred in the E-repair range
of the active checkpoints. At time ¢, exceptr; indicates
whether or not at least one exception has occurred in the E-
repair range of activeg ;({).

Identy is a decrementing counter which, at time #, holds the
identification number assigned to activeg |(t).

C. The Algorithm
Algorithm 1. schemeg(c)

Initial condition:

All the elements of countg and except, are cleared
to 0. The checky action as defined below is
performed ¢ times to make the contents of all the
backupg spaces identical to those of the current
space. Identg is initialized to be —c.

Issueg is performed when a new instruction is
issued. The input operands are fetched from the
current space. The value in identg is carried as a
checkpoint identification by the new instruction.
Countg ; is incremented by 1.

Delivery is performed when instructions finish
execution. The execution result is written to the

Issuer

Delivery,
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current space. For each instruction delivering
result, the value in identy is subtracted from the
checkpoint identification carried by the instruction
to get an index / into the arrays. The index is then
used to 1) write the execution result to backupg 4,
for k from 1 to i, 2) decrement countg ;. , and 3)
if an exception is caused by the instruction,
exceptg ;. is set to 1.

Checkg. is performed immediately after the ma-
chine issues the last instruction in the E-repair
range of a checkpoint. If Countg . does not
contain a 0 at the moment, the instruction issue
stalls. Otherwise backupg, countg, and excepty
behave like shift registers: the ith element re-
ceives its new contents from the (i — 1)th
element, for / from ¢ to 2. Backupg , receives its
new contents from current. Both countg, and
exceptg, are cleared to 0. Identy is decremented
by 1. '

Repairg is performed if exceptg . is 1. All active
instructions are discarded. Current receives its
new contents from backupg .. After the repair,
the machine starts executing instructions sequen-
tially until either an exception is detected (the
exception handler will be invoked in this case) or
all the instructions in one E-repair range have
finished execution (the machine will resume exe-
cution in full speed). The check action is then
performed ¢ times to make the contents of all the
backupg, spaces identical to those of the current
space. All elements of countz and excepty are
cleared to 0. The machine state is now ready for
invoking the exception handler or resuming full-
speed execution.

Check

Repairg

Theorem 1: Algorithm 1 can restore the machine to the
precise state for any exception during out-of-order execution.

Theorem 2: A minimum of two backupg spaces is required
to avoid draining the pipeline before performing checkg.
Thus, the microarchitecture has to provide at least three
logical spaces, one current and two backupg spaces.

Theorem 3: Every instruction issued before activeg () has
finished execution by ¢. Therefore, backupg, . always contains
a consistent state.

We use the following example to illustrate how schemeg(2)
can be used in our linked list example to restore the machine to
the precise state for a page fault.

Example 6: Fig. 6(a) shows the initial condition. Countg, ,,
countg ,, exceptr 1, and exceptg ,, are all initialized to 0.
The checkg action is performed twice to initialize the contents
of both backupg, | and backupg , to a starting state. Indexg is
initialized to —2.

Fig. 6(b) shows the snapshot at the end of cycle 6, just after
a new checkpoint is established. Backupg ,, countg ,, and
exceptr , receive their new contents from backupg,,
countg |, and exceptg |, respectively. Backupg | receives its
new contents from current. Countg, and exceptg  are
cleared to 0. Identy is decremented to — 3.
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Fig. 6(c) shows the snapshot at the end of cycle 14. C, is the
only active instruction in the E-repair range of checkpoint — 3
at this moment. When C; finishes execution at the end of cycle
15, the value in identz(—4) will be subtracted from the
checkpoint identification carried by C,(—3) to obtain the
index value 1. The execution result of C, will then be written
into current and backupg,,. Countg , will be decremented by
1 and exceptg,, will be set to 1.

Fig. 6(d) shows the snapshot at the end of cycle 15, just
before repair. Backupg, , contains the consistent state corres-
ponding to the instruction boundary between E; and A,(ac-
tiveg ,(6)). Theorem 3 states that backupg , in schemer(2)
always contains a consistent state. Backupg , contains the
potential consistent state ( potentg, (6)) corresponding to the
instruction boundary between E, and Aj;(activeg(6)). Po-
tentg |(f) has not become a consistent state because instruc-
tions B, C;, D;, and E| are still active.

Fig. 6(e) shows the snapshot at the end of cycle 16, just after
the repair is done. Current receives the consistent state
corresponding to the instruction boundary between E; and A,
from backupg ;. Thus, we have restored the machine to a
consistent state corresponding to an instruction boundary
before the precise instruction boundary for the page fault.

Fig. 6(f) shows the snapshot before the page fault handler is
invoked. A, and B, are first sequentially executed. The check,
operation is then performed twice to force the contents of
backupg,, and backupg , identical to those of current. The
machine is now ready for invoking the page fault handler.

There is no inherent rule for selecting E-repair checkpoints
from all the dynamic instruction boundaries. There are two
conflicting factors which affect selecting E-repair check-
points. First, the farther the checkpoints are from each other,
the more useful work will be discarded when performing
repairg. Second, the closer the checkpoints are from each
other, the more likely the machine has to stall when
performing check; operation. The checkpoint selection rule
can be as simple as choosing those instruction boundaries that
are at a constant distance (in terms of number of instructions)
from their immediate neighbors. A more sophisticated scheme
can allow the compiler to select where the checkpoints reside
in the issuing instruction stream.

The maximal number of checkpoints allowed in activer and
the number of instructions between the adjacent checkpoints
are the two most important design parameters of schemes
specializing in E repairs. The stalls can be reduced by
increasing the value of either of the two parameters at different
prices. By increasing the maximal number of checkpoints
allowed in activeg, one can reduce the number and duration of
stalls by maintaining more potential consistent states. By
increasing the distance between adjacent checkpoints, one can
reduce the number and duration of stalls by discarding more
useful work when performing E repair. Since E repair is a rare
event, it is a good tradeoff to reduce the number and duration
of stalls at the cost of discarding more useful work (up to a
reasonable point) when performing E repair. In the extreme
cases, two backup spaces (the minimum required not to drain
the pipeline before performing checkg) are used and the
distance between the neighboring checkpoints are set to be so
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Fig. 6. Example for scheme(2).
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end of cycle 16, after repair

§ active instructions
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Fig. 6. (Continued).

large (in the order of several tens of instructions) that stalls
happen extremely rarely.

IV. THE CHECKPOINT B-REPAIR MECHANISM

In this section, we present a checkpoint B-repair mecha-
nism. We reduce the performance penalty caused by B repairs
by selecting the instruction boundaries just after the condi-
tional branch instructions as checkpoints. When a branch
prediction miss occurs, our B-repair mechanism quickly
restores the machine to the precise state for that branch
prediction miss and the machine then resumes execution from
the correct branch path. This avoids discarding any useful
work when performing B repairs. Unless otherwise specified,
the B-repair checkpoints will be just after the conditional
branch instructions.

A. Definitions

Activeg(t) is a set of consecutive checkpoints such that the
conditional branches corresponding to both the leftmost and
the rightmost checkpoints are still active. Activep ;(¢) is the ith
of this set and / increases from right to left in the issuing
instruction stream.

Potenty(t) is the set of potential consistent states main-
tained for the active checkpoints. At time ¢, potentp ;(t) is the
potential consistent state maintained for activeg ;.

Schemep(c) is a repair scheme where a maximum of ¢
checkpoints are allowed in activeg(f) at any time ¢. This
means that we need to maintain ¢ (potential) consistent states
in addition to the major machine state. There can be ¢
conditional branch instructions active at the same time in
schemepg(c).

B. Data Structures

Current is the logical space holding the machine state,
which is the major working space for the out-of-order
execution engine.

Backupy is an array of logical spaces holding the potential
consistent states. At time ¢, backupp ; holds potenty ;(t).

Pendp is an array of Boolean flags keeping track of whether
or not the branch predictions are still active. At any time ¢,
pendp indicates whether or not the branch instruction corres-
ponding to activep ;(f) is still active.

Missp ; is an array of Boolean flags keeping track of
whether or not the branch predictions have been proven
incorrect. At time ¢, missp; indicates whether or not the
branch prediction corresponding to activeg ;(f) has been
proven incorrect.

Alterg ; is an array of program counters holding the
alternative addresses (the addresses of the first instructions
on the alternative branch path) of the active conditional branch
instructions. At time ¢, alterp ; holds the alternative address of
the branch instruction corresponding to activeg ;(f).

Identy is a decrementing counter which, at time ¢, holds the
identification number assigned to activep ().

C. The Algorithm
Algorithm 2. schemeg(c).

Initial condition:

Identy and all the elements of pendy and missg are
all initialized to 0.

Issuep is performed when a new instruction is
issued. The input operands are fetched from the

Issuep
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current space. The value in identy is carried as a
checkpoint identification by the new instruction.
Deliverg is performed when instructions finish
execution. For each instruction delivering result,
the value in identy is subtracted from the check-
point identification carried by that instruction to
get an index i into the arrays. The index / is then
used to 1) write the execution result to backupsp i,
for k from 1 to i, 2) if the instruction is a
conditional branch instruction, clear pendp ;, 3) if
the instruction is a conditional branch instruction
and the prediction made for it is proven incorrect,
set missg,; to 1.

Checkyp is performed immediately after a branch
instruction is issued. If pendp . does not contain a
0, the instruction issue stalls. Otherwise backupg,
pendpg, missg, and alterp behave like shift regis-
ters: the ith element receives its new contents from
the (/ — 1)th element, for i from ¢ to 2. Backupg ,
receives its new contents from current. Both
pendp | and missg ;| are cleared to 0. The alterna-
tive address of the conditional branch instruction is
saved in altery ;. Identy is decremented by 1.
Repairg is performed if missg, is 1. Current
receives its new contents from backupg .. The
program counter in current receives its new
contents from alterp .. All elements of pendg and
missg are cleared to 0. After the repair, the
machine resumes execution along the alternative
branch path of the incorrectly predicted condi-
tional branch instruction.

Deliverg

Checkp

Repairg

Theorem 4: Algorithm 2 can restore the machine to the
precise state for any branch prediction miss during out-of-
order execution.

Theorem 5: If a machine performs any branch prediction
and proceeds with out-of-order execution along the predicted
path, there must be at least one backupg space provided.

It is worth noting that the branch prediction misses are
handled sequentially. A branch prediction miss will not be
handled until there is no older active conditional branch
instruction in the machine. Therefore, the number of active
instructions in the machine can be very small after a B repair.
Even with branch prediction, it is still very important to have
short latency for conditional branch instructions to achieve
high performance.

We use the following example to illustrate how schemeg(1)
can be used in our linked list example to restore the machine to
the precise state for a branch prediction miss.

Example 7: Fig. 7(a) shows the initial condition. Pendp |,
missg, 1, and identg are all initialized to be 0. Backupp, and
alterp, | are undefined.

Fig. 7(b) shows the snapshot at the end of cycle 6, just after
a new checkpoint is established. Backupg ; receives its new
contents from current. Pendp, has been set to 1. The
alternative address of the branch, pointing to the loop exit, is
stored in altery ;. Identp | is decremented to — 1.

Fig. 7(c) shows the snapshot at the end of cycle 18, just
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before repair. Missg ; is 1, indicating that a branch prediction
miss occurred.

Fig. 7(d) shows the snapshot at the end of cycle 19, just
after the repair is done. Current receives its new contents
from backupg, ;. We load the program counter in current with
the contents of alterg ;. The machine execution will exit the
loop and will continue along that path. The active instructions
issued after activeg (18) (i.e., A4 and By) are discarded and
those issued before activeg 1(18) (i.e., C;) will be allowed to
finish. When C; finishes execution, it will write into bot’
current and backupg ;.

V. CHECKPOINT E- AND-B-REPAIR MECHANISMS

In this section, we present mechanisms that perform both £
repairs and B repairs. Schemes that can handle only E repair
or B repair have been defined in Sections III and IV. We now
concentrate on how to incorporate the E-repair and B-repair
submechanisms into an integrated scheme which performs
both types of repairs.

A. Directly Combined Scheme

In the directly combined scheme, we actually provide two
independent submechanisms, one for E repair and one for B
repair. Schemegi...(ce, cg) is a repair scheme characterized as
follows:

1) Two independent submechanisms are used, one for E
repair and one for B repair.

2) A maximum of ¢g checkpoints is allowed in activeg(¥) at
any time /.

3) A maximum of ¢z checkpoints is allowed in activeg() at
any time /.

We need to provide ¢ + ¢ + 1 logical spaces to support
schemeg;,..;(cs, cp); cg for the potenty states, cp for the
potenty states, and one for current.

The properties of schemeyy...(ce, ¢g) are easily derived
from those for schemeg(cg) and schemep(cg). The first
property is that scheme ... (Cg, ¢g) can restore the machine to
the precise state for any exception or branch prediction miss
during out-of-order execution. This property follows from
Theorems 1 and 4.

The second property is that at least three backup spaces (two
backupy spaces and one backupp) must be provided to 1)
avoid draining the active window before the machine can
perform checky and 2) continue issuing and executing
instructions after issuing a conditional branch instruction. This
property follows from Theorems 2 and 5.

The third property is the stall condition. The instruction
issue in schemegye.(ce, cp) stalls if at least one of the
following two conditions occurs.

1) When the checkg action is to be performed, countg, .. is
not 0.

2) When the checky action is to be performed, pendp, ., is
not 0.

The directly combined scheme has the advantage ot
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simplicity. However, inefficiencies exist due to the lack of
interaction between the two submechanisms. For example, a
minimum of three backup spaces (rather than two, the absolute
minimum) is required for schemeyi..:(Ce, Cp).

B. Merged Schemes

We now present schemes in which the two (E-repair and B-
repair) submechanisms are more closely coupled to handle
both E repairs and B repairs. In the tightly merged scheme, the
consistent states corresponding to all the instruction bounda-
ries just after the conditional branch instructions are used for
both E repairs and B repairs. In the loosely merged scheme,
all the consistent states corresponding to the instruction
boundaries just after the conditional branch instructions are
used for B repairs but only some are used for E repairs.

1) Definitions: AcCtivemeeq(t) is the set of consecutive
checkpoints such that there are active instructions at time ¢ in
the E repair ranges of both the leftmost and rightmost
checkpoints. Active,,ogeq,i(2) is the ith element of this set and i
increases from right to left in the issuing instruction stream.

Potent,e,eq(f) is the set of potential consistent states
maintained for the active checkpoints. At time ¢, po-
feNt ereeq,i(¢) is the potential consistent state maintained for
aCtivemerged, i (t) .

2) Data Structures: Current is the logical space holding the
machine state, which is the major working space for the out-
of-order execution engine.

Backup,,ereeq is an array of logical spaces holding the
potential consistent states. At time f, backup,ergeq,; holds
porentmerged,i(t)-

Count yergeq is an array of counters keeping track of the
number of active instructions in the E-repair range of the
active checkpoints. At time ¢, COUnt,,orgeq,; Shows the number
of active instructions in the E-repair range of activemergeq,i(?).

Except ereeq 18 an array of Boolean flags keeping track of
whether or not exceptions have occurred in the E-repair range
of the active checkpoints. At time ¢, except,ereq,; indicates
whether at least one exception has occurred in the E-repair
range of active,ereeq, i(£).

Pend,erpeq 1 an array of Boolean flags keeping track of
whether or not the branch predictions are still active. At time
t, pend,qqeq indicates whether or not the branch instruction
corresponding t0 acCtive,ereq,:(f) is still active.

MisS,pergeq 1s an array of Boolean flags keeping track of
whether or not the branch predictions have been proven
incorrect. At time #, MiSSyergeq,; indicates whether or not the
branch prediction corresponding t0 active,ergeq,i(f) has been
proven incorrect.

Alter,ereeq is an array of program counters holding the
alternative addresses of the active conditional branch instruc-
tions. Attime f, alter,erqeq,; holds the alternative address of the
branch instruction corresponding to activeergeq,i(f).

Ident ,ogeq is a decrementing counter which, at time ¢, holds
the identification number assigned to active,,ereeq, 1(£).

3) Tightly Merged Scheme: Whenever a conditional
branch instruction is issued, the tightly merged scheme starts
to maintain a new potential consistent state. All these potential
consistent states can be used for both B repairs and E repairs.
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Algorithm 3: schemegn(Cp, CE).

Initial condition:

The elements of count,ereed, €XCe€Plyergeqs
PeNd ergeq, aNd 1SS 004 are cleared to 0. The
elements of altereyq are undefined. The
check i, action as defined below is performed
cg + cp times to make contents of all the
backup yergeq Spaces identical to those of cur-
rent. Ident,,..qeq is initialized to —c.

Issue,qyy, is performed when a new instruction is
issued. The input operands to the new instruc-
tion are fetched from the current space. The
value in ident .4 is carried as a checkpoint
identification by the new instruction.
Count yergeq, 1s incremented by 1.

Deliver i, is performed when instructions fin-
ish execution. The execution result is written to
the current space. For each instruction deliver-
ing a result, the value in ident,,..q is sub-
tracted from the checkpoint identification car-
ried by that instruction to get an index i into the
arrays. The index is then used to 1) write the
execution result to backup yergeq, i, for k from 1
to i, 2) decrement COUNlmergeq i1, 3) if an
exception is caused by the instruction, ex-
CePlerged, i+ 1 18 Set to 1, 4) if the instruction is a
conditional branch instruction, pend,ergeq,; is
cleared to 0, 5) if the instruction is a conditional
branch instruction and the prediction for it i
proven incorrect, misSyergeq,; is set to 1.
Check o, is performed immediately after the
machine issues a conditional branch instruc-
tion. If either count ergeq, e+ cp OF PERArergea, cp
is not 0 at the moment, the instruction issue
stalls. Otherwise backuperged, COUNEyorgeqs
excePlmergeds PNAmergeas MiSSpergeds and  al-
teruqeeq behave like shift registers: the ith
element receives its new contents from the (i —
1)th element, for i from ¢z + cg to 2.
Backupergeq, 1 Teceives its new contents from
current. COUNlyergeq 1,  €XCEPmergea, 1
DN yereed, 1, aNd MISSpereeq, 1 are all cleared to
0. The alternative address of the conditional
branch instruction is saved in alterp,.
Ident,;ogeq 1s decremented by 1.

Repairijgn, e is performed if exceptyerged,cp+ e
is 1. Current receives its new contents from
backup merged, cp+c- All active instructions are
discarded. After repair, g is performed, the
machine starts sequentially executing instruc-
tions until either an exception is detected (the
exception handler will be invoked in this case)
or all the instructions in one E repair range
have finished execution (the machine will re-
sume execution at full speed). The check g
action is then performed ¢z + ¢ times to make
the contents of all the backup,ereq spaces

Issueygp,

Deliver gy,

CheC‘k,,'gh,

Repair g £
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Repairright,B

identical to those of current. All elements of
Countmergeda exceptmerged’ pendmergech and
MSSmergeq are cleared to 0. The machine is then
ready to invoke the exception handler or to
resume full speed execution.

Repairign, g is performed if missyergeq,cp is 1
and exceplyerged,cp+cp 15 0. Current receives
its new contents from backuperged.cp. The
program counter in currenf receives its new
contents from alter,ergeq c5- All elements of
Pendyergeq and MISS 004 are cleared to 0. All
active instructions issued along the incorrect
branch path are discarded. After the repair, the
machine resumes execution along the alterna-
tive branch path of the incorrectly predicted
conditional branch instruction.

4) Loosely Merged Scheme: Whenever a conditional
branch instruction is issued, the loosely merged scheme starts
to maintain a new potential consistent state and probably
discards one of the existing potential consistent states. All the
potential consistent states can be used for B repairs but only
some can be used for E repairs.

When a conditional branch instruction is issued, a decision
function is invoked to decide whether or not the consistent
state stored in backupinerge cy should be discarded. This
function can be as simple as using a counter, discard count, to
keep track of the number of consistent states discarded in a
row. If the counter reaches a predetermined value, no
consistent state will be discarded next time when a conditional
branch instruction is issued.

Algorithm 4. Scheme,..(cs + CE).

Initial Condition:

Issue;pose

Deliverg

All the elements of count,egeqd, ex-
Ceptmerged’ pendmergea's and missmerged arc
cleared to 0. The elements of alfer pergeq are
undefined. The checkyose, mgjor action as
defined below is performed ¢z + cg times to
make the contents of all the backup,ose
spaces identical to those of the current
space. Idente,eq and discard count are
initialized to be — ¢ and 0, respectively.
Issue;ys is performed when a new instruc-
tion is issued. The input operands are
fetched from the current space. The value in
ident yereeq, 5 is carried as a checkpoint iden-
tification by the new instruction.
Count pergeq,y is incremented by 1.
Deliver,,,. is performed when instructions
finish execution. The execution result is
written to the current space. For each
instruction delivering result, the value in
ident yergeq is subtracted from the checkpoint
identification carried by that instruction to
get an index i into the arrays. If the index is
less than or equal to cg, it is used to 1) write
the execution result to backup mergeq, k> for k
from 1 to i, 2) decrement count porgeq,i+1, 3)
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Che Cklaose, major

R ep air, loose, E

if an exception is caused by the instruction,
excePlyerged,i+1 15 set to 1. 4) if the instruc-
tion is a conditional branch instruction,
DN yereeq, i 18 cleared to 0, 5) if the instruc-
tion is a conditional branch instruction and
the prediction for it is proven incorrect,
MUSSergeq, i 15 set to 1. If the index is greater
than c¢p, discard count is subtracted from
the index before it is used to 1) write the
execution result to backupmergeq , for k
from 1 to ¢z and from ¢z + 1 to i, 2)
decrement COUntyergeqiv1, and 3) if an
exception is caused by the instruction, ex-
CePlyerged,i+1 15 set to 1.

Check merged, minor 1s performed after issuing a
conditional branch instruction if the decision
function decides to discard the potential
consistent state stored in backupmergea, cg- If
PN erged,cp 15 1, instruction issue stalls.
Otherwise, part of backupereq, part of
countmerged ’ Part of exceptmerged ’ pendmerged ’
and MiSS;nergeq behave like shift registers: the
ith element receives its new contents from
the (i — 1)th element, for i from czto 2. The
sum of COUNt yergeq,cp AN COUNEperged, cp+1 1S
written into COUNL yerged, cp+1- The bitwise or
of exceptyerged,cy and eXCePlinerged,cp+1 18
written into exceptyergeq,cp+1- Note that the
rest (elements with indexes from cg+ 1 to ¢p
+ c¢g) of backuppereeq, (elements with
indexes from ¢z + 2 to ¢g + c¢g) of
COUNL prorgeq, aNd €XCEPL pergeq Temain intact.
Backup ergeq,1 receives its new contents
from current. Countergeq,1, €XCeDPEmergeq, 15
Pendyergeq, 1, and MSSyerg04,1 are all cleared
to 0. The alternative address of the condi-
tional branch instruction is saved in alterp ;.
Ident ergeq is decremented by 1. Discard
Count is incremented by 1.

Checkopse, major 1 performed after issuing a
conditional branch instruction if the decision
function decides not to discard the potential
consistent state stored in backupmerged, cp-
If either countyerged,cptcp OF PNpmerged,cp
is not 0 at the moment, the instruction
issue stalls. Otherwise, backupergeqs
Countmerged, exceptmerged s pendmerged: and
MISSmergeq behave like shift registers: the ith
element receives its new contents from the (i
— 1)th element, for i from ¢z + cg to 2.
Backup pergeq,1 receives its new contents
from current. Countpyergeq, 1, €XC€Pmerged, 15
DeNnd merged, 1, And MiSS 00041 are all cleared
to 0. The alternative address of the condi-
tional branch instruction is saved in alterg ;.
Ident,, op0q is decremented by 1.
Repair,os £ 1s performed if exceploy. o is
1. Current receives its new contents from
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backuppergeq,cp+cp- All active instructions
are discarded. After repairipse g is per-
formed, the machine starts sequentially exe-
cuting instructions until either an exception
is detected (the exception handler will be
invoked in this case) or all the instructions in
one E repair range have finished execution
(the machine will resume execution at full
speed). The checkipose,major action is then
performed ¢z + cp times to make the
contents of all the backup,ergeq Spaces iden-
tical to those of current. All elements of
countmergeda exceptmerged’ pendmergeda and
IMISSmergeq are cleared to 0. The machine is
now ready to invoke the exception handler
or to resume full-speed execution.
Repairipose, g is performed if MisSpergea,cp 18
1 and exceplyerged,cp+cp 18 0. Current
receives its new contents from
backup merged,cy- The program counter in
current receives its new contents from
alter yerged, cp- All elements of pend pergea and
MiSSyergeq are cleared to 0. All active in-
structions issued along the incorrect branch
path are discarded. After the repair, the
machine resumes execution along the alter-
native branch path of the incorrectly pre-
dicted conditional branch instruction.

R ep air loose, B

We wuse the following example to illustrate how
scheme,y,s(1, 1) can support the handling of both exceptions
and branch prediction misses in our linked list example. The
decision logic is assumed to perform checkipose, major and
checkipose, minor alternatively. Therefore, a checkisose, major iS
performed after the first conditional branch instruction is
issued; a checkipose, minor is performed after the second condi-
tional branch instruction is issued, etc.

Example 8: Fig. 8(a) shows the initial condition.
Countmerged,l’ Countmerged,Za exceptmerged,l, exceptmerged,Z’
PeNd erged, 1> MiSSpergeq,1 are all cleared to 0. The check mergea
action is performed twice to make the contents of
backupmergea,1 and DACKUP ergeq,>» identical to those of cur-
rent. Identg is initialized to — 2.

Fig. 8(b) shows the snapshot at the end of cycle 11, just
after the conditional branch instruction E) is issued. E; is the
second conditional branch instruction issued and therefore a
checKipose, minor  action is performed. The contents of
backup merges,1 become those of current but the contents of
backupyerges,» Temain intact. Pend,nergea,i Was O before the
action and therefore checkisose, minor is performed without
delay. The sum of COUNtypergeq,1 @NA COUNLpergeq,> IS Written
into countergeq,2. The bitwise or of exceplyergea,i and
€XCePmergeq,2 1S Written into except ergeq,». Note that if the
multiplication were to take seven rather than four cycles,
COUNt ergeq,» Would be 1 at this moment but the instruction
issue would NOT stall, which is an improvement against the
tightly coupled scheme.

Fig. 8(c) shows the snapshot at the end of cycle 15. Assume
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that instruction C, causes a page fault and therefore ex-
CePlyergeq,2 1s 1 at this moment.

Fig. 8(d) shows the snapshot at the end of cycle 16, just
after an E repair is performed. Repairyese ¢ is performed by
copying the contents of backupnergeq,» to current and discard-
ing all the active instructions. The machine is now ready for
sequentially executing 4, B,, Cy, Dy, E|, A,, and B, to obtain
the precise state for the page fault. Assume that instruction C,
did not cause a page fault and the execution proceeds to the end
of cycle 18 [see Fig. 8(e)]. The prediction made for the
conditional branch instruction E; is proven incorrect and
therefore misSperge, is 1 at this moment.

Fig. 8(f) shows the snapshot at the end of cycle 19, just after
a B repair is performed. Repairoes., 5 is performed by copying
the contents of backuperee, 1 to current and discarding all the
active instructions issued after E; (i.e., A4 and By).

To summarize, the directly combined scheme offers the
most simplicity but it consumes the most resources (at least
three backup spaces required). The tightly merged scheme
consumes the minimal resources (at least two backup spaces
required) but it suffers from frequent instruction issue stalling.
The loosely merged scheme also consumes the minimal
resources and it does not suffer from frequent instruction issue
stalling. The price we pay for the loosely merged scheme
includes the following two items. First, a piece of logic is
required to decide when to use the check yose, major and when to
use checkiose, minor- Second, the manipulation of backup
spaces and control arrays requires more control lines in the
loosely merged scheme than in the tightly merged scheme.

VI. IMPLEMENTATION DETAILS

There are two types of techniques for implementing
multiple logical spaces in an out-of-order execution environ-
ment. The copy technique provides a full-sized physical
storage for each logical space. The difference technique
provides only one full-sized physical storage; each logical
space is implemented by keeping the difference of the contents
of that logical space from those of the full-sized physical
storage. These two implementation techniques have different
space and time properties which make them favorable for
implementing either registers or cache/main memory [12] but
not both.

A. The Copy Technique (for Registers)

The copy technique physically implements a copy of
storage for each logical space and provides highly concurrent
data transfer paths between these copies. The amount of
hardware thus required makes the copy technique more
applicable to registers than to cache/main memory.

1) Schemeg(c) and Schemepg(c): Each bit of a register
entry consists of ¢ + 1 cells: ¢ backup cells and one current
cell. All these cells form a shift register [see Fig. 9(a)]: data
can go from the backupg ;_ (backupp ;1) cell to the backup-
g i(backupg ;) cell and from the current cell to the backup-
g.1(backupp ;) cell. There is a feedback path from the
backupg .(backupg ) cell to the current cell.

The input operands are fetched from the current cells of the
source registers. The execution results are written into the
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Except merged.2 :] Discard Count E Except merged.2 II] Except merged.1 E Discard Count
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merged.2

MISS  merged.2 MiSS merged.1

Alter merged.1 Alter merged,1
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Fig. 8. Example for scheme,,s (2).
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(e) (f)
Fig. 8. (Continued).

current cells and some backupg(backupp) cells chosen by the
——— overall control logic (see Algorithms 1 and 2).

L L L To support checkg(checkpg), the shift chain in Fig. 9(a)
backuEc la— backug"ml < backugl l—

moves data from backupr ; (backupg; 1) to backup-
g.i(backupg ;) and from current to backupg, (backupg, ). To
support repairg(repairg), the feedback path moves data from
backupg, .(backupp, ) to current.

Example 9: Fig. 9(b) shows a register bit implementation in
schemeg(2). Current and backupg , share a common bit-line
but each of them owns a private bit-line. The input operands

chédk. eiiable I are fetched by enabling the current word-line and then sensing

<« | > the data from the shared-bit line. The execution results are
word line accessing backup, cell L £ written into the cell(s) by driving the shared bit-line with the

" result data and then enabling the current word-line and
probably the backup, word-line (as determined by the overall
control). Note that there is no word-line or bit-line for
backupg ; because no instruction can deliver a result into the

current

repair ennable

(a)

IIl|1IIIIIIIIIIIlmIIIIIIIIIIHIIIIII,IIIIIIII

H backupg , space according to Theorem 3.
= %—E—i To support the checkg action, the check enable line
- ! word-line accessing current cell ) controls the data transfer from backupg , to backupg , and
AN \ from current to backupg,,, To support the repairy action, the
repair enable

repair enable line controls the data transfer from backupg , to
common bit-line current.

"‘.ﬁ"" Scheme,;on (¢, cg): Each bit of a register entry consists of

cg + cg + 1cells: cg + cg backup cells and one current cell.

(b) All these cells form a shift register [see Fig. 10(a)]: data can

Fig. 9. Register bit implementation in scheme(c). go from the backup,nergeq, i~ cell to the backup yergeq,i cell and

from the current cell to the backup,,ergea, 1 cell. There are two
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_check enable
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backug | current

baclgag [

A
-

f [

B-repair enable

(a)

E-repair ennable

check enable 4||| ||I|

word line accessing backupl cell

i LTSI

nt cell

I word-line accessing cur

? '||i I

é A

OO 8OO R i R RO

E-repair enable

B-repair enable

common bit-line
| ”||I‘

(b)
Fig. 10. Register bit implementation in scheme,y;,(c).

feedback paths: the E repair path goes from the
backuperged,cp+ o cell to the current cell and the B repair
path goes from the backupergea,cpy cell to the current cell.

The input operands are fetched from the current cells of the
source registers. The execution results are written into the
current cells and some backup,ereeq cells chosen by the
Deliver g, action defined in Algorithm 3.

To support check,;on, the shift chain in Fig. 10(a) moves
data from backup ergeq,i— 1 t0 backup yergeq,; and from current
to backupergea,1- TO support repairign, g, the E repair
feedback path moves data from backup erged,cp+cp Cell to the
current cell. To support repairgn, g, the B repair feedback
path moves data from the backup ergea,cpy cell to the current
cell.

Fig. 10(b) shows a register bit
schemejgn,(2).

3) Schemeyyose(cp, cx): Each bit of a register entry consists
of ¢g + ¢g + 1 cells: ¢p + cg backup cells and one current
cell. All these cells form two shift registers [see Fig. 11(a)]:
the minor chain goes from the current cell to the
backupmerged, cp + c c€ll and the minor chain from the current
cell to the backup nergea, ey cell. There are two feedback paths:
the E repair path goes from the backup nerged,cp + o cell to the
current cell and the B repair path goes from the
backup merged, e cell to the current cell.

The input operands to the instructions are fetched from the
current cells of the source registers. The execution results
produced by the instructions are written into the current cells

implementation in
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minor chain check enable

major chain check enable
e

hac‘g.ltgﬂ‘!i baCKuBrH

backug i

/ [

B-repair enable

current

E-repair ennable

(a)

. minor check enable 2
$20000000000000000 *00000000000 = g3
"
" I
‘ mafor check enable 4 il
e &
word line accessing ba(:kupl cell .
D 4 ﬁ,; = ol
»4

A | 2

I word-line accessing cur?nt cell

E-repair enable

B-repair enable
common bit-line

lllmﬂ”
(b)
Fig. 11. Register bit implementation in scheme;,.(c).
and some backup ereeq cells chosen by the Deliver gy, action
defined in Algorithm 3.

To support checkipose, major» all the cells in the major chain
receive data from their right-hand-side neighbors. To support
checkipose, minors all the cells in the minor chain receive data
from their right-hand-side neighbors. To support repairyese,
the FE repair feedback path moves data from
backupmerged,cp+ e cell to the current cell. To support
repair oz, 5, the B repair feedback path moves data from the
backup erged,c cell to the current cell.

Fig. 11(b) shows a register bit
scheme ,yse (2).

The major advantage of the copy technique is that it does not
consume extra access bandwidth of the register file because
the check and the repair do not actually move data out of and
back into the register file.

For example, the HPSm [2] microprocessor which employs
scheme,y,s(2) has a 32-entry general purpose register file. The
read access is slowed down by about 10 percent due to the
increased capacitance (of the backupmergeq, cell) on the bit-
lines. Note that this penalty can be eliminated by assigning
private bit-lines to the backupmergea,1 cells at the price of
increased chip area. The checkipose, majors CheCKivose, minors
repairipese. £, and repair g p actions overlap with the bit-line
precharging and incur no time overhead.

The disadvantage of the copy technique is that it expands the

implementation in
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space by nearly a factor of ¢ + 1 when supporting
schemey,qrgeq(c). For example, the register file of the HPSm
microprocessor occupies about 12 percent of the (10.5 X 10.5
mm? 1.6 um CMOS) chip area, where 7 percent is due to
the copy overhead.

All in all, we consider the copy technique attractive for
implementing register files where access bandwidth is high
and the size is small to begin with.

B. The Difference Technique (for Cache and Main
Memory)

The current space is implemented with physical storage.
All the backup spaces are implemented implicitly by keeping
track of the differences between their contents and those of the
current space. When a checkpoint repair is performed, the
appropriate difference is used to restore the contents of the
physical storage to those of the desired backup space. The
history buffer in [5] can be modified slightly to keep track of
the differences between the contents of the current space and
those of the backup spaces.

The difference technique does consume extra bandwidth but
it does not physically duplicate the storage, which makes it
more applicable to cache/main memory than to registers.

1)Schemer(c) and Schemeg(c): We demonstrate, in this
section, how the difference technique can be used with cache
memories to support £ repairs and B repairs. A generic design
applicable to both write-through caches and write-back caches
is shown below.

Each entry of the history buffer consists of an address, a
byte mask, data, and a checkpoint identification. The major
accesses to a cache with history buffer are listed below.

read Performed as if there were no repair mechanism.

write The original contents of the addressed cache
location together with the address, the byte mask,
and the checkpoint identification are pushed onto
the history buffer. The write is then performed as
if there were no repair mechanism.

replace  Performed as if there were no repair mechanism.

repair Assume that the machine is to be restored to the

consistent state corresponding to the checkpoint
with identification k. The history buffer is popped
until either the buffer is empty or an entry with a
checkpoint identification greater than or equal to k
— ¢ is found. Only those entries with checkpoint
identification less than or equal to k are used to
perform a wrife action with the address, byte
mask, and (original) data in the buffer entry.

Our generic design is applicable to both write-through and
write-back caches. When repair for a write-through cache is
performed, each history buffer entry used consumes one main
memory write cycle. After repair, both memory and cache
contents will be in the desired consistent state.

When repair for a write-back cache is performed, only
those history buffer entries repairing memory locations absent
from the cache consume main memory write cycles. After
repair, the cache is guaranteed to be in the desired consistent
state but the main memory may still remain in an inconsistent
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{ssuing-instruction sugn
active E2 ] active £l t)
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N N-1 N-2 N-3
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Top — W3 N-3
Wl N-1
“12 N-2
V% N
History Buffer

Fig. 12. Example of cache repair using the difference technique.

state. Since we can guarantee that all the inconsistent main
memory locations have the dirty bit in their corresponding
cache locations set to 1, this is perfectly compatible with the
definition of a write-back cache.

Example 10: Fig. 12 illustrates a possible snapshot of
schemeg, at the end of cycle . Wy, W), W,, and W; are
memory writes residing in the E-repair ranges of checkpoints
N, N -1, N — 2, and N — 3, respectively. Due to out-of-
order execution, the four memory writes finish in the order
Wy, W,, W\, and W;. Checkpoints N — 2 and N ~ 3 are
activeg (f) and activeg (1), respectively. Assume except, is 1
at this moment and the machine is to be restored to the
consistent state corresponding to checkpoint N — 2. The
difference between the contents of the cache (current) and
those of the desired consistent state is really the changes made
by W, and Wj;. Therefore, we can restore the cache to the
consistent state by undoing the effects of W, and W;. Since we
have the original data of the locations modified by W, and W5,
we can undo the effects of W, and W; by writing the original
data back to the cache.

The first entry popped off the history buffer is the entry for
Wi3. It contains a checkpoint identification less than N — 2 and
is therefore used to undo the effects of Wj; in the cache. The
second entry popped off the history buffer is the entry for .
It contains a checkpoint identification greater than N — 2 and
is therefore not used to undo the effects of W3 in the cache.
The third entry popped off the history buffer is the entry for
W>. It contains a checkpoint identification equal to N — 2 and
is therefore used to undo the effects of W in the cache. The
third entry popped off the history buffer is the entry for Wj. It
contains a checkpoint identification equal to (N — 2) + 2,
which signals the end of the cache repair.

2) Scheme gy (cp, cp) and Schemey,ogfcp, cg): The fol-
lowing scenario may occur in schemeg, (cp, cg) and
scheme,,,s.(Cp, Cp), but it can never occur in schemer(c) or in
schemeg(c). A B repair is first performed to restore the
machine to a potential consistent state corresponding to
checkpoint 4. Several cycles later, an E repair must be
performed to restore the machine to a consistent state
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corresponding to a checkpoint before A. The cache design
presented in Section VI-B-1 must be modified to support this
interference between B repairs and E repairs.

The major accesses to a cache with history buffer are listed
below.

read
write

Performed as if there were no repair mechanism.
The original contents of the addressed cache
location together with the address, the byte mask,
and the checkpoint identification are pushed onto
the history buffer. The write is then performed as
if there were no repair mechanism.

Performed as if there were no repair mechanism.
Assume that the machine is to be restored to the
consistent state corresponding to the checkpoint
with identification k. This history buffer is popped
until either the buffer is empty or an entry with a
checkpoint identification greater than or equal to k
— ¢ is found. Those entries with checkpoint
identification less than or equal to k are used to
perform a write action with the address, byte
mask, and (original) data in the buffer entry.
Those entries with identification greater than k
must be preserved so that they can be pushed onto
the history buffer after the repair is done.
Assume that the machine is to be restored to the
consistent state corresponding to the checkpoint
with identification k. The history buffer is popped
until either the buffer is empty or an entry with a
checkpoint identification greater than or equal to k
— c¢ is found. Those entries with checkpoint
identification less than or equal to k are used to
perform a wrife action with the address, byte
mask, and (original) data in the buffer entry.

replace
B-repair

E-repair

VII. FuTture RESEARCH AND CONCLUDING REMARKS

The central theme of our research is the implementation of
high-performance computing engines. Two techniques we
have found to be effective, out-of-order execution and branch
prediction, have forced us to be able to repair our machine to a
known previous state. In this paper we have derived several
important properties of general checkpoint repair, specified
schemes for checkpointing, and defined implementations
which we suggest are cost effective. Simulation and hardware
design are being conducted to evaluate the time and hardware
overhead incurred. Our preliminary design of a high perform-
ance single chip engine HPSm [2], [14] includes logic to
implement the loosely merged scheme.

We are also extending our work to repair mechanisms for
three types of processing systems: tightly coupled multipro-
cessors with shared memory, loosely coupled multiprocessors
which use message passing, and uniprocessors with vector,
string, and commercial instructions.

ACKNOWLEDGMENT
The authors wish to acknowledge the Digital Equipment
Corporation and the NCR corporation for their generous
support of our research. We also wish to acknowledge our
colleagues in the Aquarius Research Group at Berkeley for the
stimulating environment that we work in. We are particularly

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

grateful for the interactions with J. Swensen, M. Shebanow,
S. Melvin, C. Chen, A. Despain, D. Karp, G. Uvieghara, P.
Chang, and J. Wei.

REFERENCES

[1] Y. N. Patt, W. Hwu, and M. Shebanow, ‘‘HPS, A new microarchitec-
ture: Rationale and Introduction,” in Proc. 18th Annu. Work.
Microprogramming, Pacific Grove, CA, Dec. 1985, pp. 103-108.

[2] H. Hwu and Y. N. Patt, “*“HPSm, a high performance restricted data
flow architecture having minimal functionality,’” in /3th Int. Symp.
Comput. Arch. Conf. Proc., Tokyo, Japan, June 1986, pp. 297-306.

[3] J. K. Lee and A. J. Smith, ‘‘Branch prediction strategies and branch
target buffer design,”” IEEE Computer, vol. 17, Jan. 1984.

[4] R. M. Keller, ‘‘Look-ahead processors,”” Comput. Surveys, vol. 7,
pp. 177-195, Dec. 1975.

[5] J. E. Smith and A R. Pleszkun, ‘‘Implementation of precise interrupts
in pipelined processors,’” in 12th Int. Symp. Comput. Architecture
Conf. Proc., Boston, MA, June 1985.

[6] D. W. Anderson, F. J. Sparacio, and F. J. Tomasulo, ‘‘The IBM
System/360 Model 91: Machine philosophy and instruction handling,”’
IBM J. Res. Develop., vol. 11, no. 1, pp. 8-24, 1967.

[71 R. M. Tomasulo, ‘‘An efficient algorithm for exploiting multiple
arithmetic units,”” IBM J. Res. Develop., vol. 11, pp. 25-33, Jan.
1967.

[8] J. E. Thornton, Design of a Computer—The Control Data 6600.
Glenview, IL: Scott, Foresman, and Co., 1970.

[9] S. Weiss and J. E. Smith, “‘Instruction issue logic in pipelined
supercomputers,” [EEE Trans. Comput., vol. C-33, pp. 1013-1022,
Nov. 1984.

[10] DEC, VAX Architecture Handbook, 1981.

[11] S. McFarling and J. Hennessy, ‘‘Reducing the cost of branches,” in
13th Int. Symp. Comput. Architecture Conf. Proc., Tokyo, Japan,
June 1986, pp. 396-403.

[12] A.J. Smith, ‘‘Cache memories,’” Comput. Surveys, vol. 14, pp. 473-
530, Sept., 1982.

[13] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe,
“‘Dependency graphs and compiler optimizations,”’ in Proc. 8th
POPL, Jan. 1981, pp. 207-218.

[14] W. W. Hwu and Y. N. Patt, ‘‘Design choices for the HPSm

microprocessor chip,’” in Proc. 20th Ann. HICSS, Jan. 1987, pp.
329-336.

Wen-mei W. Hwu (M’81) was born in Taipei,
Taiwan, on July 27, 1961. He received the B.S.
degree in electrical engineering from the National
Taiwan University, Taipei, Taiwan, in 1983, and
the Ph.D. degree in computer science from the
University of California, Berkeley, in 1987.

In the summer of 1984, he worked in the
Corporate Research Group of the Digital Equipment
Corporation. He is currently an Assistant Professor
in the Department of Electrical and Computer
Engineering, University of Illinois, Urbana-Cham-
paign. He is involved in computer architecture research in the areas of
designing parallel architectures and microarchitectures, compiler code genera-
tion for parallel architectures and microarchitectures, and the hardware/
software tradeoffs in exploiting parallel architectures and microarchitectures.

Dr. Hwu is a member of the Association of Computing Machinery.

Yale N. Patt received the B.S. degree in electrical
engineering from Northeastern University, Boston,
MA, and the M.S. and Ph.D. degrees in electrical
engineering from Stanford University, Stanford,
CA.

He teaches undergraduate and graduate classes at
the University of California, Berkeley and the San
Francisco State University. He also directs the
research of Ph.D. students in high-performance
implementation architectures and consults exten-
sively for the Digital Equipment Corporation, NCR
Corporation, and Nexgen, Inc., on problems related to implementing high-
serformance computing machines. At Berkeley, he is one of the principal
architects of Aquarius, a heterogeneous MIMD high-performance computing
system which is being designed to handle symbolic and numeric computations
on the same machine.




