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Abstract—OpenCL is undoubtedly becoming one of the most
popular parallel programming languages as it provides a stan-
dardized and portable programming model. However, adopting
OpenCL for Coarse-Grained Reconfigurable Arrays (CGRA) is
challenging due to divergent architecture capability compared
to GPUs. In particular, CGRAs are designed to accelerate loop
execution by software pipelining on a grid of functional units
exploiting instruction-level parallelism. This is vastly different
from a GPU in that it executes data parallel kernels using
a large number of parallel threads. Therefore, an OpenCL
compiler and runtime for CGRAs must map the threaded parallel
programming model to a loop-parallel execution model so that
the architecture can best utilize its resources.

In this paper, we propose and evaluate a design for an OpenCL
compiler framework for CGRAs. The proposed design is com-
posed of a serializer and post optimizer. The serializer transforms
parallel execution of work-items to an equivalent loop-based
iterative execution in order to avoid expensive multithreading
on CGRAs. The resulting code is further optimized by the
post optimizer to maximize the coverage of software-pipelinable
innermost loops. In order to achieve the goal, various loop-level
optimizations can take place in the post optimizer using the loops
introduced by the serializer for iterative execution of OpenCL
kernels. We provide an analysis of the propose framework from
a set of well-studied standard OpenCL kernels by comparing
performance of various implementations of benchmarks.

Index Terms—OpenCL, GPU, Coarse-Grained Reconfigurable
Arrays, CGRA, Samsung Reconfigurable Processor, SRP, RP

I. INTRODUCTION

OpenCL has emerged in an effort to standardize both plat-
form and programming model for heterogeneous systems [1].
It defines a rich set of specifications ranging from platform
to programming model. Those specifications are abstract and
meant to encapsulate actual implementation details. Many ven-
dors are adopting OpenCL as the primary software platform
for their system, as it embraces a dominating design for many
systems comprised of a host processor and accelerators.

OpenCL provides portability of application programs. It
allows running programs written in OpenCL over different
architectures. Traditionally, architectures with specific func-

tionality, denoted as accelerators, require programmers to
write in a dedicated way to make full use of the functionality.
Often times it complicates the programming interface and
migrating optimized programs for an accelerator to other ar-
chitecture becomes a nontrivial task. OpenCL therefore greatly
increases the usability of accelerators by providing language
standardization and application portability.

However, running an OpenCL program is challenging,
because accelerator architectures are very diverse. OpenCL
programming model is largely inspired by GPUs and de-
signed to best utilize such architectures. The architectures
that lack hardware mechanisms for deeply engrained OpenCL
programming patterns would suffer performance degradation
from having to pursue costly alternative approach to mimic
such features. For example, being able to create and run a
thousands of threads simultaneously would be unrealistic on a
scalar processor or even commodity multicore CPU systems.
Another major problem is distinct memory spaces of OpenCL
which makes it hard to natively map the memory hierarchy to
other architectures. Therefore, the challenge of implementing
an OpenCL compiler and runtime for such architectures is
mapping OpenCL language constructs to the capabilities of
the hardware for best utilization.

In this paper, we evaluate the design of an OpenCL
compiler framework for CGRAs. We adapt the serialization
technique [2][3] for kernel execution which transforms parallel
execution of OpenCL programs into equivalent loop-based
execution. Serialization is followed by a post optimizer to per-
form loop-level optimizations specific to CGRAs. We verify
the design by transforming and running a selected OpenCL
benchmarks on Samsung Reconfigurable Processor(SRP) [4],
a processor implementing CGRA architecture.

The rest of this paper is organized as follows. Section II
summarizes architectural difference between GPU and SRP
for further discussion. Section III describes the design of
the OpenCL compiler framework for CGRAs. Section IV
evaluates the performance of the transformation and discuss
performance portability using SRP. Related works follow in978-1-4673-2845-6/12/$31.00 c© 2012 IEEE
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Fig. 1. Block diagram of GPU architecture

Section V. Finally, Section VI summarizes.

II. COMPARISON OF GPU AND SRP

This section briefly highlights differences of GPU and SRP
in the aspects of architecture and programming model.

A. GPU

Figure 1 illustrates block diagram of GPU architecture.
Modern GPU architecture is comprised of vector processors,
each of which is capable of running programs independent
from each other. The vector processor executes a group of
a fixed number of threads in lockstep. The vector processor
has hardware contexts for many such lockstep groups for time
sharing execution resources between them. In this way, the
vector processor can execute up to hundreds of threads in
parallel. The GPU architecture has several advantages. First,
hardware multithreading allows hiding long latency of some
operations such as global memory access. Second, threads
within a same logical group can be synchronized efficiently.

A GPU has explicitly differentiated memory spaces to take
advantage of special hardware memory resources. A GPU
thread has its own private registers. A group of threads under
the same logical group share a fast on-chip scratchpad memory
bound to a vector processor. Global memory is accessible
to all threads. There is constant memory which is small but
fast read-only memory. Texture memory is cached read-only
global memory combined with a fixed set of computation to
support convenient programming model mainly for graphics
applications.

OpenCL programming model is designed to fully exploit
the hardware resources of GPU. A kernel is a function and
it is a venue for programmers to write data parallel program.
Work-items are execution instances of a kernel and are grouped
by work-groups. Execution of work-items in a work-group
can be synchronized at a program location using barrier. The
memory hierarchy is also exposed to programmers.

The host program runs on the host processor and submits
commands to execute an OpenCL kernel or manipulate the
memory of a GPU. The command queue interfaces both host
processor and device. On kernel launch, the host processor
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Fig. 2. Block diagram of SRP architecture

delivers all code and data to GPU, and receives the result
from the global memory.

B. SRP

SRP is a traditional DSP processor architecture for various
multimedia applications without the support of GPU-style
multithreading. In order to exploit the instruction-level and
loop-level parallelism embedding inside multimedia applica-
tion, SRP has an accelerator called Coarse Grained Recon-
figurable Architecture (CGRA). The CGRA is composed of
an array of processing elements (PEs) such as functional
units (FUs) and register files (RFs). These PEs are connected
to each other by dedicated connection wires. The CGRA
also has a dedicated memory for reconfiguring itself called
con f iguration memory. By changing the content of the config-
uration memory, the CGRA can reconfigure itself for different
kernels in multimedia applications. The configuration mem-
ory can host multiple loops simultaneously as long as their
overall size is smaller than the capacity of the configuration
memory. The kernels executed on the CGRA must be loops
that can be modulo-scheduled [5]. All parts of the SRP code
except the accelerated loops are executed on a separate VLIW
processor. These code parts contain the instructions for the
application control such as branch and jump and prepare the
data necessary for the execution of the loops in the CGRA.
In order to avoid the data copy for delivering program context
from the VLIW to the CGRA or vice versa, the central register
file is shared by the VLIW and the CGRA. Due to this, the
execution handover from the VLIW to the CGRA or vice versa
takes only a few cycles.

SRP has a simple but efficient two level memory hierar-
chy. Instead of data cache, SRP has a scratchpad memory
composed of multiple banks. As the access latency in the
scratchpad memory is much shorter than in DRAM, it is
usual to preload the necessary data in off-chip DRAM into the
scratchpad memory by using direct memory access (DMA).

Programming for the CGRA is implicit. The only thing
for the application programmers to do is to select the loops
that they want to accelerate on the CGRA. They can do
it by adding a pragma right before the loops. Then the
compiler for SRP automatically builds a configuration of the
CGRA for the loop by modulo-scheduling algorithm [6]. In
the modulo-scheduling algorithm for the CGRA, the compiler



tries to use not only instruction-level parallelism but also
loop-level parallelism by overlapping several loop iterations
at the same time. Generally an innermost natural loop is
a good candidate for modulo-scheduling. Even though the
compiler can find the configuration of good performance in
many cases, it is advisable to fine-tune the loop for modulo-
scheduling. The performance of the modulo-scheduled loop
is mainly influenced by two factors: resource and recurrence
constraints [5]. In order to increase the performance of the
loop on the CGRA, the application programmers have to make
their loop with the minimum recurrence if possible. They also
should fit the maximum instantaneous resource usage in the
loop to the available resources of the CGRA. Even though
if-conversion by the compiler can transform the control flow
inside the loop into data dependence, it is preferred to move
the control flow out of the loop.

III. OPENCL COMPILER FRAMEWORK FOR CGRA

OpenCL

Program
Serializer

  Post

Optimizer

   C

Compiler
Binary

Fig. 3. OpenCL Compiler Framework for CGRA

In this section, the proposed design of OpenCL compiler
framework is described for CGRAs, mainly targeting SRP. It
is composed of serializer and post-optimizer, in addition to the
standard C Compiler. Serializer is a OpenCL-to-C translator.
It transforms data parallel OpenCL kernel into an equivalent
code such that the resultant code does not rely on expensive
multithreading on CGRAs. The post optimizer takes over
the serialized kernel and performs specific optimizations for
CGRAs. Figure 3 shows the block diagram of the framework.

A. Serializer

for each work group,

    invoke serialized kernel function;

(a) OpenCL driver

// kernel body is divided into body_N at barrier

void serialized_kernel(...) {

  for each work item in a work group,

    body_1;

  for each work item in a work group,

    body_2;

  ...

}

(b) Serialized OpenCL kernel

Fig. 4. OpenCL driver architecture for serialization

When it comes to executing work-items on a CGRA,
parallel execution is not practical as managing concurrent
threads on a CGRA is expensive. A strategy of mapping a
thread per work-item found in GPUs simply takes too much
memory and scheduling overhead to a CGRA.

To address the problem, we adapt a technique proposed in
[2] and [3], which we call serialization, in order to make

__kernel void vecAdd(__global float* C,

    __global float* A, __global float* B) {

  int idx = get_global_id(0);

  C[idx] = A[idx] + B[idx];

}

(a) OpenCL kernel

void serial_vecAdd(float* C, float* A, float* B,

  int global_id_0_begin, int local_sz_0) {

  for (int lx0 = 0; lx0 < local_sz_0; lx0++) {

    int get_global_id_0 = lx0 + global_id_0_begin;

    int idx = get_global_id_0;

    C[idx] = A[idx] + B[idx];

  }

}

(b) Serialized kernel

Fig. 5. Serialization of vector addition

__kernel void transpose(

    __global float *odata, __global float *idata) {

  __local float block[BLKDIM * BLKDIM];

  int xIndex = get_global_id(0);

  int yIndex = get_global_id(1);

  int index_in = yIndex * width + xIndex;

  block[get_local_id(1)*BLKDIM+get_local_id(0)] = 

    idata[index_in];

  barrier(CLK_LOCAL_MEM_FENCE);

  xIndex = get_group_id(1) * BLKDIM + get_local_id(0);

  yIndex = get_group_id(0) * BLKDIM + get_local_id(1);

  int index_out = yIndex * height + xIndex;

  odata[index_out] = 

    block[get_local_id(0)*BLKDIM+get_local_id(1)];

}

(a) OpenCL kernel

void serial_transpose(float *odata, float *idata,

  int gid0_begin, int lsz0, int grid0,

  int gid1_begin, int lsz1, int grid1) {

  /* __local */ float block[BLKDIM * BLKDIM];

  for (int lx1 = 0; lx1 < lsz1; lx1++) {

    int gid1 = lx1 + gid1_begin;

    for (int lx0 = 0; lx0 < lsz0; lx0++) {

      int gid0 = lx0 + gid0_begin;

      int xIndex = gid0;

      int yIndex = gid1;

      int index_in = yIndex * width + xIndex;

      block[lx1*BLKDIM+lx0] = idata[index_in];

  } }

  // Implicit barrier

  for (int lx1 = 0; lx1 < lsz1; lx1++) {

    for (int lx0 = 0; lx0 < lsz0; lx0++) {

      xIndex = grid1 * BLKDIM + lx0;

      yIndex = grid0 * BLKDIM + lx1;

      int index_out = yIndex * height + xIndex;

      odata[index_out] = block[lx0*BLKDIM+lx1];

} } }

(b) Serialized kernel

Fig. 6. Serialization of matrix transpose



OpenCL kernel execution suitable for a CGRA. As a result of
this process, it produces serialized kernel.

The serialization converts parallel execution of work-items
into equivalent loop-based iterative execution. The serializa-
tion introduces serialization loop around a set of statements
of kernel code. An iteration of the loop embodies a logical
thread for a work-item. The index space of the serialization
loop reflects the size of a work-group.

When a kernel code wrapped by the serialization loop
contains barriers, it will be split into multiple sets of state-
ments divided by barriers. This process is called deep f ission
according to [2]. As a result, all statements are wrapped in
serialization loops such that no serialization loop contains a
barrier.

Since the logical threads no longer exist independently, the
translated program has to emulate private storage for work-
items within a work-group. By creating an array of values of
the size of a work-group for each local variable and indexing
them by the serialization loop index, it fully emulates the
private storage of work-items. Shared variables among work-
items per work-group remain unreplicated. The implicit barrier
by the serialization loop and the replicated private storage for
work-items completely implement the semantic of barrier for
work-items.

Memory hierarchy mapping can be done in this stage. Local
memory and constant memory can be emulated by preallo-
cating a block of memory in scratchpad memory. The com-
piler flattens accesses to both memories accordingly. Global
memory will be mapped to DRAM. Due to a long latency
to access DRAM, proactive data prefetching and overlaying
over scratchpad memory is required, as similarly shown in
[3]. Unlike [3], CGRAs do not provide a virtual memory
layer. Therefore, a new memory management algorithm must
be developed. Texture memory is a unique feature of GPUs
as it is combined with hardware interpolation. Software-based
emulation can be used, however, it is not pragmatic due to
high cost. This is why texture memory in OpenCL is optional
for non-GPU architectures to implement. We will not be
discussing such support for CGRAs here.

Figure 4 shows the architecture of an OpenCL driver with
a consideration of serialization. As there is no dependency
between execution of work-groups, iterative execution of
work-group in turn at OpenCL driver level is desired. Upon a
work-group execution, it calls the serialized kernel with proper
work-group indices.

Figure 5 shows serialization for vector addition. The
OpenCL code does not have barriers and simply casting
the serialization finishes the process. Getting global index is
replaced with an expression based on the serialization loop
index. The resultant code enables software pipelining and can
be accelerated on a CGRA.

Matrix transpose shows how the deep fission works in the
presence of barrier, as shown in Figure 6. Two code bodies
before and after the barrier become units of serialization.
Execution of innermost loops of the two bodies can be
accelerated on a CGRA.

B. Post Optimizer

We have identified that additional optimizations must be
developed in pursuit of maximum performance after serializa-
tion. In particular, the strength of CGRAs is the loop acceler-
ation where it exploits wide instruction-level parallelism from
an aggressive software pipelining. Since OpenCL kernels are
generally regarded as the most performance demanding part
of a program, program execution must remain in a CGRA
as long as possible when it runs OpenCL kernels. Therefore,
optimizations maximizing the coverage of software pipelinable
loops should be followed.

The post optimizer takes over the resulting code from the
serializer and performs specific optimizations for CGRAs. It is
a venue where significant engineering effort of implementing
compiler optimizations can take place. While a compiler in
general can not identify performance critical region in a
program, it is clear that OpenCL programs require intensive
optimizations. Thus, the existence of post optimizer clearly
contributes to the design of compiler framework for CGRAs.

A closer look at the resultant code reveals that the serial-
ization loop is now fully exposed to the compiler along with
the kernel code. The exposed serialization loop is often the
innermost loop of the transformed kernel code, making it an
excellent target for mapping to a CGRA. For example, the
vector addition code is identified as a target for a CGRA after
serialization, as depicted in Figure 5 (b).

Serialization loops bring useful properties that the compiler
can take advantage of. First, the serialization loops are canon-
ical loops. Second, the serialization loops are natural loops in
that they have single entry and single exit. Third, execution of
the serialization loops does not carry data dependence over its
iterations. Lack of data dependencies is true by the assertion
given the nature of the input OpenCL code. Such properties are
extremely valuable for the post optimizer to further optimize
the code with loop-level transformations. In this section, sev-
eral useful optimizations utilizing the properties are addressed.

1) Resource Utilization Optimization: High degree of
instruction-level parallelism can be achieved from a success-
ful software pipelining of a loop on a CGRA. In software
pipelining[7], the total execution cycle of a loop, denoted as
T , can be calculated from Eq. 1 as shown below:

T = (N −1+S)× II, (1)

where N is the trip count of the loop, II is initiate interval and
S is stage count. II and S dictate the performance of the loop
execution. Both resource and recurrence constraints play a key
role for compiler in determining II. Among them, the compiler
can ignore recurrence constraint according to a property of
serialization loops. Therefore, the performance depends on the
resource constraint.

While smaller II implies better performance in general,
such low II can be caused by too few operations to schedule,
resulting in many unused FUs. Resource utilization, denoted
as R, is a metric to measure the efficiency of hardware for a
given task as defined in Eq. 2:



TABLE I
II, RESOURCE UTILIZATION AND PERFORMANCE OVER DIFFERENT

UNROLLING FACTORS

Unrolling factor II Resource utilization Performance (cycles)

1 5 0.11 5156

2 5 0.17 2608

4 5 0.27 1348

8 8 0.29 1088

16 14 0.30 964

R =
M

II ×W
, (2)

where M is the number of operations of the loop, and W is the
number of FUs of the reconfigurable grid. The importance of
realizing smaller II is stressed here again in pursuit of better
resource utilization. It implies a compiler should schedule as
many operations as possible under the same II envelop.

Unrolling a loop with low resource utilization is a valuable
optimization along with serialization. As previously men-
tioned, unrolling does not change recurrence constraints due
to the inherent properties of OpenCL kernels. Therefore, a
compiler can safely unroll a loop until full resource utilization
is obtained.

Table I shows trends of II, resource utilization and per-
formance for the serialized vector addition kernel shown in
Figure 5 (b) by changing unrolling factor from two to sixteen.
The loop is software pipelined over a CGRA of 4x4 FUs.
Performance is measured on a cycle-accurate simulator assum-
ing a perfect memory system. The latency of load operation
is set to four cycles. The rate of increase of II is far lower
than that of the unrolling factor, and it manifests multi-factor
speedup. Beyond a point where the performance saturates,
eight in this particular case, larger unrolling factor saturates
resource utilization and begins to increase II proportionally.

2) Serialization Loop Flattening: Work-items in OpenCL
have indices with up to three dimensions. As such, serialization
loops are formed as triply nested loops, as illustrated in
Figure 7 (a). Therefore, software pipelining can not be done
for the outer loops, deferring processing of them to the control
processor. As a consequence, branch and arithmetic operations
from the outer loops will contribute to the execution cycles. It
will also have to tolerate overheads due to switching execution
mode between the control processor and the CGRA.

The nested serialization loops can be transformed into
a single flattened loop [8]. A single loop reduces branch
overhead from a nested loops. In a case where the flattened
loop is innermost loop, the resulting code can run on a CGRA
for much longer cycles from extended loop trip count. It also
removes execution mode switching overhead.

Flattening the serialization loops is straightforward as they
are canonical loops and natural loops at the same time. Index
calculation from the flattened loop is implemented in a simple
arithmetic. Figure 7 (b) shows the transformation example.

SRP’s CGRA does not support integer division and mod-
ular operations by hardware. The compiler instead replaces

void kernel_func_3D(...) {

  for (z = 0; z < nz; z++) {

    for (y = 0; y < ny; y++) {

      for (x = 0; x < nx; x++) {

        ...

} } } }

(a)

void kernel_func_3D(...) {

  for (zyx = 0; zyx < nz * ny * nx; zyx++) {

    z = zyx / (ny * nx);

    y = (zyx / nx) % ny;

    x = zyx % nx;

    ...

} }

(b)

// ny = (1 << ly), nx = (1 << lx)

void kernel_func_3D(...) {

  for (zyx = 0; zyx < nz * ny * nx; zyx++) {

    z = zyx >> (ly + lx);

    y = (zyx >> lx) & (ny - 1);

    x = zyx & (nx - 1);

    ...

} }

(c)

Fig. 7. Serialization loop and flattening. (a) serialization loops in a form of
a triply nested loops (b) flattened serialization loops (c) flattened serialization
loops using bit operations for index calculations

them with equivalent software implementations, which in turn
disqualifies the flattened loop for software pipelining.

In OpenCL, configuring a power of two number of work-
items per work-group is a common practice [9]. This is
because GPU hardware is designed to allocate resources in
power-of-two units. If the programmer leaves the group size
unspecified, then the OpenCL driver can choose a number
of work-items per work-group. For the SRP architecture,
a heuristic choosing a power-of-two group size would be
beneficial.

Under the condition where the loop trip counts are a
power of two, flattening becomes available with efficient bit
operations, as shown in Figure 7 (c). In this particular case, the
compiler can substitute the integer division and modular oper-
ations with equivalent bit operations for the index calculation.
This method can further be extended to address arbitrary trip
counts by making the trip count power of two that is equal to
or larger than the actual trip count. The loop body is guarded
with a predicate from comparing the loop index to the actual
trip count. The conditional statement should be successfully
if-converted by the compiler for software pipelining.

3) Serialization Loop Fission: When the original kernel
code is imperfectly nested by the serialization loops, it ef-
fectively prevents the resulting code from being mapped to a
CGRA. This is caused when the kernel code itself contains
loops, which we call kernel loops, and they have sets of
statements to execute either before and after them, such as
Figure 8 (a). Because the kernel loop is the innermost loop, it
alone will be considered for mapping onto a CGRA, forcing
the leading and trailing blocks to execute on the slower control
processor. By breaking the kernel code at the boundaries of



__kernel void fn(...) {

  ...    // init

  for (i = 0; i < N; i++) {

    ...

  }

  ...    // finish

}

(a)

void serial_fn(...) {

  for (x = 0; x < nx; x++) {

    ...    // init

    for (i = 0; i < N; i++) {

      ...

    }

    ...    // finish

} }

(b)

void serial_fn(...) {

  for (x = 0; x < nx; x++) { ... // init }

  for (i = 0; i < N; i++) {

    for (x = 0; x < nx; x++) {

      ...

  } }

  for (x = 0; x < nx; x++) { ... // finish }

}

(c)

Fig. 8. An Example of Serialization Loop Fission (a) OpenCL kernel (b)
Serialized kernel (c) Serialized kernel after loop fission

kernel loops, the leading or trailing code blocks of a kernel
loop become loop bodies of serialization loops, and available
for mapping on a CGRA. Breaking the serialization loops
is safe because the original OpenCL work-items have no
execution dependencies by assertion.

Figure 8 (c) shows an example of loop fission for seri-
alization loops. It contains initialization, an innermost loop
and a termination part. After the fission, the initialization
and termination can run on a CGRA as they are identified
as software pipelinable. Thus, the transformation enlarges
the coverage of a CGRA execution of the OpenCL kernel.
Note that the post optimizer could further apply additional
transformations for kernel loops containing serialization loops.
For instance, loop interchange or flattening could be applied
to the nested loop in Figure 8 (c), transforming into a perfectly
nested loop.

4) SIMDization: SRP’s CGRA supports subword paral-
lelism via SIMD intrinsic instructions for a selected set of
operations. For SIMD instructions, a 32-bit register can be
divided into 2 of 16 bits or 4 of 8 bits. The subword parallelism
is especially useful for graphics applications where primitive
information is stored in 8 or 16 bits.

SRP’s subword parallelism can be used in two situations.
First, direct translation of a group of built-in vector data types
of OpenCL becomes available. OpenCL supports subword
vectors of 8-bit or 16-bit, where supported sizes are 2, 3,
4, 8 and 16. Considering 8-bit subword, charn and ucharn,
one 4x8bit SIMD operation can replace 4 scalar equivalents
when n is equal to or smaller than 4. For larger n, more than
one SIMD operations can jointly be utilized. Second, OpenCL
programs using subword scalar data types can be vectorized
at the level of serialization loops. The loop-level vectorization
requires that data dependency is shorter than the vector length
and the loop needs to be innermost. Both can be guaranteed by
properties of the serialization loops. The loop is strip-mined
by the vector length, two or four in this case, and then each
scalar instruction within the loop body is replaced with the
corresponding SIMD operation. Figure 9 demonstrates two

// OpenCL code

__kernel void fn(__global uchar4* c,

    __global uchar4* a, __global uchar4* b) {

  c[idx] = a[idx] + b[idx];

}

// Serialized kernel code

void serial_fn(srp_uchar4* c,

    srp_uchar4* a, srp_uchar4* b) {

  for (x = 0; x < wgs; x++) {

    c[idx] = _I_intr003_rg_addb(a[idx], b[idx]);

} }

(a) Lowering OpenCL vector type

// OpenCL code

__kernel void fn(__global uchar* c,

    __global uchar* a, __global uchar* b) {

  c[idx] = a[idx] + b[idx];

}

// Serialized kernel code

void serial_fn(uchar* c, uchar* a, uchar* b) {

  for (x = 0; x < wgs; x+=4) {

    c[idx] = _I_intr003_rg_addb(a[idx], b[idx]);

} }

(b) Vectorization at the serialization loop-level

Fig. 9. Two examples of SIMDization for SRP

examples of the transformation. Note that the usage of SIMD
intrinsics, as shown in the Figure 9, is adapted from the
intrinsic model of the IMPACT compiler [10].

IV. EVALUATION

In this section, we evaluate the effectiveness of the proposed
compiler framework with a selected OpenCL benchmarks. All
experiment results are done using a cycle-accurate simulator
for SRP. The simulator assumes all data reside in on-chip
scratchpad memory and as such the compiler assigns a uniform
latency to all load operations. We also assume the configura-
tion memory preloads all kernels so that no additional costs
are added other than a few cycles of the execution handover
overhead when reconfiguration happens. The latency of load
operation is set to four cycles. The architecture is configured
as 2-way VLIW and CGRA with 4x4 FUs.

We used four benchmarks to evaluate the relation of porta-
bility and performance. They are vector addition(vecadd),
matrix multiplication(mm), matrix transpose(transpose) and
reduction. Also, we implemented five versions for each bench-
mark for comparison. They are unoptimized C code, innermost
accelerated of the unoptimized C code, fully hand-optimized
C code, OpenCL code with serialization and OpenCL code
with serialization and post optimization. For demonstration
purpose, we did not use floating point operations as availability
of floating point units varies across different configurations
of SRP architecture. OpenCL code is assumed to have gone
through the compiler pipeline as described in the framework
shown in Fig 3. The unoptimized C code in the most simplest
form is used as a portable baseline throughout the experiment.

Figure 10 illustrates speedups of various implementations
of the benchmarks. For vector addition, the performance of
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Fig. 10. Experimental results for benchmarks. Five bars for a benchmark
represent speedups of 1) the baseline, 2) the baseline with innermost accel-
eration, 3) fully hand-optimized C, 4) OpenCL kernel with serialization and
5) OpenCL kernel with serialization and post optimization, respectively. The
baseline is the unoptimized C code.

OpenCL code is approaching to the hand-optimized version,
showing up to 5.1x speedup. The OpenCL code is optimized
from unrolling the serialization loop eight times and mapped to
the CGRA. In this simple kernel code, overhead compared to
the hand-optimized one is attributed to the iterative execution
of work-groups where the trip count of innermost loop exe-
cution is bounded within dimension of a work-group, leading
to a frequent mode switching and execution in the VLIW.

The matrix multiplication demonstrates 3.6x speedup of the
baseline, though it is slower than the hand-optimized version
by 2.6x. The OpenCL code is optimized from loop flattening
of the two nested serialization loops. Then the code is further
split into three groups by loop fission, in that the first group
sets global ids, the second group performs a dot product
and the third group stores the results. The first and third
group run in the CGRA. The second group is untouched and
only the innermost loop runs in the CGRA. This is not as
efficient as the hand-optimized version, where it flattens and
unrolls loops to form one innermost loop. We expect the gap
would be narrowed as the post optimizer extends its scope
of optimizations beyond serialization loops so it can generate
code similar to the counterpart.

The OpenCL code of matrix transpose shows 20% slow-
down. The OpenCL code is optimized for GPUs where local
memory tiling allows significant better memory performance,
which is not the case for SRP. From the serialization stage,
local memory is lowered to a preallocated memory block
in scratchpad memory and it becomes sole burden to the
performance. It also introduces a barrier which limits the
duration of CGRA execution. On the contrary, the baseline
as well as the hand-optimized versions are implemented as a
single innermost loop, loading and storing an item of an array
using a different index. It exemplifies a challenge using an
optimized OpenCL code for portability.

Reduction is a particularly interesting case as the per-
formance gap between the hand-optimized C and OpenCL

codes is the most significant. The OpenCL implementation
of reduction uses a tree-shaped reduction over local memory,
which is an algorithm well suited to a GPU. The code is
written assuming that parallel threads execute in lockstep, and
that barriers cost no more than any other single instruction.
Serializing such code results in a loop for every level of the
reduction tree. As the performance results show, the barriers
are far from free, and the single-loop implementation used
by the baseline implementation is much more effectively
software pipelined. This also shows why reduction is usually
implemented as a library function by vendors [11].

V. RELATED WORKS

The advent of programmable GPUs and its popularity ig-
nited development of several parallel programming languages.
CUDA [12] is a data parallel programming model based
on SIMT and gained huge attention due to easy program-
ming on NVIDIA GPUs. OpenCL [1] standardizes an open,
data-parallel programming model inspired by CUDA. Unlike
CUDA, OpenCL rules out any hardware assumptions for
portability. OpenACC [13] is another standard for heteroge-
neous platform programming, mainly driven by supercomput-
ing vendors and applications. It aims to provide an easier
programming model via pragmas, inspired by OpenMP [14],
while hiding many details such as having to write memory
management code. Microsoft proposes C++AMP [15], an
open standard programming model which is an extension to
C++11 standard [16] in that massive data parallelism can be
accelerated by following a dedicated programming method.

The need for optimizing compiler is ever increasing as
programming abstractions move further away from specific
hardware constructs. Therefore, OpenCL compilers for non-
GPU architectures needs to be more capable in order to
match what programmers can achieve with CUDA on NVIDIA
GPUs. More broadly, the challenge is to optimize architecture-
agnostic OpenCL code to reach a level of efficiency equivalent
to what programmers could gain with lower-level, architecture-
specific programming models.

Researchers have identified the performance portability
problem and proposed solutions. Twin peaks is an OpenCL
framework for CPU based systems [17]. In this work, each
work-item in a work-group is mapped to a lightweight user
thread. The user threads belonging to a work-group are sched-
uled upon a single CPU thread. Barriers for work-items are
overhead implementing user threads in a compiler-unaware
fashion. This approach, however, suffers from a significant
overhead due to exhaustive thread management.

Stratton et al. took a different approach in that the proposed
compiler transforms parallel execution of work-items into
serial execution [2]. The rationale is that thread management
is expensive while loop execution is very cheap on a CPU,
considering the granularity of typical OpenCL programs. Se-
rialization is implemented by casting a canonical loop over
the index space of the work-group to the OpenCL code.

Lee et al. developed a OpenCL framework for the Cell
architecture based on a similar idea [3]. Work item coalescing



in his work is essentially serialization of work-item execution.
Sophisticated analysis and management of data are one distinc-
tive feature of his work as SPUs have limited-size, incoherent
local stores, in contrast to the cache-based flattened memory
space of a CPU architecture. For memory data access patterns
that are hard to analyze, software-based virtual memory is
used as a fallback to cope with memory accesses off the local
memory boundary. Another noticeable difference to Stratton et
al.’s approach is that the authors also developed an algorithm
to minimize variables to be scalar expanded due to harsher
limit of available memory to each SPU.

SRP had been conceived from a joint project, called
ADRES [18][19]. SRP inherits the concept of ADRES in
that it realizes acceleration of loop execution from software
pipelining [7] over a grid of functional units. For CGRAs,
traditional loop optimizations are crucial for performance.
Luckily, CGRAs have simple goals for the loop optimizations,
maximizing coverage of innermost loops being the most
significant one. Well-known optimizations such as unrolling,
flattening, fission, fusion and interchange as well as their
combinations [8] could be implemented as a framework for
CGRAs. Such a framework would be compulsory for success-
ful adaptation of high level programming languages, OpenCL
for example.

VI. SUMMARY

In this paper, we evaluated the design of an OpenCL frame-
work for CGRAs. The framework uses serialization for work-
item execution, in order to overcome CGRA’s insufficient
thread-level parallelism to run work-items in parallel. We have
identified that there are significant optimization chances for
serialized kernel. Optimizations taking advantage of proper-
ties of serialization loops allow applying aggressive loop-
level optimizations with greater freedom. It helps excavate
more candidate loops in the form of innermost loops that
the compiler can target to a CGRA for faster execution.
The preferred design for the compiler framework thus is
a combined serializer and post optimizer. Evaluation shows
promising results for a class of benchmarks provided that the
relevant compiler optimizations are followed.

For a class of algorithms, a literal interpretation of the
OpenCL codes results in large slow downs compared to what
can be achieved from simple hand-written code. We witnessed
a need to develop an apparatus for performance portability for
them. Also, a treatment of GPU-specific optimizations that
makes the ported code slower remains for future work.

We foresee much interesting work to be done in the future.
Here we list a few notable ones. First, a fully-developed post
optimizer needs to be in place. Unpredictable optimization ef-
fects from transformations motivate an autotuning framework.
It makes sense to explore a large optimization space provided
that CGRAs are used mostly for embedded systems, where
the set of applications is fixed. Second, the compiler should
cope with large data in realistic settings. The fast on-chip data
memory has limited capacity and it does not fit with OpenCL
programming model. Fetching data from DRAM takes a very

large number of cycles, and the CGRA must stall until the
data becomes available. Thus, the compiler must analyze the
program and implement proper data memory management
algorithm.
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