Program Optimization Space Pruning for a Multithreaded
GPU

Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi,

Sain-Zee Ueng, John A. Stratton, and Wen-mei W. Hwu
Center for Reliable and High-Performance Computing
University of lllinois at Urbana-Champaign

{sryoo, cirodrig, ssstone2, bsadeghi, ueng, stratton, hwu}@-crhc.uiuc.edu

ABSTRACT

Program optimization for highly-parallel systems has his-
torically been considered an art, with experts doing much of
the performance tuning by hand. With the introduction of
inexpensive, single-chip, massively parallel platforms, more
developers will be creating highly-parallel applications for
these platforms, who lack the substantial experience and
knowledge needed to maximize their performance. This cre-
ates a need for more structured optimization methods with
means to estimate their performance effects. Furthermore
these methods need to be understandable by most program-
mers. This paper shows the complexity involved in opti-
mizing applications for one such system and one relatively
simple methodology for reducing the workload involved in
the optimization process.

This work is based on one such highly-parallel system,
the GeForce 8800 GTX using CUDA. Its flexible allocation
of resources to threads allows it to extract performance from
a range of applications with varying resource requirements,
but places new demands on developers who seek to maxi-
mize an application’s performance. We show how optimiza-
tions interact with the architecture in complex ways, initially
prompting an inspection of the entire configuration space to
find the optimal configuration. Even for a seemingly sim-
ple application such as matrix multiplication, the optimal
configuration can be unexpected. We then present metrics
derived from static code that capture the first-order factors
of performance. We demonstrate how these metrics can be
used to prune many optimization configurations, down to
those that lie on a Pareto-optimal curve. This reduces the
optimization space by as much as 98% and still finds the
optimal configuration for each of the studied applications.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques— Concurrent
Programming

@ACM, 2008. This is the author’s version of the work. It is
posted by permission of ACM for your personal use. Not for re-
distribution. The definitive version was published in CGO ’08,
http://doi.acm.org/10.1145/1356058.1356084

CGO' 08, April 5-10, 2008, Boston, Massachusetts, USA.

Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

General Terms

Performance, Languages

Keywords
GPGPU, parallel computing, optimization

1. INTRODUCTION

Programming for highly-parallel systems has historically
been the domain of relatively few experts, with performance
tuning done primarily by hand. Because of the relative
scarcity of highly parallel applications and the expense of
highly parallel systems, there was limited opportunity for
exhaustive performance experimentation. Today, however,
single-chip, massively parallel systems such as the NVIDIA
GeForce 8 Series are available for about a dollar per GFLOP,
several orders of magnitude less expensive than supercom-
puters a decade ago. Already developers are using these
desktop systems to perform work that would otherwise take
a large compute cluster to accomplish. Unfortunately, the
level of effort and expertise required to maximize application
performance on these kinds of systems is still quite high. The
resource restrictions of these systems also present unfore-
seen difficulties to optimization. Finally, it is often the case
that successive generations of architectures require a com-
plete reapplication of the optimization process to achieve the
maximum performance for the new system.

Optimizing an application for maximum performance on
the GeForce 8 Series is not a trivial task. At first glance, it
appears to be a multi-variable optimization problem of ap-
plying a set of optimization techniques like tiling and loop
unrolling to the code. However, the underlying hardware
and threading model contain hard usage restrictions that
affect performance and make the optimization space discon-
tinuous. Consequently, the final performance of an optimiza-
tion configuration is not always readily apparent. Further-
more, the difference in performance for differing optimiza-
tion configurations is significant. For an MRI reconstruc-
tion application with a space size of 175 configurations, the
difference in performance between a hand-optimized imple-
mentation and the optimal configuration was 17% and the
difference in performance between the worst and optimal
configurations was 235%. Since the intent is to run large,
compute-intensive applications on these systems, a full ex-
ploration of the optimization space based on wall-clock per-
formance is generally not feasible.

In response to these challenges, we have developed met-

rics to help prune the search space of optimization config-
urations. Our intent is to form these metrics into the un-
derpinnings for an automated optimizing compiler for this
platform. We developed our metrics after performing full ex-
plorations of the optimization spaces for some of our applica-
tions. The metrics take into account the observed first-order
effects on performance, under the assumption that mem-
ory bandwidth is not the primary limiting factor on perfor-
mance. Performance prediction is less critical for bandwidth-
limited kernels since they are less sensitive to other optimiza-
tion effects. The search space is pruned down to only those
configurations that lie on a Pareto-optimal curve generated
from a plot of the metrics. In contrast to a full exploration
of the optimization space, this methodology eliminates the
need to test as much as 98% of the optimization search space.
The optimal configuration was found to be on the curve for
each of the applications studied. Consequently, much faster
performance optimization is possible.

We begin by discussing the execution hardware, thread-
ing model, and available tools in Section This sets up
the various factors that affect performance. Section Bl dis-
cusses the most effective optimizations for this architecture,
and how one needs to consider them to attain the optimal
configuration. Section H] discusses the metrics we have de-
veloped given our experience while Section Bl shows how our
metrics can be used to help find the optimal optimization
configuration. We discuss related work in Section [l before
finishing with our conclusion.

2. ARCHITECTURE

This work uses the GeForce 8800 GTX GPU [l as the basis
for its study. The GeForce 8800 has a large set of processor
cores that can directly address a global memory. This allows
for a more general and flexible programming model than pre-
vious generations of GPUs, and allows developers to easily
implement data-parallel kernels. In this section we discuss
NVIDIA’s Compute Unified Device Architecture (CUDA),
with emphasis on the features that significantly affect per-
formance. A more complete description can be found in [Il
20]. It should be noted that this architecture, although more
disclosed than previous GPU architectures, still has details
that have not been publicly revealed.

Before discussing the hardware, it is useful to describe
the programming and compilation process. The CUDA pro-
gramming model is ANSI C extended with several keywords
and constructs. The GPU is treated as a coprocessor that
executes data-parallel kernel functions. The user supplies a
single source program encompassing both host (CPU) and
kernel (GPU) code. These are separated and compiled by
NVIDIA’s compiler. The host code transfers data to and
from the GPU’s global memory via API calls. It initiates
the kernel code by performing a function call.

2.1 Microarchitecture

Figure[Mldepicts the microarchitecture of the GeForce 8300.

The GPU consists of 16 streaming multiprocessors (SMs),
each containing eight streaming processors (SPs), or pro-
cessor cores, running at 1.35GHz. Each SP has one 32-
bit, single-precision floating-point, multiply-add arithmetic
unit that can also perform 32-bit integer arithmetic. Addi-

IThere are several versions of the GeForce 8800 GPU. Ref-
erences of GeForce 8800 are implied to be the GTX model.

Device
SM 16

SNi 1
\ Shared Memory \
A A

Partitioned Register File
—
Processor 1 I Processor 8

\ Constant Cache \

\ Texture Cache \

Off-Chip Device (Global) Memory

Figure 1: Organization of the GeForce 8800
tionally, each SM has two special functional units (SFUs),

which execute more complex FP operations such as recip-
rocal square root, sine, and cosine with low latency. The
arithmetic units and the SFUs are fully pipelined, yielding
388.8 GFLOPS (16 SM * 18 FLOP /SM * 1.35GHz) of peak
theoretical performance for the GPU.

The GeForce 8800 has 86.4 GB/s of bandwidth to its off-
chip, global memory. Nevertheless, with computational re-
sources supporting nearly 400 GFLOPS of performance and
each FP instruction operating on up to 12 bytes of source
data, applications can easily saturate that bandwidth. There-
fore, as described in Table [l and depicted in Figure [the
GeForce 8800 has several on-chip memories that can ex-
ploit data locality and data sharing to reduce an applica-
tion’s demands for off-chip memory bandwidth. For ex-
ample, each SM has a 16KB shared memory that is useful
for data that is either written and reused or shared among
threads. For read-only data that is accessed simultaneously
by many threads, the constant and texture memories pro-
vide dramatic reduction in memory latency via caching.

Threads executing on the GeForce 8300 are organized into
a three-level hierarchy. At the highest level, each kernel cre-
ates a single grid, which consists of many thread blocks. The
maximum number of threads per block is 512. Each thread
block is assigned to a single SM for the duration of its ex-
ecution. Threads in the same thread block can share data
through the on-chip shared memory and can perform bar-
rier synchronization by invoking the __syncthreads primi-
tive. Threads are otherwise independent, and synchroniza-
tion across thread blocks can only be safely accomplished by
terminating the kernel. Finally, threads within a block are
organized into warps of 32 threads. Each warp executes in
SIMD (single-instruction, multiple-data) fashion, issuing in
four cycles on the eight SPs of an SM.

SMs can perform zero-overhead scheduling to interleave
warps on an instruction-by-instruction basis to hide the la-
tency of global memory accesses and long-latency arithmetic
operations. When one warp stalls, the SM can quickly switch
to a ready warp in the same thread block or a ready warp in
some other thread block assigned to the SM. The SM stalls
only if there are no warps with ready operands available.

2.2 Architectural Interactions

Accurately predicting the effects of one or more compiler
optimizations on the performance of a CUDA kernel is of-
ten quite difficult, largely because of interactions among
the architectural constraints listed in Table Many op-
timizations that improve the performance of an individual

Table 1: Properties of GeForce 8800 Memories

Memory | Location| Size Latency | Read{ Description
Only
Global T off-chip | 768MB[200-300 | no Large DRAM. All data reside here at the beginning of kernel execution. Di-
total cycles rectly addressable from a kernel using pointers. Backing store for constant
and texture memories. Used more efficiently when multiple threads simul-
taneously access contiguous elements of memory, enabling the hardware to
coalesce memory accesses to the same DRAM page.
Shared | on-chip | I6KB | ~register| no Local scratchpad that can be shared among threads in a thread block. Or-
per latency ganized into 16 banks. It is often possible to organize both threads and data
SM such that bank conflicts seldom or never occur.
Constant] on-chip | 64KB | ~register| yes 8KB cache per SM, with data originally residing in global memory. The
cache total latency 64KB limit is set by the programming model. Often used for lookup tables.
The cache is single-ported, so simultaneous requests within an SM must be
to the same address or delays will occur.
Texture | on-chip [up to | >100 yes 16KB cache per two SMs, with data originally residing in global memory.
cache global | cycles Capitalizes on 2D locality. Can perform hardware interpolation and have
configurable returned-value behavior at the edges of textures, both of which
are useful in certain applications such as video encoders.
Local off-chip | up to | same as [no Space for register spilling, etc.
global | global

Table 2: Constraints of GeForce 8800 and CUDA
Resource or Configuration Param- | Limit
eter

Threads per SM

Thread Blocks per SM
32-bit Registers per SM
Shared Memory per SM
Threads per Thread Block

768 threads

8 blocks

8,192 registers
16,384 bytes
512 threads

thread tend to increase a thread’s resource usage. However,
as each thread’s resource usage increases, the total number
of threads that can occupy the SM decreases. Occasionally
this decrease in thread count occurs in a dramatic fashion
because threads are assigned to an SM at the granularity
of thread blocks. In short, there is often a tradeoff between
the performance of individual threads and the thread-level
parallelism (TLP) among all threads.

For example, consider an application that uses 256 threads
per block, 10 registers per thread, and 4KB of shared mem-
ory per thread block. This application can schedule 3 thread
blocks and 768 threads on each SM. However, an optimiza-
tion that increases each thread’s register usage from 10 to
11 (an increase of only 10%) will decrease the number of
blocks per SM from three to two, which decreases the num-
ber of threads on an SM by 33%. The GeForce 8300 can
only assign two threads blocks (512 threads) to an SM be-
cause a third block would increase the number of threads
to 768 and register usage to 8,448, above the 8,192 registers
per SM limit. By contrast, an optimization that increases
each thread block’s shared memory usage by 1KB (an in-
crease of 25%) does not decrease the number of blocks per
SM. Clearly, the optimization space is inherently non-linear.

2.3 Software Tool Support

For CUDA compilation, NVIDIA provides a compiler wrap-
per called nvce that handles all parts of the compilation flow,
including linking host and kernel binaries. The compiler also
supports several options that programmers can use to debug
kernels and to gain intuition on their performance. Two
flags are especially useful: -ptx and -cubin. Much of the
information needed to compute the optimization metrics de-
scribed in Section Hlis based upon the outputs of these flags.

The amount of time it takes to run nvcc with these flags
is much shorter than actual compilation because only the
kernel code is processed.

nvce compiles kernel code to an assembly-like represen-
tation termed PTX. This is normally placed in an object
file for consumption by the CUDA runtime, which processes
this code, performs further optimization such as scheduling,
and generates hardware-specific code for execution. The -
ptx flag outputs the PTX in a developer-readable format.
Although PTX is not the exact code that is executed on
the hardware, it often gives insights into why performance
degrades or improves after an optimization is applied. In
particular, information such as instruction count, instruc-
tion mix, and a rough idea of scheduling can be utilized
reliably. Detailed instruction-level scheduling, however, is
the domain of the runtime. For example, unrolling a loop
with strided memory accesses creates successive operations
that operate at different offsets from a base address. PTX
shows that the group of memory operations only need the
single base address calculation and use their constant offsets
to avoid additional address calculations.

The CUDA runtime that generates executable machine
code appears to reschedule code and allocate registers. This
introduces an uncontrollable element during program op-
timization and makes the effects of optimizations on local
resource usage less predictable. The -cubin flag outputs
the resource usage of GPU kernel code, including the shared
memory used per thread block and registers used per thread.
This is critical to understanding the performance of the code
because an SM runs the number of thread blocks that fit
given their local resource usage. A small change in code can
result in resource usage that changes the number of thread
blocks executing on an SM, which can significantly impact
performance. We use the information provided by -cubin
to calculate the number of thread blocks that can simulta-
neously reside on each SM.

3. OPTIMIZATION SPACE

The basic strategy for achieving good kernel code perfor-
mance on the GeForce 8800 is to maintain high SP occu-
pancy and reduce dynamic instruction count. High occu-
pancy, where warps are always available for execution, is
accomplished in three ways. First, one can have sequences

of independent instructions within a warp so that the same
warp can make forward progress. Second, a developer can
place many threads in a thread block so that at least one
warp can execute while others are stalled on long-latency
operations, such as memory loads. Third, the hardware can
assign up to eight independent thread blocks to an SM. Un-
der high-occupancy conditions, a reduction of executed in-
structions improves performance by reducing the time to
process each thread and thus increasing system throughput.
This gives us five categories of machine-level behavior to
optimize: independent thread count, thread-level work re-
distribution, instruction count reduction, intra-thread par-
allelism, and resource balancing.

Unfortunately, optimizations rarely improve an aspect of
machine-level behavior in an isolated manner. Many opti-
mizations affect several aspects, producing a give-and-take
situation between different categories. Moreover, many op-
timizations increase resource usage and thus compete for
a limited budget of registers, threads, and shared memory.
The most common way in which optimizations interact and
interfere is by their effects on register usage. For example, an
optimization that increases the number of independent in-
structions after a long-latency instruction generally uses ad-
ditional registers. This causes register usage of each thread
and thread block to increase, which in turn can cause the
number of thread blocks assigned to each SM to decrease.

In this section we first discuss the major optimizations
for performance. Using matrix multiplication as an exam-
ple, we show how these optimizations can be applied to an
application to find the optimal configuration.

3.1 Optimizations

The optimizations we consider can be grouped into five
categories based on the primary mechanism by which they
affect machine-level performance. The mechanisms are bolded
for emphasis. We show examples of the optimizations using
a matrix multiplication kernel, with baseline code shown in
Figure P(a). Information on CUDA syntax can be found
in [Z1]. The code shown is executed by each thread. Vari-
ables tx and ty are initialized to each thread’s coordinates
in the thread block. Variables indexA, indexB, and indexC
are initialized, according to thread coordinates, to positions
in the two flattened input matrices and single output matrix
prior to the code shown.

The goal of the first category of optimization is to pro-
vide enough warps to hide the stalling effects of long
latency and blocking operations. Loads from A[indexA] and
B[indexB] are examples of long latency operations in matrix
multiplication. Blocking operations include barrier synchro-
nization, which stops a warp until all warps in the same
block have reached the barrier. A common optimization in
this category is to decrease the thread block size and increase
the number of thread blocks. This can increase the number
of thread blocks assigned to each SM and provide more in-
dependent warps from other blocks when one block reaches
a barrier. This is discussed in more detail in Section

The second category involves redistribution of work
across threads and thread blocks. For matrix multipli-
cation, each element of the output matrix can be computed
independently and the work is grouped into threads and
thread blocks for the sake of data efficiency. The kernel of
Figure Bl(a) is tiled [T9] so that each thread block computes
a square 16x16 tile of the output matrix. Threads in a block

cooperatively load parts of the input matrices into shared
memory, amortizing the cost of global load latency and re-
ducing the pressure on global memory bandwidth. Using
larger tiles enhances the benefit of data sharing, but reduces
scheduling flexibility since a greater fraction of the threads
on an SM must wait at barrier synchronizations. Redistribu-
tion can also be applied at the thread level: in Figure B(b),
the kernel has been further tiled at the thread level so that
each thread now computes two matrix elements instead of
one. In other words, for every tile in the first input matrix,
two tiles in the second input matrix are consumed at a time
for a 1x2 rectangular tiling dimension. This presents op-
portunities for eliminating redundant instructions that were
previously distributed across threads, such as the loads of
values from As in the loop body. A third, occasionally useful
technique is to distribute work across multiple invocations
of a kernel, but we did not find this useful in applications
with good cache behavior.

The third category is to reduce the dynamic instruc-
tion count per thread. Optimizations for this include
traditional compiler optimizations such as common subex-
pression elimination, loop-invariant code removal, and loop
unrolling. However, these optimizations frequently need to
be balanced against increased resource usage. The unrolled
matrix multiplication kernel in Figure B(c) eliminates ad-
dress calculation instructions by replacing variable array in-
dices with constants after unrolling. Register usage is actu-
ally reduced in this example, though it can increase in other
situations.

The fourth category of optimization, intra-thread par-
allelism, ensures the availability of independent instruc-
tions within a thread. A developer can unroll loops to fa-
cilitate code scheduling in the compiler or explicitly insert
prefetching code. Prefetching for matrix multiplication (Fig-
ure [A(d)) is achieved by initiating long-latency global loads
into an additional local variable (register) long before the
variable is used. This optimization category is primarily the
jurisdiction of the instruction schedulers of the compiler and
runtime. The CUDA runtime appears to reschedule oper-
ations to hide intra-thread stalls. However, it sometimes
does this to the detriment of inter-thread parallelism. As
with optimizations to reduce instruction count, scheduling
to reduce intra-thread stalls may increase register usage and
potentially reduce the number of thread blocks on each SM.

The last category is best termed resource-balancing.
The purpose of these optimizations is to shift the use of re-
sources, some of which may be counterintuitive, to produce
better overall performance. One example is proactive, ex-
plicit register spilling by the programmer. By reducing reg-
ister usage, often a critical resource, more thread blocks may
be assigned to each SM. The resulting application may have
much better performance, despite the added latency from
memory access and additional instructions, because the ad-
ditional thread blocks improve overall resource utilization.

One optimization that was useful for all studied applica-
tions is the use of shared memory and caches to improve
data locality for reused values; without this, performance
was generally limited by global memory bandwidth and in-
sensitive to other optimizations. For the experiments in this
work, we apply this optimization unconditionally. We also
do not constrain the optimizations or scheduling performed
by NVIDIA’s compiler and runtime.

Ctemp = 0;

for (...) {
_ shared float As[16][16];
__shared float Bs[16][16];

As[ty] [tx] = A[indexA];
Bs[ty] [tx] = B[indexB];
indexA += 16;

indexB += 16 * widthB;
__syncthreads () ;

for (1 = 0; 1 < 16; i++)
{
Ctemp += As[ty][i]
* Bs[i] [tx];
}

__syncthreads();

}
C[indexC] = Ctemp;

(a) Base Version

Ctemp = Dtemp = O0;

for (...) {
_ shared float As[16][16];
__shared float Bs[16][32];

As[ty] [tx] = A[indexA];
Bs[ty] [tx] = B[indexB];

Bs[ty] [tx+16] = B[indexB+16];

indexA += 16;
indexB += 16 * widthB;
__syncthreads () ;

for (i = 0; 1 < 16; i++)
{
Ctemp += As[ty][i]
* Bs[i] [tx];
Dtemp += As[ty] [i]
* Bs[i] [tx + 16];
}

__syncthreads () ;

}
C[indexC] = Ctemp;
C[indexC+16] = Dtemp;

(b) 1x2 Rectangular Tiling

Ctemp = 0;

for (...) {
__shared float As[16][16];
_ shared float Bs[16][16];
As[ty]l [tx] = A[indexA];
Bs[ty] [tx] = B[indexB];
indexA += 16;
indexB += 16 * widthB;
__syncthreads();

Ctemp +=
As[ty] [0] * Bs[0][tx];

Ctemp +=
As[ty] [15] * Bs[15][tx];
__syncthreads();

}
C[indexC] = Ctemp;

(c) Complete Unroll

a = A[indexA];

b = B[indexB];

Ctemp = 0;

for (...) {
_ shared__ float As[16][16];
__shared float Bs[16][16];

As[ty] [tx] = a;

Bs[ty] [tx] = b;
indexA += 16;

indexB += 16 * widthB;
__syncthreads () ;

a = Al[indexA];
b = B[indexB];
for (i = 0; 1 < 16; i++)
{
Ctemp += As[ty][i]
* Bs[i] [tx];
}

__syncthreads () ;

}
C[indexC] = Ctemp;

(d) Prefetching

Figure 2: Matrix Multiplication Optimization Examples
Code differences from base version are shown in bold.

ouoll 1

muoll 2

ouwoll4 [

B complets

unroll

Ix1

2 2

axBtiles 16x16 tiles

Figure 3: Matrix Multiplication Performance

3.2 Applying Optimizations

In this section we use matrix multiplication to show how
to apply optimizations when searching for optimal perfor-
mance. Our intent is to convey the complexity of the inter-
action between optimizations and resource limits. Figure
shows the run time of matrix multiplication across an ab-
breviated optimization space.

One of the first questions facing the developer is the gran-
ularity at which to spawn threads, since each SM can host
up to 768 threads. Eight thread blocks at a tiling factor
of 8x8 (64 threads per thread block) can be assigned to an
SM, whereas only three thread blocks at a tiling factor of
16x16 (256 threads per thread block) can be assigned. Since
matrix multiplication contains intra-thread block synchro-
nization, it may be tempting to keep the number of thread
blocks high. However, 16x16 consistently outperforms 8x8
because configurations with the latter tile size run into a
memory bandwidth bottleneck.

When we consider the second category of optimizations,
work redistribution, we see that allocating more work per
thread by adjusting the tiling dimensions is generally good
for matrix multiplication. This is true for both 8x8 and
16x16 tiles. It is interesting to note that for 1x4 tiling of
16x16 tiles, each SM only runs one thread block of 256
threads at a time due to heavy register usage, yet this con-
figuration has the highest performance. Despite having only
eight warps that must synchronize at a regular interval, the
elimination of redundant instructions and enhanced instruc-
tion-level parallelism offset that downside.

Next, the performance effects of loop unrolling become
more muddled. As shown in Figure Bi(c), loop unrolling re-

Time (ms)

32 64 % 128 160 192 224 256 288 320 352 384
Threads per Thread Block

Each line varies threads/block with other parameters constant.

Figure 4: SAD Optimization Space

moves redundant instructions, reducing the instruction count
while increasing register usage. When the loop is completely
unrolled, the register usage sometimes drops back down to
the same level as no unrolling. Since the mechanism by
which the CUDA runtime performs scheduling and register
allocation is not visible to the application developer, we do
not have a clear explanation for this non-uniform behavior.

Finally, prefetching generally increases register usage but
does not always reduce the number of thread blocks running
on an SM. When it does, the reduction in exposed global la-
tency often makes up for the loss of a thread block. Thus,
there are only a handful of cases where there is a significant
difference in performance. The exception is the configura-
tion at the far right, where prefetching increased register
usage beyond what is available, producing an invalid exe-
cutable.

In summary, there is a significant number of optimiza-
tion configurations to be considered for an application as
simple as matrix multiplication. An expert with in-depth
understanding of both the algorithm, including its behavior
and usage patterns, and the hardware, including its memory
bandwidth and resource availability, may have been able to
bypass some of the pitfalls we present here. However, a de-
veloper that is not intimately familiar with the application,
hardware, and the CUDA runtime generally cannot deter-
mine if the upside of an optimization will more than com-
pensate for potential downsides without experimentation. As

stated earlier, the optimal configuration for matrix multipli-
cation runs only one thread block of 256 threads per SM,
contrary to the intuition of more concurrent threads equal-
ing better performance.

In addition, the problem becomes much more difficult for
larger and more complex applications. We present in Fig-
ured a full exploration of the optimization space for a sum of
absolute differences (SADs) kernel, which computes a met-
ric used in MPEG video encoders. The number of possi-
ble configurations is much larger than matrix multiplication
and the response of performance to optimizations even more
complex.

4. PERFORMANCE METRICS

Given our observations of the effects of optimizations, we
have developed metrics that estimate the performance of
kernel code to the first order. Instead of being required to
fully compile and run configurations of an application to de-
termine its performance, a developer can use these metrics,
which leverage data such as PTX instructions and resource
usage extracted by the —cubin and -ptx flags, to quickly esti-
mate the configurations’ relative performances. This opens
up the possibility of finding a near-optimal configuration
without performing an exhaustive search of the optimiza-
tion space.

In order for these metrics to correlate to performance,
global memory bandwidth must not be the bottleneck on
performance. This is easily calculated by examining the per-
centage of memory accesses in the instruction stream and
determining the average number of bytes being transferred
per cycle. Dealing with the memory bandwidth issue us-
ing software-managed local memories has been discussed in
prior work [Bl 22] and is outside the scope of this work.

1
Instr x Threads (1)

Equation [Mlestimates the efficiency of the kernel to be run
on the GPU. Instr is an estimate of the number of dynamic
instructions that will be executed per thread on the GPU,
derived from the PTX code generated. We manually anno-
tate the average iteration counts of the major loops in the
kernel to obtain this data. Threads is the number of threads
that will run on the GPU for a given problem size, known
to the developer when writing the code. This is made ex-
plicit in the invocation of the kernel function. This efficiency
metric indicates the overall efficiency of the configuration in
terms of how many total instructions must execute before
the kernel finishes. Assuming high SP occupancy and no
bottlenecks, such as memory bandwidth, high efficiency is a
very good indicator of better performance.

Efficiency =

Instr Wre —1
Regions 2

Utilization = + (Bsm — 1)(WrB)

(2)

Equation B estimates the wtilization of the compute re-
sources on the GPU. Regions is the number of dynamic in-
struction intervals delimited by blocking instructions or the
start or end of the kernel. We consider long latency in-
structions, such as global and texture memory operations
and synchronization instructions, to be blocking instruc-
tions. Sequences of independent, long-latency loads are con-
sidered a unit. We consider SF'U instructions to have long la-

tency when longer latency operations are not present. Wrpg
is the number of warps in a thread block, which is deter-
mined by dividing the number of threads in a thread block
by 32. Bsar is the number of thread blocks assigned to each
SM. The runtime assigns the maximum number of thread
blocks possible to each SM, up to eight, without violating
local resource usage. Consequently, this number can be cal-
culated from the local resource usage obtained via -cubin.

The fraction Régfézs indicates the average number of non-
blocking instructions a single warp is expected to execute
before running into its own blocking instruction. The quan-
tity within the brackets indicates the number of independent
warps in the SM, other than the one currently executing,
that can be executed while the blocking instruction is be-
ing resolved. The first term in the bracket is the number
of other warps in the same thread block as the currently
executing warp. We divide by two because if the blocking
instruction is a synchronization instruction, on average half
of the warps in the same block still need to execute until
they also reach the synchronization point. The second term
in the bracket is the number of warps in other thread blocks
on the SM that can execute. Altogether this is a metric
of the utilization of the compute resources on the GPU by
taking into account how often a warp is expected to wait
and the amount of work available (from other warps) when
it does.

We chose to group synchronization instructions together
with long latency memory operations in order to simplify
the calculation of the Regions term, even though they dis-
play different behaviors. For example, execution at a syn-
chronization point proceeds only when all of the threads in
a thread block have reached that point, while global load
operations execute immediately and do not block execution
until a use of the destination operand is encountered. We be-
lieve that the division by two in the first term in the bracket
captures the first order effects. We are developing a more
detailed cost model to achieve more precise results.

As discussed previously, running nvcc with -cubin and
-ptx flags is faster than full compilation of an application.
Computing the efficiency and utilization metrics is relatively
fast after this information and a few numerical inputs from
the developer are obtained, allowing for fast exploration of
the search space.

We use the matrix multiplication kernel of Figure B(c)
as an example. The kernel is first compiled with -cubin
to obtain the resource usage, which shows that each thread
uses 13 registers, and each block uses 2088 bytes of shared
memory for its 256 threads. To determine the number of
blocks per SM, we check the per-SM resource limits in Ta-
ble In this case, register usage is the limiting factor:
Bsy = [8192/(13 * 256)| = 2. Also, the number of warps
per thread block is Wpp = [256/32] = 8.

This kernel is then compiled with -ptx to determine its
execution profile. The outer loop is annotated with a trip
count of 256, found by dividing the matrix size (4096) by the
tile length (16). With this annotation, the number of dy-
namically executed instructions can be counted statically. A
single thread runs 15150 instructions, including 512 barriers
and 256 pairs of loads, so Instr = 15150 and Regions = 769.
The last bit of information needed is the number of threads
in the kernel. Based on knowledge of the program, we know
there is one thread for each element of the 4k-by-4k output
matrix: Threads = 22*. From these numbers, we compute

Efficiency = 3.93 % 10712 and Utilization = 227. The rel-
ative values of these metrics among different configurations
is more meaningful than their absolute values.

5. EXPERIMENTS

This section presents the values and use of the metrics for
the applications in Table The speedup over highly opti-
mized, single-thread CPU performance shows why porting
these applications to the GeForce 8800 is desirable. Ta-
ble H lists the optimization parameters we chose to vary and
the number of configurations in the search space. We show
how the metrics can be used to find optimal or near-optimal
configurations. We also discuss certain shortcomings of the
metrics.

We used CUDA version 1.0 for our experiments. Exper-
iments were performed on an Intel Core2 Extreme Quad
running at 2.66 GHz with 4GB of main memory. Our pre-
sented data represent runs with smaller inputs than those
considered typical, which allowed us to explore the entire
optimization space in a reasonable amount of time and de-
termine the proximity of our selected configurations to the
optimal ones. Separate experiments have shown that exe-
cution time will scale accordingly with an increase in input
data size for these applications on this architecture.

5.1 Individual Metrics

The efficiency and utilization metrics both carry part of
the information needed to predict the performance of a ker-
nel configuration, though neither is sufficient in isolation for
useful performance comparisons. We use CP as an exam-
ple to show what aspect of performance is captured by each
metric. Figure B shows how CP’s execution time and per-
formance metrics vary with the results-per-thread tiling fac-
tor. We plot the normalized reciprocals of the performance
metrics, so lower is better in both plots. The efficiency
data points overlap and appear as a single curve. Efficiency
closely follows the acutal execution time at tiling factors of
1, 2, 4, and 8. Although utilization varies over this range,
it remains good enough that changes in utilization do not
greatly slow down the machine’s execution throughput. At
a tiling factor of 16, utilization falls enough to bring down
the machine’s throughput, countering further increases in
efficiency. Overall, efficiency improves monotonically while
utilization worsens monotonically with increasing tiling fac-
tor, and the optimum configuration balances both metrics.

While this observational approach can be used to explain
performance, an automated method of choosing good config-
urations needs to combine both metrics, taking into account
their relative importance. We have found that the metrics
are not detailed enough to combine into a single robust cost
function that selects good configurations over a wide range
of benchmarks. Instead, we use the metrics to narrow the
space of possible configurations, as explained in the next
section.

5.2 Searching by Pareto-Optimality

Figure @ shows plots of the metric values for each opti-
mization configuration for all of the applications. The max-
imum metric value along each axis has been normalized to
one for comparison purposes. In general the best perfor-
mance should come from configurations with both high ef-
ficiency and utilization. Thus, we desire configurations lo-
cated towards the upper right corner of the graph.

1/Utilization ---m--- /"
1/Efficiency —a—

Y

Performance Metric

T
Execution Time —+—

Execution Time (sec)

2 L L L

4
Tiling Factor

Figure 5: CP Metrics Versus Performance

In order to reduce the amount of time spent on perfor-
mance evaluation, we choose the small set of configurations
that have no superior in both the efficiency and utilization
metric. This is the Pareto-optimal subset, which is con-
nected by a line for each application. Visually, each point
in this set has no other point both above and to the right of
it. For all benchmarks, the Pareto-optimal subset contains
the best configuration found by exhaustive search. In other
words, instead of exhaustively evaluating the performance
for every configuration, the search can be pruned down to
just the configurations in the Pareto-optimal subset accord-
ing to the metrics. This significantly reduces the search
space and thus the search time, as shown in Table @l The
optimum configuration for each application in Figure B is
circled for higher visibility. The relative values of efficiency
and utilization are different for each benchmark, reflecting
the difficulty of establishing a simple cost function to find
the optimal configuration.

Figure B(b) shows the metric plot for the MRI-FHD ap-
plication. In this graph, configurations tend to be clustered
in groups of seven because changing the tiling factor affects
neither the efficiency nor the utilization of this benchmark,
appearing as a single point at this resolution. Differences in
actual performance within each cluster are small, the max-
imum within a cluster being 7.1%. In the cluster that con-
tains the optimal configuration, the variation between the
slowest configuration and the optimal configuration is 5.4%,
and the variation between the median configuration and op-
timal configuration is only 0.2%. Hence, when several con-
figurations have identical or nearly identical metrics, it may
be sufficient to randomly select a single configuration from
that cluster, rather than evaluating all the configurations.

5.3 Shortcomings of the Metrics

Although the Pareto-optimal subset of the metrics always
contained the optimal optimization configuration for our test
programs, the metrics do have certain shortcomings. Not all
of the configurations in that subset are necessarily close to

Table 3: Application Suite

Application | Description Speedup over
Single-Thread
CPU
Matrix Mul- | Multiplication of two dense 4k x 4k matrices. The CPU version uses version 9.0 of 6.98X
tiplication the Intel C+4 Compiler and version 8.0 of the Intel Math Kernel Library.
CP Calculation of the electric potential at every point in a 3D grid. This kernel is 647X
derived from the “Unroll8y” kernel in [23].
SAD Computation of sums of absolute differences. SADs are computed between 4x4 pixel 5.5IX
blocks in two QCIF-size images over a 32 pixel square search area.
MRI-FHD Computation of an image-specific matrix F7d, used in a 3D magnetic resonance im- 228X
age reconstruction algorithm that operates on scan data acquired in a non-Cartesian
space [24].
Table 4: Parameter Search Properties
Kernel Parameters Varied Configurations | Evaluatioh Selected | Space Selected
Time Configu- | Reduc- | Eval-
rations tion uation
Time
Matrix tile/block size, rectangular tile dimension, un- 93 363.3 s 11 8% 48.6 s
Multipli- roll factor, prefetching, register spilling
cation
CpP block size, per-thread tiling, coalescing of out- 38 159.5 s 10 4% 42.95 s
put
SAD per-thread tiling, unroll factor (3 loops), work 908 7.677 s 16 98% 0.127 s
per block
MRI- block size, unroll factor, work per kernel invo- 175 771.9 s 30 % 208.0 s
FHD cation
1 : 1 <
v
2 * + Iy 2 +
© + T © + 4
N . N .o |
= + + “t = + 4
2 * N : =] + 4
+ + : +
+ 4 M
! B o - ¥ |
0 M 0
0 1 0 1
Efficiency Efficiency
(a) Matrix Multiplication (b) MRI-FHD
1 1 :
+ R \M\
o o + + =
S S . -
8 [i ‘
= . = ‘e * * e
o > + S0t N
. T TN L T : "
. o Rt bl L
0 0
0 1 0 1
Efficiency Efficiency

(¢) Coulombic Potential (CP)

(d) Sum of Absolute Differences (SAD)

The optimal performance configuration is circled in each graph. In (b), each point actually represents as many as seven configurations
that have indistinguishable efficiency and utilization.

Figure 6: Searching by Pareto-Optimal Performance Metric

optimal performance. In the cases we could identify, the
reason was performance impact from factors assumed to be
perfect and not considered in the metrics. We discuss a few
of these issues here.

One interesting aspect of the Pareto-optimal curve for ma-
trix multiplication, in Figure Bi(a), is that all of the config-
urations on it except the optimum are 8x8 tile size configu-
rations. As seen in Figure Bl none of the 8x8 configurations
perform better than any of the 16x16 configurations due
to memory bandwidth issues. This follows our statement
in Section Hl which stated that memory bandwidth issues
must be neutralized before efficiency and utilization become
the dominant performance determinants. In general, the
Pareto-optimal curve is more likely to miss a near-optimal
configuration when a factor other than instruction count and
latency overlap is a significant performance bottleneck. One
should screen away such points prior to defining the curve.

Cache conflicts represent another potential performance
bottleneck that falls outside the scope of the proposed per-
formance metrics. However, discrepancies between the ob-
served performance of a set of configurations and the per-
formance trends predicted by the metrics can still help the
programmer diagnose such bottlenecks. For example, a pre-
liminary version of the MRI-FHD kernel had steadily de-
creasing performance as the tiling factor increased, although
efficiency and utilization metrics remained constant. This
informed the developer that other factors affecting perfor-
mance, namely the layout of the data in the caches, was
causing frequent misses. Changing the data layout yielded a
kernel that is insensitive to changes in the tiling factor and
17% faster than the previous best configuration.

6. RELATED WORK

Code transformation and optimization for parallel pro-
grams have a long history, with much of the foundational
work performed under the auspices of projects such as Po-
laris [6] and SUIF [I1]. Many optimization techniques are
detailed in [I6, 29]. Our work builds on past work by de-
termining when transformations are likely to provide higher
performance on this new class of parallel architecture.

Our transformation guidance technique is based on a full
exploration of the optimization space, an approach that has
been explored by others in various fashions. Wolf et al. [2§]
introduced a compiler that explores the entire optimization
space to find the optimal optimization configuration, but
they do not use metrics to prune the space. Han et al. [12]
also use static models to search for the optimal tiling and
padding size for a conventional multiprocessor. Work has
also been done to study the interaction among different op-
timizations and between optimizations and the hardware
without a full search. These range from those based on
analytical models |9, [I7] to those that use statistical mod-
els [I3] and those that utilize adaptive learning and intelli-
gent search techniques 3} B 26, 27] to find an optimal config-
uration. Finally, work by the SPIRAL project [2] generally
uses an iterative approach to find desirable code, whereas
we do not. Our work is most similar to that of Wolf et
al. [28], but our performance metrics are customized for a
massively data parallel architecture with a high bandwidth
and latency-hiding memory system. To our knowledge, the
only similar study of this emerging family of data-parallel
architectures being used for general purpose computing do-
mains is work by Jimenez-Gonzalez et al. [T5]. They present

an evaluation of communication bandwidth between differ-
ent storage and computing components of the Cell processor
and general guidelines in terms of optimizations, communi-
cation, data access patterns, and programming models for
full utilization.

Our work is related to previous work in phase ordering [Ig].
The effects of optimizations on the GPU are unlike those
on manycore CPU, due to the high thread count and fine-
grained sharing of resources. Transformations tightly inter-
act on the GeForce 8 Series GPUs and must be evaluated
based on their joint effects.

Previous attempts at general purpose programming on
GPU systems have been limited in size and complexity. In
particular inflexibility of memory accesses [, 28] and mem-
ory performance [8, [[0] were major hurdles. A previous
study on performance tuning for GPU [I4] was also con-
strained by the programming environment and the neces-
sity of mapping algorithms to existing GPU features. The
CUDA programming model, along with the hardware sup-
port of the GeForce 8800, allows larger, more complex ker-
nel code to access the low-latency, high-bandwidth on-chip
memory in a more general manner. Choice of memory usage
and optimization for this new generation of GPUs is critical
to achieving good performance.

7. CONCLUSION AND FUTURE WORK

In this work we have proposed an approach for attacking
the complexity of optimizing code for the NVIDIA GeForce
8 Series. Because predicting the performance effects of pro-
gram optimizations is difficult, developers or compilers may
need to experiment to find the configuration with the best
performance. To aid in this, we developed metrics to judge
the performance of an optimization configuration. By plot-
ting the configurations and examining only those configura-
tions on a Pareto-optimal curve, we were able to reduce the
search space by up to 98% without missing the configuration
with the highest performance. The cases where the Pareto-
optimal curve may not contain a near-optimal configuration
are attributable to factors that are not usually first-order
performance determinants and thus not considered in the
metrics.

Future work for this approach is directed towards bet-
ter control of optimizations and improved pruning of the
search space. First, we would like to achieve better con-
trol of scheduling and thus register usage, so that the per-
formance of applications after small code changes does not
radically change. This would make the effects of optimiza-
tions more predictable and potentially further reduce the
search space. Second, we wish to account for factors such
as memory access coalescing that are currently not factored
into the performance metrics, so that they may be more ef-
fective predictors of performance. Finally, we will compare
the effectiveness of our method to random sampling of the
optimization space.

Acknowledgments

We would like to thank David Kirk and NVIDIA for gen-
erous hardware loans and support. We also thank Michael
O’Boyle and the anonymous reviewers for their feedback and
suggestions. Sam Stone is supported under a National Sci-
ence Foundation Graduate Research Fellowship. Any opin-
ions, findings, conclusions, or recommendations expressed in

this publication are those of the authors and do not necessar-
ily reflect the views of the NSF. The authors acknowledge the
support of the Gigascale Systems Research Center, funded
under the Focus Center Research Program, a Semiconduc-
tor Research Corporation program. Experiments were made
possible by NSF CNS grant 05-51665. This work was per-
formed with equipment and software donations from Intel.

8.
(1]
2]
8]

[4]

[5]

[6]

(7]
8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

REFERENCES

NVIDIA CUDA. http://www.nvidia.com/cuda.
SPIRAL project. http://spiral.net.

F. Agakov et al. Using machine learning to focus
iterative optimization. In Proceedings of the 4th
Annual International Symposium on Code Generation
and Optimization, pages 295-305, March 2006.

L. Almagor et al. Finding effective compilation
sequences. Proceedings of the 2004 ACM Conference
on Languages, Compilers, and Tools for Embedded
Systems, pages 231-239.

O. Avissar, R. Barua, and D. Stewart. An optimal
memory allocation scheme for scratch-pad based
embedded systems. ACM Transactions on Embedded
Computing Systems, 1(1):6-26, November 2002.

W. Blume et al. Polaris: The next generation in
parallelizing compilers. Technical Report 1375,
University of Illinois at Urbana-Champaign, 1994.

1. Buck. Brook Specification v0.2, October 2003.

K. Fatahalian, J. Sugerman, and P. Hanrahan.
Understanding the efficiency of GPU algorithms for
matrix-matrix multiplication. In Proceedings of the
2004 ACM Conference on Graphics Hardware, pages
133-137.

S. Ghosh, M. Martonosi, and S. Malik. Precise miss
analysis for program transformations with caches of
arbitrary associativity. In Proceedings of the 8th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
228-239, 1998.

N. K. Govindaraju et al. A memory model for
scientific algorithms on graphics processors. In
Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, pages 89—99.

M. W. Hall et al. Maximizing multiprocessor
performance with the SUIF compiler. I[EEE
Computer, 29(12):84-89, 1996.

H. Han, G. Rivera, and C.-W. Tseng. Software
support for improving locality in scientific codes. In
8th Workshop on Compilers for Parallel Computers,
January 2000.

M. Haneda, P. M. W. Knijnenburg, and H. A. G.
Wijshoff. Automatic selection of compiler options
using non-parametric inferential statistics. In
Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques,
pages 123-132, September 2005.

C. Jiang and M. Snir. Automatic tuning matrix
multiplication performance on graphics hardware. In
Proceedings of the 14th International Conference on
Parallel Architecture and Compilation Techniques,
pages 185-196, September 2005.

D. Jimenez-Gonzalez, X. Martorell, and A. Ramirez.
Performance analysis of Cell Broadband Engine for

(18]

(19]

23]

(24]

25]

(26]

27]

(28]

29]

high memory bandwidth applications. In Proceedings
of the IEEFE International Symposium on Performance
Analysis of Systems and Software, pages 210-219,
April 2007.

K. Kennedy and R. Allen. Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann Publishers, 2002.

T. Kisuki, P. M. W. Knijnenburg, and M. F. P.
O’Boyle. Combined selection of tile sizes and unroll
factors using iterative compilation. In Proceedings of
the 2000 International Conference on Parallel
Architectures and Compilation Techniques, pages
237-248.

P. A. Kulkarni et al. Evaluation heuristic optimization
phase order search algorithms. In Proceedings of the
2007 International Symposium on Code Generation
and Optimization, pages 157-169, March 2007.

M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms.
In Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 63—74, April 1991.

J. Nickolls and I. Buck. NVIDIA CUDA software and
GPU parallel computing architecture. Microprocessor
Forum, May 2007.

NVIDIA Corporation. CUDA Programming Guide,
February 2007.

S. Ryoo et al. Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, February 2008.

J. E. Stone et al. Accelerating molecular modeling
applications with graphics processors. Journal of
Computational Chemistry, 28(16):2618-2640,
December 2007.

S. Stone et al. How GPUs can improve the quality of
magnetic resonance imaging. The First Workshop on
General Purpose Processing on Graphics Processing
Units, October 2007.

D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using
data parallelism to program GPUs for general-purpose
uses. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 325-335,
October 2006.

S. Triantafyllis et al. Compiler optimization-space
exploration. In Proceedings of the 2003 International
Symposium on Code Generation and Optimization,
pages 204-215.

K. Vaswani et al. Microarchitecture sensitive empirical
models for compiler optimizations. In Proceedings of
the 2007 International Symposium on Code
Generation and Optimization, pages 131-143.

M. E. Wolf, D. E. Maydan, and D.-K. Chen.
Combining loop transformations considering caches
and scheduling. In Proceedings of the 29th Annual
ACM/IEEE International Symposium on
Microarchitecture, pages 274-286, December 1996.

H. Zima and B. Chapman. Supercompilers for Parallel
and Vector Computers. Addison-Wesley Publishing
Company, Reading, MA, 1991.

	Introduction
	Architecture
	Microarchitecture
	Architectural Interactions
	Software Tool Support

	Optimization Space
	Optimizations
	Applying Optimizations

	Performance Metrics
	Experiments
	Individual Metrics
	Searching by Pareto-Optimality
	Shortcomings of the Metrics

	Related Work
	Conclusion and Future Work
	References

