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Abstract

One approach to making numerical algorithms easier to write and understand

is to provide a high-level library of polymorphic container types and higher-order

functions for manipulating collections of data. Although polymorphic functions

and data types are a common feature of programming languages, programming

language implementations conventionally rely on compile-time knowledge of data

layout when generating machine code. Ensuring that sizes are known at compile

time requires boxing objects, which sacrifices performance; dynamically compil-

ing functions, which requires heavyweight runtime support; prohibiting first-class

polymorphism, which limits expressiveness; or using a predetermined set of mono-

morphic data types, which limits the range of usable types.

To use efficient data layouts in statically compiled polymorphic code without

limiting the use of polymorphism, we propose a low-level language that allows

object sizes to depend on run-time type information. This language is used as an

intermediate language in our prototype compiler, Triolet. So that users do not

need to be aware of the details of data layout and object sizes, we further propose

a translation from a high-level, fully boxed language to the internal language. To

evaluate Triolet, we measured the performance of a number of functional numerical

algorithms. These algorithms use a library of data types and functions, some

of which utilize first-class polymorphism. These algorithms achieve 52% of the

performance of equivalent monomorphic implementations in C, often allocating

the same amount of memory. In contrast, using boxed arrays slows down Triolet

by 2.87
�
. These results demonstrate that it is possible to achieve efficient data

layout in this style of numerical code, and good data layout is key to achieving

good performance.

1 Introduction

Functional programming makes it possible to write numerical codes in a clear, simple,
declarative style. It’s possible to specify algorithms in terms of collective operations—
maps, reductions, and so forth—that transform entire arrays from one meaningful form
to another, instead of using low-level array reads and writes to incrementally alter arrays.
This has motivated the development of numerous numerical functional programming
languages and libraries [15, 2, 34, 7, 20]. Collective operations are typically polymorphic
so that they can be reused on arbitrary data types. If collective operations are to be
the building blocks of numerical algorithms that are as fast as what can be produced
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in a low-level, imperative programming language such as C, polymorphism must not
impose a significant run-time cost. In particular, the underlying language must support
efficient representations of polymorphic data structures.

Unfortunately, the go-to method of implementing polymorphism is to box objects
whose types are not statically known. A boxed object is stored in a chunk of heap-
allocated memory and referenced by a pointer. Boxed objects are costly to use: each
boxed object has to be allocated and later garbage collected, and an extra pointer
indirection is needed to access its data. Parametrically polymorphic container types
such as Java’s ArrayList and Haskell’s Array keep their contents in boxed form. In
applications that chiefly operate on arrays of numbers, the overhead of boxing and
unboxing individual array elements can dominate a program’s execution time [28, 43, 5].

Previous work avoids boxing by generating unboxed monomorphic code where the
original program is polymorphic. Generating monomorphic code requires prohibiting
first-class polymorphism [39, 15, 2], deferring compilation until run time [21, 33], or
selecting from a limited set of predefined unboxed interfaces using compile-time spe-
cialization [14], overloaded interfaces [20], or run-time inspection of tags [27, 25] or
types [18]. These approaches all have drawbacks: they limit a language’s expressive-
ness, they rely on a heavyweight just-in-time compilation infrastructure, or they can
only unbox a small subset of the types available to users.

We take a more direct approach by supporting unboxed polymorphism natively in
our programming language, Triolet. Triolet is a subset of Haskell with strict semantics
and a syntax inspired by Python. The efficient representation of data structures brings
the performance of functional programming with collective operations nearly on par with
imperative loops written in C. Numerical algorithms written in the Triolet language are
statically compiled to code that runs at 52% (geomean) the speed of the same algorithms
in C. Moreover, polymorphic unboxing provides a necessary performance boost: those
Triolet algorithms would run 2.87 � slower if all arrays were boxed. Both user code
and the library of collective operations are compiled by the Triolet compiler. While the
generated code is mostly monomorphic, support for first-class polymorphism is required
due to the use of type classes [42] and iterators [10] in the library interface.

The challenge of implementing the combination of polymorphism and unboxing is
that an object’s memory layout may not be statically known. Consequently, a compiler
cannot statically compute the sizes of objects or the positions of an object’s fields,
which are needed in order to generate address computation and memory operations.
Triolet treats an unboxed object as a chunk of bytes with a size determined by its
type and embeds run-time size computation into programs in a manner similar to type-
passing [18]. Primitive operations for creating and accessing objects take sizes as extra
run-time parameters. The only data types that cannot be unboxed are recursive data
types and those whose type does not carry information about their memory layout (e.g.,
functions).

Immutable objects, in programming languages that have them, must be created and
initialized in a single step so that a program only sees fully built objects. This is typically
done by copying fields into an object when it is created, but in an unboxed setting this
would lead to unnecessary object creation and copying. Triolet allows objects to be
constructed inside other objects, rather than copied, so that unboxed fields can be
written efficiently without violating immutability.

To represent unboxed object accesses internally, the Triolet compiler uses a variant of
System Fω that we call System Fω

U , for “System Fω with unboxing”. System Fω
U supports

boxed and unboxed types, higher-kinded types, arrays, algebraic data types, existential
types, and first-class polymorphism in a type-safe way. Since the compiler’s internal
representation is close to other System Fω-based languages, it can employ existing,
general-purpose optimization techniques [40, 30].
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Users do not see any additional complexity when writing functions in Triolet. Triolet
programmers write as if all objects were boxed. Algebraic data types are defined in
System Fω

U and can be used in Triolet code. The compiler translates Triolet to System
Fω
U , unboxing object fields whenever possible. More precisely, an object is unboxed

if it has an unboxed type and is put into a field that has an unboxed type. The
compiler inserts run-time size computation, selects boxed and unboxed representations,
and coerces [24] between representations as needed.

The implementation of System Fω
U is ongoing. Our experimental results are gen-

erated using a prototype Triolet compiler. As we describe in Section 8, the prototype
compiles Triolet code using System Fω

U as an intermediate language, but it has some
limitations with regard to analyzing data type definitions and compiling code written
directly in Fω

U .
In summary, our contributions are the following.

• We introduce System Fω
U , the first programming language that supports poly-

morphism over unboxed types without relying on a translation to monomorphic
code.

• We present an algorithm to compile System Fω
U ’s primitive data structure opera-

tions to memory loads, stores, and address calculation.

• We present a translation algorithm from a fully boxed language to System Fω
U ,

allowing users to take advantage of unboxed polymorphism without managing
unboxing explicitly.

• We demonstrate that functional numerical algorithms written using polymorphic
libraries in Triolet achieve 52% the performance of handwritten C code.

2 Preliminaries

Some notational conventions are common to the several intermediate languages that
we discuss. Type parameters and type application are explicit. For variables, we use
letters like x or sans-serif words with a lowercase initial like repTuple. Type variables are
Greek letters like α. Type constructors are sans-serif words with an uppercase initial
like Tuple. Data constructors are sans-serif words with a lowercase initial like tuple.
When a type constructor has a single data constructor associated with it, we give the
same name (modulo capitalization) to both. Function application on the left-hand side
of an equation is shorthand for lambda abstraction, e.g.,

id :
�
α : � . α � α

id α x � x

is shorthand for let id � Λα : � . λx : α. x.
We use substitutions to instantiate polymorphic types. Given a substitution θ, we

write θ � τ � for the type produced by applying the substitution θ to τ . We write � π 	 α 
 for
the substitution that replaces each occurrence of α by π, and � π 	 α 
 for the substitution
that replaces each occurrence of an α from the list α by the corresponding type in π.

Some algorithms are type-directed, meaning that type inference, kind inference, or
a similar task is run as part of the algorithm. When presenting an algorithm, we put
subtasks in a “where” clause after an equation. To illustrate, the definition

foo � Γ, τ ��� bar � κ, τ �
where Γ � τ : κ

should be read as defining an algorithm, foo, that runs kind inference on the type τ to
infer its kind κ, which is passed to bar.
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3 The Role of Polymorphism in Functional Numeri-

cal Programming

Triolet encourages a programming style that heavily utilizes polymorphic functions and
admits no guaranteed translation to monomorphic code. Consequently, the performance
of polymorphic operations has a large impact on Triolet’s overall performance, which
makes the support for unboxed polymorphism important. We briefly outline the role of
polymorphism in Triolet programming.

Functional programming allows the clear and concise expression of programs by
decomposing them into modular parts [19]. Some styles of numerical functional pro-
gramming employ higher-order functions that operate on collections of data [37]. Such
collective operations capture common computational structures while abstracting over
the computation performed within those structures. For example, consider the task of
finding the shortest nonempty array in a given array s of arbitrary-length arrays. We’ll
decompose this task into simpler parts, using iterators to pass sequences of data from
one task to the next and collective operations to build transformations out of operations
on individual pieces of data.

To get the nonempty arrays from the input, we use the collective operation filter.
Given a predicate f and iterator x, filter f x returns an iterator over only those members
of x that satisfy the predicate. That is, a member y appears in the output if and only
if f y returns true. An array a is nonempty if its length is nonzero:

nonempty a � length a 
 0

Putting the parts together, filter nonempty x returns the nonempty arrays from iterator
x.

To get the shortest array from an iterator, we use an associative reduction to compare
pairs of arrays repeatedly, keeping the shorter each time, until all arrays have been
examined. The shortest of two arrays is the one with a smaller length:

shortest a b � if length a � length b then a else b

The collective operation reduce1 uses a combining function to reduce an iterator down
to a single value. The shortest array in an iterator x is computed by reduce1 shortest x.
It is more typical to define reduction to take a third argument, the combining function’s
identity value. This two-argument variant is useful with combining functions like shortest
that have no identity value.

We assemble these parts into a function that iterates over its input (by calling iter),
extracts the nonempty elements, and finds the shortest, shown below.

shortestArray s � let nonempty a � length a 
 0 in

let shortest a b � if length a � length b then a else b in

reduce1 shortest � filter nonempty � iter s ���
Collective operations are polymorphic; they can manipulate arbitrary data types be-

cause they stipulate nothing about what type of data a collection may contain. When
filtering, filter does not directly inspect values, but rather calls its predicate argument
to extract information from a value. When reducing, reduce1 selects values to combine,
but calls its combining function to actually create a combined value. Typically, a lan-
guage implementation would box values in polymorphic code so that filter and reduce1

can pass pointers around. Similarly, iter would expect an array of pointers as its ar-
gument. By supporting polymorphic unboxing, Triolet allows iter to access unboxed
arrays. Temporary values are initially boxed—conventional optimizations can unbox
them.
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In a suitably limited language, it is possible for a compiler to eliminate polymorphism
by replicating code for each data type, called monomorphization. However, monomor-
phization is not possible in languages with polymorphic values [26] because a program
may create types on the basis of run-time decisions.

Iterators, used by Triolet’s library interface, are one data type that cannot be
monomorphized. As in prior work [10], iterators are polymorphic because they have
hidden state in the form of existentially typed fields. From a programmer’s point of
view, all iterators that produce the same data type can be used interchangeably. For
instance, given some iterators i and j, we could write if b then i else j to select one of
the two iterators depending on the run-time value of b. When a collective operation runs
an iterator, it keeps track of the iterator’s state; but since if b then i else j may have
one of two different state types, the state type is unknown to the collective operation
and must be boxed. Optimizations can sometimes identify an existentially bound type
and use that knowledge to generate unboxed monomorphic code, but this is not always
possible.

Triolet supports operator overloading via type classes, which require support for
first-class polymorphic functions [29]. An overloaded function call translates to code
that dynamically looks up a function, then calls it. For example, the iter function
is overloaded to work with various array-like container types. When constructing an
iterator over an array, the run-time lookup returns the internal library function iterArray;
when constructing an iterator over an iterator, it returns iterIterator. Each of these
library functions is polymorphic, able to use an array (or iterator) of any data type.
Thus, iterating over an array utilizes a first-class polymorphic method.

In summary, the programming abstractions that we wish to support require first-class
polymorphism. Optimizations can convert from polymorphic to monomorphic code, but
it is impossible to do so in all cases. Consequently, we support polymorphism throughout
the Triolet compiler. We wish to generate working code for all valid inputs, and to
generate fast code in the common case where the compiler can eliminate polymorphism.

4 Overview of Unboxed Polymorphism in the Triolet

Compiler

The discussion of how Triolet supports unboxed polymorphism is organized into three
sections.

Section 5 discusses support for unboxed polymorphism in the context of a functional
language. We point out some aspects of polymorphism that are easy in a fully boxed
language but become tricky when unboxing is allowed. For concreteness, data structure
access is discussed in terms of λL, a simplified form of Triolet’s backend language,
which accesses memory through explicit pointer arithmetic, loads, and stores. We then
introduce a model of memory layout that bridges the notions of memory operations and
immutable data structures and makes these tricky aspects of polymorphism easier to
reason about.

Section 6 presents the compiler’s internal language, System Fω
U . The first few sub-

sections describe the kind system, the way objects are laid out in memory, and the type
system. The type system is unusual in its dependence on the low-level representation
of data types (Section 6.4). Before type checking, data type definitions are analyzed to
produce constructor signatures (Section 6.4.3), which are used in the typing judgments
for operations on data types (Section 6.5). Data type definitions are also analyzed to
determine how operations on data types are lowered to explicit memory operations. The
algorithm for lowering code from System Fω

U to λL is presented in Section 6.6.
Section 7 presents the translation from Triolet to System Fω

U . The translation is
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Figure 1: An array of tuples of floats in different storage strategies. Rounded rectangles
are variables. Other rectangles are heap data. In part (a), all objects are boxed. In
part (b), tuples are bare and floats are values.

guided by analysis of data type definitions (Section 7.2) and by the type signatures of
library functions written in System Fω

U . The first step of the translation is to insert
run-time type information into a Hindley-Milner typeable [12] input language. This
is implemented as an extension to type inference (Section 7.3). The second step is
to identify data in the fully boxed code that should be unboxed and represent it in
unboxed form (Section 7.4). This step introduces the code necessary to manipulate
unboxed types, and to use boxed and unboxed types together.

5 Unboxed Polymorphism

A functional programming language provides the illusion that a variable can contain
an arbitrarily complex piece of data. In reality, data is decomposed into discrete pieces
linked by pointers. The choice of where to place data and where to use pointers has
consequences for the performance and complexity of a language implementation. In
Triolet, there are three ways that storage may be reserved for data, or storage strategies.
A boxed object is represented as a heap-allocated chunk of memory. We say that a
language is fully boxed if the language boxes all objects. A bare object is stored directly
in another object in memory. Bare objects reside inside boxed objects (possibly nested
in other bare objects). Variables point to, but never contain, boxed or bare objects. A
value object is stored directly in another object or in a variable. Since Triolet variables
are register allocated in the final stages of compilation, value variables are the closest
thing to register storage that we consider.

Figure 1 illustrates how the array of tuples ��� 33, 66 � , � 11, 22 ��
 can be represented
in different ways by using different storage strategies for its components. Part (a)
illustrates a memory organization where every object is boxed. The array, tuples, and
integers are individually allocated. Part (b) illustrates a memory organization where
the array is boxed, the tuples are bare, and the integers are values. There is only one
block of heap-allocated memory, and integers occupy registers for instant access.

We use the low-level imperative language λL, shown in Figure 2, to demonstrate how
polymorphism may be handled using pointer arithmetic, loads, and stores. λL is mono-
morphic and does not associate type information with pointers or memory locations.
Polymorphism is implemented by manipulating pointers that point to unknown data.
Variables hold data that can be put in registers: integers, pointers, the unit value, and
products of these. Functions have pointer type. Products are unpacked using the multi-
assignment pattern let x � y � . . . in . . . . In types, values, and patterns, we abbreviate
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Types σ : � Int � Ptr ������� σ � σ

Values v : � x � N ������� v � v

Patterns p : � v ������� p � p

Expressions e : � v � e e � e op e � loadσ e � storeσ e e � alloc e� λx : σ. e � let p � e in e

Figure 2: Syntax of λL, a low-level, load-store language.

nested products σ1 ��� σ2 ��������� as � σ1, σ2, . . . � or � σ � . There are the usual primitive
operations for integer and pointer arithmetic. For looping, we assume a predefined func-
tion loop such that loop f n performs the sequence of calls � f 0 � , � f 1 � , . . . , � f � n � 1 ���
and returns ��� .

We make some simplifying assumptions in the presentation. Whereas λL permits
arbitrary nesting of expressions and lambda functions, the Triolet compiler maintains
expressions in ANF [16] as its more rigid structure simplifies compilation to C. Condi-
tional execution and recursive function definitions are omitted from λL; they present
no additional challenge to supporting polymorphism. Pointers, integers, and the unit
type are the only primitive types in λL. Memory is assumed to be word-addressed with
pointers and integers occupying one word. Support for primitive types with different
sizes and alignments is orthogonal to the topic of this paper.

5.1 Accommodating Polymorphism

When we don’t have the luxury of representing everything as a boxed object, imple-
menting polymorphism becomes tricky. Some objects are boxed and represented by a
pointer, while others are unboxed and represented in-place; polymorphic code has to
deal with both. Getting polymorphic code to work with unboxed data boils down to
two issues. First, object sizes must be passed around explicitly in order to do address
computation. Second, parameter passing must be handled consistently.

In a fully boxed language, we could define the following function that uses a function
f to process the contents of a tuple. The function is polymorphic; parameters α and
β give the types of the tuple fields, and γ gives the return type. The case expression
reads the fields of tuple t, binding each one to a variable.

tupleApply :
�
α, β, γ : � . � α � β � γ � � Tuple α β � γ

tupleApply α β γ f t � case t of tuple x y. f x y

When data structure accesses are translated into explicit pointer operations, the
following λL code is produced. Since object fields are boxed, x and y are each pointers
to boxed objects. These pointers are loaded and passed as arguments to f .

tupleApply : Ptr � Ptr � Ptr

tupleApply f t � let x � loadPtr t in

let y � loadPtr � t ! 1 � in
f x y

To support tuples of bare objects, we have to adjust both the definition of tupleApply
and the definition of whatever functions are passed as f . A polymorphic tuple consists of
two objects laid out consecutively in memory. Because the object contents are unknown,
polymorphic code can only compute their addesses and pass them along. The object
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sizes s1 and s2 are passed as extra parameters to tupleApply. (Both sizes are passed,
though only the first is used in this case.) The parameters to f are derived from the
sizes and the pointer t using pointer arithmetic.

tupleApply : Int � Int � Ptr � Ptr � Ptr

tupleApply s1 s2 f t � f t � t ! s1 �
Responsiblity for loading the fields is offloaded to f , so we now look at two functions

that could be passed as f . To add a tuple of unboxed integers, we would pass the
following function as f . It loads the values, adds them, puts the result in a newly
allocated object, and returns a pointer to it. These memory operations convert between
storage strategies: the inputs are bare (held in fields of an object), addition operates on
values (held directly in variables), and the return value is boxed (allocated on the heap).
Unlike in tupleApply, there are no size parameters because sizes are known statically.
The return type is known to be Int, so its size appears as the constant 1.

my add : Ptr � Ptr � Ptr

my add p q � let m � loadInt p in

let n � loadInt q in

let r � alloc 1 in

let ���"� storeInt r � m ! n � in
r

To compute the composition of two boxed functions stored in a tuple, we would start
with a tuple holding two pointers to functions (recall that boxed fields are represented as
pointers). The function argument of tupleApply receives pointers to these fields. Given
two pointers g and h to functions that operate on boxed objects, their composition is
λx:Ptr.g � h x � . However, tupleApply does not pass pointers to functions as the arguments
of f ; it passes pointers to pointers to functions. To match up calling conventions, we
can build a function my compose that loads from its arguments and then composes the
two functions. This function can be passed as the parameter to tupleApply.

my compose : Ptr � Ptr � Ptr

my compose p q � let g � loadPtr p in

let h � loadPtr q in

λx : Ptr. g � h x �
As my concatenate and my add show, storage strategy conversions are sometimes re-
quired when interfacing with polymorphic code.

5.2 Initializing Objects Efficiently

Initializing bare objects in a language with immutable data, such as Triolet, is a delicate
matter. Triolet objects are created and initialized in a single step, and cannot be mod-
ified thereafter. Objects are created by primitive operations (for algebraic data types)
or library functions defined in λL (for other data types). In the usual formulation of
algebraic data types [22], an object-constructing operation takes field values as argu-
ments and returns a newly constructed object containing those values. For instance, in
a fully boxed language, the following expression constructs the tuple � 1, � 2, 3 ��� .
tuple Int � Tuple Int Int � 1 � tuple Int Int 2 3 �
The tuple data constructor constructs a tuple, given the types and values of its fields.
First, the values 2 and 3 are assembled into � 2, 3 � . Then, 1 and � 2, 3 � are assembled into
the final tuple.
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One cannot construct bare tuples in this order. The inner tuple is to be created first;
however, it will be stored in the outer tuple, which is not created yet. A workaround
would be to allocate temporary storage for the inner tuple, then copy it into the outer
tuple. However, if the Triolet compiler were to allocate temporary storage for each bare
object, it would perform as many allocations as a fully boxed language!

A better solution is to start by allocating storage for the outermost object, then
write the integers 1, 2, and 3 at the right offsets in that object. λL can certainly do
this. However, in System Fω

U these operations must be expressed in terms of immutable
objects, because the correctness of optimizations depends on objects being immutable.
We change the semantics of data-constructing operations to initialize bare objects in
place without exposing side effects in System Fω

U . New bare objects are encoded as
initializers. An initializer is a one-parameter function that takes a pointer to some
uninitialized memory, and writes a bare object into it. Converting the fully-boxed
expression above to use bare objects and translating it to λL yields the following code.

let t �#� λr : Ptr. let ���"� storeInt r 2 in

storeInt � r ! 1 � 3 � in
λs : Ptr. let ���$� storeInt s 1 in

t � s ! 1 �
The two tuples have been translated to functions. The first one, when passed a pointer
r, constructs a tuple at r by writing 2 to its first field and 3 to its second. The second
one, when passed a pointer s, writes 1 to its first field and calls the first initializer to
write its second field. Triolet’s backend inlines the application t � s ! 1 � to produce the
following function.

λs : Ptr. let ���$� storeInt s 1 in

let ���$� storeInt � s ! 1 � 2 in

storeInt � s ! 2 � 3
This function creates the tuple by writing three integers to memory. By constructing
initializers instead of bare objects, the Triolet compiler can generate code for each tuple
individually, while still writing data directly into complex objects.

An object can be created from the initializer by allocating memory and passing the
address to the initializer. Abbreviating the expression above as X , the tuple can be
created by

let p � alloc 3 in

let ���"� X p in

p.

An initializer can also be created from a bare object. This is done to copy an object.
The function below copies from p to r. Applying it to one parameter produces an
initializer that makes a copy of that parameter.

λp : Ptr. λr : Ptr. let ���"� storeInt r � loadInt p � in
let ���$� storeInt � r ! 1 ��� loadInt � p ! 1 ��� in
storeInt � r ! 2 ��� loadInt � p ! 2 ���

5.3 Unboxed Arrays

While Triolet’s unboxed arrays are not algebraic data types, they work similarly. System
Fω
U and Triolet code accesses arrays through library functions that are defined in λL.

The library functions utilize dynamic size information for address computation and
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initializers to write results directly into arrays. As with tuples, array construction and
array reading does not allocate memory.

Reading an unboxed array performs address arithmetic on the array pointer to get a
pointer to an array element. The function takes the array element size, an array index,
and an array pointer, and returns an element pointer.

index : Int � Int � Ptr � Ptr

index s i p � p ! s % i
Arrays can be constructed in several ways; a common one is to tabulate a function.

Tabulation takes an array element size s, an array size n, and a function f . At each
index i in a new array r, it writes the value returned by f i.

tabulate : Int � Int � Ptr � Ptr �&���
tabulate s n f r � loop n � λi : Int. f i � r ! s % i �'�

In the loop body, f i is called to compute an initializer. This initializer is passed the
address of an array element, r ! s % i. The tabulate function itself returns an initializer
when partially applied, since it creates an array at the address that r points to.

5.4 From Loads and Stores to Data Types

When explaining how to access tuples and arrays in λL, we started by identifying what
data types were held in memory. We then reasoned about the memory layout of those
data types to write address arithmetic. In the next section, we will put this reason-
ing on a more rigorous foundation and extend it to all of System Fω

U . The types that
can be expressed in System Fω

U are determined by its kind system (Section 6.3). Each
proper type is assigned a memory layout (Section 6.4). System Fω

U ’s type system as-
signs types to variables and expressions (Section 6.5). Finally, types and their memory
layouts determine how System Fω

U object accesses are lowered to λL memory operations
(Section 6.6). We have noted that, to manipulate polymorphic unboxed objects, it is
necessary to insert code for computing run-time size information and converting objects
between storage strategies. This code is explicit in System Fω

U . It consists of algebraic
data type operations and is compiled no differently from other code.

Storage strategy conversions are encoded using algebraic data types, as well. In
System Fω

U , function my add is given bare integer objects (which have type Stored Int),
but the ! operator only works on value integer objects (which have type Int), so a
conversion from the former to the latter is needed. We give the definition of Stored in
Section 6.1, but the essential idea is that a Stored τ is a bare object containing a τ

and nothing else, for any value type τ . An Int is retrieved from a Stored Int by reading
its contents—this is just a loadInt operation. A new Stored Int is created by writing
an Int into a new object—this is just a storeInt operation. Similarly to Stored, there
is a type constructor Boxed for allocating a bare object on the heap. We refer to type
constructors whose purpose is to cast between storage strategies, such as Stored and
Boxed, as adapter types.

The System Fω
U code of my add uses these adapter types to convert between storage

strategies. We illustrate the idea here.

my add : Stored Int � Stored Int � Boxed � Stored Int �
my add p q � case p of stored m.

case q of stored n.

szStored svInt ( boxed � Stored Int �)� stored Int � m ! n �'�
10



In this function, the case expressions load integers from p and q. The data expression
stored Int � m ! n � produces an initializer that stores the return value into memory. The
data expression szStored svInt ( boxed � Stored Int ��� . . . � allocates memory for the return
value. The latter data expression allocates memory to hold a Stored Int, executing the
expression szStored svInt to compute the size of memory to allocate. Of course, this size
can be determined statically, and Triolet is indeed able to optimize it to a literal value
in λL. Boxed objects in polymorphic code may have a statically unknown size, in which
case the size is computed at run time.

It would be dangerous to allow an arbitrary integer to be passed for an object’s
size; inconsistent size values would lead to invalid memory loads or stores. System Fω

U

ensures correct use of sizes by encoding the size of a bare object of type τ in an object
of type Sz τ . Sz is an algebraic data type containing an Int. The parameter to Sz is
a phantom type [23]: it is used to categorize Sz objects but does not appear in their
contents. The Triolet compiler generates a size-computing function for each algebraic
data type based on its memory layout. The types of these functions ensure that it is
not possible to accidentally compute or use an incorrect size.

6 Unboxed Polymorphism in System Fω
U

System Fω
U (abbreviated henceforth as Fω

U ) is the Triolet compiler’s internal language. At
the Fω

U stage, operations that were implicit in Triolet source code (such as class method
lookups and storage strategy conversions) have become explicit, but the language is still
sufficiently high-level to make transformation easy. Most of the compiler’s optimizations
are performed on Fω

U . The syntax of Fω
U is shown in Figure 3. The primary differences

from ordinary Fω appear in the parts of the language that deal with algebraic data
types: data type definitions, case expressions, and data expressions. There are also
extra type-level and kind-level constants to describe unboxed data types. This section
introduces these features.

Kinds in System Fω are the “type system of types”, used to classify types and exclude
invalid type terms from the language. In Fω

U , kinds also differentiate data types that are
handled differently during code generation. The three storage strategies are kinds. The
kind out classifies types of pointers to uninitialized or partly initialized objects. The
role of these output pointers is discussed in Section 6.2. The kind Z classifies type-level
integers, which we use for describing array sizes. Some compiler algorithms are type-
and kind-directed: when they encounter a value (or type), they compute its type (or
kind) in order to decide what to do with it.

The type language of Fω
U is that of System Fω , extended with built-in and user-

defined constants. We write type-level integers with a subscript (e.g., 3type) to dis-
tinguish them from integer values. Since we do not perform arithmetic on type-level
integers, they are merely symbolic constants as far as the compiler is concerned. Int

is an unboxed integer type. AsBare and AsBox are primitive type functions [35] that
inspect their argument in order to produce a new type. These type functions establish a
one-to-one correspondence between boxed types and bare types, reflecting the fact that
any object can be represented in a boxed form or bare form. They are used when trans-
lating fully boxed Triolet code to unboxed Fω

U code. Types are erased when lowering
Fω
U to λL and do not exist at run time.
Unboxed array types are built with the primitive type constructor Arr. An Arr τ π,

for any τ and π, consists of τ instances of π laid out consecutively in memory. For
instance, an array of 10 integers has type Arr 10type � Stored Int � . An array’s size need
not be a constant. Unboxed arrays are really a building block for more convenient
user-level array objects, as we discuss in the next section.

Data type definitions create additional type-level constants. In a data type definition

11



Type constructors T Data constructors C

Type-level integers Ntype Type variables α, β, γ, . . .

Integer literals N Value variables . . . , x, y, z

Kinds κ, ι : � box � val � bare � out � Z � κ � κ

Types τ, π : � α � τ τ � � α : κ. τ � λα : κ. τ � τ � τ� T � Ntype� Int � Arr � Out � AsBare � AsBox
Data types data : � data T α : κ : κ where C α : κ τ

Expressions c, d, e : � x � N � let x � e in e� e e � e τ � λx : τ. e � Λα : κ. e� case e of e ( C α x. e � e ( C τ τ e

Figure 3: Syntax of System Fω
U .

data T α : κ : κT where C β : ι τ , the type constructor definition T α : κ : κT defines
a new type constructor T by specifying how to build proper types from it: T may be
applied to any choice of type arguments τu : κ to produce the proper type T τu, which
has kind κT . The kind given for κT , which must be box, bare, or val, determines a
data type’s default storage strategy. The data constructor definition C β : ι τ defines
C by specifying what information is contained in an object, given a particular choice of
arguments to T . The existential type variables β : ι stand for types that are stored in
an object, and the field types τ describe the values stored in an object.

The expression language includes Fω variables, application, and abstraction terms.
Integer literals evaluate to value objects. Let expressions bind the result of an expres-
sion to a variable while executing another expression. Two forms of expressions access
algebraic data types. A data expression takes some arguments and assembles them into
a new object. A case expression reads the fields of an object. Fω

U extends the conven-
tional, fully boxed formulation of algebraic data types with run-time size information.
In the fully boxed formulation, a data expression C τ π e constructs an object of type
T τ containing the existential types π and field values computed by e. In a fully boxed
formulation, a case expression case e of C α x. d inspects the object computed by
e, binding each type variable α to an existential type and each variable x to a field
before evaluating d. Essentially, it extracts the parameters π and e that were passed
to an earlier data expression. Fω

U ’s data and case expressions additionally take run-
time size information that is used to generate address computation. This information
is passed as a sequence of extra size parameters. For example, in the data expression
szStored svInt ( boxed � Stored Int � x, the subexpression szStored svInt computes the
size parameter. Two or more parameters are written as a comma-separated list, e.g.,� x, y � . When there are no parameters, we omit the ( symbol. The number and type
of parameters is determined by an analysis of data type definitions.

For simplicity, we discuss compiler support for algebraic product types only. Tri-
olet supports algebraic sum types, in which data type definitions are generalized to
have multiple constructor signatures. We will use sum types from time to time when
discussing example uses of data types. We write multiple constructor signatures as
alternations: data T α : κ : κT where * C1 β : ι1 τ1 � C2 γ : ι2 τ2 + . Case expressions
match a value against one of several alternative patterns, using similar syntax: case c

of x (,* C1 β τ1. d � C2 γ τ2. e + .
12



6.1 Some Data Types

Triolet uses algebraic data types extensively. They are used to hold user data, to hold
run-time size information, and to effectively change an object’s storage strategy. Before
entering into a detailed presentation of Fω

U , we motivate the support for unboxed data
type definitions with examples of data types.

Tuples. Probably the simplest interesting example of a parametric data type is a
tuple, defined by

data Tuple � α : bare ��� β : bare � : bare where tuple α β.

For any given types τ : bare and π : bare, we can construct the tuple type Tuple τ π : bare.
Objects of this type contain a value of type τ and a value of type π.

It is also useful to have a tuple type with kind val. We use this type for returning
multiple values from a function. Unlike Tuple, a TupleV can be returned in registers or
on the stack.

data TupleV � α : val �-� β : val � : val where tupleV α β

Adapter Types. Since the fields of a tuple have kind bare, we can only put bare
objects into a tuple. For example, Tuple Int Int is not a valid type because the primitive
type Int has kind val. Adapter types solve this problem by packaging an object of one
storage strategy in an object of another storage strategy. Using the adapter type

data Stored � α : val � : bare where stored α,

we can construct the type Stored Int representing a bare object containing an Int. A
variable holding an Int is likely to become a register holding a machine-level integer.
A variable holding an Stored Int, on the other hand, is a pointer to a field of some
heap-allocated object. Converting between Int and Stored Int amounts to reading an Int

from memory or writing one to memory. This is an extension of an existing technique
to package value objects into boxed objects [31].

We use four additional adapter types for converting between bare and box. The
primed and un-primed types are structurally identical, but some type functions treat
Ref and Boxed differently (Section 6.5.1). These adapter types cover only three of the
six possible conversions between box, val, and bare, but they will suffice.

data Ref � α : box � : bare where ref α

data Boxed � α : bare � : box where boxed α

data Ref ./� α : box � : bare where ref . α
data Boxed . � α : bare � : box where boxed . α
Pairs. Fields can be have types more complex than just type variables. For instance,
we can pair two values of the same type using a tuple.

data Pair � α : bare � : bare where pair � Tuple α α �
A Pair α has the same memory layout as a Tuple α α, so we pay no run-time cost

for wrapping a tuple in another type.
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Option types. A typical example of sum types is the option type, which contains
either nothing or a single value. In a fully boxed language, an option object is a
boxed object containing a tag value and possibly a pointer to another object. (Some
implementations optimize the layout, but they retain at least one pointer.) We can
unbox both the option type and its contents:

data Maybe � α : bare � : bare where * just α � nothing +
As an example, we can represent a possibly-unbounded interval with the type

Pair � Maybe � Stored Int �'� . The pair holds a lower and upper bound, and a nothing

value means that that end of the interval is unbounded. Because all these types are
unboxed, an interval is a single block of memory holding two Ints and two tags.

We can define option value types similarly:

data MaybeV � α : val � : val where * justV α � nothingV +
An unboxed option value can be held in registers. Provided that space is available, it
occupies whatever registers are needed to hold an α plus one register to hold the tag. A
function can construct and return a MaybeV object without allocating memory. Some
internal Triolet library functions take advantage of this.

Object sizes. The size in words of an object of type τ , for any bare type τ , is
represented by an object of type Sz τ (read “size of τ”). Sz objects are produced by
size-computing code. Since sizes are just integers, a Sz instance contains just an Int.

data Sz � α : bare � : val where sz Int

There are two similar data types for associating integer values with other types. Sv
holds the size of a type with kind val. Z holds the integer value corresponding to a
type-level integer.

data Sv � α : val � : val where sv Int

data Z � ν : Z � : val where z Int

The types built with these type constructors are singleton types. Objects of a given
type τ can have only one possible size, and so objects of type Sz τ can have only one
possible value.

Run-time representations. A few pieces of data are very useful for manipulating
polymorphic bare objects. For instance, it is often useful to copy a bare object from
one place to another. There is no way to copy a bare object of unknown type, so this
functionality can only be provided by passing a suitable “copy” function to polymorphic
code. For a given type α, we package frequently used data into objects of type Rep α.

data Rep � α : bare � : box
where rep � Sz α �� α � Out α � Store �� AsBox α � Out α � Store ��'� Out α � Store �0� AsBox α �

The first field is the size of an α. The second field is a “copy” function. Given a
parameter of type α, a copy function returns an initializer of type Out α � Store that
writes a copy of the parameter to a new location. The third and fourth fields convert
between initializers and AsBox α objects. AsBox α is the boxed representation of α,
and is isomorphic to α. We define the functions size, copy, asBox, and asBare to extract
individual fields of a Rep object.
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Delayed functions. Delayed functions are an instructive example of how existential
types can be used for encapsulation. A delayed function call consists of a function of
type β � α paired with an argument of type β. The call can be executed by passing
the argument to the function.

data Delayed � α : bare � : bare where delayed � β : box � β � β � α �
The function’s return type α is a parameter of Delayed, while its parameter type β is
an existential type. Accordingly, a value of type Delayed τ contains a function with
a known return type τ but a hidden parameter type. The parameter type is known
when a Delayed object is created, so it is certain that the first and second fields have
compatible types. However, code that uses a Delayed object cannot examine the actual
type bound to β.

While none of our applications use Delayed, more complex uses of existential types
arise in Triolet library code. Iterators are existentially typed so that the user of an
iterator need not be aware of the iterator’s internal state.

Arbitrary-length arrays. It is common for programming languages to have arbitrary-
length array types, as opposed to known-length array types constructed with Arr. We
can define such an array as an algebraic data type. The following is a one-dimensional
array, Array1.

data Array1 � α : bare � : bare
where array1 � ν : Z �)� Z ν �)� Boxed � Arr ν α �'�
The existential type variable ν holds the hidden array length. To allow programs to
inspect the length as an integer value, it is also stored as a field of type Z ν. The real
array is stored in a boxed object.

We define a two-dimensional array similarly, using nested Arrs to store the array
contents.

data Array2 � α : bare � : bare
where array2 � µ : Z �)� ν : Z �)� Z µ ��� Z ν �-� Boxed � Arr µ � Arr ν α �'���
Arr µ � Arr ν α � is the type of an array of arrays of α. It is laid out as a single block of
memory, like an array of arrays in C.

To emulate the boxing of array elements that occurs in some programming languages,
we can define a boxed array type. A boxed array is an array of pointers to boxed objects.

data BArray1 � α : box � : bare
where barray1 � ν : Z �)� Z ν ��� Boxed � Arr ν � Ref . α �'���
The type Ref . α is a pointer to an α. In performance comparisons, we contrast the
performance of boxed and unboxed array types by writing programs that use either
BArray1 or Array1. The Triolet library contains overloaded operations that work on
either array type.

Higher-kinded types. Data types can be parameterized over type operators. Such
types are called higher-kinded by analogy with higher-order functions. In Triolet, class
dictionaries of higher-kinded type classes are higher-kinded data types.

As a simple example of a higher-kinded type, here is a tree type.

data Tree � γ : bare � bare �)� α : bare � : box where tree α � γ � Ref � Tree γ α ���'�
Parameter γ determines how the children of each tree node are organized. Parameter

α determines how nodes are labeled. Instantiating γ with Maybe gives each node zero
or one children, making a singly-linked list. Instantiating γ with Array1 gives each node
a variable-length array of children, making a rose tree.
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6.2 Execution Semantics

Fω
U is a functional language. All data are immutable, and functions and expressions typ-

ically have no effect other than to produce a return value. There are two complications
that we must address, namely side effects and imperative assignment.

Side effects arise in Fω
U because functions are partial. A function typically returns

a value, but could also enter an infinite loop or signal a run-time error. Fω
U has an

imprecise side effect semantics: the compiler does not preserve the order of side-effecting
operations and may remove side effects. A side effect free function is never transformed
into a side effecting one. The freedom to transform side effects somewhat resembles a
C compiler’s ability to reorder code that has undefined behavior.

An imperative operation, such as writing to memory, observes the state of memory
produced by earlier operations and transforms memory to a new state that is visible
to later operations. Because a memory operation may influence a later operation, the
execution order of memory operations should be preserved in a compiler. We use a
store-passing encoding to explicitly express the ordering of imperative operations. The
types given to data expressions and imperative operations are best understood in terms
of store-passing, which we summarize here.

In a store-passing encoding, a store is a value representing a particular state of
memory [32, 8]. Our encoding is fine-grained: a store represents a part of memory,
and multiple stores representing disjoint parts of memory can exist simultaneously.
Semantically, a store is a mapping from addresses to values. A store maps address a to
value v iff it describes a state of memory that includes the value v stored at address a.

Imperative functions transform an old state of memory to a new state. Encoded
as store-passing, such a function takes store parameters representing the old state and
returns a new store representing the new state. When a program performs a sequence
of accesses to the same store, each access returns a store that is passed as a parameter
to the next, ensuring that the compiler preserves execution order. Since Fω

U is generated
from a functional program that never overwrites objects, each object is written exactly
once in the majority of cases. This unique write does not take an input store, since
there is no previous memory access whose execution order must be preserved. Some
internal library functions imperatively update data, and they take input stores. Stores
are purely a compile-time notion to enforce ordering. At run time, stores are values
of type Store that contain no data. Fine-grained stores are compatible with parallel
execution: threads can imperatively operate on their own private stores without risk of
race conditions.

At a given time, a given address can be part of an immutable object or a mutable
store, but not both. Modifying a store does not affect the value of any immutable object.
Data expressions allocate memory, run initializers to write the allocated memory, and
reinterpret the initialized stores as immutable objects. A pointer to an imperatively
modified object of type τ has type Out τ . An initializer has type Out τ � Store,
signifying that it is a function that takes a pointer to an uninitialized object of type
τ and creates a store containing an initialized object at that address. Initializers may
take additional parameters; by convention the output pointer is the last one.

If we wished to utilize our store-passing model to verify memory safety or analyze
the memory access behavior of Fω

U programs, we would not lump all stores into the type
Store, but rather distinguish them by their contents. We would also take care to enforce
linearity. However, our only use for stores is to record ordering constraints generated
by the compiler or manually inserted into the internal library. A simple store type is
adequate for this purpose.
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α : κ 1 Γ
Γ � α : κ

Γ � τ : κ1 � κ2 Γ � π : κ1

Γ � τ π : κ2

Γ, α : κ1 � τ : κ2 κ2 12* box, val, bare +
Γ � �

α : κ1. τ : κ2

Γ, α : κ1 � τ : κ2

Γ � λα : κ1. τ : κ1 � κ2

Γ � τ : κ1 κ1 13* box, val, bare, out +
Γ � π : κ2 κ2 12* box, val, bare, out +

Γ � τ � π : box

Int : val Arr : Z � bare � bare

Out : bare � out AsBare : box � bare

AsBox : bare � box

Figure 4: Kinding rules and kinds of constants in Fω
U .

6.3 Kind System

Fω
U generalizes the kind system of Fω to support multiple storage strategies as shown in

Figure 4. The difference from Fω is that, where Fω has only the kind � of proper types,
Fω
U has the four kinds box, val, bare, and out. The kinding rules statically assign one

of these kinds to every variable, expression, and object field. Kind information is used
during optimization and code generation.

Functions are boxed and can take and return objects of any kind. Since universal
quantification has no run-time effect, a universally quantified type

�
α :κ.τ has the same

kind as τ . Objects of kind box, val, and bare can have universally quantified types. An
output pointer is always associated with a bare object of a known type and its type
cannot vary independently of the bare object’s type. Consequently, it does not seem
useful to allow objects of kind out to have a universally quantified type, and we do not
allow it. Other kinding rules are the same as in Fω.

Kinding rules are also applied to data type definitions. Consider a data type defini-
tion, data T α : κ : κT where C β : ι τ . The data type’s storage strategy κT must be
box, bare, or val. Furthermore, the field types τ must each have kind box, bare, or val.
The data type definition introduces a type constructor T with kind κ � κT .

Additional constraints are imposed on some data type definitions. Because objects
with the val storage strategy are meant to fit in registers, we only allow their fields to
have kind val (since value types fit in registers) or box (pointers, which fit in registers).
Unboxed data types may not have recursive definitions. If unboxed recursive data
type definitions were permitted, we could define a dubious data type that contains an
unboxed instance of itself, such as the following.

data ArrayList : bare where arrayList Int ArrayList

To avoid such situations, recursively defined types must be boxed.

6.3.1 Type Environments

Type environments ascribe kinds to type variables and type constructors, types to vari-
ables, and type signatures to data constructors.

Γ : � t

t : � α : κ � T : κ � x : τ � C :
�
α : κ. � τs �4� πs �0( �

β : ι. τ � T α
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The first three type ascriptions are conventional, but the last merits explanation.
In a fully boxed language, a data constructor has a type signature of the form

�
α : κ.�

β : ι. τ � T α. It looks like a function type, which reflects the similarity between data
constructors and functions: one can think of a data constructor as a built-in function
for creating objects. The type parameters α : κ, β : ι, value parameters τ , and type
constructor T are taken directly from the data type definition where C is defined. It
helps to think of the type as having two parts. The part

�
α : κ. . . . � T α comes

from the type constructor’s definition and describes the types of objects constructed by
data expressions using C. The other part,

�
β : ι. τ , comes from the data constructor’s

definition and describes the contents of those objects.
Fω
U adds to the fully boxed type signature two lists of types needed for implementing

unboxed polymoprhism. We write the extra information as � τs �4� πs �0( in a constructor
signature. When both lists are empty, we omit them from the signature. The size
parameter types τs are the types of objects that are passed to case or data expressions
for run-time size computation. Size parameter types are Sz, Sv, or Z types. The static

types πs are types that must have a statically known layout whenever the constructor
signature is used. These lists of types are generated by analyzing data type definitions
(Section 6.4.3). Note that, while these types play a role in code generation, they do not
change the high-level meaning of unboxed data types. Unboxed data types contain the
same information as fully boxed types.

A constructor signature can be instantiated to a particular choice of universal type
parameters. We write Γ � C 5 sig to mean that C’s signature is taken from Γ and
instantiated to the signature sig . For a constructor C :

�
α : κ. � τs �4� πs �0( �

β : ι.τ � T α

and any well-kinded substitution θ �6� π 	 α 
 , we have C 57� θ � τs �8�4� θ � πs �8�9( �
β : ι.

θ � τ �)� T π. Instantiation is used to produce a data constructor signature matching a
given type: a data constructor signature for a given type T π is obtained by instantiating
T ’s data constructor’s signature with π.

6.4 Memory Layout

An object is represented concretely as a sequence of primitive values. After compilation,
these values may be held in registers or laid out sequentially in memory. To generate
code that creates, reads, or writes an object, we must know its structure in terms of
primitive values, which we call its layout. This section defines layouts and associates
Fω
U types with layouts. The relationship between types and layouts will be used to

construct algorithms for computing run-time type information.
Layouts are defined by

ς : � Int � Ptr �����:� ς � ς .

The primitive layouts Int and Ptr occupy one word of memory. The unit layout ���
occupies zero words of memory. Data structures consisting of more than one primitive
value have product layouts. The product layout ς1 � ς2 consists of a ς1 abutting a ς2, like
a two-member struct in C. We abbreviate nested products ς1 �;� ς2 �<�����4� as � ς1, ς2, . . . �
or � ς � . An unboxed array is a product of N instances of ς , written ςN . We write size � ς �
for the size in words of ς . The layouts that we use here are simplified from Triolet’s
layouts; they do not allow primitive types of different sizes and alignments, sum types,
or tags on objects. More general layouts entail more elaborate computation in some
places, but do not affect the overall framework.

An object is laid out as a sequence of fields, which we write as a product. Since
boxed fields are just pointers, an object with two boxed fields would have layout� Ptr,Ptr � . An object’s unboxed fields become part of the object’s layout. For ex-
ample, the layout of a Stored Int is � Int � , rather than � Ptr � , since its field is unboxed.
A Tuple � Stored Int ��� Stored Int � has two unboxed fields, and each field has layout
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Γ � τ : box
Γ � τ = field Ptr

Γ � τ : κ κ 13* val, bare + Γ � τ = ς
Γ � τ = field ς

N > Ntype Γ � τ = field ς

Γ � Arr Ntype τ = ςN Γ � Int = Int
Γ � C 5?� τs �4� πs �0( �

β : ι. τ � T π Γ, β : ι � τ = field ς

Γ � T π =-� ς �
Γ, α : κ � τ = ς
Γ � �

α : κ. τ = ς
Figure 5: Layouts of Fω

U types.

� Int � , so the tuple’s layout is �4� Int � , � Int �4� . Note that this layout has the same memory
representation as � Int, Int � .

Some polymorphic types cannot meaningfully be assigned a layout. Objects with
such ambiguous layouts cannot be manipulated in Fω

U . Consider, for instance, the
problem of allocating a bare object with an ambiguous layout. The layout tells us
how much memory the object occupies; if we can’t assign it a layout, we can’t decide
how much memory to allocate. Ambiguity can occur with existential types. Suppose
we had an object of type Exists, defined by data Exists : bare where exists α : bare α.
The existentially bound type α determines the layout of the object’s contents; different
Exists objects could have different layouts despite having the same type. Universally
quantified types can also have an ambiguous layout. Suppose we had an object of type�
α :bare.α. This is an object that can be instantiated to any bare type. By instantiating

the object to different types, we can view it as having any layout we choose! This is not
safe because only one layout of data can actually exist in memory.

On the other hand, there are many situations where polymorphic objects do not have
an ambiguous layout. Although the arbitrary-length array type Array1 from Section 6.1
contains an existentially typed array, Array1 has an unambiguous layout. The unknown-
length array field is boxed, so even though the field has an unknown type, its layout
is Ptr. A type has an ambiguous layout only when it contains an unboxed field with
an unknown type. This situation is easily detectable when computing layouts, as we
describe below.

It is not actually possible to introduce a universal quantifier in a way that produces
an object with an ambiguous layout. There is no such thing as an object with a para-
metrically polymorphic layout; any time an object is created, enough run-time type
information is passed in to uniquely determine its layout. However, it is possible to de-
fine a data type with an ambiguous layout. Such definitions are treated as compile-time
errors.

6.4.1 Memory Layout of Fω
U Types

We formalize memory layout in the layout rules of Figure 5. We will use this definition
of layouts when formulating code generation algorithms, including generation of run-
time size computation and memory operations for accessing object fields. We describe
the layout of a type using a judgment of the form Γ � τ = ς , meaning that in type
environment Γ, an object of type τ has layout ς . The layout rules can be read as
an algorithm for computing ς from Γ and τ . As an algorithm, layout computation
proceeds by structural recursion on τ and on the fields of objects. The related judgment
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Γ � τ = field ς means that an object field of type τ has layout ς . The first two rules state
that the layout of a boxed field is Ptr, while the layout of an unboxed field of type τ is
the layout of τ .

The remaining rules give the layouts of types. The layout of an array Arr Ntype τ

is computed by finding the layout of τ , then creating a product of N instances of that
layout. We write N > Ntype to mean that the type-level integer Ntype represents the
same number as the integer N . The layout of Int is simply Int. The next rule gives
the layout of any algebraic data type T π. The layout of the type is the product� ς � of the layouts of its fields. The field types, found from the type parameters and
constructor type signature, determine the field layouts. The final rule gives the layout
of a universally quantified type. Since universal quantification has no run-time effect,
the layout of

�
α : κ. τ is the same as the layout of τ .

Types that have an ambiguous layout are not assigned a layout by the rules of
Figure 5. When a type has an ambiguous layout, attempting to derive the layout
produces an unsolvable premise such as Γ � α = ς , where we need the layout of a type
variable in order to finish computing the layout. There is no rule to get the layout of a
type variable; after all, an unknown type has an unknown layout. To decide whether a
type has an ambiguous layout, we can simply attempt to derive its layout. For instance,
attempting to derive the layout of

�
α : bare. α would proceed as follows.

α : bare � α = ς� �
α : bare. α = ς

Derivation cannot proceed past this point, and this indicates that the type has an
ambiguous layout. In contrast, a layout can be derived for

�
α : bare. Sz α since objects

of this type do not actually contain an object of type α.

Γ, α : bare � sz : Int � Sz α

Γ, α : bare � Int = Int
Γ, α : bare � Int = field Int

Γ, α : bare � Sz α =-� Int �
Γ � �

α : bare. Sz α =)� Int �
The Triolet compiler detects existential data type definitions with ambiguous layouts
in this way and reports them as errors. Ambiguous universal types are detected when
type checking functions.

6.4.2 Dynamic Layout Computation

We cannot use Figure 5 to directly compute layouts in polymorphic code, because types
are not determined until a function executes. For instance, a compiler may only know
that a variable has type Tuple α β, where α and β are type parameters of the enclosing
function. Although the layouts of α and β cannot be derived at compile time, they can
be derived at run time by creating, for each statically unknown type, a data structure
that holds layout information for that type. This is similar to type passing [18]. Triolet
does not do this, but it computes run-time type information in a similar way.

To more clearly establish the link between layouts and run-time type information,
we present a way of dynamically computing layouts. We encode layouts as an algebraic
data type, L, and use three additional type definitions to associate a layout with a type.
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data L : box where * intL � ptrL � unitL � prodL L L +
data Layout � α : bare � : box where layout L

data LayoutV � α : val � : box where layoutV L

data LayoutP � α : box � : box where layoutP L

Given an L, we can compute its size by summing the sizes of its components.

sizeOfL : L � Int

sizeOfL x � case x of * intL. 1 � ptrL. 1 � unitL. 0 � prodL y z. sizeOfL y ! sizeOfL z +
The size of a Layout, LayoutV, or LayoutP is the size of its L field.

We translate Figure 5 to executable code by rephrasing layout judgments as typing
judgments on layout-computing expressions. A layout judgment Γ � τ = ς becomes a
typing judgment Γ � e : Layout τ (or LayoutV τ or LayoutP τ , depending on τ ’s kind).
The proposition N > Ntype becomes the typing judgment Γ � e : Z Ntype.

The translation turns axioms into constants and inference rules into functions. For
instance, the axiom Γ � Int = Int indicates that type Int has layout intL. We first
rephrase it as a typing judgment.

Γ @ layoutV Int intL : LayoutV Int

Then, we phrase it as code by defining a global constant.

layoutInt : LayoutV Int

layoutInt � layoutV Int intL

The inference rule for the algebraic data type Stored is as follows.

Γ @ stored : ACB�A τ BED τ F Stored τ

Γ @ τ G ς
Γ @ τ G field ς

Γ @ Stored τ GIH ς J
We discard the stored constructor signature, which carries no useful information, and
generate a rule to compute the layout of Stored τ from the layout of τ .

Γ @ layoutV τ e : LayoutV τ

Γ @ layout A Stored τ B A prodL e unitL B : Layout A Stored τ B
We can instantiate this rule to any well-typed choice of τ and e. The most general
choice is to let the unknowns be variables.

Γ, α : val, x : L @ layoutV α x : LayoutV α

Γ, α : val, x : L @ layout A Stored α B0A prodL x unitL B : Layout A Stored α B
We turn the generalized rule into a global function that extracts x from its argument
and uses it to build a new Layout object.

layoutStored :
�
α : val. LayoutV α � Layout � Stored α �

layoutStored α y � case y of layoutV x. layout � Stored α �)� prodL x unitL �
Such functions can be used to dynamically compute layouts. Supposing that Triolet

used L objects for run-time size information, we could use layoutStored to compute layout
information for accessing a tuple based on its run-time type as shown below.
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secondVal :
�
α : val. LayoutV α � Tuple � Stored α �)� Stored α �

secondVal α x y � let s � layoutStored α x in

case y of � s, s �0( tuple u v. v

This function takes the layout of α as a run-time parameter and calls layoutStored to
compute the layout of Stored α. This computed layout is passed to the case expression,
which uses it to compute the size of each tuple field.

6.4.3 Computing Data Constructor Type Signatures

Data constructor type signatures contain two lists of types, the size parameter types
and static types, that are generated by an analysis of data type definitions. These lists
indicate, respectively, what run-time and compile-time information is needed in order
to compute the layout of a data type. The analysis follows the same steps as if it were
computing a data type’s layout. Whenever an unknown type is reached, that type is
recorded.

Suppose we have the data type definition data S � α : val �K� β : bare � : box where

s α � Tuple β � Stored Int �'� . The analysis begins by computing the types of all fields of an
object of type S α β. These types can be read directly from the data constructor defini-
tion. Boxed fields are ignored. The unboxed field types are partitioned into those with
kind bare and those with kind val. There is one bare field, with type Tuple β � Stored Int � .
The analysis attempts to compute the layout of this field, and collects a list of all types
whose layouts cannot be computed. In this case, β is the only such type. The size of
β must be passed at run time so that Fω

U code can compute the layout of an S object.
The size’s type, Sz β, is put into the list of static types. In this example, this size is the
only thing in the list. There is one val field, with type α. Again, the analysis attempts
to compute the layout of this field and collects a list of all types whose layouts cannot
be computed. The resulting list, which contains α, becomes the list of static types. The
constructor signature, s :

�
α :val.

�
β :bare. � Sz β �L� α �I( α � Tuple β � Stored Int �0� S α β,

is assembled from these two parameter lists and parts of the data type definition.
Several special cases are worth mentioning. If a data type has no unboxed fields,

then τs and πs are both empty; no run-time size information is required and there are
no constraints on polymorphism. Thus, fully boxed types are a special case of Fω

U types.
Also, as we mentioned in Section 6.3, value types cannot have bare fields. Consequently,
an algebraic value type always has empty τs, and run-time size information is not
required to access it.

6.5 Type System

The type system of Fω
U is adapted from Fω with algebraic data types. Type functions

AsBox and AsBare are introduced. Restrictions are added so that value variables have a
statically known layout, and so that objects with ambiguous layouts cannot be created
or used. Data expressions are given an unconventional typing rule to reflect the use of
initializers.

6.5.1 Relating Storage Strategies with Type Functions

There are various ways of converting between bare and boxed types. For instance,
suppose we wanted to convert an object of type Ref � Int � Int � to a boxed object. We
could consider creating a Boxed � Ref � Int � Int �'� , which is a boxed object containing a
reference. However, Int � Int is also a boxed type, and a better choice since it involves
fewer levels of pointer indirection. In this case, it is clear that the Ref constructor can
be removed, but the decision is not so obvious when compiling polymorphic code. A
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variable in a polymorphic function may have type Ref � Int � Int � in one execution of
the function, but type Stored Int in another; now we cannot statically decide whether
there is a Ref constructor to remove.

Triolet dynamically decides how to convert between bare and boxed types. The
built-in type functions AsBare : box � bare and AsBox : bare � box describe, within
the type system, how types are converted. A bare type is converted to a boxed type in
one of two ways: if it has the form Ref π, then the Ref adapter is removed; otherwise,
the Boxed adapter is applied. Similarly, to convert from a boxed to a bare type, the
Boxed adapter is removed if possible, otherwise Ref is applied. This is expressed by the
definitions below.

AsBox τ � M
π if τ � Ref π

Boxed τ otherwise

AsBare τ � M
π if τ � Boxed π

Ref τ otherwise

We take these type functions as a specification of what should happen when converting
between bare and boxed types. Section 7.2 defines conversions that conform to these
types.

These functions should be inverses; that is, if we convert a type from bare to boxed
and back to bare, we should get the type we started with. For this to be true, we
require that a type of the form Ref � Boxed τ � or Boxed � Ref τ � is never created. These
types would violate the inverse property: AsBare � AsBox � Ref � Boxed τ ���'�N� τ 

Ref � Boxed τ � . To prevent the creation of such types, Ref and Boxed are only introduced
by reduction on AsBare or AsBox. That is, a type of the form Ref τ is permitted only
where AsBare τ would reduce to it, and similarly for Boxed.

6.5.2 Restrictions on Layouts

Variables of kind val must have a statically known layout. Fω
U ’s typing rules include

constraints to ensure that val objects can only be created or used if their layout is
statically known. Note that this is not a restriction on types, but on uses of types. For
instance, the lambda expression Λα : val. λx : α. 0 is ill-typed because the value variable
x has an unknown layout; but the type of that lambda expression,

�
α : val. α � Int,

is valid. We write τ ok to mean that, if the proper type τ has kind val, then it has a
statically known layout.

Γ � τ : val Γ � τ = ς
Γ � τ ok

Γ � τ : κ κ 12* bare, box, out +
Γ � τ ok

Variables must have types that are ok, and expressions must return types that are
ok. To add these conditions to every typing rule would be redundant; it is sufficient
to check the variables introduced by abstraction and case expressions, and the objects
returned by application and data expressions. The abstraction and application rules
are shown below. (Case and data expressions are discussed in Section 6.5.4.)

Γ � τ ok Γ, x : τ � e : π

Γ � λx : τ. e : τ � π

Γ � c : τ � π Γ � e : τ Γ � π ok
Γ � c e : π

Γ � e :
�
α : κ. τ Γ � π : κ Γ � τ � π 	 α 
 ok

Γ � e π : τ � π 	 α 
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6.5.3 Typing Fully Boxed Algebraic Data Types

Before going into how case and data expressions are typed in Fω
U , we review how they

are typed in a conventional, fully-boxed language. A case expression case e of p. c

reads the fields of the object returned by e, binding them to the variables in the pattern
p, so that they can be used by c.

Γ � C 5 �
β : ι. τ � T π

Γ � e : T π Γ, β : ι, x : τ � c : πc

Γ � case e of C β x. c : πc

The data constructor C is instantiated to a signature matching the type of the scrutinee
expression e. This signature tells us what are the contents of an object of this type. The
kinds ι and types τ of the pattern-bound variables are added to the type environment
of the case expression body c.

A data expression creates a new object. The given universal and existential type
parameters, τu and τe must match the kinds given in the constructor’s type signature.
The type parameters determine the types of the given field expressions e. The data
constructor and universal type paramters determine the data expression’s type.

Γ � C 5 �
β : ι. τ � T τu

Γ � τe : ι Γ � e : τ � τe 	 β 

Γ � C τu τe e : T τu

6.5.4 Typing Unboxed Algebraic Data Types

In Fω
U , data constructor type signatures have two additional components, a list of size

parameter types and a list of static types, as discussed in Section 6.3.1. Fω
U ’s typing

rule for case expressions adds two groups of premises to the Fω typing rule.

Γ � C 5?� τs �4� πs �0( �
β : ι. τ � T π

Γ � e : T π Γ, β : ι, x : τ � c : πc

Γ � d : τs Γ � πs = ς
Γ � case e of d ( C β x. c : πc

These premises relate the extra components of the signature τs and πs to the types
used in the case expression. The given size parameters are matched to their expected
types by Γ � d : τs. The premises Γ � πs = ς state that each static type has a statically
known layout.

The typing rule for data expressions bears another difference from the fully boxed
rule. In a fully-boxed formulation, a field of type τ is initialized from an expression of
type τ . This is also true for boxed and value objects in Fω

U . However, the value of a
bare field of type τ is initialized by executing a parameter of type Out τ � Store. We
define

init � κ, τ ��� M
Out τ � Store if κ � bare

τ otherwise

to stand for the data constructor parameter type corresponding to a field of type τ ,
where κ is the kind of τ . We also write Γ � e : init � τ � as shorthand for the two
judgments Γ � τ : κ and Γ � e : init � κ, τ � . The typing rule for data expressions is
shown below.
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Γ � C 5?� τs �4� πs �O( �
β : ι. τ � T τu

Γ � τe : ι Γ � e : init � τ � τe 	 β 
'�
Γ � d : τs Γ � πs = ς

Γ � d ( C τu τe e : init � T τu �
The final two groups of premises are the same as in the rule for case expressions.

The init function now appears in the typing rules for data constructor fields, indicating
that initializers are used for bare fields. Likewise, init appears in the type of the data
constructor expression, indicating that the data expression returns an initializer rather
than a bare object.

6.6 Lowering from Fω

U
to λ

L

After high-level optimizations are performed in Fω
U , the compiler’s job is to translate

Fω
U expressions to low-level primitive operations that can be straightforwardly imple-

mented by machine instructions. The first step in this translation is to convert high-level
Fω
U to low-level λL. In the process, algebraic data structure operations are translated

to memory accesses or manipulation of small, monomorphic products. Later steps of
compilation generate C code to be compiled to object code.

The lowering algorithm for data and case expressions is presented in this seciton.
We shall define the lowering translation P e Q Γ, which translates a Fω

U expression e to
an equivalent λL expression. Γ holds Fω

U type information that guides the translation.
Aside from the translation of data and case expressions, the lowering algorithm is trivial.
Since λL is monomorphic, type abstraction and application disappear during lowering.
Variables, integer literals, let expressions, function abstraction and application all trans-
late directly from Fω

U to λL. Variables and intermediate results of kind box, bare, and
out are lowered to pointers, and their λL type is Ptr. Variables and intermediate results
of kind val are lowered to λL values; their layout is their λL type. (Note that layouts ς
and λL types σ have identical definitions.)

6.6.1 Computing the λL Structure of Objects

Each algebraic type definition is preprocessed to compute its low-level memory structure,
that is, the object size and the offsets of an object’s fields. Generally, the structure
is a function of type parameters. For a type whose constructor signature is

�
α : κ.� τs �4� πs �-( �

β : ι. τ � T α, a structure-computing function is generated that takes an
argument for each τs and each πs and returns a product containing the offset of each
field and the object size. For instance, the generated function for tuples is

structureTuple : � Int �R�&� Int �-�&� Int, Int ��� Int

structureTuple s1 s2 � let � m �$� s1 in let � n �S� s2 in � 0,m ���T� m ! n � .
The parameters are Sz objects. Since Sz objects are data structures with one field, they
have type � Int � after lowering and must be unpacked to get the size. The field offsets
are computed by � 0,m � , and the tuple size is computed by m ! n.

Structure-computing functions are generated from data type definitions using a vari-
ant of the layout algorithm. The variant algorithm computes size values (that have type
Int), rather than computing layouts. A size is computed for each field. Sizes are added
together to produce field offsets and the object size. Structure-computing functions are
saved in a lookup table indexed by data constructor names. We write structure � C � for
the structure-computing function associated with data constructor C.
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read � Γ, p, n, τ �)�VUWX WY
loadσ � p ! n � if Γ � τ : val and Γ � τ = σ
loadPtr � p ! n � if Γ � τ : box

p ! n if Γ � τ : bare

write � Γ, p, n, τ, e �I�ZUWX WY
storeσ � p ! n � e if Γ � τ : val and Γ � τ = σ
storePtr � p ! n � e if Γ � τ : box

e � p ! n � if Γ � τ : bare

Figure 6: Code generated for reading and writing object fields. Code generation uses a
type environment Γ, object pointer p, field offset n, and field type τ .

6.6.2 Lowering Data and Case Expressions for Value Types

Algebraic value types are lowered to product types. A data expression simply constructs
a product of its fields: P C τu τe e Q Γ �[� P e Q Γ �
For instance, the unboxed tuple expression tupleV Int Int 0 n is lowered to � 0, n � .

A case expression unpacks a product into its component fields. The lowering algo-
rithm also computes the types of variables introduced by the expression so that these
types can be used when lowering the body of the expression.\

case c of C β x. e ] Γ � let � x �$�^P c Q Γ in P e Q0� Γ, β : ι, x : τ �
where Γ � c : T π

Γ � C 5?� τs �4� πs �_( �
β : ι. τ � T π

The expression case t of tupleV x y. f x y is lowered to let � x, y �;� t in f x y. The
pattern � x, y � unpacks t.
6.6.3 Lowering Data and Case Expressions for Boxed and Bare Types

Boxed and bare types reside in memory after lowering. A data expression on one of
these types obtains a pointer to a new object, gets the address of each field, and then
initializes the fields. A case expression reads the fields of an existing object.

Individual object fields are read and written differently depending on their storage
strategy (Figure 6). We write read � Γ, p, n, τ � for reading an object of type τ from the
address p ! n, and write � Γ, p, n, τ, e � for using the object or initializer returned by e to
write an object of type τ to the address p ! n. For writing multiple fields, we extend
read and write to lists: read � Γ, p, n, τ � and write � Γ, p, n, τ , e � . Boxed and value objects
are read and written by transferring data between a variable and memory. The data is
either an object or a pointer. Bare fields, on the other hand, cannot be transferred to a
variable. Reading a bare field simply returns a pointer to the field. Writing a bare field
is accomplished by passing the field’s address to a given initializer function.

For example, to lower the data expression stored Int 2, we would first determine that
the object being constructed has a field at offset 0 of type Int and kind val. The field is
written by write � Γ, p, 0, Int, 2 � , which is the store operation storeInt p 2. The expression
as a whole becomes the initializer function λp : Ptr. storeInt p 2.

In fact, the compiler does not directly generate this expression. It generates code to
query the low-level structure of a Stored Int object, then write its fields:

let � n ��� m � structureStored 1 in

λp : Ptr. storeInt � p ! n � 2
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The function structureStored is a compiler-generated global function. Its argument, 1,
is the size of a Int. The compiler will inline the call to structureStored and simplify it to
produce λp : Ptr. storeInt p 2. Triolet’s code generation strategy reflects a separation of
concerns in the compiler. Layout computation is its own compiler module, separate from
the lowering algorithm. A change to layout computation only changes how functions
such as structureStored are generated. This makes it easier for us to implement more
sophisticated layouts in Triolet.

The general algorithm for lowering data expressions on bare objects, of which Stored

is a special case, is shown below.\
d ( C τu τe e ] Γ � let � n �:� m � structure � C � P d Q Γ size � ς � in

λp : Ptr. write � Γ, p, n, τ � τe 	 β 
 , P e Q Γ �
where Γ � C 5`� τs �L� πs �_( �

β : ι. τ � T τu

Γ � πs = ς
First, the low-level structure of a T τu object is computed by calling the compiler-
generated function structure � C � . The function is passed run-time size information and
statically computed sizes as arguments, and it returns field offsets n and an object size
m. Then, an initializer function is created and returned. The initializer function takes
an address, p, and writes each field at the appropriate offset from p.

Data expressions for boxed objects compute low-level structure and write fields in
the same way. However, instead of creating an initializer, a new object is allocated and
written to.

\
d ( C τu τe e ] Γ � let � n �:� m � structure � C � P d Q Γ size � ς � in

let p � alloc m in

let ���$� write � Γ, p, n, τ � τe 	 β 
 , P e Q Γ � in p

where Γ � C 5`� τs �L� πs �_( �
β : ι. τ � T τu

Γ � πs = ς
Case expressions for both boxed and bare objects are generated by lowering the

scrutinee e, computing the low-level structure of the object being inspected, reading
each field, and then lowering the body c of the case expression.a

case e

of d ( C β x. c b Γ � let p �`P e Q Γ in

let � n ��� m � structure � C � P d Q Γ size � ς � in
let � x �"� read �'� Γ, β : ι � , p, n, τ � in P c Qc� Γ, β : ι, x : τ �

where Γ � e : T τu

Γ � C 5#� τs �L� πs �0( �
β : ι. τ � T τu

Γ � πs = ς
7 From Fully Boxed Code to Fω

U

To support unboxed polymorphism, Fω
U introduces storage strategies, size parameters,

restrictions on polymorphism, and initializers. These features make source code and
the language semantics more complex than in a fully boxed language. Fortunately, it
is not necessary to write directly in Fω

U to get the benefits of Fω
U . The Triolet compiler

translates fully boxed code to Fω
U as one of the first steps in compiling Triolet code.

The translation serves two vital purposes. First, it allows Triolet code to call library
functions, defined in λL, that take or return unboxed data. Second, it minimizes the
amount of pointer indirection in data structures by inserting pointer indirection only
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when it is required for compatibility. To meet both these purposes, the translation
generates code that boxes or unboxes objects: at function calls in the first case, and at
case and data expressions in the second case.

On the other hand, the translation does not give Triolet code access to all the
features of Fω

U . Triolet code can’t specify which storage strategies to use, and the
translation does not attempt to optimize the storage strategies of temporary values,
function parameters, or function results. Such low-level control is not too important,
since conventional optimizations in Fω

U are proficient at removing temporary objects
and modifying parameter-passing conventions. Triolet code can be polymorphic over
types of kind bare and box, but not val.

The compiler generates functions for computing Rep objects in a manner similar to
how it computes object layouts (Section 7.2). These functions are used in the transla-
tion.

There are two steps to the translation. The first step occurs during type inference
(Section 7.3). A Rep object is created for each object type that is not statically known,
and these are used to supply size parameters of case and data expressions. The second
step, which we call elaboration (Section 7.4), converts from a fully boxed type system
to one with storage strategies. Adapter types and conversion code are inserted to make
the converted code well-typed.

7.1 Introduction

To introduce the translation, we follow the steps of translation on the tupleApply function
from Section 5.1. While the unboxed version of tupleApply from the introduction can
be written in Fω

U , Triolet’s translation produces code that more closely conforms to the
fully boxed calling convention. The fully boxed function definition is repeated here.

tupleApply :
�
α, β, γ : � . � α � β � γ � � Tuple α β � γ

tupleApply α β γ f t � case t of tuple x y. f x y

First, we must give the function a valid Fω
U type signature. We replace � by box.

After making this change, the type Tuple α β is ill-kinded. To make the arguments
properly kinded, we apply the type function AsBare to α and β.

tupleApply :
�
α, β, γ : box. � α � β � γ �0� Tuple � AsBare α ��� AsBare β �_� γ

While this is now a valid type signature, the function body is likely to need run-time
information about the type parameters (more precisely, about the bare types produced
by applying AsBare to the type parameters). For each type parameter, we add a Rep

parameter holding run-time type information.

tupleApply :
�
α, β, γ : box. Rep � AsBare α �0� Rep � AsBare β �0� Rep � AsBare γ �c�� α � β � γ �0� Tuple � AsBare α �)� AsBare β �0� γ

We insert several pieces of code to turn the fully-boxed function body into a valid
Fω
U expression. First, we insert code that computes the Rep object for a tuple, using the

compiler-generated function repTuple. When the tuple’s fields are read, they are bare
objects (of types AsBare α and AsBare β), but the function f expects boxed arguments
(of types α and β). To convert these objects, we insert calls to conversion functions. The
functions copy and asBox extract conversion functions from rα or rβ , and the extracted
functions are immediately called. The resulting Fω

U expression is shown below.

tupleApply :
�
α, β, γ : box. Rep � AsBare α �0� Rep � AsBare β �0� Rep � AsBare γ �c�� α � β � γ �0� Boxed � Tuple � AsBare α �-� AsBare β �'�_� γ
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tupleApply α β γ rα rβ rγ f t �
let rt � repTuple � AsBare α �)� AsBare β � rα rβ in

case t of � size � AsBare α � rα, size � AsBare β � rβ �0(
tuple x y. f � asBox � AsBare α � rα � copy � AsBare α � rα x ���� asBox � AsBare β � rβ � copy � AsBare β � rβ y �'�

While this expression is considerably larger than the original, optimizations can
eliminate the excess code. If tupleApply is inlined somewhere where the types α, β, and
γ are constant, then the values of rα, rβ , and rγ will also be constant. Then, sizes can
be evaluated statically and the uses of asBox and copy evaluate to direct calls that can
be inlined and simplified.

We inserted unused Rep objects, just as the Triolet compiler does. Triolet inserts
unused objects because type inference, which creates these objects, does not know which
of them will be used during elaboration. In this case, rα and rβ were indeed used, while
rγ and rt were not. Unused objects are usually cleared away by dead code elimination.

7.2 Run-time type information

The Triolet compiler analyzes data type definitions to generate functions for creating Rep
objects. These functions are used by the translation. For each value type constructor T ,
the analysis generates a function for computing its size as an object of type Sv � T τ � . For
each bare type construtor T , the analysis generates a function for computing an object
of type Sz � T τ � and an object of type Rep � T τ � . We name the compiler-generated
functions svT , szT , and repT , respectively.

Size-computing functions are generated similarly to Section 6.6.1. Field offsets are
not computed. The process generates Fω

U code instead of λL code and gives the code a
type signature that reflects the size information being computed.

Two generic functions are used for boxing and unboxing bare objects. A boxed
object is unboxed by copying its contents into a new bare object. The argument f is a
copy function.

genericAsBare :
�
α : bare. Sz α �,� α � Out α � Store �_� AsBox α � Out α � Store

genericAsBare α s f x y � case x of s ( boxed w. f w y

A new bare object (given in the form of an initializer) is boxed by writing it into a new
box.

genericAsBox :
�
α : bare. Sz α �,� Out α � Store �O� AsBox α

genericAsBox α s g � s ( boxed α g

We have cheated a bit with the type signatures; these functions treat a AsBox α as if
it were a Boxed α, which is not true in general. In Triolet, evidence that AsBox α is
equal to Boxed α is passed as an additional function parameter [35]. In particular, this
equality does not hold when α � Ref τ . The implementation for references is written
manually.

A Rep contains a size and three functions. The size is computed by calling szT . The
first function copies an object by reading its fields and writing them to a new object.
To determine how to copy fields, the data type definition is examined to find the fields’
types and storage strategies. For all algebraic data types except references, the last two
functions are simply instantiations of the generic conversion functions. For example,
the following code is generated for Stored.

szStored :
�
α : val. Sv α � Sz � Stored α �

szStored α x � case x of sv n. sz � Stored α � n
29



Kinds κ, ι : � box � κ � κ

Monotypes τ, π : � α � τ τ � τ � τ � T � Int
Polytypes σ : � �

α : κ. K τ ( τ

Expressions c, d, e : � x � N � let x � e in e � e e � λx. e� case e of C x. e � C e

Figure 7: Syntax of the source language HM.

repStored :
�
α : val. Sv α � Rep � Stored α �

repStored α x � let size � szStored α x in

let copy � λy : Stored α. λz :Out � Stored α � .
case y of stored w. stored α w z in

let asBare � genericAsBare � Stored α � size copy in
let asBox � genericAsBox � Stored α � size in
rep � Stored α � size copy asBare asBox

References behaves specially with respect to boxing and unboxing because references
are containers for boxed objects. Converting to bare form means writing a new reference.
Converting to boxed form means reading a reference.

repRef :
�
α : box. Rep � Ref α �

repRef α � let size � szRef � Ref α � in
let copy � λy : Ref α. λz : Out � Ref α � .

case y of ref w. ref α w z in

let asBare � λy : α. λz : Out � Ref α � .
ref α y z in

let asBox � λy : Out � Ref α �O� Store.

case size ( boxed .d� Ref α � w
of size ( boxed . y. case y of ref z. z in

rep � Ref α � size copy asBare asBox
We define prebuilt objects of type Rep � Stored τ � for zero-parameter value type

constructors, for use by type inference. These objects are simply calls to repStored with
appropriate arguments. For example, repInt is defined with type Rep � Stored Int � .
7.3 Type Inference

After parsing and eliminating syntactic sugar, Triolet code is in the implicitly typed form
HM shown in Figure 7. This language corresponds to a subset of Haskell with strict
evaluation semantics, or a subset of ML with higher kinds and type classes. Unlike Fω

U ,
case and data expressions do not have size contexts, and all objects are boxed. As is the
norm for Hindley-Milner typeable languages, types are stratified into monotypes τ and
type schemes σ. Type schemes are quantified over type parameters and may contain
class constraints K τ , meaning that type τ is a member of class K. Fortunately for us,
computing run-time type information is a lot like inferring type class membership [9].
It only takes a modest adjustment to a type class system [42] to compute run-time type
information. The output of type inference is in a form quite similar to Fω

U , but fully
boxed and lacking some of Fω

U ’s types. We call this intermediate language Fω
I (Figure 8).

Type inference assigns data constructors a simplified type signature, of the form�
α : κ. Rep τs ( τ � T α. The class constraints Rep τs correspond to size parameter
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Kinds κ, ι : � box � κ � κ

Types τ, π : � α � τ τ � � α : κ. τ � τ � τ � T � Int
Figure 8: Syntax of kinds and types in Fω

I . Syntax of expressions is identical to Fω
U

(Figure 3).

types in a Fω
U type signature (Section 6.3.1). We have not implemented support for

existential types in case and data expressions in HM.

7.3.1 Generating Type Class Instances

To generate Rep objects during type inference, we define a class of types that have
run-time type information. The class is named Rep, and its dictionary type construc-
tor is Rep. Type class instances are automatically generated from data type definitions.
Instance declarations follow the same pattern as those described by Cheney et al. [9], al-
beit with different dictionary values. Each instance corresponds to a compiler-generated
rep function; the parameters are the instance context, the return type is the instance
head, and the function itself computes the instance dictionary. For example, repTuple
has type

�
α, β : bare. Rep α � Rep β � Rep � Tuple α β � . The corresponding instance,

written in Haskell syntax, is instance � Rep α,Rep β �_( Rep � Tuple α β � . The instance
declaration informs the type inference engine that, when it needs the representation of
some tuple type Tuple τ π, it can derive it by calling repTuple on the representations of
τ and π.

Although only bare types have run-time representations, type inference does not
distinguish bare types from other types. Rep instances are generated for all proper
types. An instances for a boxed type τ produces the representation of a Ref τ . An
instance for a value type τ produces the representation of a Stored τ .

7.3.2 Generating Class Constraints and Size Parameters

To induce type inference to insert run-time representations into a program, Rep class
constraints are generated in two ways during type inference. Elaboration may need run-
time type information in order to insert conversions, such as the calls to copy and asBox

in tupleApply. Type inference generates a constraint for the type of each expression.
The value computed by the constraint is annotated onto the expression for use during
elaboration. Constraints are also generated to fill in case and data expressions’ size
parameters. These constraints come from data constructor signatures.

Type inference produces the following code for tupleApply. The variables rα, rβ , rγ ,
and rt are inserted, and variables are passed along to size contexts. Code for computing
rt is inserted based on the instance declaration for Tuple. Type inference also passes
appropriate parameters to tupleApply anywhere that it is called.

tupleApply :
�
α, β, γ : � . Rep α � Rep β � Rep γ �,� α � β � γ �0� Tuple α β � γ

tupleApply α β γ rα rβ rγ f t � let rt � repTuple α β rα rβ in

case t of � rα, rβ �0( tuple x y. f x y

7.4 Elaboration

After type inference, Fω
I is elaborated to Fω

U by introducing storage strategies into the
fully boxed code. Elaboration uses the intermedate language Fω

E , which is discussed
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Kinds κ, ι : � box � val � bare � init � κ � κ

Types τ, π : � α � τ τ � � α : κ. τ � λα : κ. τ � τ � τ� T � Int � AsBare � AsBox � Init
Figure 9: Syntax of kinds and types in Fω

E . Syntax of expressions is identical to Fω
U

(Figure 3).

below. The algorithm boils down to inserting the right conversions in the right places
to generage well-typed output. When the translation produces kind mismatches in
types, they are fixed by inserting adapter types. When the translation produces type
mismatches in expressions, they are fixed by inserting coercion code. Our discussion of
elaboration is organized in four parts. The first two parts deal with converting between
Fω
E types and translating types to Fω

E . The next two parts deal with converting between
Fω
E expressions and translating expressions to Fω

E .
It is convenient to regard initializers as a distinct storage strategy during elaboration.

For this reason, elaboration produces Fω
E code (Figure 9), which differs from Fω

U only in
the typing of initializers. Initializers are treated as members of an abstract data type
Init τ of kind init. Fω

E type environments are the same as Fω
U type environments other

than the difference in initializer types. At the end of elaboration, code is converted
from Fω

E to Fω
U by adjusting the types of initializers: init is replaced by box, and Init τ

is replaced by Out τ � Store.

7.4.1 Canonical Types and Conversions on Types

To produce well-typed Fω
U code, elaboration must select types in a globally consistent

way. The translation associates each proper type in Fω
I to at most one Fω

U type of any
given kind, called the canonical form of that kind. The notion of canonical forms comes
from coercion-based unboxing transformations [36], where every type has one canonical
boxed form. In Triolet, a given Fω

I type can have multiple canonical forms, but at most
one of a given kind. By translating types to their canonical forms, we ensure that a
well-kinded translation is also well-typed. The canonical form of a type is wrapped in
some combination of the adapter types Stored, Boxed, Ref, and Init. Since we disallow
nesting of Boxed with Ref, there is only one well-kinded way to wrap a type with these
adapters.

A type can be converted from one canonical form to another by applying or unap-
plying adapter types as shown in Figure 10. We write � κ e ι � for the conversion from
kind κ to kind ι. Conversions on base kinds are defined so that any round-trip con-
version leaves its argument unchanged; for instance, � bare e box �f��� box e bare � τ ��� τ . A
conversion on arrow kinds becomes a type operator that converts its domain and range.

7.4.2 Type Elaboration

Type elaboration brings each Fω
I type to a particular canonical form that we call the

natural form. The natural form of a type is the one that is not wrapped in adapters.
An Fω

I type may be translated to a desired canonical form of kind κ by producing the
natural form, then converting it to kind κ. The type elaboration algorithm is shown
in Figure 11. The natural form of type τ is N P τ Q Γ, and its canonical form of kind
κ is Cκ P τ Q Γ. The Fω

E type environment Γ is used for computing kinds. To lighten
the notation, Γ is implicitly passed as the type environment; for instance, N P τ Q is
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� val e bare � τ � Stored τ � bare e val �K� Stored τ ��� τ� bare e init � τ � Init τ � init e bare �g� Init τ �)� τ� bare e box � τ � AsBox τ � box e bare � τ � AsBare τ� κ e ι � τ �?� bare e ι �E�'� κ e bare � τ �� κ e κ � τ � τ� κ � ι e κ . � ι . � τ � λα : κ . . � ι e ι . � h τ �'� κ . e κ � α �ji
Figure 10: Kind conversions. � κ e ι � is a conversion from κ to ι.

N P α Q � α

N P T Q � T

N P Int Q � Int

N P τ π Q � N P τ Q Cκ P π Q
where Γ � N P τ Q : κ � ι

N P � α : κ. τ Q � �
α : κ. Cbox P τ Qk� Γ, α : κ �

where Γ � N P τ Q : ι
N P τ � π Q � Cbox P τ Q-� Cbox P π Q
Cκ P τ Q �?� ι e κ � N P τ Q

where Γ � N P τ Q : ι
Figure 11: Type elaboration.

shorthand for N P τ Q Γ. When the environment is extended, the extended environment is
passed explicitly.

Canonical forms are called for in three places in the algorithm. The important one is
type application, where the argument is converted to the kind expected by the operator.
This conversion ensures that polymorphic fields are unboxed when possible. Canonical
boxed forms are also called for in � and

�
types. We require canonical forms to be

unique, but � and
�
allow subterms to have different kinds, so we force these subterms

to be boxed.

7.4.3 Type Coercions

When elaboration encounters a kind mismatch between values, it inserts coercion code.
A coercion converts an expression’s result to a canonical form of the right kind. The
coercions used by elaboration are listed in Figure 12. Related conversions are grouped
into pairs. The first two rows convert to and from val using the stored data constructor.
The next two rows convert to and from box using the conversion functions taken from
a Rep object. The final two rows convert between bare and init by copying data or by
executing an initializer. We write coerce � Γ, τ, π, e � for the expression that evaluates e

to a result with canonical type τ , then coerces it to canonical type π. The Fω
E type

environment Γ is used for computing kinds. An object can be coerced between any two
canonical forms using coerce.

There is more to the story, because not all Fω
E objects have a type that is canonical.

Canonical function types take boxed parameters and return boxed results; however,
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From To Type Expression Run-time effect

val init τ � Init � Stored τ � stored τ e Store a value

bare val Stored τ � τ case e of stored x. x Load a value

box init AsBox τ � Init τ asBare τ d e
Copy an object or
store a pointer

init box Init τ � AsBox τ asBox τ d e
Allocate memory and
possibly load a pointer

bare init τ � Init τ copy τ d e Copy an object

init bare Init τ � τ

let s � size τ d in

case s ( boxed . τ e

of s ( boxed . x. x Allocate memory

Figure 12: Coercions between canonical types. Each row shows the code that is inserted
to coerce the result of e from one canonical form to another. Where d appears, it is an
expression of type Rep τ computed by type inference.

� � α : κ. τ l � β : ι. π � Γ e � Λβ : ι. � τ �m� ι e κ � β 	 α 
cl π �4n Γ,β:ι o � e �'� ι e κ � β ���� τ � π l τ . � π . � Γ e � λx : τ . . � π . l π � Γ h e �'� τ . l τ � Γ x �pi� τ l π � Γ e � coerce � Γ, τ, π, e �
Figure 13: Coercion between non-canonical types. � τ l π � Γ is a coercion from τ to π

with respect to environment Γ.

in order to reduce the amount of boxing and unboxing associated with function calls,
functions are allowed to take and return unboxed data. To deal with non-canonical
functions, we extend coercions to non-canonical � and

�
types as shown in Figure 13.

A coercion on a function is is pushed under a lambda abstraction in the usual way for
coercion-based unboxing transformations. A coercion on a type abstraction is similar.

7.4.4 Expression Elaboration

Fω
I expresions are translated to Fω

E expressions by the function E in Figure 14. Subex-
pressions are elaborated with E and type expressions with N , then types are converted
or expressions coerced as demanded by the type of the elaborated code. As before, E P e Q
is shorthand for E P e Q Γ. We write subscripted E functions for elaboration followed by
inserting a coercion; subscripts will be explained as they come up. Variable and literal
expressions do not need coercion. We discuss the other coercions in turn below.

In a let expression, the right-hand side, c, should be executed no more than once.
However, if c were allowed to return an initializer, the initializer could be executed
each time that x is used. That is, elaboration could produce an expression like let x �� λy :Out α.expensive 10 y � in f � s ( boxed α x ��� s ( boxed α x � , causing expensive 10 y

to be executed twice instead of once. To prevent this from happening, the elaboration
algorithm coerces initializer types to bare types. Other types are not coerced. We write
Euse P c Q for elaboration to a non-initializer form.

In type application and function application, the operator e is first coerced into its
natural form, removing any adapter types from it. We write EN for elaboration to
natural form. Based on the operator’s type, the argument τ of a type application is
coerced to the expected kind by Cκ, or the argument c of an application is coerced to
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E P x Q � x

E P N Q � N

E P let x � c in e Q Γ � let x � Euse P c Q in E P e Qk� Γ, x : τ �
where Γ � Euse P c Q : τ

E P e τ Q � EN P e Q Cκ P τ Q
where Γ � EN P e Q : � α : κ. π

E P e c Q � EN P e Q Eτ P c Q
where Γ � EN P e Q : τ � π

E P Λα : κ. e Q � Λα : κ. E P e Qk� Γ, α : κ �
E P λx : τ. e Q � λx :N P τ Q . E P e Qk� Γ, x :N P τ Q��
E P d ( C τ π e Q � Esize P d QR( C Cκ P τ Q Cι P π Q Eτf P e Q

where Γ � C 5#� τs �L� πs �0( �
β : ι. τc � T Cκ P τ Q

τf � init � τc � Cι P π Q�	 β 
'�
E P case c of d ( C β x. e Qq� case EN P c Q of Esize P d Q)( C β x. E P e Qk� Γ, β : κ, x : τc �

where Γ � C 5#� τs �L� πs �0( �
β : ι. τc � T τ

Γ � EN P c Q : T τ

Figure 14: Expression elaboration.

the expected type by Eτ .
Type abstraction is elaborated simply by elaborating the body of the abstraction.

Function abstraction is elaborated similarly, except that we also convert the function
argument to its natural form.

When elaborating a data expression, the data constructor’s Fω
E signature determines

how to elaborate the given arguments. The given type parameters τ and π are translated
to canonical forms of kinds κ and ι taken from the data constructor’s signature. Using
the elaborated type parameters, the field types τf are computed. Finally, the given field
expressions e are elaborated and coerced. We write Esize to elaborate an expression,
which must evaluate to a Rep object, and extract the size from the object. If E P d Q
produces expression d . of type Rep τ , then Esize P d Q produces the expression size τ d . .

A case expression again uses the data constructor’s Fω
E signature, this time to deter-

mine the types of the bound variables. First, the scrutinee c is elaborated and coerced
to its natural form. The scrutinee’s type determines the field types τc. The case-bound
pattern variables are added to the type environment when elaborating the body e.

7.5 Backward Translation from Fω

U
to HM

Type inference and elaboration are guided by type signatures of type constructors, data
constructors, and library functions. These signatures are translated from Fω

U back to
HM and Fω

E . Since HM’s type system is less flexible than Fω
U ’s, only a subset of types

can be represented. Type signatures that cannot be translated are removed from the
type environment, making them invisible to Triolet code but still usable internally. We
summarize the translation steps here.

The translation from HM to Fω
E inserts initializer types. Any type of the form

Out τ � Store is replaced by Init τ . Types that still mention Out or Store after this
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replacement are removed from the environment.
The translation from Fω

E to Fω
I eliminates adapter types, polymorphism over kind

val, and storage strategies. In type signatures, adapter types AsBare, AsBox, Boxed, Ref,
Stored, and Init are removed, leaving their argument in place. Types are removed from
the environment if they mention type variables of kind val. In constructor signatures,
size parameter types of the form Sz τ are replaced by Rep τ . When translating from Fω

I

to HM, types that have the same form as a type scheme are converted to type schemes,
while others are removed.

8 Implementation Status

This paper documents our current implementation of the Triolet compler, but also
amends our original design in ways that have not yet been put into practice. While
the differences are more or less invisible to an end user, the amended design makes the
compiler’s internals more robust and extensible. We discuss the major differences, and
how our experience has led us to change the design, below.

Size parameters are not yet a part of the Triolet compiler. Instead, the lowering
algorithm performs a local analysis to find variables holding run-time size information.
While we have made this design work, it is unsatisfactory because it introduces irritating
implicit dependences into the compiler that sometimes manifest as compile-time errors.
A variable that appears to be unused may actually be needed by the lowering algorithm,
so the optimizer must be cautious when removing code. An apparently valid Fω

U library
function may be missing a parameter, causing lowering to fail because it cannot find
information that it needs. Size parameters make these dependences explicit, helping to
explain why the compiler works and closing off a class of potential bugs.

Similarly, static type parameters and restrictions on value polymorphism are not
currently in the Triolet compiler. The compiler currently expects not to see a type
variable of kind val in certain situations. Our additions to the type system justify these
expectations and translate them into meaningful requirements. Elaboration does not
generate code that violates these assumptions, but manually written Fω

U code can.
In the current compiler, various code generation modules and handwritten functions

make implicit assumptions about memory layout. The low-level structure of an object
is computed in the lowering algorithm. Functions that compute information about
algebraic data types (such as the functions szTuple and repTuple) are manually written
for each type. The difficulty of making globally consistent memory layout assumptions
prompted us to consider how to derive all layout-related code from a single memory
layout specification. Tthe led to the design described in this paper.

The data types used for run-time representations (Rep, Sz, etc.) are implemented
as we have described. Type inference is the same, except that it does not insert size
parameters or annotate expressions with run-time representations. The differences in
type inference entail some differences in elaboration, but it is largely the same as we
have described.

9 Evalution

To evaluate the impact of unboxed polymorphism on real algorithms in the context
of an optimizing compiler, we compile a set of benchmarks that represent our target
use cases and measure their performance and memory allocation characteristics. These
benchmarks embody numerical algorithms that are written in terms of polymorphic,
higher-order library functions that read and/or write arrays.
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For each benchmark, we compare three versions of the benchmark’s most compu-
tationally demanding loops: C, unboxed, and boxed. We seek the answers to two
questions: how closely does Triolet code approach the performance of C code, and how
much does array unboxing contribute to that performance? The C version consists of
handwritten, monomorphic code, representing the best possible outcome of unboxing
optimizations. All storage is preallocated. Small values are unboxed in local variables.
The remainder of the data consists of a few large arrays containing integer and floating-
point values. The unboxed version is Triolet code with our unboxing optimization. The
boxed version is the same Triolet code, except that array elements are boxed. Both
Triolet versions undergo the same compiler optimizations and unbox the same fields of
other data structures.

In experiments, C code was compiled with gcc -O3. Triolet uses gcc -O2 as its
backend compiler. All experiments were run on one core of a 2.66GHz Intel Core 2
Quad processor with a 4MiB last-level cache.

Data sets were sized to fit in the cache so that cache miss latency does not ob-
scure differences between the C and unboxed benchmark versions. The C and unboxed
versions have the same data layout and access patterns (with exceptions discussed in
Section 9.1), so they would have the same cache miss behavior as well. Only the time
and allocation spent in the execution of numerical loops was measured. Measurements
are the average of ten consecutive runs.

Triolet uses an off-the-shelf, conservative garbage collector (GC) [3]. It is likely that
a collector tuned for the memory usage characteristics of functional code could achieve
better performance. To estimate the overhead due to GC, we also measure “no-GC”
performance with GC disabled. In no-GC measurements, memory is bump-allocated
from a 1GiB heap and freed between runs of each loop.

9.1 Benchmarks

Four of our benchmarks (cutcp, mri-q, sgemm, and tpacf) are taken from the Parboil
benchmark suite [38]. We use Parboil’s “base” version as our C version. The Parboil
benchmarks contain numerical algorithms drawn from a variety of applications. We
selected four benchmarks that use nested loops to construct lists, reduce values, or
scatter values. We have not ported and evaluated the rest of the Parboil suite; a
complete evaluation is left to future work. We wrote two additional benchmarks (sobel
and smvm) to represent common numerical algorithms that are not in Parboil. Sobel
maps a 3 � 3 stencil function over an input image to produce an output image. Smvm
multiplies a matrix in compressed sparse row format by a vector.

To demonstrate that Triolet can generate polymorphic code, we wrote two variants
of a microbenchmark (power-i and power-r) that computes the powerset of a list
iteratively or recursively. The iterative variant is an efficient implementation that selects
subsets of an array based on the set bits in a counter. The recursive variant, which is
only implemented in Triolet, is a simple algorithm used for pedagogical purposes [1]
that uses a loop to construct an iterator over the powerset of a list. The Nth loop
iteration constructs an iterator over the powerset of a sublist of length N . Because the
structure of the computed iterator is input-dependent, it cannot be simplified to a loop.
Moreover, because the iterator’s state is also input-dependent, this benchmark requires
support for polymorphic code generation.

To isolate the influence of unboxing from other optimizations, we have written the
Triolet code to use the same loop structure and data structures as the C code whenever
possible. We discuss discrepancies and their performance effects below. Loop optimiza-
tions (such as tiling and unrolling) are not employed in any benchmark version. The
loop structure of cutcp is different in C and Triolet. The C version of cutcp sorts
inputs for better cache locality while the Triolet version does not. The Triolet version
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Figure 15: Execution time of Triolet benchmarks relative to C.

of mri-q fuses two loops that are separate in C. Triolet currently supports only 4-byte
integers, but tpacf and sobel use other sizes. For all these benchmarks, changing the
C version to match the Triolet version produced at most a 1% speedup or 4% slowdown,
much smaller than the overall performance difference between C and Triolet. The C
version of power-i precomputes the total number of outputs and writes them to a flat
array. The Triolet version generates an array of arbitrary-length arrays. The Triolet
code does not explicitly compute array sizes, relying instead on the implementation to
size arrays properly. Changing the C version to generate an array of arbitrary-length
arrays slowed it down by a factor of 2.95 � due to the additional memory allocation and
copying.

9.2 Execution Time

Benchmark execution time is compared in Figure 15. The height of a bar is its speedup
relative to C. Since we are comparing similar algorithms, we can think of the C version
as a measure of the useful work the algorithm performs, so that the height of a bar
is the fraction of execution time spent on useful work and the gap above a bar is the
fraction lost to overhead. Unboxed and boxed run at (respectively) 52% and 18% the
speed of C on average.

The 2.87 � speedup in going from boxed to unboxed arrays comes from a combination
of reduced allocator overhead, a reduced memory footprint, and less manipulation of
pointer values. Unboxing arrays reduces memory consumption by eliminating pointers
to array elements and eliminating boxed object headers on array elements. To esti-
mate allocator overhead, we measure performance using a simple bump allocator. This
allocator does not automatically reclaim memory, making it very fast but impractical
for real applications. With bump allocation, unboxing arrays produces a smaller 1.59 �
speedup (excluding cutcp, which runs out of memory with boxed arrays).

Unboxing also yields a 1.24 � in the polymorphic code generated from power-r,
though this speedup is dwarfed by iterator overhead. Unboxed power-r runs at 1.5%
and boxed power-r at 3.7% the speed of the corresponding power-i version. The no-GC
versions, while faster, are still much slower than power-i.
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Benchmark Bytes of Bytes allocated/bytes output Objects allocated
output Unboxed Boxed Unboxed Boxed

cutcp 2.10Mi 1.00 1.4 � 103 17 256M
tpacf 16.5Ki 2.63 2.5 � 104 1.51 k 35.7M
mri-q 311Ki 1.00 2.84 16 35.8 k
sgemm 80.0Ki 1.00 5.00 18 20.5 k
smvm 17.2Ki 1.01 5.01 6 4.41 k
sobel 1.00Mi 1.00 5.00 24 262 k

power-i 44Ki 3.24 8.85 3.61 k 16.9 k

Figure 16: Memory allocation of Triolet benchmarks.

9.3 Memory Allocation

We can observe the effects of unboxing more directly by examining the benchmarks’
memory allocation behavior in Figure 16. The first column shows the number of bytes
of numeric values written to arrays by Triolet code. This is (modulo the aforementioned
differences in integer sizes) also the number of bytes written by C code.

The next two columns show the number of bytes actually allocated per byte of
numeric data. Only two of the unboxed benchmarks allocate more than 1% extra
memory. In contrast, the most allocation-efficient boxed benchmark allocates 1.84 extra
bytes per byte, and the least efficient one allocates over ten kilobytes of memory per
byte of output! Ideally, the unboxed column would be filled with ones, but two of these
benchmarks allocate significant extra data. In tpacf, a single call to Triolet produces
only 80 bytes of data, which is not enough to amortize the overhead of creating object
headers, array metadata, and Rep objects. The extra allocation in power-i is primarily
due to array resizing. Values are conditionally appended to arrays, reallocating when
an array runs out of capacity. In contrast, the C version precomputes the total output
size.

The dramatic amount of allocation in boxed cutcp and tpacf is due to the alloca-
tion of short-lived integer or floating-point values. These benchmarks compute a large
number of independent sums by repeatedly updating an array in-place. In the unboxed
versions, an integer or floating-point value is read and overwritten without allocating
memory. In the boxed versions, arrays of pointers are read and overwritten. The allo-
cation overhead is due to the creation of a new boxed number on each array update. In
sgemm, smvm, and sobel, each boxed 4-byte number occupies 20 bytes of space (leading
to the observed overhead factor of 5): the number itself, an 8-byte boxed object header,
and an 8-byte pointer to the object. The factor is smaller in mri-q because it operates
on arrays of tuples, whose fields are unboxed.

Finally, by counting the number of allocated objects, we can verify that most un-
boxed benchmarks create only a handful of objects. There are 201 calls to Triolet code
in tpacf, allocating about 7.5 objects per call. Only unboxed power-i creates many
objects, because it outputs many small arrays.

10 Related Work

The run-time costs of boxing have been tackled from several angles.

Unboxed types. Unboxing and polymorphism are tough to combine. Some lan-
guages let users choose between the two: boxed types may be used in a polymorphic
context, while value types are unboxed and must not be used in a polymorphic context.
To smooth over the incompatibility between boxed and value types, a language may
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implicitly convert between corresponding boxed and value types [17], or provide boxed
wrappers around value types [31].

Eliminating polymorphism. Some languages are monomorphized during compi-
lation by creating a monomorphic copy of each polymorphic function for each type
at which it is used. However, this strategy cannot be guaranteed to succeed in lan-
guages with polymorphic recursion, existential types, or first-class parametric polymor-
phism [26].

A language implementation can reconcile monomorphization with advanced type
system features by compiling code dynamically. At run time, the implementation de-
tects which unboxed types are actually used by a program and generates monomorphic
code for only those types. This can be done by just-in-time compiling a language [21]
or by embedding a monomorphizable language into another language [33]. Such imple-
mentations rely on heavyweight run-time support to compute type information, compile
functions, and cache compiled code.

Coercion-based unboxing. Coercion-based unboxing transformations use statically
available type information to transform a fully boxed program into one that manipulates
a mixture of boxed and unboxed data [24, 41, 36]. Data is represented in unboxed form
when its type is statically known, and boxed otherwise; systems vary in precisely what
they unbox. When data is passed from a polymorphic context to a monomorphic one, or
vice versa, it is coerced between its boxed and unboxed representations by rebuilding the
data in the other representation. Because coercions carry a run-time cost proportional
to the size of the data being coerced, only small, nonrecursive objects are unboxed in
practice.

Although Triolet’s elaboration stage is a coercion-based transformation, its purpose
is only to minimize the use of boxing inside data structures, rather than globally. Triolet
relies instead on local optimizations to eliminate unnecessary boxing in other places.
Prior empirical results indicate that local optimizations can confer most of the benefit
of coercion-based unboxing [25].

Object inlining is an object-oriented program optimization similar to unboxing [13].
Because it is used on mutable objects, coercions (which build a copy of an object) cannot
be used. Instead, object inlining transforms object layouts globally.

Type-level computation. Objects can be more aggressively represented in unboxed
form if some type information is passed around at run time. Whereas coercion-based
systems convert data into the representation that a function is able to access, type-
passing functions accept various data representations and decide how to access data by
inspecting its type. Type-passing code can represent data in unboxed form without ever
coercing it to boxed form, avoiding the overhead of coercion. On the other hand, the
need for run-time dispatch can make object access in polymorphic code slower.

Tagging is simple example of this approach, and it has been used for unboxing
objects in polymorphic code [27, 25]. More general approaches employ type-level com-
putation, that is, they compute and inspect types at run time. Types can be functions
of other types [18, 35]. Run-time dispatch is effected by inspecting types [18], proxies
for types [11], or type class dictionaries [6].

Type-level computation has been proposed as a way to unbox data types. Several
works use tagging or type-level computation to unbox arrays [26, 25, 4, 20]. Regardless of
the type system’s expressiveness, however, these methods are confined by the underlying
language implementation’s data layout strategies. For instance, none of these methods
can unbox an Arr 100 � Maybe � Ref � Int � Int �'��� into one block of memory with 100
tags and 100 pointers, because that memory layout is not supported. This type can be

40



vectorized [4] with unboxed arrays, but a vectorized array is not an array: for instance,
it does not support Θ � 1 � random-access mutation. Our work complements type-level
computation by giving more data layout flexibility to the language implementation.

11 Conclusion

In numerical functional programs written using high-level polymorphic library functions,
the efficiency of data access in polymorphic code has a large impact on overall execution
time. We have demonstrated that functional numerical algorithms can compile to code
that operates on unboxed arrays and executes at 52% of the speed, on average, of
the same algorithms written in monomorphic C. This is 2.87 � faster than if boxed
arrays were used. To support unboxing in polymorphic code, we described a type-
safe extension to System Fω and a translation from fully boxed code to this extension.
Unlike previous approaches, our method can be used at compile time in the presence of
first-class polymorphic values and is not limited to unboxing a preselected set of types.
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