Program Optimization Study on a 128-Core GPU

Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee Ueng, and Wen-mei W. Hwu

Yu, Xuan

Dept of Computer & Information Sciences
University of Delaware
General Idea

- Good news
 - Improving programmability and generality on GPU
 - Possibility to perform a wide variety of parallelization optimizations

- Problem
 - How do you choose and control optimizations on GPU properly
 - Possible combination of optimization is very large and makes the optimization space tedious to explore
 - Limited local resources and global memory bandwidth makes performance sensitive to even small changes in code, unpredictable
General Idea

• Presented a study that examines a broad space of optimizations performed on several applications
• Found configurations up to 74% faster than previously thought optimal.
• Explained why this is happening on GPU, discuss some principles and techniques for finding near-optimal configurations
Organization

- Architecture Overview (CUDA)
 - Introduction of execution hardware and threading model
 - Compute Unified Device Architecture (CUDA)

- Optimization space search
 - Discussion of the space search process and the classifications and characteristics of the program optimizations

- Experiments
 - Discuss result of the search for several applications
 - Matrix Multiplication
 - Magnetic resonance Imaging
 - Sums of Absolute Difference

- Conclusion
Architecture

- General Programming and compilation process
 - GPU is treaded as a coprocessor that executes data-parallel kernel functions
 - The user supplies a both host (CPU) and kernel (GPU) code
 - Codes are separated and compiled by NVIDIA’s compiler.
 - Host code transfers data to GPU’s and initialized the kernel code via API calls
16 *streaming multiprocessors (SMs)*

Each SM containing eight *streaming processors (SPs), or cores*

Each core executes a single thread's instruction in SIMD

multiply-add arithmetic unit
two special functional units (SFUs)
reciprocal square root, sine, and cosine
fully pipelined,
Architecture

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Size</th>
<th>Latency</th>
<th>Read-Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>off-chip</td>
<td>768MB total</td>
<td>200-300 cycles</td>
<td>no</td>
</tr>
<tr>
<td>Shared</td>
<td>on-chip</td>
<td>16KB per SM</td>
<td>≥ register latency</td>
<td>no</td>
</tr>
<tr>
<td>Constant</td>
<td>on-chip cache</td>
<td>64KB total</td>
<td>≥ register latency</td>
<td>yes</td>
</tr>
<tr>
<td>Texture</td>
<td>on-chip cache</td>
<td>up to global</td>
<td>> 100 cycles</td>
<td>yes</td>
</tr>
<tr>
<td>Local</td>
<td>off-chip</td>
<td>up to global</td>
<td>same as global</td>
<td>no</td>
</tr>
</tbody>
</table>

CISC 879 : Software Support for Multicore Architectures
Architecture

Three Level Hierarchy:
- Grid
- Block
- Thread

Each kernel creates a single grid

A grid consists of many thread blocks.(512, on single SM)

Threads in a block are organized into warps of 32 threads. Each warp executes in SIMD fashion, issuing in four cycles on the eight SPs of an SM.

When one warp stalls, SM switch to another warp

CISC 879 : Software Support for Multicore Architectures
• Hardware constraints

<table>
<thead>
<tr>
<th>Resource or Configuration Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads per SM</td>
<td>768 threads</td>
</tr>
<tr>
<td>Thread Blocks per SM</td>
<td>8 blocks</td>
</tr>
<tr>
<td>32-bit Registers per SM</td>
<td>8,192 registers</td>
</tr>
<tr>
<td>Shared Memory per SM</td>
<td>16,384 bytes</td>
</tr>
<tr>
<td>Threads per Thread Block</td>
<td>512 threads</td>
</tr>
</tbody>
</table>

These constraints interact with each other making accurately predicting the effects of one or more compiler optimizations of CUDA difficult.
Consider an application:
• Uses 256 threads per block
• 10 registers per thread
• 4KB of shared memory per thread block.
Can schedule 3 thread blocks and 768 threads on each SM.

An optimization:
Increases each thread's register usage from 10 to 11 (an increase of only 10%) will decrease the number of blocks per SM from 3 to 2. This decreases the number of threads on an SM by 33%. Why? $768 \times 11 = 8448 > 9192$

<table>
<thead>
<tr>
<th>Resource or Configuration Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads per SM</td>
<td>768 threads</td>
</tr>
<tr>
<td>Thread Blocks per SM</td>
<td>8 blocks</td>
</tr>
<tr>
<td>32-bit Registers per SM</td>
<td>8,192 registers</td>
</tr>
<tr>
<td>Shared Memory per SM</td>
<td>16,384 bytes</td>
</tr>
<tr>
<td>Threads per Thread Block</td>
<td>512 threads</td>
</tr>
</tbody>
</table>
By contrast, an optimization that increases each thread block's shared memory usage by 1KB (an increase of 25%) does not decrease the number of blocks per SM. Clearly, the optimization space is inherently non-linear.

<table>
<thead>
<tr>
<th>Resource or Configuration Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads per SM</td>
<td>768 threads</td>
</tr>
<tr>
<td>Thread Blocks per SM</td>
<td>8 blocks</td>
</tr>
<tr>
<td>32-bit Registers per SM</td>
<td>8,192 registers</td>
</tr>
<tr>
<td>Shared Memory per SM</td>
<td>16,384 bytes</td>
</tr>
<tr>
<td>Threads per Thread Block</td>
<td>512 threads</td>
</tr>
</tbody>
</table>
Optimization space search

- Architecture Overview (CUDA)
 - Introduction of execution hardware and threading model
 - Compute Unified Device Architecture (CUDA)

- Optimization space search
 - Discussion of the space search process and the classifications and characteristics of the program optimizations

- Experiments
 - Discuss result of the search for several applications
 - Matrix Multiplication
 - Magnetic resonance Imaging
 - Sums of Absolute Difference

- Conclusion
Basic strategy for good performance:
Reduce dynamic instruction count while maintaining high SP occupancy.

Four categories of machine-level behavior to optimize:
- Thread-level work redistribution
- Instruction count reduction
- Intra-thread parallelism
- Resource balancing
Example of matrix multiplication

The kernel is tiled so that each thread block computes a square 16-by-16 tile of the output matrix.
CISC 879 : Software Support for Multicore Architectures

Optimization space search

Example of matrix multiplication

```c
Ctemp = 0;
for (...) {
  __shared__ float As[16][16];
  __shared__ float Bs[16][16];
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;
  __syncthreads();
  for (i = 0; i < 16; i++)
    { Ctemp += As[ty][i] * Bs[i][tx]; }
  __syncthreads();
} C[indexC] = Ctemp;
```

tx and **ty** are each thread's coordinates in the thread block;

indexA, indexB, and indexC are positions in the matrices

Threads in a block cooperatively load parts of the input matrices into shared memory, amortizing the cost of global load latency

Using larger tiles enhances the benefit of data sharing, but reduces scheduling flexibility since a greater fraction of the threads on an SM must wait at barrier synchronizations.
Four categories of machine-level behavior to optimize

- **Thread-level work redistribution**
- **Instruction count reduction**
- **Intra-thread parallelism**
- **Resource balancing**

Each thread compute two matrix elements instead of one, presents opportunities for eliminating redundant instructions previously distributed across threads:

```c
Ctemp = Dtemp = 0;
for (...) {
    __shared__ float As[16][16];
    __shared__ float Bs[16][32];

    As[ty][tx] = A[indexA];
    Bs[ty][tx] = B[indexB];
    Bs[ty][tx+16] = B[indexB+16];
    indexA += 16;
    indexB += 16 * widthB;
    __syncthreads();

    for (i = 0; i < 16; i++)
    {
        Ctemp += As[ty][i]
                 * Bs[i][tx];
        Dtemp += As[ty][i]
                 * Bs[i][tx + 16];
    }

    __syncthreads();
}
C[indexC] = Ctemp;
C[indexC+16] = Dtemp;
```
Four categories of machine-level behavior to optimize

- Thread-level work redistribution
- Instruction count reduction
- Intra-thread parallelism
- Resource balancing

Traditional compiler optimizations such as common sub expression elimination, loop-invariant code removal, and loop unrolling.

```c
Ctemp = 0;
for (...) {
    __shared__ float As[16][16];
    __shared__ float Bs[16][16];
    As[ty][tx] = A[indexA];
    Bs[ty][tx] = B[indexB];
    indexA += 16;
    indexB += 16 * widthB;
    __syncthreads();
    Ctemp +=
        As[ty][0] * Bs[0][tx];
    ...
    Ctemp +=
        As[ty][15] * Bs[15][tx];
    __syncthreads();
} C[indexC] = Ctemp;
```
Four categories of machine-level behavior to optimize:

- Thread-level work redistribution
- Instruction count reduction
- Intra-thread parallelism
- Resource balancing

A developer can unroll loops to facilitate code scheduling in the compiler or explicitly insert pre-fetching code.
Four categories of machine-level behavior to optimize

- Thread-level work redistribution
- Instruction count reduction
- Intra-thread parallelism
- Resource balancing

Trade certain resource usages, some of which may be counterintuitive, to produce a better performing application.

An example of this is using shared memory to buffer data for reuse, regardless of whether it is shared with other threads.

Another example is proactive register spilling by the programmer. By reducing register usage, often a critical resource, more thread blocks can be assigned to each SM.
Experiments

- Architecture Overview (CUDA)
 - Introduction of execution hardware and threading model
 - Compute Unified Device Architecture (CUDA)

- Optimization space search
 - Discussion of the space search process and the classifications and characteristics of the program optimizations

- Experiments
 - Discuss result of the search for several applications
 - Matrix Multiplication
 - Magnetic resonance Imaging
 - Sums of Absolute Difference

- Conclusion
Experiments

Comparison:

GPU experiments:
AMD Opteron 248 2.2GHz with 1GB main memory.

CPU versions:
Intel Core2 Extreme Quad running at 2.66 GHz with 4GB main memory.

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
<th>Max Speedup over CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Multiplication</td>
<td>Multiplication of two dense $4k \times 4k$ matrices. The CPU version uses version 9.0 of the Intel C++ Compiler and version 8.0 of the Intel Math Kernel Library.</td>
<td>6.98X</td>
</tr>
<tr>
<td>SAD</td>
<td>Computation of sums of absolute differences. SADs are computed between 4×4 pixel blocks in two QCIF-size images over a 32 pixel square search area.</td>
<td>19.6X</td>
</tr>
<tr>
<td>MRI-Q</td>
<td>Computation of a matrix Q, representing the scanner configuration, used in a 3D magnetic resonance image reconstruction algorithm in non-Cartesian space.</td>
<td>351X</td>
</tr>
<tr>
<td>MRI-FHD</td>
<td>Computation of an image-specific matrix F^Hd, used in a 3D magnetic resonance image reconstruction algorithm in non-Cartesian space.</td>
<td>220X</td>
</tr>
</tbody>
</table>
We varied tiling sizes, tiling dimensions, pre-fetching, and unroll factors.

Fig. 3. Matrix Multiplication Results
Experiments

The general trend: Larger tiles sizes and more work per thread gives higher performance.

Initial thought optimal:
- 1x1 tiling, 16x16 tiles, complete unrolling, pre-fetching
- 87.5 GFLOPS.

Actual peak performing:
- 1x1 tiling, 16x16 tiles, complete unrolling, no pre-fetching
- 91.3 GFLOPS, an improvement of 4.2%.

Fig. 3. Matrix Multiplication Results
Experiments

Increasing the tiling dimensions:
• Stable performance
• Slight advantage in average
• does not result in peak performance.
Reason: negative effects of unrolling by more than a factor of two for the higher tiling dimensions.

Fig. 3. Matrix Multiplication Results
Experiments

In summary:
✓ larger thread blocks are good due to data sharing.
✓ Complete unrolling often good due to reducing the branches calculations.
✓ However, the runtime's scheduling may increase register pressure such that the number of thread blocks assigned to each SM is reduced.
Experiments

Another application:
Magnetic resonance imaging (MRI) reconstruction

Reconstruct high-quality images from non-Cartesian trajectories. The computation required to perform these reconstructions is substantial.

Parameters sensitive to performance:

- loop unrolling factor,
- The number of threads per block (tpb),
- The number of scan points processed by each grid
✓ Shorter execution time for an unrolling factor of 8
✓ 4 is often worse than either 2 or 8

Reason:
• 12 registers when unrolled, 2 thread blocks per SM and 6.17s.
• 12 registers Unrolling factor is 2, 5.52s.
• 24 registers unrolling factor is 4, only admit on block per SM 5.89s
• 30 registers unrolling factor is 8, 1 block per SM, 4.64s
(b) Varying threads per thread block (tbp). Each line fixes unrolling factor and points per grid.
there is a smaller chance of conflicts when fewer thread blocks run on an SM.
To summarize MRI
Performance relatively insensitive to block size
An unrolling factor of 8 provided the highest performing
Gradual changes in optimization parameters can have wildly varying effects on an application.

Local resources used by a thread increases to points where fewer thread blocks can be assigned to each SM will reduce overall performance.

They believe that scheduling should be better controlled, possibly by the compiler rather than the runtime.