
 26 computer Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

Cover Fe ature

memories can manage locality. The challenge is that these
techniques require per-thread on-chip memory resources,
which are decreasing in massively threaded processors
and are predicted to continue to do so.1

As programmers face these challenges in more appli-
cations, there is an increasing demand for best practices
for achieving good scaling. We conducted a survey of the
field through our review of 75 application articles for
the GPU Computing Gems series2,3 and while develop-
ing the Parboil accelerator benchmark suite.4 Here, our
focus is on choosing algorithms with low computational
complexity. In addition, we do not include many com-
monplace optimizations that we believe do not directly
affect inherent scalability. Several patterns emerged
from our survey, each of which we generalize here as
a “technique.”

For each technique that we describe, we implemented
a version of at least one of the Parboil benchmarks that
lacked that technique but was otherwise well optimized,
compared to the fastest implementation currently known
and available to us. Unless otherwise noted, we collected
the performance results on an Nvidia GeForce 480 GTX.
Since we are focusing on GPU scalability, we only compare
kernel execution times, avoiding any assumptions about
data transmission costs.

TECHNIQUES FOR SCALABLE PERFORMANCE
The disparity between off-chip data access bandwidth

and a massively threaded system’s ability to consume that

R ecent many-core processors support hundreds
of hardware threads and require thousands
of tasks in applications to fully utilize their
execution throughput. Scaling to such large

numbers of threads requires more than just identifying
and expressing parallelism. Each of those thousands
of tasks will require data bandwidth, an increasingly
limited resource in comparison to the compute through-
put capabilities of high-performance systems. For many
applications, threads also need mediated access to
some shared data accumulating their results. Massively
threaded commodity many-core processors introduce
the challenge of parallel performance scalability to the
mainstream.

Programmers can overcome such hurdles to achiev-
ing scalable performance by adjusting algorithms to rely
more on on-chip and thread-private storage, economiz-
ing on off-chip memory traffic. Caches or other on-chip

A study of the implementation patterns
among massively threaded applications for
many-core GPUs reveals that each of the
seven most commonly used algorithm and
data optimization techniques can enhance
the performance of applicable kernels by
2 to 10× in current processors while also
improving future scalability.

John A. Stratton, Christopher Rodrigues, I-Jui (Ray) Sung, Li-Wen Chang, Nasser Anssari,
Geng (Daniel) Liu, and Wen-mei W. Hwu, University of Illinois at Urbana-Champaign

Nady Obeid, KLA-Tencor

Algorithm and
Data Optimization
Techniques for
Scaling to Massively
Threaded Systems

 AuGuSt 2012 27

Input

Output

Input

OutputOutput(a) (b)

Figure 2. Decomposition patterns. Threads performing opera-
tions in (a) a scatter-oriented approach and (b) a gather-oriented
approach. Red lines mark conflicting output updates.

structstruct foo{ foo{
 �oat �oat aa ;;
 �oat �oat bb ;;
 �oat �oat cc ;;
 intint dd ;;
} A[8];} A[8];

structstruct foo{ foo{
 �oat �oat a[8]a[8] ;;
 �oat �oat b[8]b[8] ;;
 �oat �oat c[8]c[8] ;;
 intint d[8]d[8] ;;
} A;} A;

Array of structures

Structure of arrays

Figure 1. A data layout transformation example for an array
of structures. The arrows in each layout highlight the access
pattern of a group of threads simultaneously accessing one or
more fields. Each thread accesses the logical data structure for
which the index matches its own.

data presents a significant challenge. The first six
techniques drive home the point that the predominant
performance concern in massively threaded systems
is managing data and bandwidth.

The first two techniques ensure that the DRAM
system delivers useful data as efficiently as possible.
Techniques 3 and 4 focus on using on-chip storage to
get the most use out of each DRAM access. Techniques
5 and 6 focus on algorithmically reducing the applica-
tion’s demand for bandwidth. However, bandwidth is
not the only scaling inhibitor, especially once the six
techniques have been applied. The seventh optimi-
zation pattern addresses the perennial issue of load
imbalance.

Technique 1: Data layout transformation
Modern DRAM systems are designed to transfer

large lines or rows of data in bursts. Poor usage of
those bursts means wasted bandwidth. In massively
threaded systems, accesses from other threads can
quickly displace bursts from implicit on-chip storage
such as caches or other internal buffers. If data in
a burst is needed but not used almost immediately,
it will probably need to be retransmitted.

System designers ensure that simple applications
with well-chosen data traversal orders and thread
index organization automatically make the most
out of each data burst. However, addressing multi-
field or multidimensional data structures (as in the
spmv case study) is not always easy. Figure 1 shows how
a group of threads accessing, in parallel, a common field
from multiple elements will always cause a strided access
in a standard C/C++ data layout, resulting in poor burst
utilization.

In these situations, the most effective optimization strat-
egy is to transform the way data is laid out in memory.
The most commonly recognized and applied transfor-
mation is the “array-of-structures to structure-of-arrays”
conversion, which results in a 5.1× speedup for the LBM
(Lattice-Boltzmann method) Parboil benchmark. Figure 1
also shows how a structure of arrays packs each field
from multiple cells into adjacent addresses for better burst
utilization.

Burst utilization is not the only factor in DRAM perfor-
mance, although it is often the most critical. Programmers
can use a more sophisticated layout, the array of structures
of tiled arrays (ASTA), to achieve even better bandwidth
utilization on a wider range of architectures.5 Layouts
like ASTA can address issues such as partition camping,
where memory traffic predominantly accesses only cer-
tain DRAM chips and cannot tap the memory system’s full
aggregate bandwidth. More sophisticated layouts can be
complex enough that explicit compiler and library support
for indexing them becomes essential.

Technique 2: Scatter-to-gather transformation
Many compute-intensive applications demonstrate

a computation pattern in which the system computes
output data by combining the contributions of many
input elements, possibly from unknown locations—for
example, a histogram. A simplistic implementation cre-
ates a task for each input element that determines the
output elements it affects and contributes or scatters to
each one. Figure 2a shows this kind of decomposition.
Scattering output works poorly as parallelism scales
because the output accesses are contentious, random,
or both. The hardware platform must somehow mediate
and serialize contentious writes, shown in red in Figure 2.
Truly random writes make poor use of memory bursts
regardless of data layout.

Although a scatter approach can be simpler to
write, it is often important to invert the decomposition,
assigning tasks to output elements that each gather contri-
butions from input elements, as Figure 2b shows. A gather
decomposition results in overlapping reads that hardware
can handle more efficiently than conflicting writes. If it
can derive the input data affecting an output statically, a
scatter-to-gather transformation can work exceptionally
well alone; otherwise, it might be necessary to supplement
it with a binning operation.

 28 computer

Cover Fe ature

The mri-grid and cutcp Parboil benchmarks are prac-
tically required to use scatter-to-gather transformation,
because floating-point atomic updates making parallel scat-
ters possible were an uncommon architecture feature until
very recently. The histogram Parboil benchmark, a more
borderline case, gains a 20 percent performance boost by
switching to gathering input instead of scattering output.

Technique 3: Tiling
Techniques 1 and 2 make off-chip accesses as efficient

and useful as they can be. Tiling offers optimization that
improves locality and on-chip memory usage. Tiling and
privatization are obviously familiar terms, but they have
been around long enough to become slightly ambiguous.
Here, we use tiling to mean the buffering of input data into
on-chip storage, where it is repeatedly accessed, whereas
privatization refers to the analogous buffering of output
data.

Tiling is perhaps the most widely applied and under-
stood technique for utilizing a tiered memory hierarchy.
The concept is simple: use smaller sets of data so that the
sets fit in faster on-chip storage while the system processes
them. Although the technique is fundamentally the same
in sequential code, albeit applied to loop iterations instead
of threads, a parallel implementation requires special
attention.

The bandwidth reduction benefit of tiling typically
scales with the size of a tile that can fit into on-chip storage.
In massively threaded systems, each thread has so little
on-chip storage that the benefits of making a private buffer
for each thread are constrained at best. Architects and
developers have therefore seized on a model that shares
on-chip resources among groups of threads, allowing the

entire group to leverage those shared resources for greater
impact at the cost of scheduling freedom. The top part of
the example in Figure 3a shows two threads that access
overlapping parts of a data structure.

The bottom part of Figure 3a shows that if the threads
are synchronized in their execution timing so that they
both focus on a small, overlapping subset of their input
data, a smaller on-chip storage can be used to hold the
subset data and satisfy the needs of both threads. That is,
the application needs to fetch data from off-chip DRAM
into the on-chip storage only once and can use it multiple
times from the on-chip storage.

This benefit comes at the cost of scheduling flexibility.
The threads must wait for each other to effectively share
the on-chip cache, using operations like barriers to force
all sharing threads to wait at a certain execution point—for
example, when they are finished with a tile—until all other
threads also reach that execution point, signifying that no
thread needs the tile any longer.

The comparative advantage of tiling depends on the
extent to which an untiled implementation can still benefit
from cache memory. For example, tiling speeds up the
Parboil sgemm benchmark by a factor of 3× on the Nvidia
GeForce GTX 480, which includes a cache, but by a factor
of more than 6× on previous hardware generations that
lacked a general cache hierarchy.

Technique 4: Privatization
Unlike input, it generally is not desirable for groups of

threads to be contending for the same output locations at
the same time. The atomic operations that such contend-
ing updates require can drastically reduce the memory
system’s throughput.

Scratchpad

DRAM

DRAM

Explicit
copy

Local
access

Cache

DRAM

Implicit
copy

Local
access

Local
results

Private
results

Global
results

(b)(a)

Figure 3. Optimizations for maximizing on-chip memory usage. (a) Input: tiling for either an explicit cache (left) or implicit
scratchpad (right). (b) Output: privatization and combining results in two stages.

 AuGuSt 2012 29

Privatization is the transformation that takes
some data that was once common or shared among
parallel tasks and duplicates it so that different
parallel threads have a private copy on which to
operate. Figure 3b illustrates how applications
can use privatization at multiple levels. Individual
threads update private results, then combine them
into collective group results that are finally com-
bined across all groups into global results.

While privatization has long been used in par-
allel computing, its use in massively threaded
many-core processors must address new limita-
tions. One such limitation is that the data footprint
of the copies and the overhead of combining them
scale with the amount of parallelism being ex-
ploited. This is why privatization is an extremely
powerful technique for the small number of
threads in today’s multicore CPUs but must be more closely
controlled for highly multithreaded architectures.

A typical compromise is to store one copy for a group
of threads in their shared scratchpad memory, which is
significantly faster than off-chip memory and often can
sustain high throughput for atomic updates. The histogram
Parboil benchmark cannot privatize its entire output due
to its large size, but still speeds up by a factor of 2.3× by
privatizing the small portion of output that is most heavily
accessed.
Case study: Two-point angular correlation function

The two-point angular correlation function (TPACF) is
a measure of the distribution of massive bodies in space.
The majority of the TPACF calculation is spent creating a
histogram of angular distances between all pairs of points
in two sets. A typical analysis evaluates many such pairs
of sets.

The TPACF implementation assigns one thread group to
compute the histogram from one pair of sets. The thread
group performs tiling (technique 3) by iterating over both
sets by tiles, one set saved into private registers and one
stored in group-shared scratchpad memory. Given two
tiles, each thread computes the distance between its pri-
vate point, with each point saved in the group’s on-chip
memory.

Contributions to the small histogram are highly conten-
tious, so the application uses privatization (technique 4)
to replicate the histogram. In a thread group, threads are
partitioned into subgroups of eight threads that share a
private histogram. A reduction on the private histograms
is the final implementation step. Altogether, the techniques
result in a 4.4× kernel speedup.

Technique 5: Binning/spatial data structures
Some applications might benefit from changing an

output-scatter implementation into an input-gather
operation (technique 2). There is a reason developers often

choose scatter patterns first: while output indexes can
always be computed from input data, the converse is not
necessarily true because output tends to be a dense data
structure, whereas input tends to be a sparse data structure.

Orchestrating a gather operation is difficult without a
method to determine, based on output location, which
inputs contribute to that location. Sometimes there is no
efficient way of doing so at all, in which case a gather oper-
ation scans many irrelevant inputs looking for the relevant
ones, increasing algorithm complexity and bandwidth
consumption.

Therefore, it is often beneficial to first create a map
from output locations to a small subset of the input data
that might affect that output location, reducing the re-
dundant reading of data and the applications’ algorithmic
complexity. We call the creation of this data structure bin-
ning because it often reflects a sorting of input elements
into bins representing a region of space containing those
input elements.

As Figure 4 shows, an example application sorts the
input data into fixed-size bins. To allow easy calculation
of a bin’s address, the application makes all bins the same
size (one element in the figure) by padding with dummy
elements if necessary (shown as Xs). The cutcp Parboil
benchmark speeds up by 12× from an unbinned to a
binned implementation.

Technique 6: Compaction
Compaction is a technique that developers have used

within extremely parallel, shared-memory systems and
programming models for quite some time and is still ac-
tively under research.6 The fundamental issue is how to
provision storage for data when the size of each thread’s
needs is unknown. The simplest solution is to preallocate
the maximum possible storage such that each thread can
statically determine its allocated location.

0 0 1

0 1 0 0 2 13 5 9 7Raw data keys

Over�ow data for
alternative processing

0 1 32 5 7 9

Compacted
data 0 1 32 5 7 9

0 1 32 4 5 76

Binned
data

Output[i] = ∑ (Input[j] where
 i – 1 ≤ Input[j].key ≤ i + 1)

Output

Figure 4. Optimization techniques 5-7: binning, compaction, and
regularization.

 30 computer

Cover Fe ature

The consequence of overprovisioning is unused holes
or spaces in the memory allocation, such as those bins
marked by Xs in Figure 4. Gaps interleaved with useful
data cause bandwidth and computational efficiency to
decrease as threads access useless data with no work to
be processed.

Compaction coordinates parallel tasks to dynamically
determine output locations without introducing any holes.
The dynamic coordination carries some overhead, but
the memory usage improvements more than make up for
that. A developer can implement compaction as a separate
kernel program or, preferably, can integrate it directly into
the output-producing kernel.

Compaction is essential for the mri-grid benchmark
in particular, where it reduces memory requirements by
68 percent; without it, it is not even possible to run rea-
sonable datasets on many GPUs due to insufficient device
memory capacity. This memory capacity reduction would
not occur if compaction were a separate processing step,
because it would still be necessary to temporarily allocate
the uncompacted array. Performance improvements of
compaction, although positive, might only be a second-
order concern because, for example, it results in only a
10 percent improvement for mri-grid.
Case study: Sparse matrix/vector multiplication

Sparse matrix/vector multiplication (spmv) is the core
of many iterative solvers for systems of linear equations.
The spmv benchmark is memory-bandwidth bound
when the matrix is large. Thus, most optimization efforts
focus on improving the application’s memory behavior.
This benchmark is an interesting case study in which the
format choice for a single data structure encompasses mul-
tiple techniques: regularization (row sorting), data layout
(transposition), and compaction (jagged diagonal storage
padding removal). Different researchers have different per-
spectives on the topic; here, we describe the methodology
that the Parboil benchmark embodies.

Sparse matrix storage formats include many previ-
ously studied data layout patterns, such as the compressed
sparse row (CSR), ELLPACK (ELL), and jagged diagonal stor-

age (JDS) formats, each shown in Figure 5
along with the transposed compact JDS
format. In cases where the preferred
method of decomposition assigns each
sparse row to a single thread, the sparse
storage format should be transposable for
good DRAM bandwidth, eliminating CSR
as a preferred choice even though it is a
more compact form than either ELL or JDS.

Between ELL and JDS, the regulariza-
tion principle favors JDS, which sorts rows
according to length, with a permutation
vector that keeps track of the original or-
dering of the rows. Threads processing

adjacent rows in the JDS format will have similar work-
loads, minimizing local imbalance.

Furthermore, the transposed JDS format can accom-
modate a compaction transformation. Instead of padding
every line to the number of sparse rows, it is possible to
instead record the beginning of each line, similar to how
CSR stores the beginning of each row. A thread can iterate
down its row using the lineptr array and the index of its
own row to get each value. While arbitrary line beginnings
can result in misaligned accesses, even the small cache on
the GTX 480 can effectively combine the accesses from
adjacent thread groups to fully utilize most DRAM bursts.

Technique 7: Regularization
Load imbalance has been a bane of parallel processing

throughout its history. Typically, load imbalance is exac-
erbated when the degree of parallelism being exploited
increases, since the variance in task duration is more
exposed when the number of processors is close to the
number of tasks. Load imbalance among the threads in a
group often causes the well-known issue of GPU thread di-
vergence. Furthermore, if threads co-executing in a group
have imbalanced workloads, the entire group’s shared
resources are occupied until the last task completes, re-
ducing the effective number of running threads over time.

When an application can predict at runtime where and
how load imbalance might occur, it can proactively re-
distribute or regularize the workload. For example, the
variable density of input being sorted into bins in an appli-
cation of technique 5 can cause load imbalance. Extremely
full bins, which can cause imbalance, can be capped at
some capacity, with overflow filtered out to be separately
processed, possibly by a different algorithm. In Figure 4,
separating the two excess elements of bin 0 and one excess
element of bin 1 better balances the loads of the threads
in the main kernel.
Case study: Range-limited electrostatic potential field
calculation

Some molecular modeling tasks require a high-
resolution map of the electrostatic potential field, that is,

Rowsrowptr
CSR

Rows

lineptr
Transposed /
compact JDSRows

ELL
Rows

JDS

Permutation vectorPermutation vector

Figure 5. Sparse matrix storage formats. The white cells are padded elements.
CSR: compressed sparse raw; ELL: ELL PACK; JDS: jagged diagonal storage.

 AuGuSt 2012 31

the voltage, caused by charged atoms distributed through-
out a volume.7 The cutoff-limited Coulombic potential
program computes a short-range component of this map,
in which the potential at a given map point is only affected
by atoms within a cutoff radius of 12 Å. In a complete
application, this would be added to a long-range compo-
nent computed with a less computationally demanding
algorithm.

The application bins the atom data (technique 5) to ef-
ficiently find the atoms near a point in space. It partitions
the atom-filled volume into a 3D uniform grid of cells and
places atoms into a data bin corresponding to the cell
they occupy in the space. The bin has the capacity for
up to eight atoms in one cell; excess atoms are processed
separately (technique 7). For biomolecules, where the av-
erage atom density is close to uniform, compaction is not
necessary.

In the main kernel, the application computes each
electrostatic potential value by scanning all the cells that
might contain atoms within the cutoff radius and summing
the potentials produced by those atoms actually within
the cutoff radius. All threads in a group process nearby
output locations and scan the same set of atoms, reducing
memory traffic through tiling (technique 3) at the cost of
increased computation, since threads scan more atoms
that do not contribute to the final calculation. Altogether,
the optimization patterns (not including scatter-to-gather
transformation) speed up the application by a factor of 14×.

FURTHER INVESTIGATION
Table 1 shows our judgments about which optimization

patterns were applicable for each of the Parboil bench-
marks. Some patterns were nearly ubiquitous, while others
required more specialized application circumstances. All
the patterns have interactions with each other as well.
For example, some benchmarks do not need a spatial
data structure for scatter-based decomposition, but this

structure is essential for a gather-based decomposition.
Therefore, applications frequently combine techniques 2
and 5, often with tiling (technique 3), to efficiently share
bins of data among threads. Developers could apply many
of the optimization techniques with good effect to any
parallel system, including today’s multicore CPUs.

The best outcome of these techniques is that a
bandwidth-limited application becomes a computation-
limited application that will likely scale for several more
architecture generations. Scalability optimizations
that deal with the issues of bandwidth- and resource-
constrained systems will likely trump all other approaches
in the long run.

P rogrammer optimization matters, despite all the
progress in tools and architectures to date. While
innovation might still surprise us, we expect these

optimization patterns to be relevant for good performance
and scalability in parallel architectures for several years
to come. We do anticipate, though, that tools and librar-
ies will eventually ease the pain of applying them if not
obviate them entirely.

Learning to apply the techniques described here is best
accomplished through practice and case studies. A recent
conference paper presents a more detailed performance
analysis of these patterns for a series of specific GPU archi-
tectures.8 The Parboil benchmark suite is currently in its
v2.5 release (http://impact.crhc.illinois.edu/parboil.aspx),
and we encourage those interested to inspect and compare
the source code of all the benchmarks before and after the
application of these optimization patterns.

References
 1. P. Kogge et al., ExaScale Computing Study: Technology Chal-

lenges in Achieving Exascale Systems, IPTO tech. report
TR-2008-13, DARPA, 2008; www.cse.nd.edu/Reports/2008/
TR-2008-13.pdf.

table 1. Applicability of the presented techniques to each of the parboil benchmarks.

Benchmark
1. Data layout

transformation
2. Scatter
to gather 3. Tiling 4. Privatization 5. Binning 6. Compaction 7. Regularization

cutcp x x x x

mri-q x x

mri-grid x x x x x

sad x

stencil x

tpacf x x

ibm x

sgemm x x

spmv x x x

bfs x x x

histogram x x

Cover Fe ature

 32 computer

 2. W. Hwu, ed., GPU Computing Gems Emerald Edition,
Morgan Kaufmann, 2011.

 3. W. Hwu, ed., GPU Computing Gems Jade Edition, Morgan
Kaufmann, 2011.

 4. J. Stratton et al., The Parboil Benchmarks, tech. report
IMPACT-12-01, Univ. of Illinois at Urbana-Champaign,
2012.

 5. I. Sung, G. Liu, and W. Hwu, “DL: A Data Layout Transfor-
mation System for Heterogeneous Computing,” Proc. IEEE
Conf. Innovative Parallel Computing (InPar 12), IEEE, 2012.

 6. M. Billeter, O. Olsson, and U. Assarsson, “Efficient Stream
Compaction on Wide SIMD Many-Core Architectures,”
Proc. Conf. High-Performance Graphics (HPG 09), IEEE,
2009, pp. 159-166.

 7. D. Hardy et al., “Fast Molecular Electrostatics Algorithms
on GPUs,” GPU Computing Gems Emerald Edition, W. Hwu,
ed., Morgan Kaufmann, 2011, pp. 43-58.

 8. J. Stratton et al., “Optimization and Architecture Effects on
GPU Computing Workload Performance,” Proc. IEEE Conf.
Innovative Parallel Computing (InPar 12), IEEE, 2012.

John A. Stratton is a graduate student in the Department
of Electrical and Computer Engineering at the University
of Illinois at Urbana-Champaign. His research focuses
on parallel performance portability tools. Contact him at
stratton@illinois.edu.

Christopher Rodrigues is a graduate student in the De-
partment of Electrical and Computer Engineering at the
University of Illinois at Urbana-Champaign. His research
focuses on high-level parallel programming languages and
their implementation. Contact him at cirodrig@illinois.edu.

I-Jui (Ray) Sung is a graduate student in the Department of
Electrical and Computer Engineering at the University of Il-
linois at Urbana-Champaign. His research interests include
data layout and memory systems for parallel architectures.
Contact him at sung10@illinois.edu.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

 htt p://selab.fb k.eu/icsm2012/ Register today!

 23-30 September 2012 • Riva del Garda, Trento, Italy
 ICSM is the premiere international venue in software maintenance and evolution, where participants
from academia, government, and industry meet and share ideas and experiences for solving critical
software maintenance problems.

 IEEE ICSM 2012
 28th IEEE International Conference on Software Maintenance

Li-Wen Chang is a graduate student in the Department
of Electrical and Computer Engineering at the University
of Illinois at Urbana-Champaign. His research focuses on
parallel algorithms for GPUs, such as sparse matrix opera-
tions and solvers. Contact him at lchang20@illinois.edu.

Nasser Anssari is a graduate student in the Department of
Electrical and Computer Engineering at the University of
Illinois at Urbana-Champaign. His research interests in-
clude performance analysis on parallel architectures and
performance portability. Contact him at anssari1@illinois.
edu.

Geng (Daniel) Liu is a graduate student in the Department
of Electrical and Computer Engineering at the University
of Illinois at Urbana-Champaign. His research interests in-
clude parallel applications and binary translation. Contact
him at gengliu2@illinois.edu.

Wen-mei W. Hwu is the Walter J. (“Jerry”) Sanders III-
Advanced Micro Devices Endowed Chair in Electrical and
Computer Engineering in the Coordinated Science Labora-
tory at the University of Illinois at Urbana-Champaign. His
research interests include architectures, implementations,
software for high-performance computer systems, and par-
allel processing. Hwu received a PhD in computer science
from the University of California, Berkeley. Contact him at
w-hwu@illinois.edu.

Nady Obeid is a software engineer at KLA-Tencor. His
research interests include high-performance computing,
image processing, and scalable histogram performance.
Obeid received an MS in electrical and computer engineer-
ing from the University of Illinois at Urbana-Champaign.
Contact him at obeid1@illinois.edu.

