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memories can manage locality. The challenge is that these 
techniques require per-thread on-chip memory resources, 
which are decreasing in massively threaded processors 
and are predicted to continue to do so.1

As programmers face these challenges in more appli-
cations, there is an increasing demand for best practices 
for achieving good scaling. We conducted a survey of the 
field through our review of 75 application articles for 
the GPU Computing Gems series2,3 and while develop-
ing the Parboil accelerator benchmark suite.4 Here, our 
focus is on choosing algorithms with low computational 
complexity. In addition, we do not include many com-
monplace optimizations that we believe do not directly 
affect inherent scalability. Several patterns emerged 
from our survey, each of which we generalize here as 
a “technique.” 

For each technique that we describe, we implemented 
a version of at least one of the Parboil benchmarks that 
lacked that technique but was otherwise well optimized, 
compared to the fastest implementation currently known 
and available to us. Unless otherwise noted, we collected 
the performance results on an Nvidia GeForce 480 GTX. 
Since we are focusing on GPU scalability, we only compare 
kernel execution times, avoiding any assumptions about 
data transmission costs.

TECHNIQUES FOR SCALABLE PERFORMANCE
The disparity between off-chip data access bandwidth 

and a massively threaded system’s ability to consume that 

R ecent many-core processors support hundreds 
of hardware threads and require thousands 
of tasks in applications to fully utilize their 
execution throughput. Scaling to such large 

numbers of threads requires more than just identifying 
and expressing parallelism. Each of those thousands 
of tasks will require data bandwidth, an increasingly 
limited resource in comparison to the compute through-
put capabilities of high-performance systems. For many 
applications, threads also need mediated access to 
some shared data accumulating their results. Massively 
threaded commodity many-core processors introduce 
the challenge of parallel performance scalability to the 
mainstream. 

Programmers can overcome such hurdles to achiev-
ing scalable performance by adjusting algorithms to rely 
more on on-chip and thread-private storage, economiz-
ing on off-chip memory traffic. Caches or other on-chip 
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Figure 2. Decomposition patterns. Threads performing opera-
tions in (a) a scatter-oriented approach and (b) a gather-oriented  
approach. Red lines mark conflicting output updates. 

structstruct  foo{ foo{
 �oat  �oat aa ;;
 �oat  �oat bb ;;
 �oat  �oat cc ;;
  intint   dd ;;
} A[8];} A[8];

structstruct  foo{ foo{
 �oat  �oat a[8]a[8] ;;
 �oat  �oat b[8]b[8] ;;
 �oat  �oat c[8]c[8] ;;
  intint   d[8]d[8] ;;
} A;} A;

Array of structures

Structure of arrays

Figure 1. A data layout transformation example for an array 
of structures. The arrows in each layout highlight the access 
pattern of a group of threads simultaneously accessing one or 
more fields. Each thread accesses the logical data structure for 
which the index matches its own.

data presents a significant challenge. The first six 
techniques drive home the point that the predominant 
performance concern in massively threaded systems 
is managing data and bandwidth. 

The first two techniques ensure that the DRAM 
system delivers useful data as efficiently as possible. 
Techniques 3 and 4 focus on using on-chip storage to 
get the most use out of each DRAM access. Techniques 
5 and 6 focus on algorithmically reducing the applica-
tion’s demand for bandwidth. However, bandwidth is 
not the only scaling inhibitor, especially once the six 
techniques have been applied. The seventh optimi-
zation pattern addresses the perennial issue of load 
imbalance.

Technique 1: Data layout transformation
Modern DRAM systems are designed to transfer 

large lines or rows of data in bursts. Poor usage of 
those bursts means wasted bandwidth. In massively 
threaded systems, accesses from other threads can 
quickly displace bursts from implicit on-chip storage 
such as caches or other internal buffers. If data in 
a burst is needed but not used almost immediately,  
it will probably need to be retransmitted. 

System designers ensure that simple applications 
with well-chosen data traversal orders and thread 
index organization automatically make the most 
out of each data burst. However, addressing multi-
field or multidimensional data structures (as in the 
spmv case study) is not always easy. Figure 1 shows how 
a group of threads accessing, in parallel, a common field 
from multiple elements will always cause a strided access 
in a standard C/C++ data layout, resulting in poor burst 
utilization.

In these situations, the most effective optimization strat-
egy is to transform the way data is laid out in memory. 
The most commonly recognized and applied transfor-
mation is the “array-of-structures to structure-of-arrays” 
conversion, which results in a 5.1× speedup for the LBM 
(Lattice-Boltzmann method) Parboil benchmark. Figure 1  
also shows how a structure of arrays packs each field 
from multiple cells into adjacent addresses for better burst 
utilization. 

Burst utilization is not the only factor in DRAM perfor-
mance, although it is often the most critical. Programmers 
can use a more sophisticated layout, the array of structures 
of tiled arrays (ASTA), to achieve even better bandwidth 
utilization on a wider range of architectures.5 Layouts 
like ASTA can address issues such as partition camping, 
where memory traffic predominantly accesses only cer-
tain DRAM chips and cannot tap the memory system’s full 
aggregate bandwidth. More sophisticated layouts can be 
complex enough that explicit compiler and library support 
for indexing them becomes essential.

Technique 2: Scatter-to-gather transformation
Many compute-intensive applications demonstrate 

a computation pattern in which the system computes 
output data by combining the contributions of many 
input elements, possibly from unknown locations—for 
example, a histogram. A simplistic implementation cre-
ates a task for each input element that determines the 
output elements it affects and contributes or scatters to 
each one. Figure 2a shows this kind of decomposition. 
Scattering output works poorly as parallelism scales 
because the output accesses are contentious, random, 
or both. The hardware platform must somehow mediate 
and serialize contentious writes, shown in red in Figure 2.  
Truly random writes make poor use of memory bursts 
regardless of data layout. 

Although a scatter approach can be simpler to 
write, it is often important to invert the decomposition, 
assigning tasks to output elements that each gather contri-
butions from input elements, as Figure 2b shows. A gather  
decomposition results in overlapping reads that hardware 
can handle more efficiently than conflicting writes. If it 
can derive the input data affecting an output statically, a  
scatter-to-gather transformation can work exceptionally 
well alone; otherwise, it might be necessary to supplement 
it with a binning operation.
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The mri-grid and cutcp Parboil benchmarks are prac-
tically required to use scatter-to-gather transformation, 
because floating-point atomic updates making parallel scat-
ters possible were an uncommon architecture feature until 
very recently. The histogram Parboil benchmark, a more 
borderline case, gains a 20 percent performance boost by 
switching to gathering input instead of scattering output. 

Technique 3: Tiling
Techniques 1 and 2 make off-chip accesses as efficient 

and useful as they can be. Tiling offers optimization that 
improves locality and on-chip memory usage. Tiling and 
privatization are obviously familiar terms, but they have 
been around long enough to become slightly ambiguous. 
Here, we use tiling to mean the buffering of input data into 
on-chip storage, where it is repeatedly accessed, whereas 
privatization refers to the analogous buffering of output 
data. 

Tiling is perhaps the most widely applied and under-
stood technique for utilizing a tiered memory hierarchy. 
The concept is simple: use smaller sets of data so that the 
sets fit in faster on-chip storage while the system processes 
them. Although the technique is fundamentally the same 
in sequential code, albeit applied to loop iterations instead 
of threads, a parallel implementation requires special 
attention. 

The bandwidth reduction benefit of tiling typically 
scales with the size of a tile that can fit into on-chip storage. 
In massively threaded systems, each thread has so little 
on-chip storage that the benefits of making a private buffer 
for each thread are constrained at best. Architects and 
developers have therefore seized on a model that shares 
on-chip resources among groups of threads, allowing the 

entire group to leverage those shared resources for greater 
impact at the cost of scheduling freedom. The top part of 
the example in Figure 3a shows two threads that access 
overlapping parts of a data structure. 

The bottom part of Figure 3a shows that if the threads 
are synchronized in their execution timing so that they 
both focus on a small, overlapping subset of their input 
data, a smaller on-chip storage can be used to hold the 
subset data and satisfy the needs of both threads. That is, 
the application needs to fetch data from off-chip DRAM 
into the on-chip storage only once and can use it multiple 
times from the on-chip storage. 

This benefit comes at the cost of scheduling flexibility. 
The threads must wait for each other to effectively share 
the on-chip cache, using operations like barriers to force 
all sharing threads to wait at a certain execution point—for 
example, when they are finished with a tile—until all other 
threads also reach that execution point, signifying that no 
thread needs the tile any longer. 

The comparative advantage of tiling depends on the 
extent to which an untiled implementation can still benefit 
from cache memory. For example, tiling speeds up the 
Parboil sgemm benchmark by a factor of 3× on the Nvidia 
GeForce GTX 480, which includes a cache, but by a factor 
of more than 6× on previous hardware generations that 
lacked a general cache hierarchy.

Technique 4: Privatization
Unlike input, it generally is not desirable for groups of 

threads to be contending for the same output locations at 
the same time. The atomic operations that such contend-
ing updates require can drastically reduce the memory 
system’s throughput. 
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Figure 3. Optimizations for maximizing on-chip memory usage. (a) Input: tiling for either an explicit cache (left) or implicit 
scratchpad (right). (b) Output: privatization and combining results in two stages.
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Privatization is the transformation that takes 
some data that was once common or shared among 
parallel tasks and duplicates it so that different 
parallel threads have a private copy on which to 
operate. Figure 3b illustrates how applications 
can use privatization at multiple levels. Individual 
threads update private results, then combine them 
into collective group results that are finally com-
bined across all groups into global results.

While privatization has long been used in par-
allel computing, its use in massively threaded 
many-core processors must address new limita-
tions. One such limitation is that the data footprint 
of the copies and the overhead of combining them 
scale with the amount of parallelism being ex-
ploited. This is why privatization is an extremely 
powerful technique for the small number of 
threads in today’s multicore CPUs but must be more closely 
controlled for highly multithreaded architectures. 

A typical compromise is to store one copy for a group 
of threads in their shared scratchpad memory, which is 
significantly faster than off-chip memory and often can 
sustain high throughput for atomic updates. The histogram 
Parboil benchmark cannot privatize its entire output due 
to its large size, but still speeds up by a factor of 2.3× by 
privatizing the small portion of output that is most heavily 
accessed.
Case study: Two-point angular correlation function 

The two-point angular correlation function (TPACF) is 
a measure of the distribution of massive bodies in space. 
The majority of the TPACF calculation is spent creating a 
histogram of angular distances between all pairs of points 
in two sets. A typical analysis evaluates many such pairs 
of sets.

The TPACF implementation assigns one thread group to 
compute the histogram from one pair of sets. The thread 
group performs tiling (technique 3) by iterating over both 
sets by tiles, one set saved into private registers and one 
stored in group-shared scratchpad memory. Given two 
tiles, each thread computes the distance between its pri-
vate point, with each point saved in the group’s on-chip 
memory.

Contributions to the small histogram are highly conten-
tious, so the application uses privatization (technique 4) 
to replicate the histogram. In a thread group, threads are 
partitioned into subgroups of eight threads that share a 
private histogram. A reduction on the private histograms 
is the final implementation step. Altogether, the techniques 
result in a 4.4× kernel speedup.

Technique 5: Binning/spatial data structures
Some applications might benefit from changing an  

output-scatter implementation into an input-gather  
operation (technique 2). There is a reason developers often 

choose scatter patterns first: while output indexes can 
always be computed from input data, the converse is not 
necessarily true because output tends to be a dense data 
structure, whereas input tends to be a sparse data structure. 

Orchestrating a gather operation is difficult without a 
method to determine, based on output location, which 
inputs contribute to that location. Sometimes there is no 
efficient way of doing so at all, in which case a gather oper-
ation scans many irrelevant inputs looking for the relevant 
ones, increasing algorithm complexity and bandwidth 
consumption. 

Therefore, it is often beneficial to first create a map 
from output locations to a small subset of the input data 
that might affect that output location, reducing the re-
dundant reading of data and the applications’ algorithmic 
complexity. We call the creation of this data structure bin-
ning because it often reflects a sorting of input elements 
into bins representing a region of space containing those 
input elements. 

As Figure 4 shows, an example application sorts the 
input data into fixed-size bins. To allow easy calculation 
of a bin’s address, the application makes all bins the same 
size (one element in the figure) by padding with dummy 
elements if necessary (shown as Xs). The cutcp Parboil 
benchmark speeds up by 12× from an unbinned to a 
binned implementation. 

Technique 6: Compaction
Compaction is a technique that developers have used 

within extremely parallel, shared-memory systems and 
programming models for quite some time and is still ac-
tively under research.6 The fundamental issue is how to 
provision storage for data when the size of each thread’s 
needs is unknown. The simplest solution is to preallocate 
the maximum possible storage such that each thread can 
statically determine its allocated location. 
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Figure 4. Optimization techniques 5-7: binning, compaction, and 
regularization.
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The consequence of overprovisioning is unused holes 
or spaces in the memory allocation, such as those bins 
marked by Xs in Figure 4. Gaps interleaved with useful 
data cause bandwidth and computational efficiency to 
decrease as threads access useless data with no work to 
be processed.

Compaction coordinates parallel tasks to dynamically 
determine output locations without introducing any holes. 
The dynamic coordination carries some overhead, but 
the memory usage improvements more than make up for 
that. A developer can implement compaction as a separate 
kernel program or, preferably, can integrate it directly into 
the output-producing kernel. 

Compaction is essential for the mri-grid benchmark 
in particular, where it reduces memory requirements by  
68 percent; without it, it is not even possible to run rea-
sonable datasets on many GPUs due to insufficient device 
memory capacity. This memory capacity reduction would 
not occur if compaction were a separate processing step, 
because it would still be necessary to temporarily allocate 
the uncompacted array. Performance improvements of 
compaction, although positive, might only be a second-
order concern because, for example, it results in only a  
10 percent improvement for mri-grid.
Case study: Sparse matrix/vector multiplication

Sparse matrix/vector multiplication (spmv) is the core 
of many iterative solvers for systems of linear equations. 
The spmv benchmark is memory-bandwidth bound 
when the matrix is large. Thus, most optimization efforts 
focus on improving the application’s memory behavior. 
This benchmark is an interesting case study in which the 
format choice for a single data structure encompasses mul-
tiple techniques: regularization (row sorting), data layout 
(transposition), and compaction (jagged diagonal storage 
padding removal). Different researchers have different per-
spectives on the topic; here, we describe the methodology 
that the Parboil benchmark embodies.

Sparse matrix storage formats include many previ-
ously studied data layout patterns, such as the compressed 
sparse row (CSR), ELLPACK (ELL), and jagged diagonal stor-

age (JDS) formats, each shown in Figure 5  
along with the transposed compact JDS 
format. In cases where the preferred 
method of decomposition assigns each 
sparse row to a single thread, the sparse 
storage format should be transposable for 
good DRAM bandwidth, eliminating CSR 
as a preferred choice even though it is a 
more compact form than either ELL or JDS. 

Between ELL and JDS, the regulariza-
tion principle favors JDS, which sorts rows 
according to length, with a permutation 
vector that keeps track of the original or-
dering of the rows. Threads processing 

adjacent rows in the JDS format will have similar work-
loads, minimizing local imbalance. 

Furthermore, the transposed JDS format can accom-
modate a compaction transformation. Instead of padding 
every line to the number of sparse rows, it is possible to 
instead record the beginning of each line, similar to how 
CSR stores the beginning of each row. A thread can iterate 
down its row using the lineptr array and the index of its 
own row to get each value. While arbitrary line beginnings 
can result in misaligned accesses, even the small cache on 
the GTX 480 can effectively combine the accesses from 
adjacent thread groups to fully utilize most DRAM bursts. 

Technique 7: Regularization 
Load imbalance has been a bane of parallel processing 

throughout its history. Typically, load imbalance is exac-
erbated when the degree of parallelism being exploited 
increases, since the variance in task duration is more 
exposed when the number of processors is close to the 
number of tasks. Load imbalance among the threads in a 
group often causes the well-known issue of GPU thread di-
vergence. Furthermore, if threads co-executing in a group 
have imbalanced workloads, the entire group’s shared 
resources are occupied until the last task completes, re-
ducing the effective number of running threads over time. 

When an application can predict at runtime where and 
how load imbalance might occur, it can proactively re-
distribute or regularize the workload. For example, the 
variable density of input being sorted into bins in an appli-
cation of technique 5 can cause load imbalance. Extremely 
full bins, which can cause imbalance, can be capped at 
some capacity, with overflow filtered out to be separately 
processed, possibly by a different algorithm. In Figure 4, 
separating the two excess elements of bin 0 and one excess 
element of bin 1 better balances the loads of the threads 
in the main kernel.
Case study: Range-limited electrostatic potential field 
calculation

Some molecular modeling tasks require a high- 
resolution map of the electrostatic potential field, that is, 
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Figure 5. Sparse matrix storage formats. The white cells are padded elements. 
CSR: compressed sparse raw; ELL: ELL PACK; JDS: jagged diagonal storage.
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the voltage, caused by charged atoms distributed through-
out a volume.7 The cutoff-limited Coulombic potential 
program computes a short-range component of this map, 
in which the potential at a given map point is only affected 
by atoms within a cutoff radius of 12 Å. In a complete 
application, this would be added to a long-range compo-
nent computed with a less computationally demanding 
algorithm.

The application bins the atom data (technique 5) to ef-
ficiently find the atoms near a point in space. It partitions 
the atom-filled volume into a 3D uniform grid of cells and 
places atoms into a data bin corresponding to the cell 
they occupy in the space. The bin has the capacity for 
up to eight atoms in one cell; excess atoms are processed 
separately (technique 7). For biomolecules, where the av-
erage atom density is close to uniform, compaction is not 
necessary.

In the main kernel, the application computes each 
electrostatic potential value by scanning all the cells that 
might contain atoms within the cutoff radius and summing 
the potentials produced by those atoms actually within 
the cutoff radius. All threads in a group process nearby 
output locations and scan the same set of atoms, reducing 
memory traffic through tiling (technique 3) at the cost of 
increased computation, since threads scan more atoms 
that do not contribute to the final calculation. Altogether, 
the optimization patterns (not including scatter-to-gather 
transformation) speed up the application by a factor of 14×.

FURTHER INVESTIGATION
Table 1 shows our judgments about which optimization 

patterns were applicable for each of the Parboil bench-
marks. Some patterns were nearly ubiquitous, while others 
required more specialized application circumstances. All 
the patterns have interactions with each other as well. 
For example, some benchmarks do not need a spatial 
data structure for scatter-based decomposition, but this 

structure is essential for a gather-based decomposition. 
Therefore, applications frequently combine techniques 2 
and 5, often with tiling (technique 3), to efficiently share 
bins of data among threads. Developers could apply many 
of the optimization techniques with good effect to any 
parallel system, including today’s multicore CPUs. 

The best outcome of these techniques is that a  
bandwidth-limited application becomes a computation- 
limited application that will likely scale for several more 
architecture generations. Scalability optimizations 
that deal with the issues of bandwidth- and resource- 
constrained systems will likely trump all other approaches 
in the long run. 

P rogrammer optimization matters, despite all the 
progress in tools and architectures to date. While 
innovation might still surprise us, we expect these 

optimization patterns to be relevant for good performance 
and scalability in parallel architectures for several years 
to come. We do anticipate, though, that tools and librar-
ies will eventually ease the pain of applying them if not 
obviate them entirely.

Learning to apply the techniques described here is best 
accomplished through practice and case studies. A recent 
conference paper presents a more detailed performance 
analysis of these patterns for a series of specific GPU archi-
tectures.8 The Parboil benchmark suite is currently in its 
v2.5 release (http://impact.crhc.illinois.edu/parboil.aspx), 
and we encourage those interested to inspect and compare 
the source code of all the benchmarks before and after the 
application of these optimization patterns. 
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