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Abstract
This paper evaluates six different types of interprocedu-

ral pointer analyses on 22 telecommunication and media
applications and describes their application to an SRAM
power reduction technique. This configurable SRAM pro-
vides differentiation of data access time and port counts
within a single on-chip structure. Scheduling for config-
urable SRAM relies on inter-procedural dependence anal-
ysis for safe assignment of program data objects to on-chip
storage regions with little or no performance degradation.
It thus provides a meaningful vehicle for exploring the ap-
plicability of and need for various interprocedural analysis
techniques, as well as a demonstration of how compilation
and hardware techniques can be combined to achieve opti-
mization beyond that for performance.

1. Introduction
The non-orthogonal instruction mixes, unique features,

and tight code size constraints of DSP/embedded proces-
sors traditionally necessitated programming embedded ap-
plications in assembly code. However, the increasing com-
plexity of applications, combined with the growing popu-
larity of relatively uniform VLIW processors, have created
a need for high-level language coding and compilation. The
embedded domain remains fundamentally constrained by
power and energy consumption, but wider instruction issue
processors are often more power- and energy-hungry than
their predecessors. A new generation of compilation tech-
niques is needed to address not only performance, but also
power, in a joint hardware-software approach.

One of the more difficult static compiler analysis tech-
niques is interprocedural pointer analysis, which provides
compile-time knowledge of program memory activity by
resolving the data locations reachable through a program’s
pointers. A number of previous works have addressed
the power consumption of the memory subsystem, but
many avoided the difficulties associated with pointer use
in high-level language codes. Compiler-managed scratch-
pad buffers have been used, for example, for spill code [1];
proposals have been evaluated primarily on the basis of ker-
nels, and so do not consider benchmarks with high-level

language pointer usage; or proposals achieve power sav-
ings through modifications to hardware caches [2], thus
incurring potential performance degradation, which may
not be appropriate for an embedded environment. This
paper evaluates the necessity for, and efficacy of, various
interprocedural pointer analysis techniques on a suite of
telecommunication and media applications, and illustrates
their ties with a compiler-hardware memory power savings
approach.

We provide two primary contributions to the develop-
ing field of embedded compilation: (1) an evaluation of
the applicability and utility of six forms of inter-procedural
pointer analysis to a suite of telecommunication and me-
dia applications; and (2) a demonstration of the synergy
possible between such analytical compiler analysis and mi-
croarchitectural techniques designed for power reduction.
Section 2 describes a selection of five pointer analysis op-
tions available for C language programs, and evaluates their
applicability to classes of the studied applications. The cor-
respondence of pointer analysis to net performance changes
in classically optimized benchmark codes is also presented.
Section 3 describes the configurable SRAM technique for
power savings in on-chip SRAM, and Section 4 provides
background on the compiler techniques required to sched-
ule code for configurable SRAM. The impact of pointer
analysis quality and results on net configurable SRAM
power savings is then presented in Section 5.

2. Scalable Pointer Analysis
Conceptually, the goal of a pointer analysis system is to

describe symbolically the potential targets of each pointer.
Information about pointer accesses gives the compiler a
view of an application’s memory activity and can be critical
for tasks like intraprocedural register promotion, schedul-
ing, memory dataflow, debugging, and verification.

While the goal of pointer analysis is straightforward,
the realization of this goal is complicated by the variety of
formulations, each with its own strengths and weaknesses
with respect to accuracy and scalability. Accuracy is a
measure of how closely the derived pointer relationships
match those actually realizable by the program. Scalabil-



ity is a measure of the applicability of an algorithm to a
range of programs with a variety of characteristics (size is
not the only consideration–a 10 million line program lack-
ing pointer use is easy to analyze). The challenges inherent
to the problem, along with the usefulness of the results, has
led to a large body of research [3].

The basis for this work an interprocedural pointer analy-
sis introduced in [4] and integrated with the IMPACT com-
piler framework [5]. This algorithm is very accurate, yet
has also been shown to work very efficiently for large pro-
grams having complicated pointer usage. The analysis is an
Andersen style, offset-based field sensitive, bottom-up/top-
down context sensitive, heap object specializing pointer
analysis that generates unique identifiers for all accessed
objects. Indirect calls are handled by forming an optimistic
call graph and then iterating between pointer analysis and
call graph updates until the solutions converge. External li-
brary calls are represented by procedure stubs that mimic
the appropriate pointer behavior. For the benchmarks ana-
lyzed in this paper, the time to perform the most accurate
form of analysis ranged from less than 0.01 second to 1
second. The applicability and utility of six different pointer
analysis configurations are evaluated in this paper:

• Andersen style [6] (And) vs. Steensgaard style [7]
(Stgd) : If a single location points to two different ob-
jects, And will continue to track the objects separately,
while Stgd will unify them, tracking them as a single
object.

• Context (in)sensitivity (CI / CS) : A CS algorithm is
able to keep data flow along different call paths sepa-
rate. For example, should functions A and B both call
C, a CI algorithm may show false data flow from A
into B, by way of C.

• Field (in)sensitivity (FI / FS) : A FS algorithm is able
to distinguish between fields of an aggregate object. In
a FI analysis, the C-language expressions x.f1 and
x.f2 are equivalent to x.

• Heap (in)sensitivity [8] HI / HS : HS enables an al-
gorithm to distinguish between different heap allo-
cated objects even though allocated by the same call
to malloc().

• Zero-weight path exclusion (ZE): This excludes all
zero weight expressions from the pointer analysis.
While not valid for general dependence analysis, Sec-
tion 5 will detail its utility for placement of objects
into a configurable SRAM.

2.1. Result clarity

Pointer analysis is commonly described in terms of
points-to sets, or the locations that a given pointer may ref-
erence. The implemented analyses all generate points-to
sets, but for the purpose of clarity in this work, analysis re-
sults will be described in terms of data object references.
An object may be an array; a scalar; a structure; or a union,

Table 1: Benchmarks from MediaBench [9], ETSI [10],
EEMBC, JasPer [11], and independent authors.

Applications Source Description
(LOC)

adpcm MediaBench Intel/DVI ADPCM codec
{dec | enc} (13K)

g721 MediaBench Voice compression according to
{dec | enc} (14K) the CCITT G.721 standard

g724 ETSI GSM 06.60 EFR speech transcoding,
{dec | enc} ({20K, 25K}) state-of-the-art digital cellular comm.

gsm MediaBench Lossy sound compression according
{dec | enc} (19K) to the GSM 6.10 RPE-LTE standard

jpeg MediaBench Independent JPEG Group photo
{dec | enc} (37K) decoder/encoder

h263 Independent H.263 video decoder/encoder,
{dec | enc} ({19K, 21K}) Telenor implementation

mpeg2 MediaBench MPEG-2 video decoder
{dec | enc} ({22K, 20K})

mpg123 Independent MPEG-2 Layer 3 audio decoder.
(24K)

jpg2Kdec Independent JPEG-2000 Part-1 standard (ISO/IEC
(43K) 15444-1) ref. dec. from JasPer Project.

autcor00 EEMBC Autocorrelation: Code-Excited Linear Pred.
(17K) (CELP) filter transfer function matching

conven00 EEMBC Convolutional encoder: V.xx modem output
(17K) stream encoding to enable error det/cor

fbital00 EEMBC Bit allocation: data distribution
(17K) into ADSL frequency bins

fft00 EEMBC Fast Fourier Transform: 256-point
(17K) complex decimation in time algorithm

viterb00 EEMBC Viterbi decoder: embedded IS-136
(17K) channel coding

and may reside in local, global, or heap space. The studied
benchmarks are listed in Table 1.

For five of the studied benchmarks, Figure 1 plots the
average number of loads and stores that access an ob-
ject field. Objects are divided into non-heap and heap cat-
egories, and eight combinations of the described pointer
analysis styles are shown. The configuration string on the
x-axis is composed of a c if context sensitive, a f if field sen-
sitive, and an h if heap sensitive. In this figure, all analysis
combinations are Andersen style. Analysis was performed
for all benchmarks listed in Table 1, but only a subset is
shown due to the marked similarity of results across groups
of benchmarks – beneath the name of each selected bench-
mark in Figure 1 are grayed names of benchmarks that be-
have similarly.

Many telecommunication applications in this paper have
trivial pointer behavior and are similar to fbital00 in that
any combination of analyses works equally well. The re-
maining applications behave like gsmdec, in which only
field sensitivity affects the result; mpeg2dec, which requires
both field and heap sensitivity; and the jpegs, which require
a synergy between all three techniques.

The importance of heap sensitivity to achieving accu-
rate, yet efficient interprocedural pointer analysis of SPEC
programs with dynamic memory allocation is discussed
in [8]. Traditional embedded systems did not include vir-
tual memory management and had very simplistic operat-
ing systems. Recently, however, dynamic memory alloca-
tion for embedded systems has been discussed in the liter-
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Figure 1: Average number of loads and stores that access a field in heap and non-heap objects for eight
pointer analysis combinations, indicated as: c if context sensitive, f if field sensitive, and h if heap sensitive.

ature [12][13] and included in commercial products [14].
Correspondingly, the studied application suite is clearly di-
visible into two parts: approximately one-half of the appli-
cations (telecommunication applications) do not use heap-
allocated variables, while others, in particular video codecs,
rely relatively heavily on dynamically allocated space. For
these applications, heap sensitivity was found to be essen-
tial to accurate pointer analysis.

2.2. Performance

The clarity of pointer analysis results impact the com-
piler’s scheduling and optimization abilities. Figure 2
shows the relative performance of benchmarks classically
optimized after several types of pointer analysis. The base-
line for comparison is an Andersen style, field-sensitive,
context-sensitive pointer analysis, with heap sensitivity
where appropriate (Afch). The classical compiler opti-
mizations performed include constant and copy propaga-
tion, dead code removal and invariant code removal; the
optimized codes were scheduled for a baseline eight-wide
VLIW architecture, with function unit distribution similar
to that of the Texas Instruments C6x processors.

Dependences that result from pointer analysis clearly
have some effect on the compiler’s ability to optimize code.
However, since most of these benchmarks have relatively
simplistic pointer behavior, the quality of the pointer anal-
ysis does not significantly impact net performance benefit
gained through classic optimization. If these are the only
applications of interest and only classic optimization is de-
sired, it would appear sufficient to use a relatively simplis-
tic, low-cost analysis algorithm, such as context-insensitive
Steensgaard analysis. However, as will be described in Sec-
tions 4 and 5, the accuracy of pointer analysis, and thus
resolution achieved in understanding object references, can
aid other optimizations, specifically placement of data to
achieve power savings.

3. Configurable Data Storage

As both leakage currents and overall on-chip energy
consumption become increasing concerns in the embedded
domain, new methods for power management are needed to
control the ever-increasing proportion of power consumed
for data storage. Ideally, a low-power embedded memory
system would maximize power reduction by providing dif-
ferentiated service according to data access needs (giving
fast access to critical loads and using low-power storage
for less critical data); use software control for predictabil-
ity and to maintain applicability for real-time systems; and
provide explicit control over cycle degradation, to allow op-
timization of system-level power. Power can be saved by
providing customized data storage arrays with varied port
and latency properties, but this typically requires physical
SRAM array partitioning, and thus compromises the gener-
ality and reusability of both hardware and software.

We have instead proposed use of recent SRAM tech-
nologies to configure access latency and port counts in
multi-line SRAM regions. A dual-port, single cycle,
software-managed SRAM is assumed as a baseline, and
the capability to increase the access latency or shut-down
either port in a multi-line zone is provided. SRAM config-
uration leverages recent circuit-level techniques for power
savings in unified SRAM arrays, including Self Reverse
Biasing [15], Floating Bitlines [15, 16], and Vdd Throt-
tling [17]. Each was previously applied for hardware-
controlled power savings, but to increase predictability of
both access time and average power consumption, we in-
stead propose to use them in a collaborative hardware-
software approach. The microarchitecture-level details of
these techniques are described in [18].

Our compiler analysis has found that both operation
slack (as manifested in the ability to tolerate added load
operation latency) and memory slot tolerance (as demon-
strated through memory slot issue choice) are present in
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Figure 2: Performance changes realized by classical optimization after various pointer analysis combinations,
indicated as: A if Andersen style, S if Steensgaard, c if context sensitive, f if field sensitive, h if heap sensitive.

telecommunication and media applications. With the abil-
ity to identify and exploit these forms of code flexibility, we
realize both dynamic and static power savings with either
no performance degradation or a performance loss tuned to
maximize the ratio of power savings to application slow-
down [19].

Interprocedural pointer analysis is used to provide
unique identifiers for all application data objects. Objects
corresponding to global variables; stack arrays, unions, or
structures; and heap allocation sites are of interest to the
object scheduler presented in this work. The compiler
combines this memory access information with knowl-
edge of operation slack to choose which port- and latency-
customized SRAM region each object will be stored in.
Dynamic and static power savings are realized with little
or no performance degradation. It is important to note that
where performance is degraded, it is predictably degraded,
since the degradation is based on a static schedule, not run-
time phenomena. The implemented compiler techniques,
enabled by interprocedural pointer analysis, work for gen-
eral code, so no application modifications are required, and
fast data access is still provided when necessary.

4. Object Scheduling
Placement of program data objects into storage with var-

ied properties will be discussed in this section as the object
scheduling optimization problem. Object scheduling deter-
mines the number, type, and size of profitable data storage
configurations for a given application.

Object scheduling is constrained by two factors: avail-
able schedule flexibility (slack + memory slot tolerance)
and tolerable performance degradation. Slack, one com-
ponent of flexibility, may be loosely defined as the number
of cycles an operation can be moved earlier or later without
impacting the total schedule height of the enclosing region.
Load slack, previously exploited in performance-oriented
scheduling techniques, is used together with memory slot
issue choice to accommodate slower or restricted port ac-
cesses while controlling performance degradation. If no

performance degradation can be tolerated, object schedul-
ing consists only of observing data usage and looking for
cases where a particular constraint can be applied without
penalty. For realistic applications, however, slack will be
present, and when an architecture provides multiple load-
store units (and data ports), memory slot issue choices also
become available.

Performance degradation has a direct impact on the en-
ergy consumed to execute an application, since either run-
time is increased or cycle time must be shortened. For some
systems, neither option will be tolerable, thus the object
scheduler’s threshold for acceptable performance degrada-
tion can be set to zero, which will not change application
performance. If the scheduler may save power at the ex-
pense of increased schedule height, cost and benefit met-
rics are used to guide the placement of data objects in low-
power storage.

Cost can be measured as both schedule height increase
and anticipated increase in execution cycles according to a
control flow profile. The benefit of latency and port config-
urations may be prioritized according to static and dynamic
power savings: (1) increasing latency and restricting access
to a single port saves the most power; (2) increased latency
alone also saves both static and dynamic power; and (3)
port restriction primarily provides static power reduction.
This prioritization is derived from the assumed power sav-
ings for each SRAM configuration, listed in Table 2. For
the circuit-level derivations of these values, the reader is re-
ferred to [18]. Configurations for individual objects should
be prioritized according to the power savings realized (a) in
particular configuration zones; and (b) for particular object
usage patterns. Specifically, the static power differences for
various configurations result in a static power cost propor-
tional to object size. Dynamic power, on the other hand,
is incurred relative to the number of load and store ac-
cesses to an object at runtime. For object scheduling, dy-
namic power cost can be anticipated using a memory profile
to measure accesses for a sample input or inputs.
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Table 2: Static and dynamic power savings assumed per SRAM configuration type.
Single Port, Long Latency Dual Ports, Long Latency Single Port, Short Latency

Static Power Savings (Continuous) 80% 80% 22.5%
Dynamic Power Savings (Per Access) 46% 46% 0%

muladd

ld2 (param2):
obj B

Scheduling
Region

br

ld1 (param1):
objs A, C

Dependence
Slack

Figure 3: Example operation flexibility and object re-
lationships.

The relationship between a pair of data objects is de-
termined in two dimensions: objects may be (1) conjoined
by virtue of being accessible from a common static opera-
tion (they are in the same pointer analysis points-to set);
and (2) they may be interactive in being accessed from
within a single scheduling region (e.g., a single basic block,
loop, superblock [20], or hyperblock [21]). Data objects
not conjoined to or interactive with any other objects may
be scheduled in isolation. Their placement in a particular
configuration will not affect scheduling decisions for other
objects. Decisions made for conjoined or interactive data,
however, may put constraints on other objects. If a con-
joined object is placed in a port-restricted zone, all objects
to which it is conjoined must be accessible through the se-
lected port. Otherwise, at run-time, the schedule could re-
sult in an attempt to access an object through an unavail-
able port. A data port could be woken up, but this would
cause a processor stall. Similarly, if objects are interactive
in a scheduling region, the placement of one into a long la-
tency region will consume slack that might have been used
to schedule another long latency load operation. A long
latency load operation also blocks the SRAM data output
driver and a register file port at a later cycle than for the
standard data access latency, causing additional potential
resource conflicts.

In Figure 3, the load operation ld1 accesses a location
pointed to by parameter1 of its function. Pointer anal-
ysis determines that the location accessed may be either
data object A or C. A and C are thus conjoined, and object
scheduling decisions must respect the fact that they may
be accessed from a common static operation. The schedul-
ing region shown also contains an access to a third object,
B, from ld2. The scheduling decision for object B has no

constraints placed on it from conjoined objects, but it is in-
teractive with A and C because they are accessible from the
same scheduling region and share a common dependent,
the add operation. ld1 has a significant amount of slack;
assuming other accessors of A and C also have sufficient
slack, objects A and C could likely be placed in a long-
latency storage region to save dynamic and static power.
Our compiler algorithm was able to identify a significant
amount of object-based port flexibility (average of 62.7%
of dynamic accesses, 67.8% of total data space) and a mod-
erate amount of latency flexibility (average 9% of dynamic
accesses, 21% of total data space) for telecommunication
and media applications. When a small amount of perfor-
mance degradation was tolerated (3.4%), many more ob-
jects could be scheduled to long latency regions, bringing
average latency flexibility to 37.1% of dynamic accesses
and 66.8% of total data space.

4.1. Compiler implementation

The IMPACT compiler framework [5] was used to gen-
erate all object and operation schedules as well as to per-
form all analyses. The implemented framework handles
both the “perfect” case in which no performance degra-
dation (schedule height increase) is tolerable, as well as a
tunable, profile-based scheduling heuristic to enable power
savings to be balanced against performance degradation.

In the studied application set, many local variables
(stack objects) are pseudo-global: they exist for most of the
program duration and are used heavily by multiple func-
tions (passed by reference). For this reason, we first pro-
mote arrays, structures and unions from local to global vari-
able space so they may be scheduled into a low-power re-
gion. All other stack data are kept in non-configured, i.e.,
dual-port, short latency storage. Interprocedural analysis
tags static load and store operations with a complete
list of all objects that they may access during the course of
program execution, thus providing information as to which
objects are conjoined. After code optimization, object-
centric memory profiling determines relative data object
usage as well as access weights for individual load and
store operations.

Currently, objects are greedily scheduled according to
their overall profiled access counts. The scheduling region
used is an extended basic block. The highest ranked, un-
placed object is selected and a baseline schedule is calcu-
lated for each region in which the object is accessed, assum-
ing that the object may be accessed through two ports, with
a single-cycle load latency. If objects interactive with the
current object have already been committed, the reduced
slack will be reflected in this baseline schedule. This best-
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case schedule height is recorded, along with an anticipated
execution time based on control-flow profile weights.

Next, new region schedules are computed to evaluate the
effects of placing the current object into a restricted SRAM
configuration. However, some configuration options may
no longer be valid due to choices made for objects con-
joined with the current one. For example, if the object
currently under consideration has a conjoined object that
was previously scheduled to a PortA-only region, tests of
Latency-and-PortB and PortB-only are eliminated from the
valid configurations for the current object.

Once the valid region schedules are generated, statis-
tics are summarized for all scheduling regions. If no per-
formance degradation can be tolerated for the particular
scheduling run, a strict zero schedule height increase re-
striction is enforced for all object scheduling decisions. A
global decision is made for the object (taking into account
factors from all regions) and is committed based upon ben-
efit and cost metrics, as weighted against a specified per-
formance bound. The process then continues with the next
highest ranked object.

4.2. Heap objects

The placement of heap allocated objects into a config-
uration zone requires a specialized malloc() implemen-
tation. Specialization of malloc() according to object
size has been previously implemented to decrease alloca-
tion time [22] and minimize fragmentation [23]. Similarly,
specialization according to chosen data access properties
should have little impact on the overhead of dynamic mem-
ory allocation. While the separation of heap objects by
pointer analysis may increase scheduling freedom (h-type
analysis), zone assignment through a specialized mal-
loc() call requires all objects created by a particular static
call site to be assigned to the same configuration zone.

One possible drawback to the placement of heap objects
into zones is allocation beyond the zone’s capacity. Us-
ing extensive profiling, it was found that though some al-
location sites spawn megabytes of space over the course
of program execution, the maximum total live object size
for most allocation sites is small and constant. Leveraging
this characteristic, malloc() calls include a maximum
spawn size. If during the course of program execution,
a given malloc() requests more space than determined
as its maximum spawn size during compilation, the newly
requested object can be placed into a non-configured, i.e.,
maximum power zone.

5. Configurable SRAM/Pointer Analysis In-
teraction

As was described in conjunction with Figure 1, there
are applications in the studied suite for which an order-
of-magnitude change in the size of the points-to graph is
observed across different interprocedural analysis types.

Interestingly, however, after classical optimizations (Fig-
ure 2), these changes had little effect on net performance.
For the scheduling of data to configurable SRAM, how-
ever, the load/store-to-object markings described by
the points-to set have a much more perceptible influence on
the net outcome of object scheduling, namely on the total
power savings.

Figure 4 shows the dynamic and static SRAM power
savings corresponding to application object schedules af-
ter each type of pointer analysis. Dynamic and static power
savings are shown in the same column, so that total power
on the y-axis would be 200%, i.e. a value of 40% static
power savings represents a 40% decrease in static power
alone. [16] indicates that in future technologies, energy
dissipation from leakage (static power) may equal that of
switching (dynamic power), so it is important to consider
both components of total power consumption.

The purpose of this work is to characterize pointer us-
age and interprocedural analysis effects in the studied ap-
plication domain, and to demonstrate the interaction of
such analysis with a potential power optimization. To
limit the extent of optimization-specific discussion in this
section, only results for objects scheduled without perfor-
mance degradation, i.e. without allowing schedule height
to increase, will be presented. Similar trends, and greater
power savings, apply to the interaction of pointer analysis
with the object scheduler when given freedom to degrade
net application performance.

Of most interest in Figure 4 is the additional power saved
when heap sensitivity (h) is enabled. Heap sensitivity can
significantly reduce the number of conjoined objects: for
the jpegdec benchmark, for example, the average number
of conjoined objects per memory operation was 75 for the
base case (Afc), but for the heap-sensitive run (Afch), there
were only 12 conjoined objects per memory operation. This
noticeably reduces the run-time of the object scheduler,
since many fewer constraints need to be considered during
scheduling of individual objects. Viewed from another per-
spective, only 24.5% of jpegdec memory operations are in-
dicated as accessing a single object for the baseline pointer
analysis, while twice this amount (54.1%) only have an arc
to a single object when heap sensitivity is used.

In contrast, the object schedule improvement observed
for gsmdec with heap sensitivity does not occur due to a
reduction in the constraints of conjoined and interactive
objects, but rather through an increase in schedule slack.
Specifically, the heap dependences annotated on several
jsr (jump to subroutine) operations are removed, creat-
ing more slack on several critical load operations, and al-
lowing the heap-allocated gem state object to be placed
into longer-latency (1-port, 3-cycle access) storage without
increasing the schedule height of the accessor code blocks.

Figure 4 also includes results for object scheduling per-
formed from zero-weight path exclusion pointer analysis,
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exclusion. Black bars are placeholders for values to appear in final draft.
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Figure 5: Typical telecom application construction.

(z). All forms of pointer analysis used exclude unreachable
program code, but as explained in Section 2, zero-weight
exclusion analysis also eliminates code not touched dur-
ing an execution profile. This is not a generally safe form
of analysis, and is not suited to general dependence anal-
ysis. However, due to several typical properties observed
in the studied application suite, it is a useful baseline for
object scheduling. Figure 5 depicts a typical form of tele-
com and media application construction in C: green lines
between functions represent control flow; other arcs repre-
sent data flow. A top-level function (f top) is responsible
for buffering input from a file and initializing and allocat-
ing variables. From this top-level routine (or routines), a
series of computation kernels (f1, f2) are invoked repeat-
edly until all input data is processed, mimicking the block
flow of an algorithm as drawn in signal processing form.
Two of the functions depicted, f2 and f3, are reached via
an indirect function call (through the pointer func*). If a
control flow profile indicates that f3 is never called from
func*, the effects of f3 will be ignored during pointer
analysis. This type of behavior occurs frequently in the
studied application set, for example in the g721 applica-
tions, in which *dec routine is used to select among
the g721, g723 24, and g723 40 routines included in a
single application. When scheduling data objects for the
g721s, the zero-weight exclusion of g723 effects is valid
and will not result in an invalid object schedule.

For the z category in Figure 4, where static power sav-
ings increases, but there is little or no change in dynamic

power across analysis types (e.g. the EEMBC bench-
marks), infrequently (or never) accessed objects have been
moved from short to long latency storage, where static
power savings is quite significant. The autcor00 bench-
mark, for example, contains references to three different
input types, “sine,”’ “speech,” and “pulse.” For each input
type, there are three corresponding arrays, an input buf,
test buf, and t buf used as input and checking data.
For a given program run, only one set of buffers will
be used, but the other buffers are potentially accessible
through pointers. Zero-weight exclusion during pointer
analysis allows the unaccessed buffers to be placed in long-
latency storage, because they no longer appear in the code
as conjoined to the buffers actually used.
Extensions for final draft
Due to space limitations in the submission guidelines, we
have omitted our result graphs which clarify and justify
why zero-weight interprocedural pointer analysis is mean-
ingful for object scheduling. These results and explanation
will be included in the extended final draft.

6. Related Work

[24] provides an empirical analysis of five different
pointer analysis styles (including Steensgaard vs. Andersen
and context- and field-sensitivity), but they do not consider
media and telecommunication applications.

Differentiated load servicing through configurable
SRAM is most closely related to the body of work which
has studied data partitions for embedded systems with
scratchpad resources [25][26]. In these systems, a small,
low-power, software-managed SRAM is used to cache vari-
ables otherwise stored in cache or DRAM. Static allocation
to scratchpad, e.g. [27], is a necessary compiler technique
for chipsets which include scratchpad, but is in general a
less flexible approach to power savings than configurable
SRAM, since the size of the scratchpad and DRAM can-
not be changed. Dynamic approaches to scratchpad alloca-
tion [25][28], in which the values in the scratchpad change
as the program executes, have a somewhat different focus
than this work, since they are concerned more with ac-
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commodation of temporal usage patterns than determining
and scheduling for whole-program power savings opportu-
nities. Many other proposals in the area of embedded mem-
ory power reduction, e.g., [29], and [30], focus on conflict
avoidance, data layout in the context of scratchpad manage-
ment, or application-specific systems, so have a somewhat
different focus and problem definition than this work. With
regard to alias analysis in the memory power optimization
space, some approaches to scratchpad data allocation have
avoided the difficulties associated with pointer use in high-
level language codes. Scratchpads have been used, for ex-
ample, for spill code [1], or proposals have been evaluated
primarily on the basis of kernels and so do not use bench-
marks with high-level language pointer usage. It should
also be noted, however, that the configurable SRAM and
object scheduling techniques are complementary to use of
a small scratchpad buffer, specialized memory, or shared
memory in a multi-processor SoC – if a programmer or tool
has determined that particular data items are best-suited to
another storage type, those objects can be removed from
consideration for configurable SRAM placement, further
reducing the complexity of the object scheduling problem.

7. Conclusions

Since power will continue to be a fundamental constraint
of embedded systems, successful future optimizations will
likely leverage both compilation and hardware techniques
to yield overall power reduction. This work focused on
the role of pointer analysis in the efficacy of such a task.
There are three key insights: 1) Many, small telecom appli-
cations require only a very basic analysis to obtain the de-
sired results 2) Application complexity is increasing, and,
for these, it is beneficial to leverage a more accurate analy-
sis 3) The refinement of pointer analysis results using pro-
filing information can lead to substantial benefits.

References
[1] K. D. Cooper and T. Harvey, “Compiler–controlled memory,” in

Proc. 8th Int’l Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’98), pp. 100–
104, 1998.

[2] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
architecture for embedded systems,” in Proc. 30th Annual Int’l Sym-
posium on Computer Architecture, pp. 136–146, June 2003.

[3] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?,”
in PASTE, pp. 54–61, 2001.

[4] E. Nystrom, H.-S. Kim, and W. Hwu, “Bottom-up and top-down
context-sensitive summary-based pointer analysis,” in Proceedings
of the 11th Annual Static Analysis Symposium, Aug. 2004.

[5] W. Hwu et al., “Compiler technology for future microprocessors,”
Proc. IEEE, vol. 83, pp. 1625–1640, Dec. 1995.

[6] L. O. Andersen, Program analysis and specialization for the C pro-
gramming language. PhD thesis, Univ. of Copenhagen, 1994.

[7] B. Steensgaard, “Points-to analysis in almost linear time,” in Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pp. 32–41, 1996.

[8] E. Nystrom, H.-S. Kim, and W. Hwu, “Importance of heap special-
ization in pointer analysis,” in Proceedings of the Workshop on Pro-
gram Analysis for Software Tools and Engineering, 2004.

[9] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench:
A tool for evaluating and synthesizing multimedia and communi-
cations systems,” in Proc. 30th Int’l Symp. on Microarchitecture
(MICRO-30), pp. 330–335, Dec. 1997.

[10] ETSI TC-SMG, “Digital cellular communications system; Enhanced
Full Rate (EFR) speech transcoding (GSM 06.60),” Tech. Rep. ETS
300 726, European Telecomm. Standards Institute, Mar. 1997.

[11] ITU-T SG8, “JasPer software reference manual version 1.500.4,”
Tech. Rep. ISO/IEC JTC 1/SC 29/WG 1 N2415, ISO/IEC, Dec.
2001.

[12] S. Shalan and V. Mooney, “A dynamic memory management unit for
embedded real-time system-on-a-chip,” in Workshop on Compilers,
Architecture, and Synthesis for Embedded Systems, 2000.

[13] M. Millberg, A. Postula, and A. Hemani, “An efficient dynamic
memory manager for embedded systems,” in Proceedings of the
ICDA Conference, 2000.

[14] L. Martinot, “Dynamic memory allocation optimizes integration of
Blackfin processor software,” Analog Dialogue, vol. 37, July 2003.

[15] A. Bhavnagarwala, S. Kosonocky, M. Immediato, D. Knebel, and
A. Haen, “A pico-Joule class, 1 GHz, 32 KByte x 64b DSP SRAM
with self reverse bias,” in Proceedings of the 2003 Symposium on
VLSI Circuits, pp. 251–252, June 2003.

[16] S. Heo, K. Barr, M. Hampton, and K. Asanović, “Dynamic fine-
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