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Abstract. With the increasing use of multi-core microprocessors and
hardware accelerators in embedded media processing systems, there is
an increasing need to discover coarse-grained parallelism in media appli-
cations written in C and C++. Common versions of these codes use a
pointer-heavy, sequential programming model to implement algorithms
with high levels of inherent parallelism. The lack of automated tools ca-
pable of discovering this parallelism has hampered the productivity of
parallel programmers and application-specific hardware designers, as well
as inhibited the development of automatic parallelizing compilers. Auto-
matic discovery is challenging due to shifts in the prevalent programming
languages, scalability problems of analysis techniques, and the lack of
experimental research in combining the numerous analyses necessary to
achieve a clear view of the relations among memory accesses in complex
programs. This paper is based on a coherent prototype system designed
to automatically find multiple levels of coarse-grained parallelism. It vis-
its several of the key analyses that are necessary to discover parallelism
in contemporary media applications, distinguishing those that perform
satisfactorily at this time from those that do not yet have practical,
scalable solutions. We show that, contrary to common belief, a com-
piler with a strong, synergistic portfolio of modern analysis capabilities
can automatically discover a very substantial amount of coarse-grained
parallelism in complex media applications such as an MPEG-4 encoder.
These results suggest that an automatic coarse-grained parallelism dis-
covery tool can be built to greatly enhance the software and hardware
development processes of future embedded media processing systems.

1 Introduction

In the past few years, several multicore microprocessors have been introduced for
both general purpose and embedded systems computing [1,5,19,20,30]. Despite
the parallelism many contemporary applications exhibit, compilers currently do
not have the capability to automatically extract substantial coarse-grain, thread-
level parallelism from them. Explicit parallel programming by human program-
mers also remains a major challenge. One of the primary reasons for this dilemma

P. Stenström (Ed.): Transactions on HiPEAC I, LNCS 4050, pp. 194–213, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Automatic Discovery of Coarse-Grained Parallelism 195

is that multiple, sophisticated interprocedural analyses, performed by either a
human or a compiler, must achieve a clear view of memory usage before safe and
profitable transformations can be performed. There is also a lack of understand-
ing in how one can build an analysis system to facilitate hand and automated
parallelization of full-fledged, pointer-heavy modern applications. The goal of
this work was to investigate the degree of coarse-grained parallelism that can be
automatically discovered by an analysis system and determine the state of the
analyses required to expose that parallelism in contemporary applications.

For this work we chose to focus on the media application domain, which
has a high degree of inherent parallelism, a large user base desiring higher per-
formance, and available reference codes from industry standards bodies. These
applications are often implemented in C/C++, which have features that require
sophisticated analysis to disambiguate memory accesses: pointers, indirect proce-
dure calls, dynamically-allocated memory, and resizable data arrays. Some of the
programs we have investigated are reference MPEG-4 encoders from standards
bodies, jpegdec from MediaBench, and the LAME and mpg123 applications for
MPEG Layer 3 audio encoding/decoding. These codes are often referenced when
programmers write explicitly parallel versions or when hardware designers trans-
fer algorithms into hardware description languages; thus, parallelism discovery
is useful as a tool for these designers. It is worth noting that the target applica-
tions are much larger and more complex than benchmarks previously used for
automatic parallelization research [3].

The remainder of this work begins with Section 2, which discusses the analyses
we have found that expose coarse-grained parallelism in media applications.
Section 3 will discuss the forms of coarse-grained parallelism we target. Section 4
goes into detail on one version of the MPEG-4 encoder, which had the richest
parallelism among the applications. Section 5 will discuss previous efforts on
these analyses with respect to parallelization, and Section 6 concludes with a
summary of our contributions.

2 Analyses

A compiler uses its analyses to refine its picture of a program. For the purpose of
discovering parallelism, data dependence is one of the most important character-
istics of the program. Analyses clarify the picture either by finding precise data
dependences or by removing spurious ones. Because analyses must be conserva-
tive when supporting optimizations and transformations, the compiler’s picture
of the program is often cluttered by spurious dependences. For example, accesses
to two memory objects are marked as conflicting if the objects cannot be proved
independent. A single spurious dependence can prevent multiple opportunities
for parallel execution.

Many different analyses with different aspects or levels of sensitivity have
been derived to remove these spurious dependences in different situations. In
order for the compiler to recognize different forms of parallelism, such as those
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listed in Section 3, many different analyses must be combined or integrated. If
critical analyses or specific options of an analysis are missing, existing parallelism
will remain hidden.

The chief obstacle to discovering opportunities to parallelize a media appli-
cation written in C/C++ is identifying dependences between pointer references
(including references to arrays). A high-quality pointer analysis is essential in de-
termining the relationship between pointer references. However, there are many
coding constructs and programming practices that veil the true picture of mem-
ory usage from pointer analysis. For some of these cases, like recursive data
structures and arrays, more specialized analyses such as shape analysis [8,32]
and array analysis [9] can be very helpful in clarifying the picture.

In order to perform parallelization at the scale we are proposing, the analyses
need to be scalable. The analyses can not be limited to only the parts of the
program that are potentially parallelizable because those parts are coupled to the
rest of the program by both pointer relationships and numeric values. Programs
frequently possess diverse behaviors that are based upon input data, command-
line flags, or defined constants. These settings are typically determined at the
beginning of the program and propagate throughout the program code, and must
be taken into account by the analyses.

It is certainly more expedient to rewrite a program to suit existing paralleliz-
ing analyses than to create new analyses sophisticated enough to understand
existing programs. Nonetheless, there are practical benefits to be expected from
an automated analysis framework. Programs may comprise many thousands or
millions of lines of code and have multiple maintainers. Manually understand-
ing and rewriting them is a tedious task that could benefit from automation.
As programs become bigger and more complex, manual manipulation becomes
even more difficult. More fundamentally, a more powerful set of analyses can
be understood as granting the programmer more freedom to write flexible and
modular code. For example, the IJG JPEG library stores all data related to the
processing of a particular image in a dynamically allocated data structure. While
many analyses would be more precise if the data were stored in global variables,
to rewrite the library in such a manner would mean giving up reentrancy, which
was designed into the library to make it usable in larger programs [18].

2.1 Pointer Analysis

Pointer analysis has been a subject of much research. At its core, pointer analy-
sis determines what objects a memory reference can possibly access. The many
extensions, like context-sensitivity, flow-sensitivity, and field-sensitivity, further
specialize and clarify the picture pointer analysis presents by eliminating spuri-
ous dependences. Figuring out data dependence and data flow is very important
for all of the different forms of parallelism in Section 3, and pointer analysis is
essential to generate an accurate picture of the usage of memory objects. We
will discuss the various features of pointer analysis we found indispensible for
discovering parallelism. Implementing all of them in a single framework was a
challenging task.
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Pointer analysis needs to be scalable as well as precise. An important obser-
vation is that memory object allocation code and pointer assignments are often
far from the usage of the objects, both in code location and execution time.
Memory objects are frequently initialized towards the beginning of execution
and used throughout the rest of the application. Of the two major options
for pointer analysis, Andersen’s-style (inclusion-based) and Steensgaard’s-style
(unification-based), Steensgaard’s is generally cheaper and more scalable since it
restrains the analysis’ working set by merging the objects to which a pointer can
reference. However, this can result in spurious dependences when any pointer,
including those not in the parallel code region, can point to multiple objects.
For this work, we used a scalable Andersen’s-style analysis called FULCRA [26],
which supports all options discussed in this section.

There are two pointer analysis options which have a highly synergistic effect
and are generally necessary for adequate resolution of memory usage. First, the
allocation function for a particular type of dynamically-allocated memory ob-
ject is frequently reused to allocate multiple objects. A consequence of this code
reuse is a need for the ability to distinguish certain objects that share a static
allocation site, which we call heap-sensitivity. We specifically use heap special-
ization [27] enabled by a context-sensitive analysis to achieve heap-sensitivity.
Context-sensitivity obtains a higher resolution in a pointer analysis by summa-
rizing the pointer effects of procedures into their direct and indirect callers and
obtaining information specific to the individual calling contexts. Heap special-
ization builds on top of this by versioning/cloning each heap object when pointer
summaries are propagated to callers.

The other major analysis option is field sensitivity, which is needed because a
non-field-sensitive pointer analysis will group together all of the objects pointed
to by a structure. This prevents the compiler from distinguishing objects through
those pointers. This case appears regularly since media programs commonly
manipulate multiple data channels, and programmers use structures to organize
data hierarchically. A natural way to organize channels of a single data set is to
aggregate them as different fields of a larger structure.

As an example of the need for the multiple features of pointer analysis, con-
sider the sample code in Figure 1. Without heap and context-sensitivity, the ob-
jects will be determined to be the same due to the similar calls to AllocateBuffer.
Field-sensitivity is needed to distinguish inphase and quadrature as different
fields of signal. Consequently field-sensitivity, context-sensitivity, and heap-
sensitivity are all needed for the compiler to determine that the objects pointed
to by the fields inphase and quadrature are independent.

The final pointer analysis option discussed here is flow-sensitivity. The de-
fault mode of operation for many pointer analyses is to not take into account
the execution order of pointer assignments in programs, conflating the objects
that the pointer references at different times. Flow-sensitivity instead includes
ordering information into the analysis, but often at great cost to analysis working
data size and runtime. The most common case where flow-sensitivity is useful
is when a pointer is reused for different purposes or data at different program
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locations. Several pointer analyses in the past have attempted to make a tradeoff
between flow-sensitive and non-flow-sensitive analysis, often using a derivative
of the SSA form [13]. Partial flow-sensitivity of this nature is also supported in
FULCRA [29].

/* AllocateBuffer() calls calloc() to allocate memory. */
signal->inphase = AllocateBuffer (length);
singal->quadrature = AllocateBuffer (length);

Fig. 1. Code example that requires numerous pointer analyses

2.2 Array Analysis

When two pointers are known to reference the same object, array analysis can
indicate whether or not the pointers reference the same memory location. This
form of analysis conveys information about which loop iterations carry a depen-
dence. Iterations are independent and can be executed in parallel if there are
no flow, output, or anti-dependences between them. Array analysis can also de-
termine if different loops access disjoint subsets of a given object. Finally, array
analysis can be used to derive the data correlation between iterations of separate
loops.

The common situation for parallel loops in media applications is to read in-
put data from a segment of an array or set of arrays, process the data, and
write the output data to a segment of a separate set of arrays. Although pointer
analysis will eliminate spurious flow and anti-dependences between the read and
written memory objects, array analysis is necessary to eliminate the output
dependences between stores of different iterations. There are also loops where
the input and output array locations are the same for each iteration, due to
reuse of data structures. These loops also require array analysis to eliminate
flow and anti-dependences. To be scalable, a compiler should extract symbolic
expressions and perform induction variable analysis [6] on a demand-driven
basis.

One important aspect of media applications is that they often have a range of
supported sample rates, sizes, or resolutions and use many symbolic variables in
the interest of code reuse. When dimensions are known integers, array analyses
only need to handle affine expressions, where at most one symbolic variable (the
loop inductor) exists for each multiplicative term. Dimensions determined at
runtime create non-affine expressions and variable loop bounds, which stymie
many simple array disambiguation tests [3]. In these cases, value constraints can
be obtained or computed to assist the array disambiguation analysis [12,21].
More on value constraints and relationships is discussed in Sections 2.3 and 2.4.
We have incorporated the Omega Test [31] and an extension of the I-Test [24]
that manipulates symbolic expressions into our analysis infrastructure.

An example containing non-affine array expressions and variable loop bounds
is shown in Figure 2. Four writes to the array large are performed per in-
ner loop iteration. A basic array analysis that only looks at affine expressions
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Fig. 2. Non-affine array expressions in a variable-bounded loop

with constant loop bounds would be unable to address this code, since one ad-
dress could be reproduced by numerous combinations of j, width, and i. More
advanced analyses incorporate information about the value ranges of variables
relative to constants and each other. In this case, all three variables are known
to be non-negative and i is always less than width-1, due to inner loop iteration
conditions, which removes spurious output dependences and identifies the loops
as having parallel iterations.

Because of modularity and code reuse, it is not uncommon to have procedure
calls in a loop that operate on a different segment of an array every iteration.
We would like to preserve access summaries for procedure calls for the appropri-
ate contexts, since inlining can greatly increase the code size of an application.
Without summary information, the compiler must assume that the procedure
can access all elements of an array, which prevents parallelism if elements are
written to in the array. Prior work exists for the Fortran language [28], but
efficient summaries for the C language are still under development.

2.3 Value Constraint Analysis

Many variables in a program have a relatively small set of values during the
majority of program execution, restricted by control flow tests or written con-
stants. Information about the possible range or other constraints on their values
can be critical in evaluating symbolic tests, such as the array analyses men-
tioned in Section 2.2. Value constraint information can also eliminate “dead”
error checks within loops that create early exits; multiple loop iterations cannot
be run non-speculatively unless these checks are removed. Many of these checks
serve to detect bugs during program development and cannot actually occur
during error-free execution. The size of contemporary applications necessitates
an interprocedural, demand-driven method for finding these value constraints.

As an example of the value constraint problem, consider the code in
Figure 3. In the example, image->bits is a pointer to a linear array holding
a two-dimensional greyscale image of dimensions width and height. The main
processing phase in this simplified example consists of four nested loops. The
body of the second loop generates one eight-by-eight block of data and writes
it into the image. To determine whether parallelization of LOOP1, LOOP2, or
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Fig. 3. Example of the value constraint and value relationship problems

LOOP3 is safe, an analysis needs to verify that there are no output depen-
dences between the writes to image->bits in any iterations of those loops. If
the absolute value of width is less than 8, then an output dependence exists
between successive iterations of LOOP3, preventing independent execution of
iterations of LOOP1, LOOP2, and LOOP3, as illustrated in Figure 4(a,b). If
the compiler can locate the statement that generates the variable’s value, it can
determine that the alignment code restricts the value of width to a multiple of
8. It should be noted that contemporary applications often have this restricting
code distant in code space and execution from the relevant uses, necessitating a
whole-program analysis.

Fig. 4. Access patterns for the value constraint and relationship problems in Figure 3

Previous work on value constraint analysis has generally taken a dataflow
approach to find valid ranges [12,21]. However, in contemporary C applica-
tions many values are loaded from dynamically-allocated memory, which require
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more sophisticated methods to be effective. We are currently experimenting with
demand-driven backtracking methods through memory objects to find constraint
information.

2.4 Value Relationship Inference

In addition to knowing the set of values that a variable may retain, symbolic
array disambiguation analyses gain precision from knowing the relationship be-
tween the values of different variables. Often, one variable is used to compute
the value of several other variables. When related variables appear in an index
expression, symbolic analyses typically lose precision unless they know the re-
lationship between the variables. The compiler can find these relationships by
tracking values back through def-use relationships to find common terms [35].
This requires interprocedural expression computation through memory objects,
often dynamically-allocated, to find the relationships between values. As with
the value constraint problem, an analysis for value relationships should be per-
formed in a demand-driven manner to be scalable.

Analyses have been constructed to infer the relationship of values in the ab-
sence of dynamically-allocated memory [2], but in the applications we have stud-
ied the relevant values are passed via fields of heap structures and require more
sophisticated memory analysis to track its definitions and usage. These analyses
are currently under development.

Operating on one data set at multiple granularities is a common charac-
teristic of media codes. For example, signal processing often divides a signal
into segments containing a small number of samples, and image processing
often divides an image into square blocks of pixels. In such applications, we
have a common coding practice of precalculating the dimensions of the data
set at each level of granularity during initialization. To see how this may con-
fuse array disambiguation tests, consider again the code example in Figure 3.
The relationship between the bound of LOOP2, block width, and the vari-
able width used in indexing the image array, is established when the image’s
memory is allocated, during the program’s initialization phase. If during the ex-
ecution of LOOP2 i reaches width/8, then there will be an output dependence
across the outer two loops. Without knowledge of the relationship between the
loop bound block width and the variable width, a compiler must be conserva-
tive and not parallelize LOOP2 or LOOP1. However, if the compiler can trace
back to the initialization code, it can determine that LOOP2’s bound value is
width/8, that i can be at most width/8 - 1, and that no output dependence
exists.

Figure 4(c) shows the effects on the target image. Each iteration of LOOP2
fills in an 8x8 pixel block in the image. By default, the compiler must assume that
the subset of the image that is written in the inner loop can “wrap around” and
overwrite data written in an earlier iteration (the hashed block), introducing an
output dependence that precludes parallelization. Value relationship information
can tell the compiler that this access is not possible.
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3 Forms of Parallelism

There are multiple forms of coarse-grained parallelism that can be exploited in
media programs. We have divided them roughly into three different categories.
The first is loop-iteration parallelism, or simply iteration parallelism, where dif-
ferent iterations of the same loop can be executed independently. The second
is region parallelism, where separate static code regions can be executed inde-
pendently. The final category is cross-loop parallelism, where results of one loop
feed another, but not all iterations of the first loop need to be completed for
the second loop to begin. This section will present the different types of paral-
lelism in detail and the conditions that must be asserted before parallelism can
be leveraged via transformations [22]. In order for the compiler to automatically
detect and check the the necessary conditions for parallelism, the compiler will
need to leverage all of the analyses outlined in Section 2.

Fig. 5. Forms of loop parallelism

When discussing compiler-detected coarse-grained parallelism, the first con-
cept that comes to mind is often loop-iteration parallelism, as shown in Fig-
ure 5(a). When each iteration of a loop depends on different data, as indicated
by the different colors of data flow, the iterations can be separated and executed
in parallel via loop distribution. Much of the previous work in this area has
been performed in the Fortran programming language. The move to C/C++
introduces new issues, some of which are covered in [22].

Before exploiting loop-iteration parallelism, the compiler must assert that the
iterations are truly independent. The memory locations written by each iteration
must be independent from those of other iterations, and no iteration can write to
another iteration’s input data. This assertion quickly becomes complicated due
to the usage of pointers and dynamically-allocated memory objects in C/C++.
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Large-scope or whole-program capable analyses are also needed: benefit from
small inner loops is limited and the allocation of memory objects may be distant
in execution and code. Finally, sophisticated pointer analysis features may be
needed to successfully disambiguate memory objects.

Certain regions of static code can always be executed independently if they
do not have any data dependences between them. Figure 5(b) illustrates this
case of parallelism, which we term region parallelism. Although this form of
parallelism may appear easier to determine than loop-iteration parallelism, the
same assertions regarding data independence must be made. Furthermore, the
determination of region boundaries when trying to detect this form of parallelism
is not a trivial task [34]. For software engineering reasons, it may well be the
case that function boundaries also define reasonable task boundaries, but this
may not provide optimal parallelism in all cases.

Cross-loop parallelism arises when one loop produces data that is consumed
by a following loop. If each iteration of the following loop only depends upon a
limited and known number of iterations of the previous loop and does not over-
write the first loop’s input data, it is possible to execute part of the two loops in
parallel as long as the real data dependences are respected. This parallelism is
similar to that exploited in vector chaining, except at a much coarser granularity.
Figure 5(c) shows an example of cross-loop parallelism, where each iteration of
the second loop depends upon only the same iteration number of the first loop.
The detection of cross-loop parallelism involves finding opportunities despite the
presence of real dependences, rather than the absence of any dependence (as is
the case for the previous two forms of parallelism). This necessitates the use
of analyses to examine the data production/consumption patterns of different
loops. Although this may be relatively trivial for some examples, more compli-
cated situations exist that deal with data at different granularities and traversal
order.

4 MPEG-4 Encoder Evaluation

To provide a greater understanding of the relative importance of various analy-
ses, particularly in combination, we show the effects of these analyses on the de-
gree of compiler-visible parallelism on an implementation of the MPEG-4 video
encoder source code from the MPEG Industry Forum [25]. This implementa-
tion is specialized for MPEG-4 Simple Profile and optimized for execution on
superscalar processors.

The size of the application is approximately 18 000 lines of code after removing
comments and blank lines. There are 574 potentially called procedures with a
total of 392 loops, and the maximum call depth is 10 procedures. Although
the majority of execution time is spent in several dozen loops containing a few
thousand lines of code, we emphasize that important and necessary information
for analyses can be located anywhere in the application. Even so, our pointer
analysis takes only 18 seconds to complete and uses 52 MB of memory on a
900 MHz Itanium 2 system. We will explain the basics of MPEG-4 encoding
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here; for further information on the MPEG standard, readers are directed to
documentation from the MPEG Industry Forum.

4.1 MPEG-4 Overview

An MPEG-4 Simple Profile stream consists of a series of images, called frames,
that are processed one at a time. The two types of frames supported by Sim-
ple Profile are I-frames and P-frames. I-frames are encoded similarly to JPEG
images and used as starting references for P-frames. A JPEG image consists of
three component images: one full-resolution luminance image and two quarter-
resolution chrominance images.1 These are subdivided into macroblocks, con-
sisting of six 8x8 pel (“picture element”, effectively pixel) blocks. Four of these
form a 16x16 pel square of the luminance image, and the other two are the
corresponding chrominance blocks for the same part of the total image.

In P-frame encoding, the input image is reproduced as closely as possible
by copying similar macroblocks from nearby locations in the previous I- or P-
frame. The difference between the input and newly reconstructed is calculated
and encoded as an image. Because the difference is usually very small, differ-
ence images are simple and highly compressible. P-frames thus take advantage
of both spatial and temporal locality and are responsible for the majority of
MPEG-4’s compression. Consequently, typical encoding configurations use a high
ratio of P-frames to I-frames. P-frame encoding dominates the execution time of
the MPEG-4 encoder because of the increased processing required over that of
I-frames and their prevalence in the video stream.

Figure 6 shows a dataflow diagram of the processing that occurs on each mac-
roblock during P-frame encoding. First, Motion Estimation finds a macroblock
in the previous frame that closely approximates the current macroblock.2 Mo-
tion Compensation reproduces the estimated image using vectors from motion
estimation. Frame Subtraction calculates the difference/error between the in-
put macroblock and the macroblock copied from the previous image. Discrete
Cosine Transform (DCT) and Quantization perform a JPEG-style encoding on
each 8x8 pel error block. Dequantization and Inverse Discrete Cosine Transform
(IDCT) decode the encoded image for use as the reference image for the fol-
lowing P-frame. Finally, Bitstream Encoding performs variable-length encoding
to produce the final video bitstream. Rate control, which adds additional data
dependences between these stages, and the option for printing motion estimation
debug information have been disabled.

The main point of interest in Figure 6 is that only a single set of data de-
pendences exists between macroblocks, consisting of flow dependences within
1 Rather than encode in the three colors red, green, and blue, luminance and chromi-

nance are used because the human eye is more sensitive to changes in luminance than
chrominance. The standard takes advantage of this by having a smaller/coarser res-
olution for the chrominance component images.

2 There are a wide range of motion estimation algorithms published; we chose a version
for which there are no data dependences between motion estimation computation
for different macroblocks.
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bitstream encoding. Otherwise, the processing of different macroblocks can be
executed in parallel. Certain parts of the computation can be further subdivided
into separate luminance and chrominance components. We have parallelized this
code by hand into multi-threaded implementations to confirm the parallelism.

Fig. 6. A dataflow diagram of the processing of a single macroblock in the MPEG-4
encoder

Rather than perform all operations on a single macroblock at a time, as im-
plied by Figure 6, the program performs subsets of the operations on the entire
frame. It does not necessarily operate on a macroblock per loop iteration: for ex-
ample, FrameSubtraction operates on single pixels. The pervasive use of point-
ers, differing traversal patterns, heap-allocated structures, and whole-program
data and value flow make it difficult for the compiler to obtain a view of the
application resembling Figure 6.

4.2 MPEG Analyses

The interaction and benefits of different analyses can be difficult to quantify
in general, since individual analyses may fail to detect parallelism in isolation.
Additionally, traditional metrics, such as points-to-sets, pairwise counts of in-
dependent memory operations, or weighted counts of parallelizable loops hold
little meaning, as they may not indicate parallelization opportunity or represent
parallelism of appropriate, practical granularity.

Because the purpose of this work is to identify parallelism rather than cre-
ate a specific implementation, instead of a numeric metric we use a loop-nest
diagram to express the parallelism visible to the compiler at different granu-
larities. The specific example in Figure 7 is P-frame encoding. Each block in
Figure 7 represents a loop or nested loops. Loop nesting is represented by blocks
within blocks. The shading scheme represents the degree of iteration parallelism
that the compiler can detect for each loop scope: black blocks cannot be safely
parallelized without speculation, gray blocks can be parallelized if stores are or-
dered/serialized, and white blocks indicate completely iteration-parallel loops.
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It is important to note that although the iterations of certain loops are not par-
allel, different instances of those loops may be parallel at a coarser granularity,
such as an enclosing loop. The primary example of this are the loops within
MotionEstimatePicture. Region parallelism is represented by blocks that are
horizontally adjacent; horizontal lines passing through those blocks indicate spu-
rious dependences that prevent safe parallel execution of those regions. For this
example, cross-loop parallelism exists between every vertically neighboring pair
of loops that exist at the same scope. This is often concealed by insufficient
information about dependences or access patterns; the blocked opportunities are
represented by an X at the shared boundary of the neighboring loops.

Only a handful of major loops are unparallelizable without algorithm changes
in this application. SAD Macroblock has an early exit in the loop, and is quite
small in any case: 16 iterations with a maximum of approximately 100 instruc-
tions per iteration. MBMotionEstimation, FindSubPel, and BitstreamEncode
have loops with data feedback. The non-parallel loops within SAD Macroblock,
MBMotionEstimation, and FindSubPel emphasize the importance of searching
for parallelism at many loop levels. A system that only discovers inner-loop par-
allelism cannot parallelize the motion estimation code, one of the most compute-
intensive regions of P-frame encoding execution, whereas Figure 7(i) shows that
the loop-iteration parallelism of MotionEstimatePicture can be exposed to run
multiple instances of MBMotionEstimation simultaneously.

Figure 7(a) shows the parallelism visible to the compiler with a context-
insensitive, field-insensitive pointer analysis and array disambiguation analyses
without non-affine expression or interprocedural support. The only loops that
the compiler can identify as parallelizable are the small-granularity loops towards
the bottom of the diagram. These loops are at most one to two hundred instruc-
tions per iteration, often much less, and are not well-suited for coarse-grained
parallel execution. Figure 7(i) shows the parallelism that can be discovered if all
of the analyses in Section 2 are used.

Figure 7(b,c,d,e) show the effects of adding a single feature to the analyses in
(a), displaying the inability of isolated analysis features to expose the parallelism
available in the application. Only a handful of opportunities are discovered, and
these loops generally profit the least from parallelizing transformations since
they do little data processing.

Figure 7(f,g,h,i) show one possible progression of combining analyses that ex-
pose more parallelism to the compiler (more white boxes and fewer lines and
Xs). This does not imply that analyses should be run in this order: for example,
all pointer analysis features would probably be run simultaneously, while in-
terprocedural array disambiguation would be necessary only when a procedure
boundary is encountered. For this application, the results of analyses do not ex-
change information and thus the ordering has no effect. The ordering was chosen
solely to express the relative importance of particular analyses and options. The
following subsections will discuss the effects of various analyses in greater detail.

Although our pointer analysis framework supports both inclusion-basedpointer
analysis and partial-flow sensitivity, this application does not manifest situations
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Fig. 7. Effects of various analyses on the compiler-visible parallelism in MPEG-4 P-
frame encoding



208 S. Ryoo et al.

where they add an appreciable benefit. This is due to the specialization for Sim-
ple Profile; the version of the reference MPEG-4 encoder that supports more
features requires these analyses to identify important parallelism. As stated in
Section 2, interprocedural array analysis and value constraints and relationships
were computed by hand for this application, but all other analyses were per-
formed automatically by the framework.

4.3 MPEG Loop Iteration Parallelism

Of the single analyses added to the original configuration in Figure 7(a), only
interprocedural array disambiguation in Figure 7(b) exposes any reasonably
coarse-grained iteration parallelism. This case occurs because the arrays being
operated on are for a single macroblock, so they are of fixed dimension and sta-
tically allocated. Heap specialization in Figure 7(d) allows the parallelization of
Interpolation and FrameSubtraction by distinguishing the input and output
memory objects. However, these are very small loops and occupy less than 8%
of the total execution time on a uniprocessor. Since the exposed parallelism is of
a form that requires store serialization (ordering), it would likely be impractical
to execute these loops’ iterations independently.

Combining analyses exposes far more parallel loops to the compiler. In
Figure 7(f), an interprocedural array disambiguation and heap-sensitive pointer
analysis is able to discover that the loops that traverse over macroblocks in
MotionEstimatePicture and motion compensation are iteration-parallel,
despite the fact that loops within each iteration are not. Because these loops
contain procedure calls that operate on different segments of an array each iter-
ation, interprocedural array analysis is necessary to determine that the calls do
not conflict. MotionEstimatePicture is a significant part of P-frame encoding,
usually over 20% of total execution time on a uniprocessor with inexpensive,
parallel algorithms. In addition, the output of each loop iteration is only four
two-dimensional vectors and an integer indicating the encoding mode, so the
store serialization requirement is not very significant.

The addition of non-affine expression array disambiguation in Figure 7(g)
enables loop iterations in MotionEstimatePicture to execute in parallel without
store serialization: it can determine that each iteration’s output is to a different
element of a variable-length array. In addition, it allows iterations of the upper
portion of VopShapeMotText to be run in parallel with store serialization if they
are split from the lower portion of the loop. This means that every macroblock
can execute the DCT through IDCT sequence independently, as long as the writes
back to the output frame object are serialized. This is another significant section
of P-frame encoding, and can take over 50% of total uniprocessor execution
time. Most of this time (70%) is due to Quant, which performs several division
operations in each loop iteration.

Figure 7(h) uses field-sensitivity in combination with heap-sensitivity to dis-
tinguish different luminance and chrominance images when their references are
stored into fields of a single structure. This allows complete parallelization of
FrameSubtraction, although it is not a significant part of execution time. The
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combination is also necessary to fully parallelize the remaining gray loops which
become white in Figure 7(i).

Figure 7(i) shows the results of value range and relationship inference, ex-
posing the remaining parallelism in the program. GetMotionImages is made
parallelizable by optimization: an early exit in the loop was removed by value
range analysis proving that the exit cannot be taken. The motion compensation
loops LuminanceComp and ChrominanceComp are fully iteration-independent be-
cause value range and relationship information allowed the parallelization of
inner and outer loops. For similar reasons, iterations of MBBlockRebuild and
BlockRebuildUV are also now identified as fully independent, which allows iter-
ations of the upper portion of VopShapeMotText to be executed independently
when split from the lower portion of the function.

4.4 MPEG Region Parallelism

The instances of region parallelism in the MPEG encoder involve operations
on either separate, dynamically-allocated objects linked to a common structure,
or separate regions of an array accessed by repeated calls to a function. Thus,
single analysis options are incapable of removing the dependences that block
region parallelism. Only in Figure 7(d) can the compiler separate one call to
FindSubPel from the other four, as it writes to a different array.

The combination of non-affine expression array disambiguation and heap-
sensitive pointer analysis enables the independent execution of the four “smaller”
calls to FindSubPel in Figure 7(g). With the addition of field-sensitivity in
Figure 7(h), the compiler can finally distinguish different luminance and chromi-
nance images even when they are stored into fields of a single structure. This
removes the two remaining horizontal black lines from the diagram and fully
exposes the major instances of code region parallelism in the application.

4.5 MPEG Cross-Loop Parallelism

As shown by the absence of Xs in Figure 7(i), there is a high degree of cross-
loop parallelism available in P-frame encoding. The two largest obstacles to
discovering the producer-consumer relationships for cross-loop parallelism are
the need to determine the independence of memory objects accessed by the loop
and the ordering of processing (or lack thereof) allows an overlap in execution.
The former issue is resolved by a full-featured pointer analysis. The latter is
complicated by the use of procedures, non-affine expressions, and the fact that
the granularities and order of processing can be different for different loops. For
example, FrameSubtraction loops over pixels, while its neighboring loops op-
erate on macroblocks. This does not translate into a direct ratio of iterations:
macroblock processing will operate on an 16x16 block from the upper left cor-
ner of a luminance image, while pixel processing will go across the top row of
pixels in the image before beginning the next row. Without significant trans-
formation, FrameSubtraction would have to process 16 rows of data before
VopShapeMotText could begin execution.
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Little cross-loopparallelism is exposed by analysis until a heap-sensitive pointer
analysis is combined with an interprocedural, non-affine expression array analy-
sis, shown in Figure 7(g). The heap-sensitivity distinguishes the input and output
data objects for many loops, while the full-featured array analysis permits a pat-
tern analysis. Field-sensitivity in Figure 7(h) removes another blocked case by
clarifying the multiple objects referenced in FrameSubtraction. The remaining
blocked cases require value range and relationship inference to obtain clear data
production and consumption pattern information.

5 Related Work

This paper covers a large range of compiler work, incorporating various compiler
analysis techniques, the effects of integrating these techniques, the parallelism
they expose for an automated parallelizing compiler, and further development
and refinement of compiler techniques. This is in the same spirit as previous work
by Hendren and Nicolau [15] and Ghiya et al. [7]. Our work differs in that our
focus is on discovering available parallelism for consumption by multi-processing
microprocessors. We currently limit ourselves to media applications, which are
high in parallelism but are pointer-heavy serial implementations. In this section
we address some of the major works that have been published in these areas.

Several existing analysis techniques form the foundation for our investigation.
These include pointer analysis, induction variable recognition, symbolic scalar
analysis, and array disambiguation. For an overview of previous work in pointer
analysis, we refer to [16]. Another report by Hind [17] identifies, in a similar vein
to our work, idioms and common patterns in C programs that can adversely
affect the precision of different kinds of pointer analysis. The pointer analysis
framework used for this work is described in detail in [26].

For an overview of several important array disambiguation techniques, we
refer to [9]. The problem of disambiguating index expressions containing sym-
bolic values has also been noted by Blume and Eigenmann, who propose the
Range Test [3] to handle such expressions. The Access Region Test [28] also
disambiguates symbolic expressions, with greater flexibility. While our choice
of disambiguation tests is tuned to the problem domain, additional tests could
easily be added.

A number of tools and techniques exist for symbolic numerical analysis. Exist-
ing value range propagation algorithms [12,21] work on an intraprocedural scope
or on code without dynamic memory to infer the possible sets of values for some
data, enabling refinement of control flow and index expressions. However, value
range propagation has not been implemented in a scalable form that tracks
value ranges both interprocedurally and through heap-allocated data structures
for the C language. Value relationship inference has been implemented for pro-
gram analysis and static error detection [2]. Again, to the best of our knowledge,
no existing tools track values through heap-allocated data structures.

At present there is a shortage of work on coarse-grained parallelization of C
programs. Several compiler projects, including Polaris [3], ParaScope [23], and
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SUIF [10] have emphasized the interprocedural nature of parallelizing analysis
and code transformation. These have primarily focused on Fortran programs.
However, the disparity between C and Fortran semantics has resulted in auto-
matic parallelization developed for Fortran not enjoying the same level of success
when applied to C. Of these projects, only SUIF has published research on com-
pilation of C programs. Their reported parallelization results are only for Fortran
benchmarks [10,11].

There are other approaches to parallelization that are alternative or comple-
mentary to compile-time analysis. One alternative is to augment a programming
language such as C to allow the programmer to communicate more information
about pointer relationships to the compiler [14]. Another is to use run-time dis-
ambiguation or speculation when compile-time analysis fails [4,36]. Salamı́ and
Valero [33] find that using a compiler-generated run-time disambiguation test to
select between a parallel and non-parallel version of a loop produces speedups
in multimedia applications comparable to the speedups garnered by interpro-
cedural pointer disambiguation. While code versioning is useful as a fallback
mechanism, it causes code growth due to multiple versioning and overhead due
to runtime tests. Even in systems with run-time disambiguation support, success
in static parallelization will increase the execution efficiency of applications.

6 Conclusions and Future Work

This paper discusses several forms of parallelism and studies the analyses re-
quired to expose them in media applications. We have shown the types of code
sequences and practices that require the use of certain analysis options. Distinc-
tions have been made between analyses that are already satisfactory for finding
parallelism and those that currently do not have practical or scalable solutions.

Using a reference MPEG-4 encoder, we have shown the importance of com-
bining analyses to obtain a much clearer view of the parallelism present in the
application than when run individually. Our evaluation showed that an inter-
procedural, non-affine expression array analysis and a heap-sensitive pointer
analysis are required to expose the majority of parallelism in the application.
A field-sensitive pointer analysis and value range and relationship inference are
necessary to find the remainder of the parallelism in the application.

For future work, we will continue work on developing practical and scalable
analyses for those analyses that are not yet practical or scalable in the C lan-
guage. Work is ongoing to apply the analyses to other applications. We are
also developing software tools to assist programmers and developers in finding
parallelism for use in their own designs.
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