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Abstract
With the emergence of highly multithreaded architectures, perfor-
mance monitoring techniques face new challenges in efficiently
locating sources of performance discrepancies in the program
source code. For example, the state-of-the-art performance coun-
ters in highly multithreaded graphics processing units (GPUs) re-
port only the overall occurrences of microarchitecture events at
the end of program execution. Furthermore, even if supported, any
fine-grained sampling of performance counters will distort the ac-
tual program behavior and will make the sampled values inaccu-
rate. On the other hand, it is difficult to achieve high resolution
performance information at low sampling rates in the presence
of thousands of concurrently running threads. In this paper, we
present a novel software-based approach for monitoring the mem-
ory hierarchy performance in highly multithreaded general-purpose
graphics processors. The proposed analysis is based on memory
traces collected for snapshots of an application execution. A trace-
based memory hierarchy model with a Monte Carlo experimental
methodology generates statistical bounds of performance measures
without being concerned about the exact inter-thread ordering of
individual events but rather studying the behavior of the overall
system. The statistical approach overcomes the classical problem
of disturbed execution timing due to fine-grained instrumentation.
The approach scales well as we deploy an efficient parallel trace
collection technique to reduce the trace generation overhead and a
simple memory hierarchy model to reduce the simulation time. The
proposed scheme also keeps track of individual memory operations
in the source code and can quantify their efficiency with respect to
the memory system. A cross-validation of our results shows close
agreement with the values read from the hardware performance
counters on an NVIDIA Tesla C2050 GPU. Based on the high res-
olution profile data produced by our model we optimized memory
accesses in the sparse matrix vector multiply kernel and achieved
speedups ranging from 2.4 to 14.8 depending on the characteristics
of the input matrices.

Categories and Subject Descriptors C.1.2 [Processor Architec-
ture]: Multiple Data Stream Architectures; C.4 [Performance of
Systems] – Modeling Techniques

General Terms Design, Measurement, Performance

Keywords GPU, Memory hierarchy, Performance evaluation
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1. Introduction

Graphics processors are optimized for throughput oriented work-
loads, which allowed early GPUs to not include traditional data
caches. More recent GPUs have added small per-core L1 caches
to capture inter-thread reuse, and larger unified L2 caches to ex-
ploit inter-core sharing. This is a significant step forward to bet-
ter support a more diverse set of workloads and reduce some of
the performance discrepancies that previously existed. Yet, support
for application developers and compiler designers to investigate the
behavior of the source code regions that cause performance bottle-
necks has been limited. While current GPUs provide a set of per-
formance counters that collect raw statistics for microarchitecture
events such as the overall number of misses for the L1 and the L2
caches, the counter values cannot be monitored or sampled during
a program execution. Likewise, support for time-based sampling is
provided through application programming interfaces [13] that can
be inserted in the source code at the user level. While a time-based
sampling built on top of these interfaces can help identify hotspots
in a program, a fine-grained sampling approach is not feasible as
the high sampling rate will likely distort the accuracy of the profile
data. On the other hand, infrequent sampling will increase the num-
ber of blind spots and reduce the precision of the measurements.

Profiling the performance of highly multithreaded applications is
not confined to recently introduced high performance accelerators.
Salapura et al. [16] discuss the significance of the feedback de-
rived from the performance statistics in high performance comput-
ing systems such as Blue Gene and propose a new performance
counter architecture that scales better with the number of concur-
rent events in a highly multithreaded system. We propose an al-
ternative software-level approach to capture performance statistics
with respect to a highly parallel interleaved memory system and in
the presence of a large number of concurrent threads. Our approach
does not require the instrumented application to have the same exe-
cution timing as the uninstrumented version. The relative ordering
of events, e.g., memory loads and stores from concurrently running
threads, is reconstructed following a Monte Carlo technique after
traces are collected. The Monte Carlo approach allows us to sys-
tematically analyze the sensitivity of the predictions with respect
to the reconstructed orderings of memory events.

We also propagate the source code locations of memory loads and
stores. As a result, we are capable of producing precise and high
resolution profile statistics. Most highly multithreaded applications
are memory bound and their performance is strongly dependent on
efficient use of the memory subsystem. Therefore, in this work we
focus on performance modeling the GPU memory hierarchy.
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1.1 Related Work

Performance analysis and profiling tools designed for massively
parallel systems traditionally targeted coarse-grained instrumenta-
tion of multi-threaded environments that use MPI, OpenMP, or a
mix of both. Examples of such tools are Vampir [10], TAU [17],
and Paraver [14]. Similar to our trace collection mechanism, they
usually use a library which when linked and called by an appli-
cation, collects traces of events. Nevertheless, our trace collection
mechanism is completely transparent and requires minimal effort
on the developer’s part. Furthermore, these tools collect both events
information and the time stamps when those events were collected
and use the collected time stamps to combine traces from differ-
ent processes. While this approach introduces little distortion for
coarse-grained tracing of events such as entering a shared region,
acquiring a lock, or beginning of an MPI data transfer, it cannot
be applied to the fine-grained event sampling used in this work
for tracking individual memory operations in thousands of concur-
rently running threads. Our goal is not to construct the exact or-
dering of the events, rather to set up an execution context similar
and close to the actual one; and if we have enough statistical evi-
dence that the reconstructed orderings are close enough to the the
actual one, we rely on them to model the inter-thread interactions
and interferences.

Previous work in the area of performance tuning and modeling
of graphics processors [15, 3, 7, 22] did not consider data caches
and the inter-thread interaction of memory operations; they either
assumed the memory system is not a bottleneck [15] or modeled
a flat simple memory system for the previous GPU generations [3,
7, 22]. These models either combine static analysis and dynamic
trace collection via manually inserted probes in the source code [3],
or use functional simulators such as GPUOcelot [5] that emulate
the GPU execution on a CPU to collect traces. Our parallel trace
collection, on the other hand, is transparently integrated into the
GPU kernel and incurs much less overhead. The previous work did
not provide source-level performance feedback either.

Detailed GPU simulators such as GPUSim [4] and Mult2Sim [21]
perform cycle accurate microarchitectural simulations that requires
accounting for the timing of microarchitectural events and results
in long running simulations. Our approach does not require to keep
track of accurate timing of microarchitecture events and therefore
incurs less simulation overhead. In addition, our simulation runs
(the Monte Carlo random trials) can be executed in parallel. We
also provide high resolution source-level performance feedback,
which can better guide optimizations.

1.2 Contributions

The main contributions of this paper are:

• We propose a stochastic model of memory hierarchy for highly
multithreaded execution environments: While major configu-
ration parameters for the underlying hardware are extracted
through microbenchmarking as discussed in Section 2, we use
a Monte Carlo approach (randomized trials) to capture the
sources of non-determinisim in the simulation model, e.g., the
relative arrival ordering of the memory requests at each level
of the memory hierarchy. This stochastic approach is presented
in Section 3. Experiments presented in Section 5 confirms that
the proposed approach yields fast convergence with respect to
randomized trials and high accuracy when compared against
values read from the hardware performance counters.

• We devise a parallel trace collection mechanism that runs on
a GPU and gathers memory traces to capture the intra-thread,

inter-thread and inter-core interactions of the memory accesses
issued from a set of concurrently running threads. Generated
traces are later combined together through the stochastic mem-
ory hierarchy modeling framework to predict hit rates for the
L1 and L2 caches and measure the expected latency of the main
memory. The trace collection is implemented as a source to
source compiler transformation module that seamlessly inserts
probes inside the GPU kernel (device code) and required rou-
tines to handle trace buffers in the surrounding code (host code).
The trace collection mechanism, which is discussed in Section 4
incurs modest execution overhead and results in minimal user
intervention.

• We keep track of the source code location of memory operations
and quantify the efficiency of each individual one with respect
to the GPU memory hierarchy. In Section 6, we show how based
on the resultant profiling data we estimate the latency of each
static load in a program. This information can be used later to
target memory optimizations such as tiling and data layout.

2. A Highly Multithreaded Architecture Model

In this section, we define a machine model for a highly parallel
graphics processor targeting general purpose and compute oriented
workloads. The model must be simple enough to facilitate study
and efficient evaluation of the graphics processors. On the other
hand, it need to enclose enough details so that it can reflect a
realistic behavior of the hardware. In what follows, we highlight
a few fundamental differences reflected in this model that separates
graphics processors from their peer multi-core processors:

Throughput-oriented Computing: GPUs emphasize high through-
put and Single Instruction Multiple Thread (SIMT) perfor-
mance by having streaming processors running neighboring
threads in lock-step and executing the same instruction on dif-
ferent data. This microarchitectural grouping of threads which
can affect both control flow and memory access efficiency in-
troduces the concept of warp – a group of threads that composes
a hardware vector unit.

Hardware Thread Scheduling: Preemptive thread scheduling
by the operating system cannot efficiently support a through-
put oriented environment. Therefore, GPUs implement thread
scheduling through a dedicated hardware. A global thread block
scheduler assigns blocks of threads to streaming multiproces-
sors, which are arrays of streaming processors that implement
the SIMT execution model. In this work, we will consider a
fine-grained round robin scheduling paradigm with respect to
the relative order of thread blocks assigned to each streaming
multiprocessor. This mapping is the closest model to the dy-
namic scheduling scheme that the hardware implements. Within
a multiprocessor, a warp scheduler alternates between different
warps following a weighted round robin scheme.

Bulk Instruction Scheduling: To make the model tractable and
avoid fine-grained scheduling of instructions within a GPU ker-
nel, which would result in a full system simulation, we pro-
pose a bulk scheduling scheme. The computation within a ker-
nel is divided into a sequence of memory loads followed by a
sequence of compute or store instructions. When static mem-
ory loads are repeated within a dynamic instruction stream,
in the presence of enclosing loop constructs, they end up in
separate sequences that are sequentially executed. Therefore, a
back-edge in the control flow will terminate a sequence. An-
other delimitating factor is the existence of data-dependance
between static memory operations. For example, if the index

24



expression of a memory load is computed based on the value
that is being read by a previous load, the second load will start
a new sequence. Explicit synchronization instructions will also
mark the end of the current sequence. Above simplifications
preserve enough information about the instruction stream so
that the model can reflect a reasonable representation of the
kernel computation. Meanwhile, it is general enough that can
approximate different instruction scheduling schemes adopted
by different GPU vendors. For example, AMD’s GPUs are de-
signed based on a Very Long Instruction Word (VLIW) instruc-
tion set architecture; multiples of instructions that can execute
in parallel are packed into statically scheduled VLIW bundles.
These bundles then compose relatively short clauses; clauses
are initiated by control flow instructions and may only contain
a single type of instruction, e.g., memory loads or ALU instruc-
tions. In contrast, NVIDIAs GPUs require more sophisticated
scheduling logic for fine-grained scoreboarding and resolving
dependencies within the dynamic stream of instructions. With
the bulk instruction scheduling scheme these level of details are
abstracted.

Throughput-oriented Memory System: GPUs conserve mem-
ory bandwidth by grouping together, if possible, loads and
stores issued within the same warp. Each coalesced memory
access then uses a single memory request while moving mul-
tiple elements of data. Traditionally, highly multithreaded ar-
chitectures such as HEP [18], M-Machine [6], Tera MTA [19]
and more recently multithreaded graphics processors employ
hardware multi-threading for fast context switches to toler-
ate memory latency. Following this approach to tolerate mem-
ory latency, the early multithreaded architectures did not in-
clude data caches. More recent GPUs such as those based on
NVIDIA’s Fermi architecture [11] added caches as means to
conserve memory bandwidth. Private L1 caches expoit inter-
thread data sharing to reduce the memory bandwidth consump-
tion by each core. A shared unified L2 further reduces off-
chip bandwidth requirements by exploiting data re-use between
cores. The throughput oriented environment also influences the
design and functionality of the memory hierarchy. For example,
data caches are no longer optimized for exploiting long term
locality as their effective size shrinks with the high number of
concurrently running threads. These caches are rather designed
to exploit short-term spatial and temporal data locaity across the
concurrently executing threads.

2.1 Microbenchmarks

We use a set of microbenchmarks to determine memory hierarchy
configurations and management policies; in this work we adapt our
model to the profile of the Tesla C2050 GPU. Our microbenchmark
suite is built around a GPU kernel that traverses elements of one or
more linked-lists in a circular (wrap-around) fashion, invoked with
a single GPU thread unless stated otherwise.

Cache Parameters: We first measure the cache block size by
varying the strides accessing the elements of a linked-list. The
experiment initially implies only a cache block size of 128
bytes. This leads one to the conclusion that either there is no
higher level caches or the cache block size of the higher level
caches are at most 128 bytes. Next, we determine the size of
the cache(s) using a fixed stride of 128 bytes (the L1 cache
block size) accessing elements of a linked-list. Results from
running this microbenchmark on the Tesla C2050 suggest a
16KB first-level cache and a 768KB second-level cache. The
Fermi L1 cache can be deactivated though a compiler switch.
With that option available, we further investigate the cache

block size of the second level cache, which yields an L2 cache
block size of 32 bytes. Based on this outcome, we assume that
on an L1 miss four consecutive L2 cache blocks are accessed.
We also measure that both L1 and L2 caches are 64-way set
associative. A 64-way set associative L1 may at first glance
look unreasonable, but it is justified with an average measured
L1 access latency of 52 cycles; we measured average L1 and
L2 access times of 90 and 250 nanoseconds. We later show, in
Section 3.2.3, how we customize the measurement of the global
memory access time for each application.

Inclusive, Exclusive or Victim: We also need to determine
whether the second-level cache is inclusive or exclusive. There-
fore, we run a microbenchmark using a linked-list of size equal
to the L1 cache capacity for as many thread blocks as the num-
ber of available streaming multiprocessors plus one, i.e., 15
thread blocks for the Tesla C2050 GPU. To ensure that differ-
ent thread blocks are not scheduled at the same time on the same
streaming multiprocessor, we enforce each thread block to have
the maximum number of in flight warps that can be simultane-
ously scheduled on each streaming multiprocessor. However,
only one thread is performing memory accesses in each thread
block. Each of the first 14 thread blocks access elements of 14
completely distinct linked-lists. The last thread block, which is
roughly executed after the first 14 finish their execution, ran-
domly chooses one of the previously accessed linked-lists to
start its memory accesses. Memory accesses from the first 14
thread blocks will miss in both L1 and L2 caches. However,
memory accesses of the last thread block will hit in the L2, if
the cache is inclusive and in the L1 if the last thread block is
scheduled on the same core as the thread block that has pre-
viously accessed the list. We run this microbenchmark 1024
times, and discard the results that indicate the accesses from
the last thread block hit in the L1 cache. Next, We run a new
experiment: this time all 15 thread blocks access distinct linked-
lists. We compare the average memory latency for these two set
of experiments. The results indicate a lower memory latency
for the case that the last thread block reads from a previously
accessed linked-list, which leads us to the conclusion that the
second-level cache is inclusive.

Write Policy and Prefetching: Since the L1 caches are rela-
tively small considering the number of inflight threads for each
core, it makes sense to forward stores directly to the shared L2
cache. We verified this scenario through microbenchmarking.
By closely investigating the numbers reported by the hardware
counters, we also verified that stores hit in the L2 only if the
corresponding cache block has been activated via a write re-
quest, and that the L2 follows a write back, write allocate policy
for stores. So for the memory hierarchy model we assume that
when a store request reaches the L2, if the cache block is valid
it writes to the cache while setting the dirty bit for that block.
If the block is not valid, it updates the memory and brings the
cache block to the cache and set its valid bit. We also ruled
out hardware prefetching by inspecting the number of memory
requests reported by the performance counters for microbench-
marks that could potentially trigger hardware prefetching.

3. The Stochastic Memory Hierarchy Model

In this section we describe how a stochastic model of the GPU
memory hierarchy is built on top of the deterministic memory
model discussed earlier in Section 2. In our stochastic model, the
order of memory requests being issued is partially determined by
random variables. Memory traces are collected by instrumenting
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the GPU kernel at the source code level to record the memory ad-
dresses accessed during the kernel execution. The instrumentation
framework, which is discussed in more detail in Section 4 is de-
signed as a source-to-source transformation module. Static probes
are inserted within the GPU kernel source code to record the mem-
ory addresses read from and written to by active threads for a sub-
set of thread blocks as the GPU kernel is executed. This subset of
thread blocks represents a snapshot of the kernel execution whose
dimensions are determined heuristically based on the number of
concurrently executing threads, the average number of dynamic
memory operations per warp, and the size of the last level cache.

3.1 Spatial and Temporal Locality – Intra-thread and
Inter-thread Interactions

To understand the performance of a GPU kernel with respect to
the memory hierarchy, it is necessary to collect enough traces to
capture:

• the intra-thread locality and interaction of memory operations

• the inter-thread and inter-thread-block locality and interactions

To capture spatial locality and inter-thread interferences the exe-
cution snapshot for trace collection is extended horizontally. We
collect traces for thread blocks that are potentially scheduled close
together on different cores (streaming multiprocessors), i.e., thread
blocks with consecutive logical IDs. To account for the temporal
locality and intra-thread interactions the execution snapshot is ex-
tended such that enough traces are collected within a single thread.
The threshold is determined by the capacity of the last level cache
and the total number of inflight threads. If required, the execu-
tion snapshot is extended across the boundaries of multiple thread
blocks that are scheduled back-to-back on a single core. With this
approach, a subset of the memory traces is collected, but the sub-
set is detailed enough to reflect locality and interactions within the
group of concurrently running threads.

If required, traces can be collected for multiple snapshots of the ker-
nel execution. However, our initial experiments confirm that apply-
ing the model to traces collected from a single snapshot produces
precise and accurate enough estimations. This is quite expected as
the computation in a typical GPU kernel is structured around a Sin-
gle Program Multiple Data (SPMD) programming model.

The above approach, is to some extent similar to the time sampling
technique introduced by Laha et al. [8]. They used contiguous
segments of memory accesses over certain time intervals for trace
driven simulation of single-thread workloads. For large caches and
in a single-thread execution model, the cold-start error caused due
to unknown status of the cache at the start of each trace simulation
is a major source of inaccuracy. In a highly multithreaded execution
model, the effect of the cold-start error is fairly insignificant; the
execution environment setup for throughput oriented caches limits
their ability in exploiting long-term temporal locality. We expect
that the same limitation will hold in future GPUs as parallelism
scales with at least the same rate as the size of the caches increases.

3.2 The Monte Carlo Approach

Collected traces exhibit precise intra-warp (intra-thread) ordering
of memory references. But they do not maintain any information
on the relative order of memory references issued from different
warps or thread blocks. Note that our approach does not rely on the
execution order of memory loads and stores when collecting traces.
The rationale for not relying on the ordering during the execution

of the instrumented GPU kernel is that adding static probes to the
kernel source code:

• changes the kernel resource usage (number of registers), which
may consequently alter the streaming multiprocessors occu-
pancy, i.e., the number of concurrently active thread blocks.

• increases the number of inflight memory operations, which will
distort the state of caches and the level of congestion in the
memory hierarchy.

• changes the instruction mix of the GPU kernel and introduces
spurious synchronization or stall points.

As a result, instrumenting the kernel will introduce considerable
timing distortions in the execution order of the memory references.
To account for this effect, the order of memory requests arriving at
each level of the memory hierarchy is reconstructed via a Monte
Carlo method, which is an efficient sampling approach for systems
with individual behaviors highly coupled together. Traces are then
driven into each level of the memory hierarchy in our simulator
according to the randomly sampled ordering in each run based on
the following steps:

1. Given a pool of memory requests waiting to be serviced at each
level of the memory hierarchy:

(a) Generate a valid random ordering from the pool of available
memory requests.

(b) Drive traces to the current memory hierarchy module fol-
lowing the ordering derived in step (a).

(c) Obtain performance estimations for the current level and
prepare the pool of memory request to be serviced by the
next memory hierarchy level.

2. Repeat step 1 for a sufficiently large number of times.

3. Determine the probability distribution of results using his-
tograms and summarize the confidence of the predictions.

The output of the model is a probabilistic performance behavior
of the memory system such as hit ratios for the first and second
level caches. If certain performance behaviors are most frequently
observed – even with limited knowledge about the exact relative
ordering of inter-thread memory requests – they are statistically
sound representatives of the system performance. In other words,
if different random orderings result in noticeably different perfor-
mance statistics (a wide spread histogram) then the predictions are
not reliable. Otherwise, though we have not followed the actual
inter-thread ordering when driving traces into the simulator, we
have set up an execution context similar and close enough to the
actual one. In such a case, we evaluate the performance of memory
operations within the execution contexts reconstructed following
the above steps.

3.2.1 Schedule Deviation

As independent thread blocks are scheduled to run on stream-
ing multiprocessors, their executions start to fall out of sync with
each other due to non-uniform memory access latencies, different
number of memory operations and computation loads as individ-
ual threads or warps may follow different control flow paths, etc.
To account for these schedule deviations, when scheduling loads
and stores from inflight warps, random start (alignment) points are
chosen for thread blocks scheduled simultaneously across different
streaming multiprocessors. The horizontal dashed lines in Figure 1
highlight the execution snapshots devised based on random start
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Figure 1. Random points mimic schedule deviation for simultane-
ously scheduled thread blocks

points for two multiprocessors. In this example, snapshots are ex-
panded across two back-to-back scheduled thread blocks – each
composed of four warps: W0, W1, W2 and W3. Each multiproces-
sor executes two thread blocks simultaneously. Tiny bars in front of
dynamic memory operations L0,..., L6 represent individual mem-
ory transactions being issued for the corresponding memory vector
instructions. The entry is empty if none of the threads within the
warp have executed the corresponding load or store.

3.2.2 Scheduling Traces

Following the alignment of simultaneously scheduled thread blocks,
we start picking traces from warps within these thread blocks and
drive them into the L1 caches. The scheduling scheme used pre-
serves the vector nature of the memory references issued by threads
within a warp. Memory references are coalesced based on the size
of the data being accessed and the cache block size. Coalesced ac-
cesses (memory transactions) for each warp are bound together to
ensure that they are all scheduled at the same time. Each warp of
a thread block has a queue of ready-to-issue memory transactions.
Attached to each memory transaction is a unique ID that corre-
sponds to the source code location of the memory load or store that
has triggered the transaction.

Figure 2 illustrates the layout of the stochastic memory hierarchy
simulator. The intra-core trace schedulers pick traces from the
warp queues following a weighted round robin fashion. Traces are
sent to the L1 caches in the order that they have been picked.
Loads update the status and counters of the L1 caches. All stores
and the loads that miss in the L1 are forwarded to the L2 cache.
When scheduling traces from a warp queue, the scheduler continues
picking transactions from the same warp if the corresponding cache
lines are triggered by static memory operations within the same
scheduling sequence, provided that no data-dependence has been
recorded between back to back scheduled accesses. This scheduling
policy follows the concept of bulk instruction scheduling discussed
earlier in Section 2.

The inter-core trace scheduler picks traces from the L1 queues
based on a weighted random scheduling algorithm. Loads and
stores that miss in the L2 cache along with store evictions are
placed into the main memory request queue shown in Figure 2.

Figure 2. The stochastic memory hierarchy model

3.2.3 Main Memory

In the context of a highly multithreaded environment, memory la-
tency observed from a single-thread execution is not necessarily a
meaningful measure of performance. Congestions in the memory
system may add to the memory latency. Congestion pattern is char-
acterized based on how efficiently the shared resource is utilized
by the memory requests that arrive close in time. The main mem-
ory in a GPU is organized into a number of interleaved channels.
Depending on how memory accesses are spread across these chan-
nels the effective memory bandwidth and latency will change. To
estimate the effective memory latency observed by memory oper-
ations issued close to each other, memory accesses that reach the
main memory are grouped together following a uniform random
distribution.

To form groups of simultaneously issued memory loads or stores,
random number of memory requests are picked from the queue of
misses arrived from the L2 cache. Each group can contain up to 32
memory requests which is the maximum number of distinct mem-
ory transactions a core can issue simultaneously, i.e., the memory
vector size. Then up to 14 groups are picked, i.e., one per each
streaming multiprocessor, to form a set of memory requests that
reach the main memory relatively at the same time.

The addresses in these aggregated groups of memory transactions
are then normalized and translated into indices of an array whose
elements are the size of a single main memory transaction (32
bytes). The indices are then loaded into a microbenchmark and the
main memory access latency for each batch of concurrently sched-
uled accesses is measured via the internal clock register. Figure 3
shows the probability density function of the observed latencies
collected by the above approach for the sparse matrix vector multi-
plication benchmark. The general rule is that more frequent random
accesses and higher number of memory bank conflicts will degrade
the main memory efficiency and increase the expected latency. If a
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Figure 3. Probability distribution for the main memory latency – SpMV
kernel

dominant measured latency exists, we use it as a proper statistical
representative latency for the memory accesses that miss in the L2
cache.

4. Software Framework

This section discusses the framework that collects dynamic mem-
ory traces for the stochastic memory hierarchy simulator discussed
in Section 3.

4.1 Instrumenting the Kernel

To collect and analyze the memory addresses accessed by a given
kernel, additional instructions are inserted inside the kernel (the
GPU device code) and the CPU host code. This is performed
automatically by a source-to-source transformation module that is
run before the actual compilation of the program. This module and
the actual compiler are wrapped together into a new compiler driver
that can replace the original compiler in a project build system. This
minimal level of intervention simplifies the use of the framework
significantly.

The source-to-source transformation module performs the follow-
ing source code modifications:

• Inserts memory address probes into the kernel source code
at locations where the kernel is performing a read or a write
operation. A probe as shown in Listing 1 is a call to a function
that will be in charge of storing the memory address accessed
as well as a unique ID that identifies the source code location of
the memory operation.

• Stores for each memory address probe, its exact source code
location and the size of the element being accessed into a static
array.

• Adds allocation and deallocation routines for the trace collec-
tion buffer before and after the launch of the GPU kernel. A
pointer to the buffer is added as an extra argument to the ker-
nel invocation code. The organization of the trace buffer is ex-
plained later in Section 4.2.

• Adds an additional parameter to the kernel that communicates
to the probes the location within the buffer that they need to
store the corresponding trace information.

• Adds routines to compute the original kernel occupancy.

• Adds routines that collect traced memory addresses and post-
process them for the memory hierarchy simulation model.

1 g l o b a l void SpMV( s a m p l i n g d e v i c e b u f f e r ∗
2 samples , f l o a t ∗x , c o n s t f l o a t ∗va l , . . . )
3 {
4 s a m p l i n g s t a t u s t h i s t h r d s t a t u s ;
5 i n i t s a m p l i n g s t a t u s ( samples , &t h i s t h r d s t a t u s ) ;
6
7 t i d = t h r e a d I d x . y ;
8 b i d = b l o c k I d x . y ;
9 t =0 ;

10 myi = b i d ∗ BLOCKSIZE + t i d ;
11
12 i f ( myi < ( numRows ) ){
13
14 sample mem index ( samples , &t h i s t h r d s t a t u s , 0 ,
15 &( rowInd [ myi ] ) ) ;
16 l b = rowInd [ myi ] ;
17
18 sample mem index ( samples , &t h i s t h r d s t a t u s , 2 ,
19 &( rowInd [ myi + 1 ] ) ) ;
20 ub = rowInd [ myi + 1 ] ;
21
22 f o r ( j = l b ; j<ub ; j ++) {
23
24 sample mem index ( samples , &t h i s t h r d s t a t u s , 4 ,
25 &( i n d i c e s [ j ] ) ) ;
26 i n d = i n d i c e s [ j ] ;
27
28 sample mem index ( samples , &t h i s t h r d s t a t u s , 6 ,
29 &(y [ i n d ] ) ) ;
30 y v a l = y [ i n d ] ;
31
32 sample mem index ( samples , &t h i s t h r d s t a t u s , 8 ,
33 &( v a l [ j ] ) ) ;
34 t += v a l [ j ] ∗ y v a l ;
35
36 }
37 sample mem index ( samples , &t h i s t h r d s t a t u s , 1 ,
38 &(x [ myi ] ) ) ;
39 x [ myi ] = t ;
40
41 }
42
43 r e l e a s e b u f f e r (& t h i s t h r d s t a t u s ) ;
44 }

Listing 1. Instrumented SpMV – device code

To initiate trace collection for a subset of simultaneously executing
thread blocks, one need to know the thread block occupancy for
a streaming multiprocessor and the number of available streaming
multiprocessors; the latter is obtained via a call to the NVIDIA’s
programming APIs. The former is computed as follows: The occu-
pancy of a GPU kernel is the ratio of the number of active warps to
the maximum number warps supported on a streaming multiproces-
sor [12]. The occupancy is determined by the amount of resources
that the kernel consumes. Resources can be allocated either stati-
cally or at the kernel invocation time. Occupancy is also dependent
on the GPU device that the kernel will be executed on. Before start-
ing the source-to-source transformation, the driver calls NVIDIA’s
nvcc compiler to collect kernel-specific information required to
compute the occupancy, which includes the number of registers and
the size of shared memory used. The instrumentation module also
inserts calls to NVIDIA’s programming interfaces to identify the
GPU device that the kernel will be executed on. It then computes
the occupancy of the kernel just before its invocation, where it also
collects the kernel invocation parameters whose values are required
for the occupancy computation, i.e., the thread block dimensions
and the amount of shared memory dynamically allocated.

The source to source transformation module is built on top of
Clang [1], the C language family frontend for LLVM [9]. Clang has
been modified so that it can correctly parse a subset of CUDA [13]
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source code and build the abstract syntax tree of both the host
and device code. Each node of the tree precisely records its exact
location within the source code, even when the node is the result of
one or more macro instantiations. This property is essential for the
transformation module to provide accurate source level feedback.

The output of the transformation cannot be generated directly from
a modified abstract syntax tree: To build the abstract syntax tree,
a header containing the declaration of CUDA types and runtime
functions must be preincluded. The serialization of the abstract
syntax tree would contains these additional declarations. But nvcc
preincludes a header file as well. So, if nvcc is run to compile
the source code generated from the abstract syntax tree, it will
result in duplicated declaration errors. Therefore, the output of the
transformation is a patch file that is applied to the user source code.
The modifications that need to be applied to the original source
code are recorded as a list of source code insertion operations that
are later used to generate the patch file. This mechanism leverages
the Rewriter API that Clang provides.

Redundant loads and stores that are likely to be eliminated by
the back-end compiler are not instrumented. To achieve this, a
global value numbering analysis is implemented to identify the
redundant memory accesses and a basic pointer alias analysis is
used to determine if a memory operation will be removed through
redundant load elimination.

The instrumentation of the source code must be done with an un-
modified abstract syntax tree to ensure that the source locations
are correct. However, the abstract syntax tree must be modified to
increase the quality of the global value numbering analysis: Ex-
pression trees are canonicalized to increase the chance that two
arithmetically equivalent expressions have the same tree represen-
tation. This means that the source code must be instrumented be-
fore the analysis is performed. As a result, the source code is over-
instrumented. After the analysis is performed, the results are for-
warded to the patch file generation module to skip the unnecessary
instrumented memory operations.

A significant challenge in instrumenting the memory operations is
identifying the correct type of the address space being accessed by
a pointer, e.g., global memory, shared memory, etc. The type of a
pointer cannot be used to infer which address space it points to as
it can change during the lifetime of the pointer. A dataflow-based
algorithm is used to disambiguate the address space that a pointer
refers to for each segment of the source code. When incapable of
resolving the actual pointer type, it conservatively associates the
pointer to the global memory, similar to the nvcc compiler.

4.2 Recording Traces

The memory address probes inserted within the kernel store the
addresses accessed by each thread into a trace buffer. The imple-
mentation of these probes and the design of the buffer are inherent
to the execution model within the GPU: The threads within a warp
are executed in lock-step and the warps within a thread block are
executed concurrently. Therefore, the probes are designed to store
per-warp rather than per-thread memory accesses. In addition, the
buffer is designed so that its size does not limit the acquisition of
an unbounded amount of memory addresses.

A trace buffer is composed of a number of block buffers. Each
block buffer itself contains a set of warp buffers – one for each
warp in the thread block – as illustrated in Figure 4. The number
of block buffers is equal to the number of simultaneously active
thread blocks in the GPU. We use a per-block-buffer locking mech-
anism to prevent concurrent accesses to the same buffer from mul-

Figure 4. Organization of the trace buffer

tiple thread blocks. Each block buffer has a counter that holds the
number of active threads using the buffer. When zero, the buffer is
free to be acquired. A thread block acquires exclusive rights to the
buffer when it successfully exchanges, via an atomic operation, the
value zero in the counter with the number of threads that it contains.
Each thread will atomically decrement this counter just before ter-
minating. A warp buffer is a ring buffer with fixed-sized lines that
are wide enough to hold for each thread within a warp, an address
value and a static ID associated with the source code location of the
corresponding memory operation. When an active thread executes
a probe, the next available line in the warp buffer is updated and a
line counter is incremented. The buffer is originally initialized with
invalid addresses (odd values). So when an inactive thread does not
store any address it can be easily captured.

Probes will spin on the warp buffer counter when the buffer is full.
During the kernel execution, the host program constantly snoops at
individual warp-buffer counters. When a warp buffer is full, the
host program reads the content of the warp buffer (traces) and
resets the warp buffer counter. Now, threads that were spinning
on the counter will resume to record traces. When enough traces
are gathered, the host program sets the counters to a predefined
value to disable probes inside the kernel. The exact layout of the
buffer is computed based on thread block dimensions, number of
concurrently active thread blocks and the overall size of the buffer
itself.

To allow both the host and the device code access the buffer con-
currently, the buffer is allocated using pinned-memory. Pinned-
memory is the host memory that is removed from the virtual mem-
ory, so it is not paged out by the operating system. Since the atomic
operations operating on a pinned-memory are not atomic from the
point of view of the host [13], the communication between host
and device is implemented via un-cached load and store operations
by inlining NVIDIA’s PTX assembly to treat cached memory lines
stale and bypass the GPU L2 cache via write-through stores.

5. Experimental Evaluation

In this section, we present the result of application of the stochastic
memory hierarchy model discussed in Section 3 to several GPU
applications. The results, which are presented in terms of the L1 hit
ratios for loads and the L2 hit ratios for loads and stores are cross
validated against the overall hit ratios reported by the hardware
performance counters.

5.1 Experiments Setup

The proposed memory hierarchy modeling approach is validated
on an NVIDIA Tesla C2050 general-purpose graphics processor.
The benchmarks suite chosen covers GPU kernels commonly used
in scientific computing and signal processing applications: dense
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Figure 5. Probability distribution for the L1 read, L2 read and L2 write predicted hit ratios – Part 1

matrix multiplication (DMM), sparse matrix vector multiplica-
tion (SpMV), fast Fourier transform (FFT), Black Scholes, the 3D
lattice-Boltzmann method (LBM), merge sort (global and shared
memory versions), and a 3D stencil computation. These bench-
mark also exhibit diverse behavior with respect to memory access
patterns, data-dependent control flow and memory references, mix
of load and store operations, and the locality level available.

The overall probability distributions for the L1 and the L2 cache
hit rates are generated by the proposed stochastic model for the
discussed GPU benchmarks and results are displayed in Figures 5
and 6. Each histogram shows the probability of a specific predicted
hit ratio on the y-axis based on results obtained from 64 simula-
tions. The dashed vertical red line marks the hit ratios reported by
the hardware counters.

5.2 Sampling Error – Precision

We report the average and the standard deviation for the predicted
hit ratios in Figures 5 and 6. The standard deviation describes
the spread of the predicted hit ratios and determines how random
variations affects the sensitivity and reliability of the proposed
memory model. A small standard deviation – 0.01 on average for
the outputs of the model – indicates that the predictions from the
model are robust with respect to the randomly sampled ordering

of memory requests. Based on the central limit theorem [20] the
probability of the expected predicted hit ratios being within the
confidence interval of [Ên − 2σ̂n, Ên + 2σ̂n] is 95%, where Ên

and σ̂n are the average hit ratios and standard deviations shown in
Figures 5 and 6.

5.3 Sampling Overhead

Figure 7 shows changes in the standard deviation of the predic-
tions for the L2 reads in the SpMV kernel as the number of random
samples increases; the L2 predictions for loads in the SpMV kernel
have the highest standard deviation within our experiments. Nev-
ertheless, a small standard deviation of 0.02 or 2% miss prediction
indicates that predictions exhibit a low tendency to be spread out.
Based on Figure 7, a relatively fast convergence for the standard
deviation (starting after 20 simulations) suggests that larger sample
sizes will produce barely noticeable increase in the precision of the
predictions specially after 60 simulation runs. For this kernel when
run with an input matrix of randomly distributed non-zero elements
(51 on average per row), it takes 17.7 seconds to collect traces for
an execution snapshot that is 4 times the size of the concurrently
running threads on all 14 streaming multiprocessors. It then takes
3.16 minutes on an Intel Core-i7 processor running at 2.8 GHz to
finish one simulation and propagate and collect performance statis-
tics. Most of the overhead is in driving traces from the private L1
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Figure 6. Probability distribution for the L1 read, L2 read and L2 write predicted hit ratios – Part 2

caches to the unified L2 cache. The SpMV benchmark represents
the end of the spectrum with slower convergence rates (after 20
simulation runs) for the L1 and L2 hit ratio predictions, at least
within the benchmark suite used for our study. In general, a hand-
ful of simulation runs converge very quickly or the simulations can
stop after the results converge within the desired threshold. In addi-
tion, multiple simulation runs can be executed in parallel to reduce
the overall simulation overhead.

Figure 7. Fast convergence of the standard deviation for the L2
read hit ratio predictions – SpMV kernel

5.4 Systematic Error – Accuracy

We use absolute error to measure the accuracy of our predictions.
Relative error is a more meaningful measure of accuracy than the
absolute error when the predicted values are large and unbounded.
For the predicted hit ratios, relative error does not relate closely to
the performance associated with the difference in the predictions.
For example, when using the relative error one gets the same
value of error for the following pairs of predicted and actual hit
ratios: (0.02, 0.04), (0.2, 0.4) and (0.4, 0.8). The fact that the
above errors would be judged to have equal importance is not
correct from microarchitecture point of view.

We cross-validated the results predicted by the memory hierarchy
model with those read from the hardware performance counters
provided by the NVIDIA. The performance counters cannot be
read or sampled during the kernel execution. Before running the
kernel, an environment variable is set to activate the counters. After
the kernel execution is finished, the values of the counters that
reflect the overall performance statistics with respect to all memory
references are written into a log file. The vertical dashed lines in
Figures 5 and 6 highlight the hit ratios computed based on values
read from the hardware counters. When compared against hardware
counters, the proposed approach have an average absolute error of
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1 f l o a t t = 0 ;
2 unsigned i n t myi = b i d ∗ BLOCKSIZE + t i d ;
3
4 i f ( myi < numRows ){
5 unsigned i n t l b = r o w I n d i c e s [ myi ] ;
6 unsigned i n t ub = r o w I n d i c e s [ myi + 1 ] ;
7 f o r ( j = l b ; j < ub ; j ++) {
8 unsigned i n t i n d = i n d i c e s [ j ] ;
9 y v a l = y [ i n d ] ;

10 t += v a l [ j ] ∗ y v a l ;
11 }
12 x [ myi ] = t ;
13 }

Listing 2. SpMV kernel

3.4% for the L1 read hit ratios, 1.9% for the L2 read hit ratios and
0.8% for the L2 write hit ratios.

6. High Resolution Performance Statistics

In this section, we discuss how high resolution performance statis-
tics are generated by coupling source code level information and
the profile data produced by the memory hierarchy model. This
comprehensive view of the level of memory efficiency exploited by
individual data structures or memory operations within a particular
code segment is a crucial step for targeted memory optimizations.
We later illustrate though a simple example how this low level in-
formation can highlight inefficient memory accesses and play up
the data structures that are ideal candidates for optimization.

6.1 The Average Latency per each Static Load

In Section 3.2.3, we presented a microbenchmarking approach to
measure the main memory access time, Tm, specific to each ap-
plication. We also measured the L1 and the L2 cache latencies,
denoted by t1 and t2, with a simple microbenchmark. We later
predicted hit ratios by the proposed memory hierarchy model for
the L1 and L2 caches, denoted by H1 and H2. In this section, we
combine all these results using the following simple access latency
equation:

X = H1 · t1 + (1−H1) · [H2 · t2 + (1−H2) · Tm]

In the above equation values of Tm, H1 and H2 can change from
one simulation run to the other. Furthermore, H1 and H2 are the L1
and the L2 hit ratios for a specific static load; since we propagate
down the source code location of each memory operation, we can
also estimate the hit ratios for individual loads in the program. Af-
ter substituting the corresponding values from multiple simulation
runs, X becomes a random variable. Based on the expected value
of X we estimate the expected memory latency of each static load
in the kernel source code. For example, Figure 8 shows the the ex-
pected memory latency for each of the 5 static loads in the SpMV
kernels. This information can be used to target memory optimiza-
tions such as tiling and data layout transformation for specific data
structures in the program.

6.2 Case Study: Sparse Matrix Vector Multiplication Kernel

In this section we show through an example how the discussed high
resolution performance information can be used to apply targeted
optimizations. Initial examination of the sparse matrix vector mul-
tiplication kernel source code shown in Listing 2 implies that loads
from lines 8 and 10 each exhibits a high level of intra-thread tempo-
ral locality as they are executed within a tight loop using consecu-
tive indices. Therefore, the latencies for these loads are expected to

Figure 8. Breakdown of memory latency for static loads in scalar
and vectorized SpMV kernels for 4 input matrices: u = an average
of 32 non-zero elements per row randomly distributed, b = an
average of 32 non-zeros per row with a block diagonal distribution,
U = an average of 128 non-zeros randomly distributed, B = an
average of 128 non-zeros with a block diagonal distribution.

be low. On the other hand, memory references from the load in line
9 are not analyzable statically and are expected to follow an irreg-
ular pattern resulting in poor data locality. Nevertheless, results re-
ported by our memory hierarchy model are different from the spec-
ulations derived based on manual examination of the source code.
Based on this new information when considering the interactions
among the concurrently running threads, loading the vector value
y in line 9 is more efficient compared to the other two static loads
that were expected to exploit a high degree of locality. The very
low performance of these loads makes them the most promising
candidates for memory optimization in spite of the of the potential
overhead that will be introduced.

We applied intra-thread vectorization, a well-known technique to
capture temporal locality, to loads from lines 8 and 10. Intra-thread
vectorization exploits the data reuse that cannot be efficiently cap-
tured by the data caches (the loaded cache lines are evicted before
being reused) by packing multiple low performing loads into a sin-
gle vector load. Listing 3 shows the optimized version of the SpMV
kernel, which uses just enough extra registers to maintain the initial
occupancy level of the streaming multiprocessors.

We studied the performance improvements of the optimized SpMV
kernel with 4 input matrices (u, b, U, and B) differing in the
average number of non-zeros per row and the sparsity pattern. Input
matrices for u and b configurations have on average 32 none-zero
elements while U and B matrices have 128 non-zeros. Non-zeros
are randomly distributed in u and U matrices while b and B are
block diagonal sparse matrices. Figure 8 shows the predicted load
latency for each static load in the scalar and the vectorized SpMV
kernels in a stacked format – generated by our stochastic memory
hierarchy model – for the 4 resultant configurations. The latencies
were normalized with respect to the latency of the least performing
load in the scalar kernel for each of the 4 configurations. Based
on the profile data shown in Figure 8, reducing the number of
inefficient loads in the vectorized configuration will also mitigate
the cache trashing effect for vector y, specially in case of block
diagonal matrices where y benefits from a higher degree of locality.
The execution times measured for different SpMV configurations
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1 f l o a t t = 0 ;
2 unsigned i n t myi = b i d ∗ BLOCKSIZE + t i d ;
3 i f ( myi < numRows ){
4 unsigned i n t l b = r o w I n d i c e s [ myi ] ;
5 unsigned i n t ub = r o w I n d i c e s [ myi + 1 ] ;
6
7 / / p r o l o g u e code −− a l i g n m e n t a d j u s t m e n t
8 .
9 .

10 f o r ( j = newlb ; j < newub ; j +=4) {
11 u i n t 4 i n d = i n d i c e s [ j / 4 ] ;
12 f l o a t 4 v a l u e = v a l [ j / 4 ] ;
13 f l o a t y v a l = y [ i n d . x ] ;
14 t += v a l u e . x ∗ y v a l ;
15 y v a l = y [ i n d . y ] ;
16 t += v a l u e . y ∗ y v a l ;
17 y v a l = y [ i n d . z ] ;
18 t += v a l u e . z ∗ y v a l ;
19 y v a l = y [ i n d .w ] ;
20 t += v a l u e .w ∗ y v a l ;
21 }
22 / / e p i l o g u e code −− a l i g n m e n t a d j u s t m e n t
23 .
24 .
25 x [ myi ] = t ;
26 }

Listing 3. Vectorized SpMV kernel

discussed above comply with the profile data shown in Figure 8;
vectorized kernels show major performance improvements with
speedups of 2.4 (u), 3.63 (b), 2.5 (U), and 14.8 (B).

7. Conclusions and Future Work

This paper presents a novel solution to the problem of providing
meaningful performance feedback to developers for highly mul-
tithreaded graphics processors. Our stochastic modeling technique
allows us to use a simple tracing approach without concerns for dis-
torted execution timing. It further provides error bounds and con-
fidence level information in the presence of scheduling uncertain-
ties and allows us to minimize the cost of tracing and simulation.
The close match between the generated predictions and the mea-
sured hardware performance counter values provides good valida-
tion for our model. The high resolution performance statistics gen-
erated through coupling source code level instrumentation and the
memory hierarchy simulation provides a comprehensible view of
the level of memory efficiency being exploited by individual data
structures in the program. This information, though still far from
specific optimization hints to a developer or a compiler, is a crucial
and fundamental step forward towards that goal. While our model
is demonstrated and validated based on CUDA applications and
the Tesla C2050 hardware, it is applicable to other highly multi-
threaded processors. We plan to extend the system to OpenCL [2]
applications and the AMD GPUs in the near future.
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