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Abstract 

The design of experimental systems ususally employ 
some form of simulation. The inputs to  the simu- 
lation are typically standard benchmarks. This pa- 
per presents a method for finding a cost-effective 
design for each benchmark. This method is called 
benclinlark characterzzataori. Benchmark characteri- 
zation is possible in-part due to  the advent of high- 
performance architecture-independent compiler tech- 
nology. To demonstrate the method, seven bench- 
marks are characterized. Five of the benchmarks are 
from the SPEC benchmark set (gcc ,  espresso,  spice,  li  
and nzatrzx300) and two are popular synthetic bench- 
marks (dhrys tone  and whets tone) .  Benchmark char- 
acteristics are reported for the processor, memory 
system, and operating system. 

i Introduction 

The design of an experimental system is a complex 
matter with a bewildering number of design choices. 
Consider the design of the instruction set in which 
adding a new instruction might improve overall per- 
formance by providing a better interface to  the hard- 
ware, or degrade performance by reducing the clock 
speed. The choice of whether or not to  include a 
new instruction depends on the system’s speed with 
or without the instruction. The  usefulness of the 
new instruction depends on the programs the system 
will run. In practice, designers often use benchmark 
programs and assume they represent the users’ pro- 
grams. Hence, the system’s performance while run- 
iiing the benchmarks determines the design of the sys- 
tem. However, there is a problem of putting the cart 
before the horse: how can a system be designed to  run 
a set of benchmarks efficiently if the benchmarks’ per- 
formance on the machine isn’t known until the design 
is completed? 

The performance of a system can be simulated be- 

fore it is ever built and the simulation results can 
be used t o  improve the design. Simulation involves 
selecting an initial design, simulating the design for 
each benchmark- often a lengthly process- and then 
adjusting the design and reiterating. If the initial 
design is far from what is required, the number of it- 
erations will be large. Now imagine a reference work 
that  lists several cost-effective system designs for each 
benchmark. Such a book could be used to  design the 
initial system. Simulations of this prototype design 
could then be used for “fine tuning,” cutting the num- 
ber of simulation iterations significantly. 

One method of finding cost-effective system designs 
for benchmarks would be t o  measure the benchmarks’ 
performance on many systems. Of course, such a 
brute-force method would be highly time consuming 
and inconclusive. A more attractive method would be 
to  define an abstract system that  is general enough 
to  include many system designs as special cases and 
then measure the benchmarks’ performance in terms 
of this abstract system. We call this (‘abstract per- 
formance” the benchmark’s characteristics and the 
process itself, benchmark characterization [l]. 

Until recently, benchmark characterization was im- 
possible because defining a useful abstract system 
architecture was difficult. For example, the com- 
piler technology often was an expensive, integral por- 
tion of a system (especially for RISC-based systems), 
where the better the compiler, the better the sys- 
tem’s performance. Hence, running benchmarks of- 
ten required combining the compiler’s performance 
with the hardware’s performance. Recently, however, 
high-quality architecture-independent compilers have 
emerged (GNU C [a] and IMPACT C [3]). These 
compilers contain an in termedia te  code that  is es- 
sentially the machine language to  an abstract archi- 
tecture. This abstract machine language is widely 
machine-independent. For example, RTL, the GNU 
C intermediate language, is used for a wide spectrum 
of processors, including the Digital VAX, the MIPS 
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R2000, the Motorola 68000, among others [a]. 
With the pieces falling into place, the time has 

come to consider methods for benchmark character- 
ization. We present such a method in this paper 
and then show the benchmark characteristics for a 
set of commonly-used benchmarks. The benchmark 
set we use includes some benchmarks from the SPEC 
benchmark set’ (gcc ,  espresso, spice, li, and ma- 
triz300) and the two most popular synthetic bench- 
marks (dhrtystone (version 1.1) and whetstone)  [4][5]. 

2 The Method of Benchmark 
Characterization 

Characterization of a benchmark requires measure- 
ment of its run-time behavior. The behavior we mea- 
sure is in terms of an abstract system whose instruc- 
tion set is the compiler’s intermediate code. These 
“instructions” are interpreted by simulation and the 
results are used to  produce the benchmark’s charac- 
teristics. This process is illustrated in Figure 1. In the 
design of this process, we have built upon some clever 
ideas from the Computer Architecture Workbench by 
Mitchell and Flynn [6], which was a simulation engine 
for architecture comparisons. 

The compiler that  we use for our characterization 
process is GNU C version 1.37.1, which is public- 
domain software written by the members of the Free 
Software Foundation [a]. GNU C is an optimizing C 
language compiler that  implements many traditional 
compiler optimizations (e.g., common subexpression 
elimination, jump and loop optimizations, peephole 
optimization, etc.). To instrument the intermediate 
code of GNU C, we used Larus’ AE trace collection 
tool [ i ] ,  modified to  produce a trace of intermedi- 
ate code. Step 1 in Figure 1 depicts the modified 
compiler. After the intermediate code representation 
is transformed by optimizations, it is normally con- 
verted to assembly code by the code generation phase 
of the compiler. We inserted a new phase (“instru- 
ment”) that  adds intermediate code to  write dynamic 
behavior to a 1 / 0  channel when the compiled bench- 
mark is run. (The 1/0 channel in our implementation 
is a Unix socket.) The dynamic behavior information 
that flows down the 1 / 0  channel while the benchmark 
runs is composed of intermediate code instructions, 
data  memory references, and system call events. In- 
struction set design ha.s a high impact on instruction 
memory referencing behavior, we therefore chose to  
exclude it from our measurements and consider only 
da.ta memory behavior. Similarly, the number of reg- 
isters available has a high impact on data memory be- 
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havior. The  abstract system has an infinite number of 
registers. Methods exist t o  reconstruct the additional 
overhead of a finite register file [8]. The  remaining 
memory references are caused by the benchmark and 
not an artifact of the system’s design [9]. 

Our compilation method needed t o  be augmented 
to  solve some minor problems. For example, some 
of the benchmarks were written in FORTRAN (e.g., 
spice and matr ix300) .  We did not want to  use a sep- 
arate compiler back end for these benchmarks since 
it might produce inexplainable effects depending on 
how aggressive an optimizer the FORTRAN compiler 
was. Although C and FORTRAN are close enough 
to use the same compiler back end, no FORTRAN 
front end (essentially, a parser) existed for GNU C.  
To overcome this problem, we used a FORTRAN to 
C translator from AT&T Bell Laboratories, F2C [lo]. 
F2C translates FORTRAN statements into C essen- 
tially a t  a statement-by-statement level. Therefore, it 
is equivalent t o  a true FORTRAN front end to  GNU 
C. Another problem was that  a significant fraction of 
our C language benchmarks’ execution was spent in 
standard library functions. We solved this problem 
by compiling special instrumented versions of the li- 
brary functions. Since F2C includes implementations 
of the FORTRAN libraries, we instrumented and in- 
cluded these in the tracing process also. 

Abstract system behavior was measured by several 
tools (Step 2 of Figure 1). To characterize the mem- 
ory referencing behavior, we used our recurrence- 
conflict method (RCM) [ll]. RCM uses a modified 
single-pass LRU stack-based algorithm to record the 
number of recurrences and organizational misses for 
all cache dimensions in a design space. Our design 
space for data  references included all caches up to 
2GB, with block size ranging from 16B to 4KB, and 
associativity levels of one-way (direct-mapped) , two- 
way, four-way, and fully associative (for a discus- 
sion of cache organization see Smith [la]). System 
calls and intermediate instruction frequencies were 
recorded dynamically. 

3 A Benchmark Characterization 

We have outlined a method for benchmark character- 
ization. Below we present benchmark characteristics 
of the six benchmarks: gcc, espresso, spice,  l i ,  ma- 
trix300, dhrystone and whetstone.  

3.1 Processor benchmark characteristics 

Processor design involves providing execution re- 
sources (registers, function units, and supporting 
logic) to achieve high performance. The relative im- 
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Figure 1: The  benchmark characterization process. 

Table 2: Intermediate code instruction frequency. 
Benchmark I ]  itAlu I itMul I itDiv I bShft I load 1 store I fpAdd I fpMul I fpDiv I fpCvt I brnch 
dhrystone 1 1  42% I * I * I 2% 120% I 15% I 0% I 0% I 0% I 0% 1 21% 

(* value is < 1%) 

portance of various operations can be extremely use- 
ful in  designing the processor. Consider the exam- 
ple of whether to add an instruction that  was given 
in the introduction: the relative use of different in- 
struction classes in benchmarks could answer this 
question. Such relative frequencies could also an- 
swer how important floating-point hardware is, or 
whether a barrel shifter is worthwhile to  implement. 
To gather the intermediate code instruction frequen- 
cies, we chose eleven categories of important instruc- 
tion types (see Table 1) and separated GCC’s in- 
termediate instructions into these categories. The  
dynamic frequencies of each instruction type is pre- 
sented in Table 2 .  The value of high-performance 
integer ha.rdware (itAlu) cannot be argued, as it is 
its use represents a t  least a quarter of the instruc- 
tions for all benchmarks. However, integer division 

(itDiv), floating-point division (fpDiv), and floating- 
point conversions (fpCvt) are hardly used and could 
safely be implemented by software. Shifting (bShft) 
is used a considerable amount by espresso, which 
performs bit manipulations. Floating-point intensive 
programs such as whetstone,  space, and niatrix300 
use shifting for array index calculation. Hence, a bar- 
rel shifter will find use in both integer-intensive and 
floating-point-intensive environments. Integer multi- 
plication (itMul) is also used by mat~-Lx300 for array 
index calculation and suggests hardware support for 
integer multiplication, although perhaps not a full- 
scale integer multiplier. The frequency of control 
transfers (brnch) agrees with the rather widely-held 
belief that  floating-point programs have longer basic 
blocks. Therefore, if the system will be using ap- 
plications close to  whetstolie, spice, and nzatrix300, 
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Table 1: The intermediate code instruction types. 

Integer divide, mod 
bShft 11 Barrel shiftinp: tl 
load I I  Load II 

branch prediction hardware is optional. 

3.2 Memory system benchmark 
charact eris t ics 

Modern memory systems consist of one or more levels 
of caching above a virtual memory system. The en- 
tire set of miss ratios for the benchmarks constitutes a 
vast amount of data.  Instead of presenting that data,  
we present several cost-effective memory system de- 
signs for the benchmarks. We describe these designs 
first by discussing the top-level cache and second- 
level cache requirements, then several good TLB de- 
signs, and we close by discussing main-memory de- 
signs. Throughout we exclude the results for 4-way 
set associative caches because we discovered that the 
required cache sizes where the same. 

3.2.1 Top-level and second-level cache 
requirements 

Figure 2 shows the minimum dimensions required for 
a top-level cache which is backed up by a second- 
level cache. The  design criterion we used was the 
smallest (i.e., least expensive) cache that provides a 
10% miss ratio. The required cache size ranges from 
128B ( m a t r i z 3 0 0 ,  fully-associative) to  32KB ( sp ice ,  
all associativities) An 8KB direct-mapped cache or 
a 4KB 2-way set associative cache achieves the de- 
sign goal for all benchmarks except for spice. These 
two dimensions result in 13.0% and 12.7% miss ratio 
respectively for spice. 

Most benchmarks show a decrease in cache size re- 
quirement as the set associativity increases. Misses 
due to  cache dimensioiis account for a significant por- 
tion of the misses in this performance range. For in- 
teger benchmarks, these misses are mostly due to  ac- 
cesses to  the stack and heap locations whose addresses 

tend to  be far way from each other. For numerical 
benchmarks] they are due to the access to large ar- 
rays where several frequently accessed elements may 
contend for the same cache set. The only exceptions 
are spice and whetstone.  The misses for these two 
benchmarks are mostly due to  insufficient cache size 
to  hold the working set. Large block size (G4B) helps 
t o  reload the spilled working set with fewer misses 
for spice. The reduced number of reloading misses 
causes misses due to  cache dimensions to dominate 
the miss ratio, thus making the benefit of increased 
set associativity more obvious. 

We now turn our attention to the design of second- 
level caches. The  design criterion we used depended 
in-part on a benchmark’s intrinsic miss  ratio for a 
given block size. The intrinsic miss ratio corresponds 
to  the miss ratio for a cache with an infinite number 
of blocks. Our criterion was to  design the second-level 
caches with either a very small overall miss ratio of 
1% or the intrinsic miss ratio if 1% was not achiev- 
able. Figure 3 shows the cache dimensions required 
for such a second level cache. The  cache sizes required 
for all benchmarks are lMB,  256I<B, and 128KB for 
direct mapped, 2-way, and fully associative caches, 
respectively. It is once again clear that  much smaller 
caches can be designed to  cover all benchmarks ex- 
cept spice. Some compromised sizes would be 256I<B, 
128KB, and 64KB for the set associativities. They of- 
fer 1.59%, 1.84%, and 2.47% miss ratios (respectively) 
for spice. 

3.2.2 Translation lookaside buffer 
requirements 

Translation lookaside buffer ( T L B )  is a memory de- 
signed to cache the virtual memory translation results 
for the frequently accessed pages in the virtual space. 
Without a TLB, it takes a significant number of cycles 
to  translate a virtual address into a physical address 
(typically 10-40 cycles). On the other hand, the cost 
of translation can be eliminated if the translation re- 
sults are found in the TLB. A small increase in the 
miss ratio of the TLB usually results in a significant 
loss in performance. Therefore, i t  is important to de- 
sign the TLB to provide a very small miss ratio (e.g., 
0.1% or intrinsic). 

Table 3 presents the TLB dimensions required to  
guarantee a 0.1% miss ratio for each benchmark. 
(The sizes are presented in units of page-table entries 
instead of bytes, since the size of a page-table entry is 
dependent on the size of the virtual memory system.) 
In general the TLB size requirement decreases with 
the increase in page size. This is due to  the €act that  
larger page sizes result in a fewer number of active 
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Block size: 16 bytes 
...................................... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 2 m  1 2 0 0  1 2 w  
dhry whet gcc 

. . . . . . .  

Block size: 32 bytes 

. . . . . . . . . . .  

. . . . . . . . . . .  

. . . . . . . . . . . .  

n m 

0 

32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
32 

18 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

dhry whet gcc espr spice li m300 

Block size: 64 bytes 
32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
22 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  

Figure 2: Minimum cache sizes that guarantee a maximum 10% miss ratio. 
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(log, bytes) 

3 

dhry whet espr n 

Figure 3: Minimum cache sizes that guarantee a maximum 1% miss ratio. 
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Page size: 2KB 

Set size Set size 

Page size: 4KB 
Set size Set size 

pages. Therefore, the TLB has to  accommodate a 
fewer number of address translation results. 

An interesting phenomenon is that  spice is not the 
most demanding benchmark for TLB design. Al- 
though spice consistently requires more than four 
times the cache size than gcc,  their TLB requirements 
are very comparable, This is due to  the fact that  gcc 
accesses a comparable number of active pages to  spice 
but accesses a much smaller number of blocks within 
these active pages. This is a good example of a de- 
manding benchmark for TLB design not being the 
demanding benchmark for cache design. 

Benchmark 

3.2.3 Main memory requirements 

The design of main memory differs from that of cache 
memory in several ways. First of all, the main mem- 
ory design is fully associative rather than set asso- 
ciative as a result of the nature of modern virtual 
memory systems. Secondly, the page size is usually 
much larger than the cache block size due to  address 
translation and disk access considerations. Thirdly, 
the page fault penalty is much higher than the cache 
miss penalty. A common goal in main memory design 
is to achieve the intrinsic page fault rate of programs. 
‘The intrinsic page fault rate is the fault rate of an in- 

-~ 

1 I 2 1  4 1  03 1 1  2 1  4 1  03 
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finite main memory. All intrinsic page faults are due 
to  the loading of accessed pages into the infinite main 
memory. The  intrinsic page fault rate of program is 
a function of the page size. 

The main memory sizes required to achieve intrin- 
sic page fault rate for each benchmark are shown for 
four page sizes (512B, lKB,  2KB, and 4KB from left 
to  right) in Figure 4. The sizes required to cover all 
benchmarks are 4MB, 4MB, 4MB, and 8MB for page 
sizes 512B, lKB,  2KB, and 4KB respectively. The 
main memory requirement increases with the page 
size due to internal fragmentation. However, the in- 
crease may be justified by smaller TLB sizes and sim- 
pler physical cache design. 

3.3 Operating system benchmark 
characteristics 

The operating system’s interface to  any program is 
through the system call mechanism, which is a pro- 
cedure call into the kernel. How often particular calls 
are used can impact how the system software is de- 
signed for high-performance and also provide insight 
into 1/0 system design. The most-frequently used 
system calls are the best candidates for streamlining. 
Table 4 lists the system calls used by each benchinark 
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getpagesize ( I )  
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Figure 4: Main memory sizes required to  achieve intrinsic miss ratio for page sizes 512B (2'), 1KB (a")), 2KB 
( 2 " ) ,  and 4KB (a1'). 

and the number of dynamic occurrences of each call 
( in  parentheses). Note that the benchmark whetstone 
makes no system calls whatsoever. This is under- 
standable due to  its synthetic nature. The getrusage 
system call that  is prominent for dhrystone and gcc 
is used by the tzmes library call to report run times. 
The sbrkcall is used i n  the heap space allocator. Heap 
space is used considerably in l a ,  espresso, and dhry- 
s tone .  1 /0  intensive benchmarks reveal themselves 
here by the use of the read, wri te ,  open, close, f s ta t ,  
[seek ,  and zoctl calls. These benchmarks are space, 
and gcc. 

4 Concluding Remarks 

Benchmark characterization reduces the cost of ex- 
1)loring the design space, focuses the experimental 
system towards the intended workload, and lessens 
the amount of siiiiulation and redesign required. This 

paper presents designs for a system based on the 
benchmark characteristics of a set of popular bench- 
marks. The  construction of an abstract system model 
and the characterization method were made possible 
in-part by the advance of architecture-independent 
compiler technology. 

It is interesting to  wonder how to apply benchmark 
characterization to  parallel machine design. Bench- 
marks themselves are specific to  a particular type of 
parallel architecture. For example, programs writ- 
ten for message-passing multicomputers would per- 
form poorly on tightly-coupled shared-memory mul- 
tiprocessors. Therefore, benchmark characterizatioii 
must be done for each type of architecture. Con- 
sider a tightly-coupled shared-memory niultiproces- 
sor. Extensions to  our abstract system would include 
a distributed shared memory hierarchy and synchro- 
nization events. We are currently implementing such 
extensions using the Perfect Club [13] as a sample 
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beiichinark set. 
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