
Benchmark Characterization

Thomas M . Conte Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois
conte0uiuc.edu

Abstract

The design of experimental systems ususally employ
some form of simulation. The inputs to the simu-
lation are typically standard benchmarks. This pa-
per presents a method for finding a cost-effective
design for each benchmark. This method is called
benclinlark characterzzataori. Benchmark characteri-
zation is possible in-part due to the advent of high-
performance architecture-independent compiler tech-
nology. To demonstrate the method, seven bench-
marks are characterized. Five of the benchmarks are
from the SPEC benchmark set (gcc , espresso, spice, li
and nzatrzx300) and two are popular synthetic bench-
marks (dhrys tone and whets tone) . Benchmark char-
acteristics are reported for the processor, memory
system, and operating system.

i Introduction

The design of an experimental system is a complex
matter with a bewildering number of design choices.
Consider the design of the instruction set in which
adding a new instruction might improve overall per-
formance by providing a better interface to the hard-
ware, or degrade performance by reducing the clock
speed. The choice of whether or not to include a
new instruction depends on the system’s speed with
or without the instruction. The usefulness of the
new instruction depends on the programs the system
will run. In practice, designers often use benchmark
programs and assume they represent the users’ pro-
grams. Hence, the system’s performance while run-
iiing the benchmarks determines the design of the sys-
tem. However, there is a problem of putting the cart
before the horse: how can a system be designed to run
a set of benchmarks efficiently if the benchmarks’ per-
formance on the machine isn’t known until the design
is completed?

The performance of a system can be simulated be-

fore it is ever built and the simulation results can
be used t o improve the design. Simulation involves
selecting an initial design, simulating the design for
each benchmark- often a lengthly process- and then
adjusting the design and reiterating. If the initial
design is far from what is required, the number of it-
erations will be large. Now imagine a reference work
that lists several cost-effective system designs for each
benchmark. Such a book could be used to design the
initial system. Simulations of this prototype design
could then be used for “fine tuning,” cutting the num-
ber of simulation iterations significantly.

One method of finding cost-effective system designs
for benchmarks would be t o measure the benchmarks’
performance on many systems. Of course, such a
brute-force method would be highly time consuming
and inconclusive. A more attractive method would be
to define an abstract system that is general enough
to include many system designs as special cases and
then measure the benchmarks’ performance in terms
of this abstract system. We call this (‘abstract per-
formance” the benchmark’s characteristics and the
process itself, benchmark characterization [l].

Until recently, benchmark characterization was im-
possible because defining a useful abstract system
architecture was difficult. For example, the com-
piler technology often was an expensive, integral por-
tion of a system (especially for RISC-based systems),
where the better the compiler, the better the sys-
tem’s performance. Hence, running benchmarks of-
ten required combining the compiler’s performance
with the hardware’s performance. Recently, however,
high-quality architecture-independent compilers have
emerged (GNU C [a] and IMPACT C [3]). These
compilers contain an in termedia te code that is es-
sentially the machine language to an abstract archi-
tecture. This abstract machine language is widely
machine-independent. For example, RTL, the GNU
C intermediate language, is used for a wide spectrum
of processors, including the Digital VAX, the MIPS

0073-1 129/91/0000/0364$01 .OO Q 1991 IEEE
364

http://conte0uiuc.edu

R2000, the Motorola 68000, among others [a].
With the pieces falling into place, the time has

come to consider methods for benchmark character-
ization. We present such a method in this paper
and then show the benchmark characteristics for a
set of commonly-used benchmarks. The benchmark
set we use includes some benchmarks from the SPEC
benchmark set’ (gcc , espresso, spice, li, and ma-
triz300) and the two most popular synthetic bench-
marks (dhrtystone (version 1.1) and whetstone) [4][5].

2 The Method of Benchmark
Characterization

Characterization of a benchmark requires measure-
ment of its run-time behavior. The behavior we mea-
sure is in terms of an abstract system whose instruc-
tion set is the compiler’s intermediate code. These
“instructions” are interpreted by simulation and the
results are used to produce the benchmark’s charac-
teristics. This process is illustrated in Figure 1. In the
design of this process, we have built upon some clever
ideas from the Computer Architecture Workbench by
Mitchell and Flynn [6], which was a simulation engine
for architecture comparisons.

The compiler that we use for our characterization
process is GNU C version 1.37.1, which is public-
domain software written by the members of the Free
Software Foundation [a]. GNU C is an optimizing C
language compiler that implements many traditional
compiler optimizations (e.g., common subexpression
elimination, jump and loop optimizations, peephole
optimization, etc.). To instrument the intermediate
code of GNU C, we used Larus’ AE trace collection
tool [i] , modified to produce a trace of intermedi-
ate code. Step 1 in Figure 1 depicts the modified
compiler. After the intermediate code representation
is transformed by optimizations, it is normally con-
verted to assembly code by the code generation phase
of the compiler. We inserted a new phase (“instru-
ment”) that adds intermediate code to write dynamic
behavior to a 1 / 0 channel when the compiled bench-
mark is run. (The 1/0 channel in our implementation
is a Unix socket.) The dynamic behavior information
that flows down the 1 / 0 channel while the benchmark
runs is composed of intermediate code instructions,
data memory references, and system call events. In-
struction set design ha.s a high impact on instruction
memory referencing behavior, we therefore chose to
exclude it from our measurements and consider only
da.ta memory behavior. Similarly, the number of reg-
isters available has a high impact on data memory be-

‘The University of Illinois is a member of SPEC.

havior. The abstract system has an infinite number of
registers. Methods exist t o reconstruct the additional
overhead of a finite register file [8]. The remaining
memory references are caused by the benchmark and
not an artifact of the system’s design [9].

Our compilation method needed t o be augmented
to solve some minor problems. For example, some
of the benchmarks were written in FORTRAN (e.g.,
spice and matr ix300) . We did not want to use a sep-
arate compiler back end for these benchmarks since
it might produce inexplainable effects depending on
how aggressive an optimizer the FORTRAN compiler
was. Although C and FORTRAN are close enough
to use the same compiler back end, no FORTRAN
front end (essentially, a parser) existed for GNU C.
To overcome this problem, we used a FORTRAN to
C translator from AT&T Bell Laboratories, F2C [lo].
F2C translates FORTRAN statements into C essen-
tially a t a statement-by-statement level. Therefore, it
is equivalent t o a true FORTRAN front end to GNU
C. Another problem was that a significant fraction of
our C language benchmarks’ execution was spent in
standard library functions. We solved this problem
by compiling special instrumented versions of the li-
brary functions. Since F2C includes implementations
of the FORTRAN libraries, we instrumented and in-
cluded these in the tracing process also.

Abstract system behavior was measured by several
tools (Step 2 of Figure 1). To characterize the mem-
ory referencing behavior, we used our recurrence-
conflict method (RCM) [ll]. RCM uses a modified
single-pass LRU stack-based algorithm to record the
number of recurrences and organizational misses for
all cache dimensions in a design space. Our design
space for data references included all caches up to
2GB, with block size ranging from 16B to 4KB, and
associativity levels of one-way (direct-mapped) , two-
way, four-way, and fully associative (for a discus-
sion of cache organization see Smith [la]). System
calls and intermediate instruction frequencies were
recorded dynamically.

3 A Benchmark Characterization

We have outlined a method for benchmark character-
ization. Below we present benchmark characteristics
of the six benchmarks: gcc, espresso, spice, l i , ma-
trix300, dhrystone and whetstone.

3.1 Processor benchmark characteristics

Processor design involves providing execution re-
sources (registers, function units, and supporting
logic) to achieve high performance. The relative im-

365

Step 1: Compilation

compiler

instrumented,
runnable
benchmark source

instrument

Step 2: Measure abstract system behavior

/
\

intermediate instructions,
data memory references,

run system calls
instrumented
benchmark

7 cache measurement

benchmark
characteristics

system call frequencies

intermediate instruction
frequencies

branch behavior

Figure 1: The benchmark characterization process.

Table 2: Intermediate code instruction frequency.
Benchmark I] itAlu I itMul I itDiv I bShft I load 1 store I fpAdd I fpMul I fpDiv I fpCvt I brnch
dhrystone 1 1 42% I * I * I 2% 120% I 15% I 0% I 0% I 0% I 0% 1 21%

(* value is < 1%)

portance of various operations can be extremely use-
ful in designing the processor. Consider the exam-
ple of whether to add an instruction that was given
in the introduction: the relative use of different in-
struction classes in benchmarks could answer this
question. Such relative frequencies could also an-
swer how important floating-point hardware is, or
whether a barrel shifter is worthwhile to implement.
To gather the intermediate code instruction frequen-
cies, we chose eleven categories of important instruc-
tion types (see Table 1) and separated GCC’s in-
termediate instructions into these categories. The
dynamic frequencies of each instruction type is pre-
sented in Table 2 . The value of high-performance
integer ha.rdware (itAlu) cannot be argued, as it is
its use represents a t least a quarter of the instruc-
tions for all benchmarks. However, integer division

(itDiv), floating-point division (fpDiv), and floating-
point conversions (fpCvt) are hardly used and could
safely be implemented by software. Shifting (bShft)
is used a considerable amount by espresso, which
performs bit manipulations. Floating-point intensive
programs such as whetstone, space, and niatrix300
use shifting for array index calculation. Hence, a bar-
rel shifter will find use in both integer-intensive and
floating-point-intensive environments. Integer multi-
plication (itMul) is also used by mat~-Lx300 for array
index calculation and suggests hardware support for
integer multiplication, although perhaps not a full-
scale integer multiplier. The frequency of control
transfers (brnch) agrees with the rather widely-held
belief that floating-point programs have longer basic
blocks. Therefore, if the system will be using ap-
plications close to whetstolie, spice, and nzatrix300,

366

Table 1: The intermediate code instruction types.

Integer divide, mod
bShft 11 Barrel shiftinp: tl
load I I Load II

branch prediction hardware is optional.

3.2 Memory system benchmark
charact eris t ics

Modern memory systems consist of one or more levels
of caching above a virtual memory system. The en-
tire set of miss ratios for the benchmarks constitutes a
vast amount of data. Instead of presenting that data,
we present several cost-effective memory system de-
signs for the benchmarks. We describe these designs
first by discussing the top-level cache and second-
level cache requirements, then several good TLB de-
signs, and we close by discussing main-memory de-
signs. Throughout we exclude the results for 4-way
set associative caches because we discovered that the
required cache sizes where the same.

3.2.1 Top-level and second-level cache
requirements

Figure 2 shows the minimum dimensions required for
a top-level cache which is backed up by a second-
level cache. The design criterion we used was the
smallest (i.e., least expensive) cache that provides a
10% miss ratio. The required cache size ranges from
128B (m a t r i z 3 0 0 , fully-associative) to 32KB (sp ice ,
all associativities) An 8KB direct-mapped cache or
a 4KB 2-way set associative cache achieves the de-
sign goal for all benchmarks except for spice. These
two dimensions result in 13.0% and 12.7% miss ratio
respectively for spice.

Most benchmarks show a decrease in cache size re-
quirement as the set associativity increases. Misses
due to cache dimensioiis account for a significant por-
tion of the misses in this performance range. For in-
teger benchmarks, these misses are mostly due to ac-
cesses to the stack and heap locations whose addresses

tend to be far way from each other. For numerical
benchmarks] they are due to the access to large ar-
rays where several frequently accessed elements may
contend for the same cache set. The only exceptions
are spice and whetstone. The misses for these two
benchmarks are mostly due to insufficient cache size
to hold the working set. Large block size (G4B) helps
t o reload the spilled working set with fewer misses
for spice. The reduced number of reloading misses
causes misses due to cache dimensions to dominate
the miss ratio, thus making the benefit of increased
set associativity more obvious.

We now turn our attention to the design of second-
level caches. The design criterion we used depended
in-part on a benchmark’s intrinsic miss ratio for a
given block size. The intrinsic miss ratio corresponds
to the miss ratio for a cache with an infinite number
of blocks. Our criterion was to design the second-level
caches with either a very small overall miss ratio of
1% or the intrinsic miss ratio if 1% was not achiev-
able. Figure 3 shows the cache dimensions required
for such a second level cache. The cache sizes required
for all benchmarks are lMB, 256I<B, and 128KB for
direct mapped, 2-way, and fully associative caches,
respectively. It is once again clear that much smaller
caches can be designed to cover all benchmarks ex-
cept spice. Some compromised sizes would be 256I<B,
128KB, and 64KB for the set associativities. They of-
fer 1.59%, 1.84%, and 2.47% miss ratios (respectively)
for spice.

3.2.2 Translation lookaside buffer
requirements

Translation lookaside buffer (T L B) is a memory de-
signed to cache the virtual memory translation results
for the frequently accessed pages in the virtual space.
Without a TLB, it takes a significant number of cycles
to translate a virtual address into a physical address
(typically 10-40 cycles). On the other hand, the cost
of translation can be eliminated if the translation re-
sults are found in the TLB. A small increase in the
miss ratio of the TLB usually results in a significant
loss in performance. Therefore, i t is important to de-
sign the TLB to provide a very small miss ratio (e.g.,
0.1% or intrinsic).

Table 3 presents the TLB dimensions required to
guarantee a 0.1% miss ratio for each benchmark.
(The sizes are presented in units of page-table entries
instead of bytes, since the size of a page-table entry is
dependent on the size of the virtual memory system.)
In general the TLB size requirement decreases with
the increase in page size. This is due to the €act that
larger page sizes result in a fewer number of active

367

Block size: 16 bytes
......................................

.

.

.

1 2 m 1 2 0 0 1 2 w
dhry whet gcc

.

Block size: 32 bytes

.

.

.

n m

0

32 .

.

.
32

18
.

.

dhry whet gcc espr spice li m300

Block size: 64 bytes
32 .

.

24 .
22

.

.

Figure 2: Minimum cache sizes that guarantee a maximum 10% miss ratio.

368

Block size: 16 bytes
32 .

.

24 .
22

.

.

.

.

.

.

.

.

.

.

. 1

x) 2 m 1
dhry whet gcc espr spice

Block size: 32 bytes

IT

.

.

.

.

.

.

.

.

. . . .
.

.

.

.
14

.

.

.

.

.

.

. II

1 2 m

.

.

1 2 0 0 1 2 m 1 2 0 0 1 2 m 1 2 0 0
dhry whet gcc espr spice li m300

Block size: 64 bytes
.

.

.

.

.

.

.

24 .
22

.

.

.

.

.

. . .

L

. . . :::rrll:::
.

.

1 2 m 1 2 0 0 1 2 0 0 1 2 w

n Cache size
(log, bytes)

3

dhry whet espr n

Figure 3: Minimum cache sizes that guarantee a maximum 1% miss ratio.

369

Page size: 2KB

Set size Set size

Page size: 4KB
Set size Set size

pages. Therefore, the TLB has to accommodate a
fewer number of address translation results.

An interesting phenomenon is that spice is not the
most demanding benchmark for TLB design. Al-
though spice consistently requires more than four
times the cache size than gcc, their TLB requirements
are very comparable, This is due to the fact that gcc
accesses a comparable number of active pages to spice
but accesses a much smaller number of blocks within
these active pages. This is a good example of a de-
manding benchmark for TLB design not being the
demanding benchmark for cache design.

Benchmark

3.2.3 Main memory requirements

The design of main memory differs from that of cache
memory in several ways. First of all, the main mem-
ory design is fully associative rather than set asso-
ciative as a result of the nature of modern virtual
memory systems. Secondly, the page size is usually
much larger than the cache block size due to address
translation and disk access considerations. Thirdly,
the page fault penalty is much higher than the cache
miss penalty. A common goal in main memory design
is to achieve the intrinsic page fault rate of programs.
‘The intrinsic page fault rate is the fault rate of an in-

-~

1 I 2 1 4 1 03 1 1 2 1 4 1 03

370

finite main memory. All intrinsic page faults are due
to the loading of accessed pages into the infinite main
memory. The intrinsic page fault rate of program is
a function of the page size.

The main memory sizes required to achieve intrin-
sic page fault rate for each benchmark are shown for
four page sizes (512B, lKB, 2KB, and 4KB from left
to right) in Figure 4. The sizes required to cover all
benchmarks are 4MB, 4MB, 4MB, and 8MB for page
sizes 512B, lKB, 2KB, and 4KB respectively. The
main memory requirement increases with the page
size due to internal fragmentation. However, the in-
crease may be justified by smaller TLB sizes and sim-
pler physical cache design.

3.3 Operating system benchmark
characteristics

The operating system’s interface to any program is
through the system call mechanism, which is a pro-
cedure call into the kernel. How often particular calls
are used can impact how the system software is de-
signed for high-performance and also provide insight
into 1/0 system design. The most-frequently used
system calls are the best candidates for streamlining.
Table 4 lists the system calls used by each benchinark

Physical
memory size

(1% bytes)

Benchmark
dhrystone
whetstone

gcc

espresso

spice

li

.

.
26
24 .

System calls
getrusage (8), sbrk (3), f s ta t (l), getpagesize (l), ioctl (1)
none
getrusage (6072), write (164), sbrk (66), read (15),
open (2), d o s e (Z), fs tat (2), ioctl (2), getpagesize (1)
write (27), sbrk (18), read (4), ioctl (Z), f s t a t (2), open (1),
getpagesize (I)
wri te (784), lseek (6), f s ta t (5), sbrk (3), close (3),
read (3), ioctl (3), getpagesize (1)
sbrk (7), ioctl (Z), f s ta t (Z), open (l), getpagesize (1))
read (1)

.

matrix300

. n..

10
. . .

. . .

. ,

lseek (12), f s ta t (5), close (5), stat (3), sbrk (3), write (3),
ioctl (Z), open (Z), getdtablesize (l) , getpagesize (1)

. . . .

29 , lo

dhry whet gc= espr SP

.

.

.

e li

.

.

.

.

.

.

. L

i 1 2 1 2

IO

Figure 4: Main memory sizes required to achieve intrinsic miss ratio for page sizes 512B (2'), 1KB (a")), 2KB
(2 ") , and 4KB (a1').

and the number of dynamic occurrences of each call
(in parentheses). Note that the benchmark whetstone
makes no system calls whatsoever. This is under-
standable due to its synthetic nature. The getrusage
system call that is prominent for dhrystone and gcc
is used by the tzmes library call to report run times.
The sbrkcall is used i n the heap space allocator. Heap
space is used considerably in l a , espresso, and dhry-
s tone . 1 /0 intensive benchmarks reveal themselves
here by the use of the read, wri te , open, close, f s ta t ,
[seek , and zoctl calls. These benchmarks are space,
and gcc.

4 Concluding Remarks

Benchmark characterization reduces the cost of ex-
1)loring the design space, focuses the experimental
system towards the intended workload, and lessens
the amount of siiiiulation and redesign required. This

paper presents designs for a system based on the
benchmark characteristics of a set of popular bench-
marks. The construction of an abstract system model
and the characterization method were made possible
in-part by the advance of architecture-independent
compiler technology.

It is interesting to wonder how to apply benchmark
characterization to parallel machine design. Bench-
marks themselves are specific to a particular type of
parallel architecture. For example, programs writ-
ten for message-passing multicomputers would per-
form poorly on tightly-coupled shared-memory mul-
tiprocessors. Therefore, benchmark characterizatioii
must be done for each type of architecture. Con-
sider a tightly-coupled shared-memory niultiproces-
sor. Extensions to our abstract system would include
a distributed shared memory hierarchy and synchro-
nization events. We are currently implementing such
extensions using the Perfect Club [13] as a sample

371

beiichinark set.

Ackiiowledgeinent s

The authors would like to thank Sadun Anik, Andy
Glew, Dave Griffith, Isadora Parrini, and all mem-
bers of the IMPACT research group for their sup-
port , comments and suggestions. Special thanks to
Jim Larus for use of AE.

This research has been supported by Dr. Lee Ho-
eve1 at NCR, the National Science Foundation (NSF)
under Grant MIP-8809478, and by an equipment do-
nation from the Hewelett-Packard company.

Refereiices

[lo] S. I . Feldman, D. M. Gray, M. W. Maimore, and
N . L. Schryer, “A Fortran-to-C converter,” Com-
puting Science Tech. Report 149, AT&T Bell
Laboratories, Murray Hill, NJ, June 1990.

[ll] T. M. Conte and W. W. Hwu, “Single-pass
memory system evaluation for multiprogram-
ming workloads,” Tech. Rep. CSG-122, Center
for Reliable and High-Performance Computing,
University of Illinois, Urbana, IL, May 1990.

[la] A . J . Smith, “Cache memories,” ACM Comput-
ing Surveys, vol. 14, no. 3, pp. 473-530, 1982.

[13] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck,
“Supercomputer performance evaulation and the
Perfect Club,” in Proc. Int’l Conf. on Supercom-

T. M. Conte and W. W. Hwu, “Benchmark
characterization for experimental system evalu-
ation,” in Proc. Hawaii Int’l Conf. on System
Sciences, vol. 1 , (Kona, Hawaii), pp. 6-18, Jan.
1990.

R. M. Stallman, Using and porting GNU CC.
Free Software Foundation, Inc., 1989.

P. P. Chang and W. W. Hwu, “Inline function
expansion for compiling C programs,” in Proc.
1989 ACM Conf. on Prog. Lung. Design and Im-
plementation, (Portland, OR), June 1989.

J . Mashy, “Your milage may vary,” tech. rep.,
MIPS Computer Systems, Inc., Sunnyvale, CA,
1990.

“Spec newsletter,” Feb. 1989. SPEC, Fremont,
CA.

C. L. Mitchell and M. J . Flynn, “A workbench
€or computer architects,” Design €3’ Test, pp. 19-
29, Feb. 88.

J . R . Larus, “Abstract execution: a technique
for efficiently tracing programs,” tech. rep.,
Computer Sciences Department, University of
Wisconsin-Madison, Feb. 1990.

G . D. McNiven and E. S. Davidson, “Analysis
of memory reference behavior for design of local
memories,” in Proc. 15th. Annu. Int ’1 Symp. on
Comput. Arch., (Honolulu, HI), pp. 56-63, June
1988.

D. W. Wall and M . L. Powell, “The Mahler ex-
perience: using an intermediate language as the
machine description,” in Proc. Second Int ’1 Conf.
on Archilectura[Support for Prog. Lung. and Op-
erating Syslems., (Palo Alto, CA), pp. 100-104,
Oct. 1987.

puting, (Amsterdam, The Netherlands), pp. 254-
266, June 1990.

372

