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ABSTRACT
The advent of systems biology requires the simulation of ever-
larger biomolecular systems, demanding a commensurate growth in
computational power. This paper examines the use of the NVIDIA
Tesla C870 graphics card programmed through the CUDA toolkit
to accelerate the calculation of cutoff pair potentials, one of the
most prevalent computations required by many different molecular
modeling applications. We present algorithms to calculate electro-
static potential maps for cutoff pair potentials. Whereas a straight-
forward approach for decomposing atom data leads to low com-
pute efficiency, a newer strategy enables fine-grained spatial de-
composition of atom data that maps efficiently to the C870’s mem-
ory system while increasing work-efficiency of atom data traver-
sal by a factor of 5. The memory addressing flexibility exposed
through CUDA’s SPMD programming model is crucial in enabling
this new strategy. An implementation of the new algorithm pro-
vides a greater than threefold performance improvement over our
previously published implementation and runs 12 to 20 times faster
than optimized CPU-only code. The lessons learned are generally
applicable to algorithms accelerated by uniform grid spatial decom-
position.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Processor Architec-
tures—Multiprocessors; I.6.3 [Computing Methodologies]: Sim-
ulation and Modeling—Applications; J.3 [Computer Applications]:
Life and Medical Sciences
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1. INTRODUCTION
Molecular modeling is an indispensable approach to understand-

ing chemical and biomolecular systems. The modeling and visu-
alization of atomic level details provides insight into the function
and dynamics of biomolecular structures that can ultimately ben-
efit human health through improved understanding of the molecu-
lar basis of disease, designing of pharmaceuticals, and engineering
of bionanodevices. With continuing advances in computing tech-
nology, the size of feasible simulations has grown to encompass
larger systems and longer time scales. The desire for more compu-
tational power has stimulated the development of highly parallel al-
gorithms [13], heterogeneous multicore implementations [25], and
specialized hardware such as MD-GRAPE [29] and Anton [24].

Due to their computational power, widespread availability, and
ease of integration into contemporary computer systems, graphics
processing units (GPUs) are a useful platform on which to accel-
erate molecular modeling applications. Since graphics rendering is
inherently data-parallel, GPUs have gradually evolved into highly
parallel processors to achieve tremendous computational through-
put. State-of-the-art GPUs can perform up to a half trillion floating
point operations per second, a peak arithmetic performance level
once associated only with supercomputers. Massive multithread-
ing, fast context switching, and high memory bandwidth enable
GPUs to tolerate ever-increasing latencies, run many small cores in
parallel, and sustain high computational throughput. Fixed-function
graphics pipelines are being replaced by fully programmable cores
supporting features important for general-purpose computing such
as IEEE floating point arithmetic, a multiprocessor shared mem-
ory, and arbitrary memory addressing [1, 18]. These recent ad-
vances in GPU architecture have enabled them to be used as high-
performance, massively parallel processing engines for scientific
computing.

Until recently, GPU programming required the use of graphics
application programming interfaces (APIs) such as OpenGL, or a
high-level language layered on top of graphics APIs [5, 30]. Rou-
tines were limited to computation that could be expressed in terms
of graphics drawing operations, forcing a cumbersome or ineffi-
cient expression of algorithms. For example, inter-thread com-
munication and writing to arbitrary memory addresses could not
be used [20]. New GPU software interfaces allow computations



to be expressed much more naturally as communicating groups of
threads in an SPMD programming model and expose more of the
functionality available in the hardware [18].

The most prevalent and costly computation required by molecu-
lar modeling applications is the calculation of nonbonded pair po-
tentials which describe the electrostatic and van der Waals interac-
tions between pairs of atoms. The quadratic computational com-
plexity of considering all pairs of atoms is generally reduced to a
problem of linear complexity by introducing a cutoff distance, be-
yond which the pair potential is set to zero. The use of a cutoff
potential is the method of choice for calculating van der Waals in-
teractions, and the cutoff calculation comprises the short-range in-
teraction contribution for many methods that approximate the full
electrostatic potential.

In this paper, we investigate the GPU-accelerated calculation of
electrostatic potential maps, which consist of a regularly spaced
lattice of points in space containing the summed potential contri-
butions from the atoms. The computation of electrostatic potential
maps is directly applicable to methods for ion placement, mean
field molecular dynamics simulation, molecular visualization, and
other various tasks used for analysis. The algorithmic approaches
examined here can also be applied to solve the more general N-
body problem of computing the potential and forces between pairs
of atoms. This work is based on previously published results with
the NVIDIA G80 hardware used to accelerate calculations of both
the direct (infinite distance) and cutoff (range-limited) potential
maps [28]. We specifically discuss a new implementation of the
cutoff potential with a performance speedup of more than a factor
of 20 compared to optimized CPU-only code and greater than a
threefold improvement over a previous GPU implementation. This
exploration not only reveals techniques particular to the NVIDIA
G80 and C870, but also provides more general insight into adapt-
ing algorithms to intensively data parallel architectures.

2. BACKGROUND
Molecular modeling can provide scientists with a detailed view

of a system of atoms and its evolution over time. The demand
for simulating larger system sizes for longer timescales has grown
over the years together with available computer power. Improve-
ments in computer technology already allow the simulation of large
biomolecular systems, with the largest simulations comprising
100,000 to 1,000,000 atoms. Simulating for long timescales, of
100 ns (100 million time steps) or longer, is important for studying
the function of biomolecules. The ability to harness the compu-
tational power of GPUs to achieve an order of magnitude greater
performance will offer new opportunities to biomedical researchers
for simulating larger system sizes and longer timescales.

2.1 Cutoff Pair Potentials in Molecular Mod-
eling

Biomolecular systems are generally modeled in a classical frame-
work. The atomic motions are governed by Newton’s equations,
with distance-dependent atomic forces described by a semi-empir-
ical forcefield that accounts for interaction energies among chains
of covalently bonded atoms and between pairs of nonbonded atoms.
Determining the atomic forces is by far the most computationally
costly part of molecular simulation. The work due to bonded forces
grows linearly with the number of atoms, whereas the number of
nonbonded interactions increases quadratically as the number of
atomic pairs in the system. The computational complexity has tra-
ditionally been reduced by using a cutoff pair potential in which the
pairwise interaction is zero beyond a cutoff distance. The computa-
tional effort for simulation is compounded by the need to compute

the atomic forces at every timestep, where the step size is restricted
to the order of femtoseconds. The cost of force computation over
the duration of a full simulation can add up to anywhere from hours
to years of CPU time.

The nonbonded electrostatic interactions between atoms are of
particular importance in molecular simulation. Atoms are modeled
as point charges by assigning to each atom i at position ~ri a fixed
partial charge qi. Closely related to the electrostatic force and in-
teraction energy between atoms is the electrostatic potential V at a
position~r, expressed here as a sum over all N atoms,

V (~r;~r1,~r2, . . . ,~rN) =
N

∑
i=1

qi

4πε0|~r−~ri|
s(|~r−~ri|), (1)

with dielectric constant ε0, where the (1/r)-factor is due to the
physical model, and the unitless scaling factor 0 ≤ s(r) ≤ 1 is in-
cluded to improve computational efficiency. Equation (1) is often
sampled at regularly spaced points over a volume to generate a map
of the electrostatic potential in that volume. In this case, ~r ranges
over a set of M regularly spaced lattice points. Setting the function
s(r) ≡ 1 calculates the full (infinite distance) electrostatic potential
contributed by all atoms to position~r, requiring quadratic computa-
tional work. Algorithmic efficiency is improved by choosing s(r) to
yield a cutoff potential truncated beyond a fixed cutoff distance rc.
A common choice (e.g., as used by molecular dynamics program
NAMD [13]) is given by

s(r) =

{

(1− r2/r2
c )2, if r < rc,

0, otherwise,
(2)

which smoothly shifts the potential to zero beyond rc and regains
the full electrostatic potential in the limit as rc approaches infinity.

Efficient computation of cutoff pair potentials is of particular
importance due to their prominence in molecular modeling appli-
cations. Molecular simulations were, in their earliest days, made
tractable by using an electrostatic potential of the form (1) with
s(r) chosen as (2) or similarly to truncate the nonbonded inter-
actions. The form of equation (1) also includes the short-range
parts of modern methods that approximate the full electrostatic po-
tential, such as particle-mesh Ewald [6], particle-particle particle-
mesh [11], and multilevel summation [26], made available by choos-
ing different scaling functions s(r). The nonbonded van der Waals
interactions, accounting for both the hardcore repulsion between
nearby atoms and the weak dipole attraction between more distant
atoms, have a different potential form than (1) but are similarly
evaluated using a cutoff distance.

In this paper, we consider two algorithmic approaches to com-
puting electrostatic potential maps described by (1):

1. the direct summation approach which uses s(r) ≡ 1 for
O(MN) computational work, summing to each of M grid
points the pair potential contributions from all N atoms, and

2. the cutoff summation approach which defines s(r) by equa-
tion (2) for O(M +N) computational work, summing to each
of M grid points the pair potential contributions from all
atoms within cutoff distance rc.

We focus on innovative techniques to accelerate cutoff summation
using the GPU. The basic algorithm for evaluating a cutoff pair po-
tential involves performing spatial hashing of the atoms into bins
of a uniform grid [8], then considering for each bin its interactions
with nearby bins that lie within or along the cutoff distance. In
collision detection parlance, the spatial hashing step is called the
broad phase and subsequent distance tests are called the narrow



phase. Since biomolecules exhibit a generally uniform density of
about 1 atom per 10Å3, the cutoff summation approach for a fixed
bin size yields a constant amount of work per bin, with the num-
ber of bins scaling linearly with the problem size, hence the linear
scaling for total computational work.

The computation of electrostatic potential maps is directly appli-
cable to ion placement methods used to initially setup a biomolec-
ular system [28], where a lattice spacing of 0.5Å is often used in
practice, providing a reasonable compromise between resolution of
the electrostatic potential map and the cost of computing it. A cut-
off distance of 8Å ≤ rc ≤ 12Å is typical for molecular simulation.
For 0.5Å lattice spacing and 12Å cutoff distance, with our best
performing implementation storing bins of size 4Å with 8 atom
slots per bin plus 3 bins worth of padding surrounding the cubic
domain, the 1536 MB of memory on the C870 will admit in a sin-
gle computation pass problem sizes up to a cubic domain of length
360Å containing approximately 4.67 million atoms. The majority
of biomolecular complexes that are studied computationally tend to
be on the order of 100,000 atoms in a 106 Å3 volume. Since water
molecules can comprise as much as 90% of a biomolecular com-
plex, we benchmark our implementations using water boxes cre-
ated by the solvate plugin included with VMD [12], with an atom
density representative of typical molecular dynamics simulations
of biomolecular complexes.

In addition to molecular simulation setup, electrostatic potential
maps are also useful for analysis and visualization of the completed
simulation, for instance, when visualizing the electrostatic contour
lines around a molecular surface. Advanced simulation techniques
exist that use time-averaged potential maps to realistically model
reduced parts of a much larger system too costly to simulate us-
ing a full atom representation [28]. The techniques presented here
for accelerating particle-grid interactions can also be generalized to
solve the N-body problem involving particle-particle interactions.

2.2 GPU Acceleration of Related Workloads
Although molecular simulations are run on systems with a wide

range of computing power, ranging from desktops to supercom-
puters, there are few GPU-accelerated molecular modeling algo-
rithms in the literature. The Folding@Home project has developed
a GPU-based folding client derived from the GROMACS molec-
ular dynamics engine, implemented using the Brook stream pro-
gramming system [5, 4, 7, 27, 20]. Another early experiment with
molecular dynamics on GPUs and other emerging architectures was
reported [16], using the Cg graphics shading language. More re-
cently, initial GPU-accelerated implementations of the NAMD
molecular dynamics simulation package have been reported [28,
20], based on the CUDA GPU computing interface to the current
generation GPU hardware. These algorithms compute cutoff pair
interactions between atoms, ultimately resulting in forces that de-
termine the dynamics of simulated molecules. The present work
presents algorithms for computation of electrostatic potentials on
a uniformly spaced lattice. The spatial regularity of this problem
results in a different algorithmic approach that benefits much more
from precomputation and parallel data reuse. This work signifi-
cantly improves on the short-range component of the electrostatic
potential map calculation algorithms in VMD [12, 28], as described
in Section 4.2.

Short-range pairwise interactions are a component of several com-
putational tasks that have been implemented or accelerated using
GPUs. Probably the most similar problem domain is Smoothed
Particle Hydrodynamics (SPH), where fluids are simulated as par-
ticles interacting through various short-range forces. Several au-
thors [2, 9, 15] have accelerated SPH using GPU shaders, of which

[2, 9] spatially partition the particles. These algorithms were devel-
oped within the constraints of shader programming and do not nec-
essarily take advantage of the full hardware capabilities available
in modern GPUs. The spatial partitioning used in this paper takes
advantage of a near-uniform density of particles, which also holds
in fluid-filled volumes in SPH simulations. Other GPU-accelerated
computations utilizing spatial partitioning include radiance calcu-
lations for image rendering [21], N-body force calculation [19], and
game physics [20].

3. THE TESLA C870 GRAPHICS CARD
We use the Tesla C870 as a data-parallel coprocessor for scien-

tific computing. The graphics card is, for our purposes, a large set
of processor cores that are able to directly address a global memory.
It supports an SPMD programming model, which is more general
and flexible than the streaming programming models supported by
previous generations of GPUs. In this section we discuss the pro-
gramming model of NVIDIA’s Compute Unified Device Architec-
ture (CUDA) and the microarchitectural features of the C870 that
are most relevant to accelerating cutoff pair potential computation.
A more complete description is found in [17, 18]. We also touch
briefly on general optimization principles for GPU programming.

A CUDA program consists of host code that executes on a sys-
tem’s CPU and device code that executes on a compute device
such as a GPU. Code that exhibits ample parallelism suitable for
GPU execution is written as device code, which is compiled by
NVIDIA’s compiler and loaded onto the GPU by a runtime library.
Device code is written using ANSI C extended with keywords for
labeling parallel functions, called kernels, and their associated data
structures. A kernel, when run, generates many lightweight threads
on the device to exploit parallelism. Code that exhibits little paral-
lelism or is otherwise unsuitable for device execution is written as
host code, which is compiled with the host’s standard C compiler
and runs as an ordinary process. The host transfers data to and from
the GPU’s global memory via API calls, and initiates kernel code
by performing a function call.

The host and device execute asynchronously with respect to each
other. After initiating a kernel, the host does not wait for it to com-
plete, and may execute in parallel with the device. Data transfers
between host and device may be performed either synchronously
or asynchronously. It is possible to explicitly synchronize.

3.1 Microarchitecture of the Tesla C870
The C870 is equipped with a G80 GPU, whose microarchitecture

is depicted in Figure 1. It consists of 16 streaming multiprocessors

(SMs), each containing eight streaming processors (SPs), or pro-
cessor cores, running at 1.35 GHz. Each SM has 8,192 registers
that are shared among all threads assigned to the SM. Each core
has a lone arithmetic unit that performs single-precision floating
point arithmetic and 32-bit integer operations. Additionally, each
SM has two special functional units (SFUs), which perform more
complex FP operations such as inverse square root and trigonomet-
ric functions with high throughput. Both the arithmetic units and
the SFUs are fully pipelined. Thus, each of the 16 SMs can per-
form 18 FLOPS per clock cycle (1 multiply-add operation per SP
and one complex operation per SFU), yielding 388.8 GFLOPS of
peak theoretical performance for our purposes.

Threads executing on the G80 are organized into a three-level
hierarchy. At the highest level, each kernel creates a single grid,
which consists of many thread blocks. Thread blocks are co-
scheduled groups of threads that can share data through a fast,
writable shared memory and synchronize with one another using
barrier instructions. A thread block consists of up to 512 threads;



Figure 1: Basic organization of the Tesla C870.

the number is usually chosen statically by the developer for each
kernel. The hardware initiates thread block execution dynamically
as resources become available. Each thread block is assigned to a
single SM for the duration of its execution.

Threads within a block are organized into warps of 32 threads.
Each warp executes in SIMD fashion, with the SM’s instruction
unit broadcasting the same instruction to the eight cores on four
consecutive clock cycles. If threads within a warp take different
control paths (referred to as branch divergence), it is assumed that
multiple passes with suppression of threads on divergent paths are
required to complete execution.

SMs can perform zero-overhead scheduling to interleave warps
on an instruction-by-instruction basis to hide the latency of global
memory accesses and long-latency arithmetic operations. When
one warp stalls, the SM can quickly switch to a ready warp in the
same thread block or a ready warp in some other thread block as-
signed to the SM. The SM stalls only if there are no warps with
ready operands available. Scheduling freedom is high in many ap-
plications because threads in different warps are independent with
the exception of explicit synchronization among threads in the same
thread block.

The C870 has 76.8 GB/s of bandwidth to its 1536MB off-chip
global memory. With computational resources supporting nearly
400 GFLOPS of performance and each FP instruction operating on
up to 12 bytes of data, applications can easily saturate that band-
width. To fully use the available global bandwidth, the 16 threads
in the first or last half of a warp must each concurrently access con-
tiguous, aligned blocks of memory so that the 16 accesses will be
coalesced into a single large-word access; otherwise, more band-
width is consumed as the hardware services each access separately.

With judicious use of several on-chip memories, depicted in Fig-
ure 1, an application can exploit data locality and data sharing to
reduce its demands for off-chip memory bandwidth. For example,
the G80 GPU has a 64KB, off-chip constant memory, and each SM
has an 8KB constant memory cache. Because the cache is single-
ported, simultaneous accesses of different addresses yield stalls.
However, when multiple threads access the same address during
the same cycle, the cache broadcasts the address’s value to those
threads with the same latency as a register access. Each SM also

has a 16KB writable shared memory that is useful for software-
managed data reuse or communication among threads in a thread
block. There is also a cacheable texture memory, but we do not use
it since its latency is much longer than that of shared or constant
memory.

3.2 Software Optimization Principles
The increased programmability afforded by CUDA and addi-

tional hardware features on the G80 remove many of the constraints
imposed by shader programming. For example, the availability of
shared memory on an SM and barrier synchronization makes inter-
thread coordination and communication possible, along with con-
sequent software optimizations and algorithm implementations that
are not possible under a shader programming model. Nevertheless,
a developer aiming to maximize GPU performance must still adapt
his program to the graphics-oriented capabilities of the GPU hard-
ware. The first-order performance concerns imposed by the GPU’s
hardware are to hide the latency of slow operations (SFU arithmetic
and global loads and stores) through parallelism, manage the global
memory bandwidth, and minimize the number of dynamically exe-
cuted instructions [22]. Latency hiding is achieved by ensuring that
many threads are simultaneously active, so that there are always
unstalled threads available for execution. Global bandwidth is used
efficiently by using cacheable memory, such as constant memory,
or by explicitly using shared memory as a software-managed cache.

Tuning the performance of a CUDA kernel often involves a fun-
damental trade-off between the efficiency of individual threads and
the thread-level parallelism among all threads. This trade-off ex-
ists because many optimizations that improve the performance of
an individual thread tend to increase the thread’s use of limited re-
sources that are shared among all threads assigned to an SM. For
example, as each thread’s register usage increases, the total num-
ber of threads that can simultaneously occupy the SM decreases.
Because threads are assigned to an SM at a granularity of thread
blocks, a small increase in register usage can cause a much larger
relative decrease in SM occupancy. Currently, only experience and
manual experimentation can produce a set of optimizations whose
resource use is cost-effective for a given kernel [23].

4. IMPLEMENTATION
This section discusses the implementation of the direct and cut-

off summation algorithms described in Section 2 for computing
electrostatic potential maps. The potential value at each point in
a lattice can be computed independently, offering a natural de-
composition of the work. The considerations dealt with in craft-
ing an implementation are how to allocate the work to computing
resources, use memory efficiently, and avoid redundant work. In
the remainder of this section, we discuss the implementation and
performance-enhancing optimizations of three GPU algorithm vari-
ants of increasing sophistication and performance and an optimized
CPU algorithm variant. The algorithm variants in sections 4.1 and
4.2 are adapted from the direct and cutoff kernels, respectively,
in [28]. Section 4.3 presents our new, faster algorithm. Section 4.4
presents our CPU algorithm.

4.1 Direct Summation
For direct summation, the computation for each potential map

point is a straightforward translation of equation (1). Each parallel
thread loops over all atoms in the system and maintains a running
total of the potential for one or more lattice points. Although the
quadratic complexity of direct summation makes it undesirable for
large problem sizes, its simplicity and uniformity makes it much
easier to implement. Aspects of its programming and optimization



Figure 2: Data access patterns of a CUDA grid and thread
block for different potential summation implementations.

remain relevant to the more sophisticated cutoff summation vari-
ants.

Computation is assigned to threads pursuant to a spatial decom-
position of work. The potential map volume is first decomposed
into individual planes which may be computed independently. Each
plane is computed using a separate CUDA kernel call. Each plane
is further decomposed into 2-D tiles, each of which is computed
in a thread block. Each thread within a thread block computes the
potential at eight lattice points within the 2-D tile. The decompo-
sition is illustrated in Figure 2(a). The dimensions of a 2-D tile
are constrained by performance optimizations as described below;
to compute potentials on arbitrary size volumes, the potential map
size is rounded up to an integral number of tiles.

Taking full advantage of the parallelism in the hardware requires
tailoring the implementation to efficiently utilize the hardware’s
data transfer mechanisms. The algorithm demands high memory
throughput for reading atom data, since every thread traverses the
entire set of atoms in the system. We place atom data in the GPU’s
constant memory, which satisfies the demand through the hard-
ware’s constant-memory caches and its ability to service multiple
concurrent reads of the same datum with a single cache access.
The major drawback of constant memory is its limited size. It can
hold just over 4000 atom coordinates and charges, necessitating a
multi-step computation that interleaves GPU processing with CPU-
mediated data transfers to reload constant memory between steps.
Nonetheless, the overhead is dwarfed by the time spent in kernel
computation. With this data layout, the kernel is not limited by
memory bandwidth.

In the now compute-bound kernel, some components of the per-
atom distance calculation are constant for individual planes and
rows within the map. Data reuse and precomputation optimizations
reduce the amount of redundant arithmetic. We enhance perfor-
mance by using a thread to evaluate an atom’s potential energy con-
tribution to eight points in a row, aggregating several threads’ work
in a transformation analogous to loop unroll-and-jam [14]. This
enables value reuse across the eight points and amortizes memory
references over a larger number of arithmetic operations. A less
obvious benefit is that the unrolled threads make more efficient use
of the shared register file on an SM by economizing on register
values that are not replicated by the unroll-and-jam transformation.
The register file can thus accommodate more lattice points’ worth
of simultaneously active threads.

Further performance gain comes from reducing the data trans-
fer time for updating the potential map values, which are stored in
global memory. We assign each thread a group of potential map
points with a stride of 16 so that lattice points simultaneously com-

Data Direct Cutoff (coarse) Cutoff (fine)

Potential map Global Global Global
Atoms Host Host Global
Atom working set Constant Constant Shared

Table 1: CUDA memory storage used in different potential
summation implementations.

puted by a half-warp are contiguous in memory. This interleaving
enables the hardware to coalesce reads and writes of potential map
data and reduces the time spent in global memory accesses. The
combination of unroll-and-jam and strides forces a thread block to
compute a tile a multiple of 16×8 = 128 potential map points wide.

4.2 Cutoff Summation with Large Bin Sizes
The chief speed gain in cutoff calculation comes through skip-

ping atoms that are known to be outside the cutoff radius for a lo-
calized region of the potential map. Whereas direct summation
required the entire set of atom data to compute a part of the poten-
tial map (Figure 2(a)), cutoff summation requires only the data for
atoms lying within the cutoff radius of some point in the region. To
minimize the volume whose atom data needs to be processed, we
reorganize the computation so that each kernel computes a cube-
shaped volume of the potential map (Figure 2(b)) instead of a plane,
in order to minimize the ratio of the surrounding volume of atoms
to the size of the potential map region. The first cutoff summation
variant reads the atoms from the GPU constant memory, as done
for direct summation. For each kernel call, only the atoms in that
volume are transferred to the GPU, minimizing the amount of atom
data repeatedly copied to the GPU.

The implementations of this variant are all restricted to operate
exactly for lattice spacing h = 0.5Å and cutoff distance rc = 12Å.
Each kernel invocation operates on a block of 483 lattice points cor-
responding to a cubic volume 24Å on a side, to provide sufficient
work for each invocation. Atoms are sorted using uniform grid spa-
tial hashing on the CPU prior to potential summation. Computing
the selected 24Å block of the potential map requires a cubic vol-
ume of atom data at least 48Å on a side, surrounding the block and
extending the length of the 12Å cutoff distance in each direction.
To satisfy this requirement, the bins for spatial hashing of atoms
are cubes of size 24Å, offset from the lattice point blocks by 12Å
in each dimension. Each block of lattice points is covered by a cube
of 8 bins. The driver routine that calls the kernel first performs the
spatial hashing of atoms and then loops over each block of lattice
points, where it fills the constant memory on the GPU with atoms
from as many of the surrounding bins as will fit before invoking
the kernel. Depending on the number of atoms in each bin, it might
require multiple kernel calls before all of the lattice point potentials
have been fully summed.

A distance test is needed within the inner loop to check whether
the current atom is within the cutoff distance to a thread’s lattice
point. The square of the distance is used, as it avoids a costly
square-root operation in the common case where the atom is ex-
cluded from further computation. Within a warp, threads simul-
taneously checking distances to their respective lattice points may
not all pass or fail the test, leading to branch divergence. Diver-
gence is more likely for widely separated lattice points. We assign
the threads of a warp a compact cluster of lattice points to minimize
divergence. Each warp computes a cluster of 4×4×2 lattice points
at a time. The enhanced kernel unrolls the lattice points in the z-
direction, allowing components of distance calculation to be reused
within a thread in the same manner as direct summation. Limited
register availability permitted unroll-and-jam by only three times.



4.3 Cutoff Summation with Small Bin Sizes
The previous cutoff summation algorithm suffers from two de-

ficiencies. First, the distance test success rate is only about 6.5%
measured as the ratio of the volume of the rc-sphere to the enclosed
cover of atoms. Failed distance tests represent computation that
could have been avoided with better spatial partitioning. Second,
the decomposition does not easily generalize to other cutoff dis-
tances and lattice spacings.

The small-bin cutoff summation variant uses a finer-grained spa-
tial hashing and traversal scheme. In large-bin cutoff summation,
all threads in a kernel traverse the same atom data; an atom needed
by any thread will be inspected by all threads. This restriction,
observed by both the direct and large-bin kernels, ensures that con-
stant memory can fulfill the high memory access throughput de-
manded by the kernel. In small-bin cutoff summation, each thread
block selects which bins it will traverse, allowing a thread block to
traverse only the volume of atoms needed by its own threads (Fig-
ure 2(c)). Different GPU hardware features are exploited to provide
high memory throughput. Additionally, the smaller volume is now
sufficiently close to spherical to justify the extra complication in-
volved in traversing a non-cubic volume.

Prior to GPU execution, the CPU performs spatial sorting and
copies the entire set of atom data into global memory. This avoids
the bottleneck imposed by constant memory’s limited capacity on
how much processing can occur in a single kernel call. Tolerat-
ing global memory’s long (> 200 cycles) latency is essential to
kernel performance and is achieved through careful data layout
and explicit sharing between threads. We use shared memory as
a software-managed cache into which 128-byte, aligned blocks of
global memory are fetched as needed. Using one warp to cooper-
atively load this size block ensures that the hardware retrieves it in
two large-word reads from off-chip DRAM. The bin data structure
is sized so that each bin is one block. Since an atom is stored as 4
single-precision floating point numbers, each 128-byte bin can hold
8 atoms. Leftover space within a bin is filled with dummy atoms
having zero charge. Dummy atoms must be loaded to achieve coa-
lescing, but can be skipped once loaded. When a bin reaches max-
imum capacity, any additional atoms intended for that bin are put
into an overflow list that is processed on the CPU. As with the pre-
vious algorithm variant, each bin is associated with a fixed, cubic
volume of space. This variant uses bins with edge length 4Å. At a
typical density of 1 atom per 10Å3, a bin’s volume is expected to
enclose 6.4 atoms. The average number of atoms stored in a bin is
less because some atoms are put into the overflow list. For a 106 Å3

cubic water box containing 96,603 atoms, bins contain an average
of 5.35 atoms, and the overflow list holds 2.64% of all atoms. This
distribution of atoms between the overflow list and the main data
structure is favorable because overflow list summation on the CPU
takes roughly the same time as GPU cutoff summation (Table 3),
and its latency can be hidden by running the two steps in parallel.

Careful design of the bin data structure enables efficient use of
global memory bandwidth, but the global memory latency is still
exposed. To minimize time spent waiting for global loads, threads
in a thread block cooperatively load and share atom data. Execu-
tion within a block proceeds in phases, alternating between loading
bins from global memory into shared memory and summing elec-
trostatic potentials. Bins needed by the thread block are loaded into
shared memory once, and shared among threads. Multiple warps
load bins in parallel, exploiting memory-level parallelism.

A thread block computes the potentials in a cubic region of 83

potential map points. For a given region, there is a neighborhood

of bins that lie within or straddle the cutoff radius of some point
in the region and thus need to be scanned to compute that region

Figure 3: Identification of the neighborhood of a region to be
used in cutoff summation.

of the potential map. All threads in the thread block traverse all
bins in the neighborhood, to maintain SIMD execution and avoid
bank conflicts when accessing shared memory. A region’s neigh-
borhood is illustrated in Figure 3. The shape of the neighborhood
is precomputed with respect to the binning lattice in the form of a
list of neighbor offsets and stored in the GPU’s constant memory.
To determine its own neighborhood, a thread block computes the
index of the bin closest to the center of its region, then translates
the neighbor list offsets to that site.

For a lattice spacing of h, a bin spacing of b, and a cutoff radius
rc, the neighborhood should contain all points within a radius of
rc + 8h

√
3/2, where the 8h

√
3/2 term is the length from the cen-

ter of a region to its corner and accounts for differing distances to
different potential map points within a region. If the bin spacing is
not an exact multiple of the lattice spacing, the distance is extended
by b

√
3/2 to account for the worst-case misalignment between the

region center and the closest bin. This distance is shown in Fig-
ure 3. The neighbor list contains all bins whose centers lie within a
radius R = rc +(8h+b)

√
3/2 if the bin spacing is an exact multiple

of the lattice spacing, or R = rc +(8h + 2b)
√

3/2 otherwise. The
extra distance included in R accounts for bins that straddle the cut-
off radius. For the optimized case of lattice spacing h = 0.5Å and
cutoff distance rc = 12Å, the neighborhood list contains 335 bins.
The success rate for cutoff distance testing increases to over 33%.
Relative to the large-bin algorithm variant, five times as many of
the atoms traversed contribute to the potential at a lattice point.

In the small-bin cutoff summation kernel variant, each SM per-
forms the role that the entire GPU performed in the large-bin vari-
ant. Each thread block resembles a scaled-down version of the
large-bin kernel. Specifically, atom data for the large-bin kernel
was copied into constant memory, then scanned by all threads.
Similarly, a thread block in the small-bin kernel loads atoms into
shared memory, whereupon the data are scanned by all threads in
the block. This algorithm variant’s caching and sharing of data uti-
lizes the GPU more like a multiprocessor than a stream processor,
reflecting a degree of convergence between modern GPUs and mul-
tiprocessors.

4.4 Cutoff Summation on the CPU
To properly quantify the speedup of cutoff summation using GPU

hardware, it is important to also develop the fastest possible sequen-
tial implementation to run on current CPU technology. We use SSE



vector instructions generated by the Intel C Compiler. The CPU al-
gorithm variant is also used with the small-bin kernel for overflow
list summation.

Our fastest CPU implementation reverses the nested loop struc-
ture used in the GPU kernels. The kernel loops over atoms in the
outer loop, and for each atom it loops over the cube of lattice points
surrounding that atom. This loop nesting allows the CPU kernel to
select precisely the potential map points to update for each atom,
in contrast to the GPU kernels which must conservatively select a
larger group of potential map points because they operate at the
granularity of kernel execution or regions and bins. Performance
is improved by initially sorting the atoms into bins (of size 4Å)
and traversing the ordered set of atoms to increase memory locality
when updating the potential lattice points. The inner loop over the
lattice points is a triply-nested loop over z-, y-, and x-coordinates
to correspond to the row-major alignment of the potential lattice in
memory. The separate terms of the distance-squared computation
are factored out of the innermost loops (e.g., the (∆z)2 term is fac-
tored out of the inner loops over y and x). We note that, unlike
CUDA, the SSE vector instructions are much more restrictive; in
particular, branching is not supported, so in order to achieve au-
tomatic vectorization by the Intel compiler, the inner loop must
always compute the potential function and then perform a condi-
tional selection at the end of the loop to accumulate to the lattice
point either the computed value or zero. This is the CPU analogue
of the cutoff distance test in the GPU kernels.

The SSE-enabled version of this basic algorithm was found to
perform almost twice as fast as an SSE-enabled CPU port of the
best GPU kernel. We clip the second-level loop to a cylinder (i.e.,
early termination if (∆z)2 +(∆y)2 ≥ rc

2), which improves perfor-
mance by almost 20% over simply traversing a cube of lattice points.
We found that over 67% of the clipped lattice points pass the cut-
off distance test. We also tested a sphere clipping enhancement,
which adjusts the bounds of the innermost loop to avoid any un-
necessary computation and eliminates the cutoff test, but this was
found to reduce performance. The cylinder clipping enhancement
is also applicable to the GPU kernels that implement the unroll-
and-jam optimization, resulting in about a 6.7% performance in-
crease. This enhancement is included in the GPU kernels except
for the large-bin kernel, to keep its performance comparable with
previously published results that do not use the enhancement.

5. EXPERIMENTAL EVALUATION
We have evaluated the performance of several cutoff pair poten-

tial kernels formulated for the computation of electrostatic potential
maps. The CPU-SSE3 reference kernel computes potentials en-
tirely on the CPU and is representative of the single-threaded per-
formance achievable on a workstation without GPU acceleration.
The CPU kernel is vectorized and uses SSE SIMD instructions to
achieve the best performance possible short of coding in assembly
language. The key CPU code optimizations involve expressing the
inner loop without any loop carried dependencies and using arith-
metic operations and control logic that can be mapped directly to
x86 SSE SIMD instructions.

The LargeBin kernel follows the algorithm and implementation
described in Sec. 4.2 and is also the closest in design and per-
formance to a short-range multilevel Coulomb summation kernel
described previously [28]. The SmallBin kernel implements the
binned short-range cutoff algorithm described in Sec. 4.3, with
operations on the CPU and GPU occurring serially, one after the
other in separate phases of computation. In this kernel, the CPU
simply busy-waits while the GPU executes and vice-versa. The
SmallBin-Overlap kernel implements the binned short-range cutoff

algorithm described in Sec. 4.3, but uses the streaming API pro-
vided by CUDA 1.1 to overlap CPU and GPU computations. Once
launched, the GPU kernel proceeds executing asynchronously, al-
lowing the CPU to perform bin overflow handling concurrently.
When the CPU completes its bin overflow handling, it waits, syn-
chronizing with the GPU kernel. Once the stream synchronization
completes, the CPU performs the remaining I/O operations to bring
results back from the GPU, and sums them with the bin overflow
handling results, yielding the final potential values for the lattice re-
gion being computed. The SmallBin-CompSum kernel is a minor
variation of the SmallBin-Overlap that uses single-level compen-
sated summation for accumulation of potentials at lattice points,
rather than the native floating point addition operation.

All tests were run on a quiescent system with no windowing sys-
tem running, using a 2.6 GHz Intel Core 2 Extreme QX6700 quad
core CPU running 64-bit Red Hat Enterprise Linux version 4 up-
date 4. The CPU benchmarks were performed using a single core,
a best case scenario in terms of memory bandwidth. The CPU code
was compiled using the Intel C/C++ Compiler (ICC) version 9.0.
All GPU benchmarks were performed on a NVIDIA Tesla C870
GPU, and were compiled and executed using the CUDA develop-
ment toolkit version 1.1 with driver version 169.09.

5.1 Floating-Point Arithmetic
One limitation of the most commonly available GPU hardware

is that floating point operations can only be performed in single
precision. While this poses a problem for some algorithms, many
produce results with acceptable precision or can be adapted to do so
through the use of compensated summation, native pair arithmetic,
or other precision enhancement techniques [3, 10].

We compared the potential lattice values calculated by the CPU
and GPU kernels with those produced by a double precision CPU
implementation to determine the largest absolute and relative error
for each, for lattice points with potential magnitudes larger than
10−4, for a 106 Å3 cubic water box containing 96,603 atoms. Since
the shifted potential function smoothly drops to zero at the cutoff
distance, the effects of rounding on selection of atoms at the cutoff
radius were minimized. The relative and absolute error test results
summarized in Table 2 show that the worst case error encountered
among the selected lattice points for the GPU potential kernels is
within a factor of two of the single-precision CPU-based kernel.

Due to its limited precision representation, floating point arith-
metic is non-associative, yielding different results when values are
summed in different orders. The CPU kernels were based on the
same algorithm, and performed summation in identical order, an
ideal scenario for error comparison. The sources of GPU floating
point error relative to the reference CPU implementation are the re-
sult of entirely different summation order, minor differences in the
precision of basic arithmetic operations, and arithmetic expression
transformations resulting from compiler optimizations.

The SmallBin-CompSum GPU kernel in Table 2 uses single-
level compensated summation for accumulation of the electrostatic
potential at each lattice point. Its maximum relative error is 34%
lower than that of the SmallBin kernel. Compensated summation
eliminates much of the error attributable to differences in summa-
tion ordering in the CPU and GPU kernels; in some test cases, the
maximum relative error of the SmallBin-CompSum kernel actually
falls below that of the CPU-SSE3 kernel. The performance cost as-
sociated with performing compensated summation in place of na-
tive floating point summation operations is shown in Table 4, and
is always minor, at under 10% for the range of problem sizes pre-
sented here. This makes compensated summation a very attractive
technique in cases where greater precision may be desired.



Kernel Max %
relative error

Max %
absolute error

CPU-SSE3 0.4793 0.0000939
LargeBin 0.7457 0.0001561
SmallBin 0.8715 0.0001985
SmallBin-CompSum 0.5710 0.0001579

Table 2: Maximum error values for single precision CPU and
GPU kernels vs. a double-precision version of the CPU refer-
ence kernel.

Component CPU-SSE3 SmallBin

Spatial hashing 0.008 s 0.008 s
Cutoff summation 19.444 s 0.842 s
I/O between host and GPU 0.052 s
Overflow list summation 0.586 s
Potential map transpose 0.030 s
Total execution time 19.452 s 1.518 s

Table 3: Execution time of components of cutoff potential cal-
culation.

5.2 Performance and Scalability
Table 3 breaks down the components of execution time in the

SmallBin GPU kernel, which does not overlap GPU and CPU com-
putations. Only cutoff summation in the SmallBin kernel runs on
the GPU. Overflow list summation uses the CPU-SSE3 kernel. The
transpose step converts from the data layout used for the potential
map on the GPU to the layout used on the CPU.

For this test, a 106 Å3 cubic water box containing 96,603 atoms
was used. The water box was created using the solvate plugin in-
cluded with VMD [12], with a volume and atom density represen-
tative of typical molecular dynamics simulations of biomolecular
complexes. One of the key observations from the execution time
profile in Table 3, is that the CPU time spent handling overflowed
bins is similar in magnitude to the GPU time spent calculating the
bulk of the cutoff summation. This observation implies the poten-
tial for increasing performance by performing the CPU and GPU
computations concurrently. The performance results in Table 4
more clearly demonstrate the benefit of overlapping the CPU and
GPU computations.

The performance scaling behavior of each of the kernels was
evaluated for water-filled cubic volumes ranging in size from 103 Å3

to over 107 Å3. The water boxes were generated with the same
methodology described previously. The computational complexity
of the cutoff potential algorithms implemented by all of the kernels
scales linearly with the the number of atoms.

The DirectSum kernel is a GPU implementation of the direct
Coulomb summation algorithm reported previously [28], which pro-
vides important context for the performance of the cutoff kernels.
The direct summation kernel has quadratic time complexity, which

Kernel Runtime (s) Speedup

CPU-SSE3 19.452 1.0
LargeBin 3.64 5.3
SmallBin 1.51 12.81
SmallBin-Overlap 1.07 18.17
SmallBin-CompSum 1.15 16.91

Table 4: Comparison of performance for short-range cutoff po-
tential kernels tested with a 106 Å3 water box containing 96,603
atoms.

0.001

0.01

0.1

1

10

100

1000

1000 8000 64000 1e+06 8e+06

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Volume of potential map (Angstrom3)

Runtime vs. Lattice Volume

CPU-SSE3
LargeBin
SmallBin

SmallBin-Overlap
DirectSum

Figure 4: Cutoff kernel execution time.
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Figure 5: Cutoff kernel execution rate.

is clearly visible in the slope of its execution time plotted in Fig-
ure 4 relative to the short-range cutoff kernels. While the results of
the cutoff kernels do not include long-range potential contributions,
the execution time of algorithms for computing these contributions
would merely offset the cutoff kernels, shifting the crossover point
where the CPU-SSE3 kernel begins outperforming the
DirectSum kernel a little farther to the right.

The performance scaling results in Figure 6 show that the GPU
cutoff kernels maintain a significant performance advantage over
the CPU for all but the smallest test cases. Once the problem
size is large enough to fully utilize the GPU and to amortize the
GPU kernel invocation overhead, the GPU kernels begin greatly
outperforming the CPU kernel. The CPU execution time exhibits
its steepest ascending slope in the smallest problem size ranges and
improves to linear performance with the larger problem sizes. As
the problem size increases by orders of magnitude, the relative per-
formance advantage held by the GPU small-bin kernels declines
slightly due to global memory references being serviced less effi-
ciently. This effect is most likely a result of the increasing rate of
DRAM page boundary crossings with problem size. The perfor-
mance plots for the two GPU small-bin kernels exhibit a gradual
decrease in the effectiveness of overlapping of CPU and GPU cal-
culations as the GPU runtime component becomes dominant for
problem size increases. At small bin sizes, much of the volume is
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Figure 6: GPU cutoff kernel speedup (relative to CPU imple-
mentation).

located in the vicinity of the empty space outside the water box.
The empty space is processed quickly and contributes to faster ex-
ecution. This contribution decreases for larger volumes.

Although none of the tests described in this paper were per-
formed using multiple CPU cores or multiple GPUs, our past ex-
perience with multi-core and multi-GPU implementations of di-
rect summation kernels suggests that a multi-core CPU-SSE ker-
nel would likely saturate available main memory and shared cache
bandwidth with just a few cores, yielding sub-linear performance
scaling beyond that point. Conversely, we expect that a multi-GPU
implementation would parallelize very effectively, achieving near-
linear speedups.

5.3 Memory System Performance
We measured the memory behavior of the SmallBin GPU ker-

nel to check whether it uses the C870’s memory system efficiently.
Since NVIDIA’s driver does not currently provide a way to directly
measure time spent in memory accesses, we measure the perfor-
mance indirectly using a modified kernel and artificially distributed
data sets. In the modified kernel, the cutoff radius is set to a large
value so that the kernel does not exclude any atoms in the neighbor-
hood from potential calculation. This makes the kernel’s runtime
independent of the atoms’ positions. While its output is not numer-
ically valid, the modified kernel has the same memory behavior as
the SmallBin kernel. The neighborhood is computed using a cutoff
radius of 12Å, as for the normal kernel. These tests used a 106 Å3

volume of atom data in which each bin contains the same number of
atoms; bin occupancy was varied from 0 to 8. The amount of data
loaded from global memory depends only on the number of bins
in the neighborhood, while the amount of computation to process a
bin is linearly proportional to the number of atoms per bin.

The kernel execution time varies linearly with the number of
atoms per bin as shown in Figure 7. The residual execution time
when bins are empty is the time spent doing work other than elec-
trostatic potential calculation. Average global memory bandwidth
consumption can be computed from the execution time and the
quantity of loaded data (263 regions×335bins×128B/bin). Band-
width consumption varies from 0.44GB/s when bins are full of
atoms to 4.1GB/s when bins are empty. Even for empty bins, when
the memory bandwidth demand is highest, execution time follows
the linear relationship. This is where one would expect to see slow-
down from any memory bandwidth limits.
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Figure 7: Execution time of a modified cutoff potential kernel
in memory performance tests.

We also eliminated all global memory loads from the kernel to
estimate the time consumed by long-latency load instructions. Each
load was replaced by arithmetic instructions that fabricate a small
positive floating-point number out of the address. Since the gener-
ated values are nonzero, the kernel computes as if it were operating
on full bins. The load-free kernel’s execution time is 1.709 seconds,
very close to the 1.712 seconds spent to load and process full bins.
We conclude that the time spent waiting for long-latency memory
accesses is negligible. Any further performance gains would have
to come from reducing either the number of bins traversed or the
computation time to process a bin once loaded.

6. CONCLUSIONS
We have presented a new GPU-accelerated algorithm for calcu-

lating cutoff pair potentials. The new algorithm demonstrates sig-
nificant speedup relative to a highly efficient SSE-vectorized CPU
reference implementation and provides a factor of three perfor-
mance improvement relative to our best prior results on the same
GPU hardware. The spatial decomposition of work inherent in the
algorithm maps naturally to CUDA thread blocks while the spa-
tial decomposition of data achieves fast and efficent use of the
memory system. The numerical accuracy of the GPU’s single-
precision floating point hardware can be increased to levels on par
with single-precision CPU code at low computational cost through
the use of compensated summation.

The new GPU-accelerated cutoff pair potential algorithm can be
applied to accelerate fast methods, such as multilevel summation,
for approximating a full electrostatic potential map. We plan to in-
corporate these advances into a future version of VMD [12], bring-
ing a significant performance increase to scientific tasks that require
calculation of electrostatic potential maps such as ion placement
and calculation of mean field potential maps for molecular dynam-
ics simulations.
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