Accelerating Advanced MRI Reconstructions on GPUs

© ACM, (2008). This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the 5th International Conference on Computing Frontiers, May
5-7, 2008, http://doi.acm.org/10.1145/1366230.1366274

Justin P. Haldar
Department of Electrical and
Computer Engineering
University of lllinois at
Urbana-Champaign

Sam S. Stone
Center for Reliable and
High-Performance Computing
University of lllinois at
Urbana-Champaign

Stephanie C. Tsao
Center for Reliable and
High-Performance Computing
University of lllinois at
Urbana-Champaign

Urbana, IL Urbana, IL Urbana, IL
ssstone2@crhc.uiuc.edu haldar@uiuc.edu stsao3@crhc.uiuc.edu
Wen-mei W. Hwu Zhi-Pei Liang Bradley P. Sutton

Center for Reliable and
High-Performance Computing
University of lllinois at
Urbana-Champaign
Urbana, IL

Department of Electrical and
Computer Engineering
University of lllinois at

Urbana-Champaign
Urbana, IL

Bioengineering Department
Biomedical Imaging Center,
Beckman Institute for
Advanced Science and
Technology

hwu@crhc.uiuc.edu

ABSTRACT

Computational acceleration on graphics processing units
(GPUs) can make advanced magnetic resonance imaging
(MRI) reconstruction algorithms attractive in clinical set-
tings, thereby improving the quality of MR images across a
broad spectrum of applications. At present, MR imaging is
often limited by high noise levels, significant imaging arti-
facts, and/or long data acquisition (scan) times. Advanced
image reconstruction algorithms can mitigate these limita-
tions and improve image quality by simultaneously operat-
ing on scan data acquired with arbitrary trajectories and in-
corporating additional information such as anatomical con-
straints. However, the improvements in image quality come
at the expense of a considerable increase in computation.
This paper describes the acceleration of an advanced re-
construction algorithm on NVIDIA’s Quadro FX 5600. Op-
timizations such as register allocating the voxel data, tiling
the scan data, and storing the scan data in the Quadro’s
constant memory dramatically reduce the reconstruction’s
required bandwidth to off-chip memory. The Quadro’s spe-
cial functional units provide substantial acceleration of the
trigonometric computations in the algorithm’s inner loops,
and experimentally-tuned code transformations increase the
reconstruction’s performance by an additional 20%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CF’08, May 5-7, 2008, Ischia, Italy.

Copyright 2008 ACM 978-1-60558-077-7/08/05 ...$5.00.

z-liang@uiuc.edu

University of lllinois at
Urbana-Champaign
Urbana, IL
sutton@uiuc.edu

The reconstruction of a 3D image with 1283 voxels ul-
timately achieves 150 GFLOPS and requires less than two
minutes on the Quadro, while reconstruction on a quad-
core CPU is thirteen times slower. Furthermore, relative
to the true image, the error exhibited by the advanced re-
construction is only 12%, while conventional reconstruction
techniques incur error of 42%. In short, the acceleration
afforded by the GPU greatly increases the appeal of the ad-
vanced reconstruction for clinical MRI applications.

Categories and Subject Descriptors

C.1.4 [Computer Systems Organization|: Processor
Architectures—Parallel Architectures; 1.3.1 [Computing
Methodologies]: Computer Graphics— Hardware Archi-
tecture; 1.4.5 [Computing Methodologies|: Image Pro-
cessing and Computer Vision— Reconstruction

General Terms

Algorithms, Performance

Keywords
CUDA, GPGPU, GPU computing, MRI, reconstruction

1. INTRODUCTION

Mainstream microprocessors such as the Intel Pentium
and AMD Opteron families have driven rapid performance
increases and cost reductions in science and engineering ap-
plications for two decades. These commodity microproces-
sors have delivered GFLOPS to the desktop and hundreds of
GFLOPS to cluster servers. This progress, however, slowed
in 2003 due to constraints on power consumption. Since that
time, accelerators such as graphics processing units (GPUs)

400

-&-NVIDIA (GPU) 1,50 GHz G80
3901 ~e-intel (GPU) 1.35 GHz G80
300
250
2]
o
S 200
[T
& /
150

/ 2.66 GHz
Quad-Core

100 / 3.40 GHz :

; H_H

0 | : : : : :

2001 2002 2003 2004 2005 2006 2007
Year

Figure 1: Peak throughput of programmable,
floating-point, multiply-add operations on modern
GPUs and CPUs. Adapted with permission from
[24] © John Owens et al.

have led the advances in computational throughput for sci-
ence and engineering applications. Figure 1 illustrates this
trend.

Recent advances in architecture have also increased the
GPU’s attractiveness as a platform for science and engineer-
ing applications. Prior to 2006, GPUs found very limited
use in this domain due to their limited support for both
IEEE floating-point standards and arbitrary memory ad-
dressing. However, the recently released AMD R580 and
NVIDIA G80 GPUs offer strong support for IEEE single-
precision floating-point values (with double-precision soon to
follow) and permit reads and writes to arbitrary addresses
in memory [2, 23]. Furthermore, modern GPUs use mas-
sive multithreading, fast context switching, and high mem-
ory bandwidth to tolerate ever-increasing latencies to main
memory by overlapping long-latency loads in stalled threads
with useful computation in other threads [19].

Increased programmability has also enhanced the GPU’s
suitability for science and engineering applications. For ex-
ample, the G80 supports the single-program, multiple-data
(SPMD) programming model, in which each thread is cre-
ated from the same program and operates on a distinct data
element, but all threads need not follow the same control
flow path. As the SPMD programming model has been used
on massively parallel supercomputers in the past, it is rea-
sonable to expect that many high-performance applications
will port easily to the G80 [19, 38]. Furthermore, general-
purpose applications targeting the G80 are developed using
ANSI C with simple extensions, rather than the cumbersome
graphics application programming interfaces (APIs) [32, §]
and high-level languages layered on graphics APIs [6, 4, 37]
that have been used in the past.

A wide variety of magnetic resonance imaging (MRI) ap-
plications, ranging from quantitative imaging of the brain to
dynamic imaging of the beating heart, can benefit greatly
from these increases in computational resources and ad-
vancements in architecture and programmability. At present,
many MRI experiments are specifically designed so that the
image can be reconstructed quickly and efficiently on a stan-
dard CPU, often by acquiring the scan data on a uniform
grid and applying a fast Fourier transform (FFT). However,

in many applications the combination of tailored data acqui-
sition and advanced image reconstruction significantly im-
proves image quality. In particular, these techniques can
increase signal-to-noise ratio, decrease scan time, and/or re-
duce imaging artifacts. However, advanced reconstruction
algorithms often require several orders of magnitude more
computation than conventional reconstruction algorithms.
In this paper, we accelerate a reconstruction algorithm that
can (1) generate MR images from arbitrary data sampling
trajectories, and (2) incorporate prior anatomical knowl-
edge into the reconstruction process, thereby increasing the
signal-to-noise ratio.

For these advanced reconstructions to be viable in clinical
settings, dramatic and inexpensive computational accelera-
tion is required. We find that advanced reconstructions from
arbitrary scan trajectories are very well suited to accelera-
tion on modern GPUs. In particular, an advanced recon-
struction of an image comprising 128% voxels completes in
less than 2 minutes on the G80, while the same reconstruc-
tion requires 23 minutes on a quad-core CPU. Furthermore,
relative to a conventional reconstruction, the advanced re-
construction reduces the error in the reconstructed image
from 42% to 12%. The 13X acceleration achieved on the
GPU makes the constrained reconstruction much more ap-
pealing in clinical settings.

The remainder of this paper is organized as follows. Sec-
tion 2 first describes the architecture of the Quadro FX 5600
and its G80 GPU, then discusses the advantages of advanced
MRI reconstructions. Section 3 presents the GPU-based
implementation of the advanced reconstruction algorithm.
Section 4 describes experimental methodology. Section 5
presents results and discusses features of the Quadro that
enable the advanced reconstruction to achieve 150 GFLOPS
in performance. Section 6 discusses related work in GPU-
based medical imaging. Section 7 concludes.

2. BACKGROUND

2.1 The Quadro FX 5600 Graphics Card

The Quadro FX 5600 is a graphics card equipped with
a G80 graphics processing unit (GPU). The Quadro has a
large set of processor cores that can directly address a global
memory. This architecture supports the single-program,
multiple-data (SPMD) programming model, which is more
general and flexible than the programming models supported
by previous generations of GPUs, and which allows devel-
opers to easily implement data-parallel algorithms. In this
section we discuss NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA) and the architectural features of the G80
that are most relevant to accelerating MRI reconstructions.
More complete descriptions are found in [23, 21, 26].

From the application developer’s perspective, the CUDA
programming model consists of ANSI C supported by sev-
eral keywords and constructs. CUDA treats the GPU as
a coprocessor that executes data-parallel kernel functions.
The developer supplies a single source program encompass-
ing both host (CPU) and kernel (GPU) code. NVIDIA’s
compiler, nvce, separates the host and kernel codes, which
are then compiled by the host compiler and nvce, respec-
tively. The host code transfers data to and from the GPU’s
global memory via API calls, and initiates the kernel code
by calling a function.

G80 GPU

SM 16

‘ SM 2

SM 1

\ Shared Memory |
A A

Instruction
Unit

Register File

Processor 1 mEs Processor 8 —I
A 4 AA

\ Constant Cache |

\ Texture Cache |

1.5 GB Off-Chip (Global, Constant, Texture) Memories

Figure 2: Architecture of Quadro FX 5600.

Figure 2 depicts the Quadro’s architecture. The G80 GPU
consists of 16 streaming multiprocessors (SMs), each con-
taining eight streaming processors (SPs), or processor cores,
running at 1.35 GHz. Each SM has 8,192 registers that are
shared among all threads assigned to the SM. The threads
on a given SM’s cores execute in SIMD (single-instruction,
multiple-data) fashion, with the instruction unit broadcast-
ing the current instruction to the eight cores. Each core has a
single arithmetic unit that performs single-precision floating
point arithmetic and 32-bit integer operations. Addition-
ally, each SM has two special functional units (SFUs), which
perform more complex FP operations such as the trigono-
metric functions with low latency. Both the arithmetic units
and the SFUs are fully pipelined. Thus, each SM can per-
form 18 FLOPS per clock cycle (one multiply-add operation
per SP and one complex operation per SFU), yielding 388.8
GFLOPS (16 SM * 18 FLOP/SM * 1.35 GHz) of peak the-
oretical performance for the GPU.

The Quadro has 76.8 GB/s of bandwidth to its 1.5 GB, off-
chip, global memory. Nevertheless, with computational re-
sources supporting nearly 400 GFLOPS and each multiply-
add instruction operating on up to 16 bytes of data, appli-
cations can easily saturate that bandwidth. Therefore, as
depicted in Figure 2, the G80 has several on-chip memories
that can exploit data locality and data sharing to reduce an
application’s demands for off-chip memory bandwidth. For
example, the Quadro has a 64 KB, off-chip constant mem-
ory, and each SM has an 8 KB constant memory cache.
Because the cache is single-ported, simultaneous accesses
of different addresses yield stalls. However, when multiple
threads access the same address during the same cycle, the
cache broadcasts that address’s value to those threads with
the same latency as a register access. This feature proves
quite beneficial for the MRI reconstruction algorithm stud-
ied in this paper. In addition to the constant memory cache,
each SM has a 16KB shared memory for data that is either
written and reused or shared among threads. Finally, for
read-only data that is shared by many threads but not nec-
essarily accessed simultaneously by all threads, the off-chip
texture memory and the on-chip texture caches exploit 2D
data locality to substantially reduce memory latency.

Threads executing on the G80 are organized into a three-
level hierarchy. At the highest level, each kernel creates a
single grid, which consists of many thread blocks. The maxi-
mum number of threads per block is 512. Each thread block
is assigned to a single SM for the duration of its execu-

tion. Threads in the same block can share data through the
shared memory and can perform barrier synchronization by
invoking the _syncthreads primitive. Threads are other-
wise independent, and synchronization across thread blocks
is safely accomplished only by terminating the kernel. Fi-
nally, threads within a block are organized into warps of
32 threads. Each warp executes in SIMD fashion, with the
SM’s instruction unit broadcasting the same instruction to
the eight cores on four consecutive clock cycles.

SMs can interleave warps on an instruction-by-instruction
basis to hide the latency of global memory accesses and long-
latency arithmetic operations. When one warp stalls, the
SM can quickly switch to a ready warp in the same thread
block or in some other thread block assigned to the SM.
The SM stalls only if there are no warps with all operands
available.

Tuning the performance of a CUDA kernel often involves
a fundamental trade-off between the efficiency of individual
threads and the thread-level parallelism (TLP) among all
threads. This trade-off exists because many optimizations
that improve the performance of an individual thread tend
to increase the thread’s use of limited resources that are
shared among all threads assigned to an SM. For example,
as each thread’s register usage increases, the total number of
threads that can simultaneously occupy the SM decreases.
Because threads are assigned to an SM not individually, but
in large thread blocks, a small increase in register usage
can cause a correspondingly much larger decrease in SM
occupancy [27, 28]. Section 5.6 examines this trade-off in
the context of MRI reconstructions.

2.2 Advanced MRI Reconstruction

Magnetic resonance imaging (MRI) is commonly used by
the medical community to safely and non-invasively probe
the structure and function of biological tissues from all re-
gions of the body, and images generated using MRI have a
profound impact in both clinical and research settings. MR
imaging consists of two phases, acquisition (scan) and recon-
struction. During the scan phase, the scanner samples data
in the k-space domain (i.e., the spatial-frequency domain or
Fourier transform domain) along a pre-defined trajectory.
These samples are then transformed into the desired image
during the reconstruction phase.

MRI is often limited by high noise levels, significant imag-
ing artifacts, and/or long data acquisition (scan) times. In
clinical settings, short scan times not only increase scan-
ner throughput but also reduce patient discomfort, which
tends to mitigate motion-related artifacts. High image res-
olution is equally important because it can enable earlier
detection of pathology, leading to improved prognoses for
patients. However, the goals of short scan time, high reso-
lution, and high signal-to-noise ratio (SNR) often conflict;
improvements in one metric tend to come at the expense of
one or both of the others.

The sampling trajectory used by the MRI scanner can sig-
nificantly affect the quality of the reconstruction. Figures
3(a) and 3(c) depict a Cartesian scan trajectory and a non-
Cartesian (spiral) scan trajectory, respectively. The Carte-
sian trajectory samples k-space on a uniform grid, which
allows image reconstruction to be performed quickly and
efficiently by applying a fast Fourier transform (FFT) di-
rectly to the acquired data. Although the reconstruction
of Cartesian scan data is computationally efficient, non-

Cartesian Scan Data

A ky A ky
o Gridding |
*—o—o |
b kx 4, ~ b kx
*—o—o

*—o—o

S]
@ o | m o
v / kx

Advanced
Reconstruction

Spiral Scan Data

FFT

Figure 3: MRI reconstruction techniques. In (a) the
scanner samples k-space on a uniform grid and re-
constructs the image in one step via the FFT. In (b)
the scanner samples k-space on a non-Cartesian (spi-
ral) trajectory, then interpolates the samples onto a
uniform grid and reconstructs the image in one step
via the FFT. In (c) an advanced reconstruction al-
gorithm is applied directly to the spiral scan data.

Cartesian scan trajectories can be preferable because they
are often faster and less sensitive to imaging artifacts caused
by non-ideal experimental conditions. For these reasons,
non-Cartesian trajectories with radial [18] and spiral [1] sam-
pling patterns are becoming increasingly common in MRI.

Image reconstruction from non-Cartesian scan data pre-
sents both challenges and opportunities. In the most com-
mon approach, gridding, the samples are first interpolated
onto a uniform Cartesian grid and then reconstructed in
one step via the FFT (see Figure 3(b)) [15, 31]. While
gridding is computationally expedient, it satisfies no opti-
mality criterion and cannot leverage prior information such
as anatomical constraints. By contrast, optimal image re-
constructions [25, 39, 10, 36, 11] can incorporate anatom-
ical information [13, 12] to reduce noise while preserving
the resolution of known image features. Anatomically con-
strained reconstruction of non-Cartesian scan data enables
brief scans to achieve high SNR, thereby decreasing imaging
artifacts and increasing SNR simultaneously. While such
advanced reconstructions have been impractical for large-
scale problems due to computational constraints, this paper
shows that these reconstructions become viable in clinical
settings when accelerated on GPUs.

We implemented the anatomically constrained reconstruc-
tion algorithm of [13, 12]. This algorithm finds the the so-
lution to the following quasi-Bayesian estimation problem

p =argmin|[Fp —d|; + [|[Wplf3, (1)
P N——— N——
data fidelity prior info

where p is a vector containing voxel values for the recon-
structed image, F is a matrix that models the imaging pro-
cess, d is a vector of data samples, and W is a matrix that
can incorporate prior information such as anatomical con-
straints. The first term in the above cost function imposes
that data simulated from the reconstructed image should
match somewhat closely with the real acquired data; the
second term is used to impose prior information regarding
the image statistics.

Because Eq. 1 defines a linear least squares problem, the
solution is

o= (FF +vavv)71 Fid.)

However, the size of the matrix (FHF + WHW) makes di-
rect matrix inversion impractical for high-resolution recon-
structions. For the 1283-voxel reconstructions examined in
this paper, the inverted matrix contains well over four tril-
lion complex-valued elements (the number of elements in the
inverted matrix equals the square of the number of voxels in
the reconstructed image). An iterative method for matrix
inversion, such as the conjugate gradient (CG) algorithm
[14], is therefore preferred.

The conjugate gradient algorithm reconstructs the image
by iteratively solving Eq. 2 for p. During each iteration, the
CG algorithm updates the current image estimate p to im-
prove the value of the quasi-Bayesian cost function (Eq. 1).
The computational efficiency of the CG technique is largely
determined by the efficiency of matrix-vector multiplication
operations involving FFF and WHW, as these operations
are required during each iteration of the CG algorithm. For-
tunately, matrix W often has a sparse structure that per-
mits efficient multiplication by W W, and matrix F”F has
a convolutional structure [39] that enables efficient matrix
multiplication via the FFT.

The advanced reconstruction algorithm described in this
paper therefore consists of three primary computations. First,
the algorithm computes each element of Q, given by

M

Q(xn) =D |p(km)|* elZmem>n), (3)

m=1

where Q is the convolution kernel that facilitates multipli-
cation operations involving FZF, and ¢ () is the Fourier
transform of the voxel basis function. There are M k-space
sampling locations, with k,, denoting the location of the
m'" sample. Likewise, there are N voxel coordinates, with
X, denoting the coordinates of the n'® voxel. Because Q
depends only on the scan trajectory (not the scan data) and
the size of the image, it can be computed before the scan
occurs and can be reused during any reconstruction that
shares the same scan trajectory and image size. Second, the
algorithm computes the vector F¥7d, defined as

M
[F7a] =" 6" (kn)den)e @m0)
m=1

Although Eq. 3 and Eq. 4 are quite similar, the former neces-
sitates significantly more computation because the Q algo-
rithm oversamples the image space by a factor of two in each
dimension. Therefore, during a 3D reconstruction, Eq. 3 is
evaluated at 8N values of x,, while the Eq. 4 is evaluated
at only N values of x,. Finally, the CG solver performs
iterative matrix inversion to solve Eq. 2.

The complexity of the advanced reconstruction far exceeds
the complexity of a conventional, gridded reconstruction.
Given a reconstruction problem of N voxels and M scan data
points, the computations of Q and F”d have O(MN) com-
plexity, compared to O(N log N) complexity for reconstruc-
tions based on gridding and the FFT. For this reason, ad-
vanced reconstruction of high-resolution, three-dimensional
images has been impractical in clinical settings, despite the
technique’s clear advantages over conventional reconstruc-

tions. Our work demonstrates that these advanced recon-
structions can be performed quickly and efficiently on mod-
ern GPUs, increasing their viability in clinical settings.

3. ADVANCED MRI RECONSTRUCTION

The advanced MRI reconstruction algorithm described in
Section 2.2 consists of three steps: computing the data struc-
ture Q (which depends only on the scan trajectory), com-
puting the vector F7d (which depends on the scan trajec-
tory and the scan data), and finding the image iteratively
via a conjugate gradient linear solver. As Figure 4 shows,
the algorithms for F¥d and Q are quite similar, The most
significant difference is that the Q algorithm requires more
computation because its outer loop executes 8N iterations,
compared to N iterations for F¥d. Otherwise, Q suffers
from the same bottlenecks and benefits from the same code
transformations as F7d.

Because Q can be computed prior to acquiring an im-
age’s scan data, the critical path for a given reconstruction
consists only of computing F”d and executing the linear
solver. Therefore, the remainder of this section describes
the algorithms for F¥d and the linear solver, focusing on
the implementation of the Fd algorithm on the GPU. The
interested reader may refer to [34] for more detailed discus-
sion of Q.

3.1 Frfd

As Figure 4(b) shows, the algorithm for F7d is an ex-
cellent candidate for acceleration on the GPU because it
contains substantial data-parallelism. The algorithm first
computes the real and imaginary components of pu at each
sample point in the trajectory space (k-space), then com-
putes the real and imaginary components of F7d at each
voxel in the image space. The value of F¥d at any voxel
depends on the values of all sample points, but no elements
of F7d depend on any other elements of Fd. Therefore,
all elements of F¥d can be computed independently and in
parallel.

Despite the algorithm’s inherent parallelism, potential per-
formance bottlenecks are evident. First, in the loop that
computes the elements of F¥d, the ratio of floating-point
operations to memory accesses is at best 3:1 and at worst
1:1. The best case assumes that the sin and cos operations
are computed using five-element Taylor series that require
13 and 12 floating-point operations, respectively. The worst
case assumes that each trigonometric operation is computed
as a single operation in hardware. In either case, the GPU-
based implementation of the algorithm must conserve mem-
ory bandwidth and tolerate memory latency. Second, the ra-
tio of FP arithmetic to FP trigonometry is only 13:2. Thus,
GPU-based implementation must tolerate or avoid stalls due
to long-latency sin and cos operations.

The GPU-based implementation of the F”d algorithm
(see Figure 4(c)) uses the G80’s constant memory caches
to shatter the potential bottleneck posed by memory band-
width and latency. To overcome the memory bottleneck, the
scan data is divided into many tiles, with each tile contain-
ing a distinct subset of sample points. For each tile, the host
CPU loads the corresponding subset of sample points into
constant memory before executing the cmpFhD function.
Each thread then computes a partial sum for a single ele-
ment of F¥d by iterating over all the sample points in the

tile. This optimization increases the ratio of FP operations
to global memory accesses dramatically.

Likewise, the G80’s special functional units (SFUs) enable
the algorithm to avoid the potential bottleneck of long la-
tency trigonometric operations. When the use_fast_math
compiler option is invoked, the sin and cos operations are
not linked to long-latency library calls, but rather are exe-
cuted as individual, low-latency instructions on the SFUs.
The speed of the SFU comes at the expense of some loss in
accuracy when the argument to the sin or cos is very small,
but, as we show in Section 5, this optimization does not nec-
essarily decrease on the overall accuracy of the algorithm.

3.2 Conjugate Gradient Linear Solver

As described in Section 2, the CG solver iteratively solves
Eq. 2 to find the desired image p. When the iterations con-
verge or the number of iterations exceeds a threshold, the
solver terminates. During each iteration, the solver performs
a large FFT and inverse FFT, several BLAS and sparse
BLAS operations (including multiplication of sparse matri-
ces and vectors, as well as addition, scaling, and scalar mul-
tiplication of vectors), and several other computations (such
as summation reduction, shifting, and sampling).

We ported the linear solver from MATLAB to CUDA, us-
ing NVIDIA’s CUDA CUFFT Library [22] for the FFT and
inverse FFT operations, and implementing the other oper-
ations by hand. Complex-valued objects were represented
using CUDA’s cufft Complex data type, as required by the
CUFFT Library. Sparse matrices were stored in compressed
row format [9] to facilitate efficient GPU-based execution of
the expression A xx, where A is a sparse matrix and x
is a vector. Although we have made only small efforts to
optimize the CUDA-based solver, it is roughly an order of
magnitude faster than the MATLAB-based solver. We use
the CUDA-based solver for all experiments presented in this
paper and view its performance as acceptable.

4. METHODOLOGY

To quantify the effects of the Quadro’s architectural fea-
tures on the performance and quality of the reconstruc-
tion, we implemented seven versions of the algorithm for
FHd, five of which are depicted in Figure 5. The base ver-
sion (GPU.Base, see Figure 5(a)) simply executes in data-
parallel fashion on the GPU, without using even the sim-
plest optimizations to conserve memory bandwidth or tol-
erate long latency loads and trigonometric operations. The
second version (GPU.RegAlloc, see Figure 5(b)) register al-
locates the voxel data, thereby conserving some memory
bandwidth and reducing the latency of all voxel accesses.
GPU.Coalesce (Figure 5(c)) register allocates the voxel data
and changes the layout of the scan data in the Quadro’s
global memory so that accesses to the scan data are co-
alesced, thereby making more efficient use of the memory
bandwidth. GPU.ConstMem (Figure 5(d)) register allocates
the voxel data and places the scan data in the Quadro’s con-
stant memory so that accesses to the scan data are cached.
The fifth version (GPU.FastTrig, see Figure 5(¢)) addition-
ally uses the G80’s special functional units to compute fast,
approximate versions of the trigonometric operations. The
sixth version, GPU.Tune, also uses experimentally-tuned
settings for three code transformations: loop unrolling, data
tiling (scan points per thread), and number of threads per
block. The tuned settings balance allocation of GPU re-

for (m=0; m <M; m+) { for (m=0; m <M; m++) { __glokal
phiMag[m] = rPhi[m]*rPhi[m] + ™u[m] = rPhi[m]*rD[m] + void anMu(float* rPhi, iPhi, rD, iD, rMu, iMu, int M) {
iPhi[m]*iPhi[m]; iPhi[m]*iD[m]; int m = blockIdx.x * MU _THREADS PER BLOCK + threadIdx.x;
} iMu[m] = rPhi[m]*iD[m] — if (m < M) {
iPhi[m]*rD[m]; Mu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
for (n=0; n < 8N; nt+) { } iMu[m] = rPhi[m]*iD[m] — iPhi[m]*rD[m];
for (m=0; m <M; m++) { }
exp = 2*PI*(kx[m] * x[n] + for (n=0; n <N; n++) { }
ky[m] * y[n] + for (m = 0; m<M mH) |
kz[m] * z[n]); exp = Z*PI*(kx[m] * x[n] __glokal
rQ[n] += phiMag[m]*cos(exp) ; ky[m] * y[n] void ampFhD(float* gx, gy, gz, grFhD, giFhD) {
iQ[n] += phiMag[m]*sin(exp); kz[m] * z[n] int n = blockIdx.x * FHD _THREADS PFR BRIOCK + threadldx.x;
CcArg = cos(exp);
} sArg = sin(exp); // register allocate image-space inputs and outputs
rFhD[n] += rMu[m]*cArg x = gx[n]; y=gy[nl; z=gz[n];
iMu[m]*sArg; rFhD = grFhD[n]; iFhD = giFhD[n];
iFhD[n] += iMu[m]*cArg
r™Mu[m]*sArg; for (int m = 0; m < SCAN PTS PER TILE; mt+) {
} // s (scan data) is held in constant memory
} float exp = 2 * PI * (s[m].kx * x +
s[m].ky * y +
s[m].kz * z);
CArg = cos(exp);
sArg = sin(exp);
rFhD += s[m].rMu*cArg — s[m].iMu*sArg;
iFhD += s[m].iMu*cArg + s[m].rMu*sArg;
}
grFhD[n] = rFhD;
giFhD[n] = iFhD;
}
(a) Q algorithm (b) Fd algorithm (c) F"d algorithm in CUDA

Figure 4: Data-parallel phases of advanced MRI reconstruction. Panels (a) and (b) show simplified C code
for the algorithms that compute Q and F”d, respectively. Panel (c) depicts the Fd algorithm in CUDA.

sources to improve hardware utilization and thread efficiency.
Finally, GPU.Multi executes the tuned version on multiple
Quadros.

To obtain a reasonable baseline, we implemented two ver-
sions of F¥d on the CPU. Version CPU.DP uses double-
precision for all floating-point values and operations, while
version CPU.SP uses single-precision. Both CPU versions
are compiled with Intel’s icpc (version 10.1) using flags -O3
-msse3 -axT -vec-report3 -fp-model fast=2, which (1) vector-
izes the algorithm’s dominant loops using instructions tuned
for the Core 2 architecture, and (2) links the trigonometric
operations to fast, approximate functions in the math li-
brary. Based on experimental tuning with a smaller data
set, the inner loops are unrolled by a factor of four and the
scan data is tiled to improve locality in the L1 cache.

Each GPU version of F¥d is compiled using nvee -O3
(CUDA version 1.0) and executed on a 1.35 GHz Quadro
FX 5600. The Quadro card is housed in a system with a
2.4 GHz dual-socket, dual-core Opteron 2216 CPU. Each
core has a 1 MB L2 cache. The CPU versions use pthreads
to execute on all four cores of 2.66 GHz Core 2 Extreme
quad-core CPU, which has peak theoretical capacity of 21.2
GFLOPS per core and a 4 MB L2 cache. The CPU versions
perform substantially better on the Core 2 Extreme quad-
core than on the dual-socket, dual-core Opteron.

All reconstructions use the GPU version of the linear
solver, which executes 60 iterations on the Quadro FX
5600. Two versions of Q were computed on the Core 2
Extreme, one using double-precision and the other using
single-precision. The single-precision Q was used for all
GPU-based reconstructions and for the reconstruction in-
volving CPU.SP, while the double-precision Q was used only
for the reconstruction involving CPU.DP. We have imple-
mented the Q computation on the GPU and observed that
it runs roughly five to six times longer than the GPU ver-
sion of FHd, as expected. As the computation of Q is not

on the reconstruction’s critical path, we give Q no further
consideration.

To facilitate comparison of the advanced reconstruction
with a conventional reconstruction, we also evaluated a re-
construction based on gridding and the FFT [15]. Our ver-
sion of the gridded reconstruction is not optimized for per-
formance, but it is fair to assume that an optimized imple-
mentation would execute in several seconds [34].

All reconstructions are performed on sample data obtained
from a simulated, three-dimensional, non-Cartesian scan of
a phantom image [17]. There are 284,592 sample points in
the scan data set, and the image is reconstructed at 1283
resolution, for a total of 22! voxels. In the first set of exper-
iments, the simulated data contains no noise. In the second
set of experiments, we added complex white Gaussian noise
to the simulated data. When determining the quality of the
reconstructed images, the percent error and peak signal-to-
noise ratio metrics are used. The percent error is the root-
mean-square (RMS) of the voxel error divided by the RMS
voxel value in the true image (after the true image has been
sampled at 128% resolution). To permit fair comparison of
the gridded and advanced reconstructions, we adjusted the
scale of each gridded image to match the scale of the true
image before computing the gridded image’s percent error
and PSNR.

Finally, the advanced reconstruction leverages two opti-
mizations that are not evident elsewhere in our discussion.
First, the scan trajectory is symmetric, and the advanced
reconstruction uses prior knowledge of that symmetry to
mitigate the effects of numerical imprecision on the accu-
racy of the reconstruction. Second, we manually balanced
the resolution and the noise in the advanced reconstruction
by performing the reconstruction multiple times while ad-
justing a regularization parameter. Regularization can be
performed automatically or analytically prior to acquiring

SM

Instruction Unit
*/s[d] .kx +

32KB 8KB
Register File Const Cache
() (% cArg ~ cos (exp) ;
SPO SP7 sArg =_sin (exp) ;

SFU1 rFhD [p]\+= cArg *
sArg *

cArg

iFhD[p]/+=

Scan Data

A

Global Memory

(a) Base (Pixel and scan data in global memory, accesses to
scan data not coalesced, software sin/cos)

SM

exp =

cos (exp)]
sin(exp) ;

Instruction Unit

32KB
Register File

8KB
Const Cache

cArg
sArg

SPO

AR (BHEHE
&3 e M N
SFUO chrg *
[] [iFhD[p]/+= cArg *
sArg *

Pixel Data Scan Data
C x O
J
y ky)
z kz)
rFhD rRho)
iFhD iRho

Global Memory

(c) Coalesce (Pixel data in register file, scan data in global
memory, accesses to scan data coalesced, software sin/

cos)

SM

i
=

Instruction Unit

exp = */s[d] .kx +

32KB 8KB
Register File Const Cache
:unn() cArg # cos(exp) ;
SPO SP7 sArg sin(exp) ;
BEEEE

cArg
sArg
cArg
sArg

SFUO

() ()

Scan Data

* ok *

Pixel Data

A

Global Memory

(b) RegAlloc (Pixel data in register file, scan data in global
memory, accesses to scan data not coalesced, software sin/
cos)

SM

exp =

< cos (exp) ;
sin(exp) ;

8KB
Const Cache

32KB
Register File

cArg
sArg

SP7

TFhD[p]\ += cArg *
sSArg *|
iFhD[p]/+= cArg *|
sArg *

Instruction Unit

E i)
SFUO SFU
((RRRARRARRRARRRRARR M ARRRRARRRRARRRAARR]
)
Pixel Data Scan Data

N
=

Global Memory

Constant Memory

Global Memory

(d) ConstMem (Pixel data in register file, scan data in
constant memory and constant cache, software sin/cos)

Constant Memory

exp =

cos (exp) ;
sin(exp) ;
TFhD [p] \+=
iFhD[p] /+=

cArg
sArg

cArg
sArg
cArg
sArg

* ok * *

(e) FastTrig (Pixel data in register file, scan data in constant
memory and constant cache, hardware sin/cos)

Figure 5: Versions of the FFd algorithm on the GPU.

/
5

(b) Gridded (c) CPU.DP
41.7% error 12.7% error
PSNR = 16.8 dB PSNR =27.3 dB

(d) CPU.SP
11.9% error
PSNR =27.7 dB

(e) GPU.Base
12.5% error
PSNR =27.2 dB

(f) GPU.RegAlloc
12.5% error
PSNR =27.2 dB

(g) GPU.Coalesce (h) GPU.ConstMem (i) GPU.FastTrig
12.5% error 12.5% error 12.1% error
PSNR =27.2dB PSNR =27.2 dB PSNR = 27.6 dB

(j) GPU.Tune (k) GPU.Multi
12.1% error 12.1% error
PSNR = 27.6 dB PSNR = 27.6 dB

Figure 6: Noiseless data: One 2D slice of the 3D
image. The percent error and PSNR values in each
sub-figure caption are calculated over the entire 3D
image.

the sample data, given the sampling trajectory, noise levels,
and other readily available prior information [12].

S. EVALUATION

To be useful in clinical settings, the advanced reconstruc-
tion must satisfy two criteria. First, the quality of an im-
age obtained via the advanced reconstruction should signif-
icantly exceed the quality of an image obtained via a grid-
ded reconstruction. Second, the reconstruction must com-
plete quickly. After image acquisition, the patient typically
remains in the scanner during image reconstruction. The
scanner operator then decides whether the image is accept-
able or whether it should be acquired again. Any delays
therefore increase patient discomfort and decrease scanner
throughput. Also, when the administration of a medical

(a) True (b) Gridded (c) GPU.Tune
46.6% error 16.3% error
PSNR = 15.8 dB PSNR =24.9 dB

Figure 7: Noisy data: Three 2D slices of the 3D
image. The percent error and PSNR values in each
sub-figure caption are calculated over the entire 3D
image.

treatment depends on the MR images, any delay is at best
frustrating and at worst harmful to the patient’s health.

Our experiments indicate that the advanced reconstruc-
tion definitely satisfies the first criterion. As Figure 6 shows,
advanced reconstruction of the noiseless data yields signifi-
cantly better images than gridded reconstruction. Relative
to the true image (Figure 6(a)), the advanced reconstruc-
tions (Figure 6(c-k)) exhibit 12% to 13% error and 27 dB
to 28 dB PSNR, compared to 42% error and 17 dB PSNR
for the gridded reconstruction (Figure 6(b)). There are no
significant differences among the images obtained from the
advanced reconstruction, despite the use of single-precision
floating-point in Figures 6(d-k) and approximate trigono-
metric operations in Figure 6(c, d, and i-k).

The images reconstructed from the noisy data (Figure 7)
further demonstrate the superiority of the advanced recon-
struction. Relative to the true image, the advanced recon-
struction exhibits 16% error and 25 dB PSNR, while the
error and PSNR for the gridded reconstruction are 47% and
16 dB, respectively. Again, there are no significant differ-
ences among the images obtained from the various versions
of the advanced reconstruction.

In addition to producing significantly better images than
the gridded reconstruction, the GPU-accelerated advanced
reconstruction arguably satisfies the second criterion for clin-
ical use: speed. As Figure 8 shows, the fastest single-GPU
version of the advanced reconstruction completes in less than
2 minutes (99 seconds, to be precise). This reconstruction

OF"d mSolver

100% 7 po— — r— p— p—

90% - — +— 1 |—

80% 14 +— — —1 —
0%+ — — — —
60% 1
Q
E 50% 1
=
0%+ — — — —
30%14 — — — —
20%
10% -
48.2 23.2 545 |34.8] |29.5
0% T T T T T
R © @ Q& O @ »
NP #F N & ¥ & & »
OQ 62 Q\5~ Qg’% oo'z’ & % Q\§~ N
) ; S < Q>) 9
& & éz\) ©

Figure 8: Performance of advanced MRI reconstruc-
tion. The reconstruction time includes the time to
compute F7Zd and the time to run 60 iterations of
the linear solver.

time is clearly much more appealing for clinical applications
than the fastest CPU-based reconstruction, which completes
in 23 minutes.

The fastest single-GPU version of the advanced recon-
struction computes FZd in 59 seconds, compared to 22.5
minutes for the fastest CPU-based reconstruction. The re-
mainder of this section describes how the advanced recon-
struction leverages the GPU’s resources to achieve such im-
pressive acceleration when computing F#d. We find that
the constant memory caches are quite effective in reducing
the number of accesses to global memory, while the spe-
cial functional units provide substantial acceleration for the
trigonometric computations in the algorithm’s inner loops.
We also find that experimentally-tuned code transforma-
tions have a significant impact on the algorithm’s perfor-
mance. Specifically, the algorithm’s performance increases
by 20% when the tiling factor, the number of threads per

block, and the loop unrolling factor are experimentally tuned.

5.1 GPU.Base

As Figure 9 shows, GPU.Base is significantly slower than
CPU.SP, the optimized, single-precision, quad-core imple-
mentation of F¥d. In GPU.Base (see Figure 5(a)), the in-
ner loops are not unrolled. There are 256 threads per block
and 256 scan points per tile. Given these parameters, each
thread uses 13 registers. Therefore, up to 8192/13 = 630
threads can execute on each SM simultaneously, which rep-
resents 82% utilization of the G80’s thread contexts.

Because GPU.Base leverages neither the constant memory
nor the shared memory, memory bandwidth and latency are
significant performance bottlenecks. With one 4-byte global
memory accesses for every three FP operations, and with
memory bandwidth of 76.8 GB/s, the upper limit on the
kernel’s performance is only 57.6 GFLOPS. Due to other
performance bottlenecks, the kernel actually achieves only
7.0 GFLOPS;, less than half of the 16.8 GFLOPS achieved
by CPU.SP.

5.2 GPU.RegAlloc

Relative to GPU.Base, GPU.RegAlloc (see Figure 5(b))
decreases the time required to compute F¥d from 53.9 min-

o}
=}
|

r 600

53.9 |JTime -e-GFLOPS

| 475 495.2

a
=}

r 500

N
o
T
N
o
o

34.1
28.8

1 300
225 /
204 —H H 200

127.5 152.5
| 85.8 100
8o| |68 |70| |11.1 13.1/[%4/ 12 10 o3

Time (min)
w
o
|
GFLOPS

0 = T t t = 0
Q © 2 & RS N
N F S
& & Q\) Q@Q Qo’b & & Qo M)
[Q\} S \)Qo N [© &)
& & &

Figure 9: Performance of F¥d computation. The
first six configurations (CPU.DP - GPU.ConstMem)
compute the trigonometric functions in software, us-
ing approximately 13 and 12 FLOPS for the sin and
cos operations, respectively. The remaining config-
urations compute the trigonometric operations in
hardware; therefore, each sin or cos accounts for a
single FLOP.

utes to 34.1 minutes. In short, register allocating the voxel
data increases the computation intensity (the ratio of FP op-
erations to off-chip memory accesses) from 3:1 to 5:1. This
substantial reduction in required off-chip memory bandwidth
translates into increased performance. Eliminating the two
stores to global memory during every loop iteration is par-
ticularly beneficial.

5.3 GPU.Coalesce

On the Quadro, accesses to an aligned, continuous range
of global memory addresses are coalesced into a single access,
thereby conserving off-chip bandwidth. By changing the lay-
out of the scan data in global memory (see Figure 5(c)),
GPU.Coalesce enables memory coalescing, because the scan
data addresses accessed by each warp of SIMD threads are
always contiguous. Thus, GPU.Coalesce achieves an addi-
tional speedup of nearly 20% over GPU.RegAlloc. Never-
theless, GPU.Coalesce is still slower than CPU.SP.

54 GPU.ConstMem

GPU.ConstMem (Figure 5(d)) achieves speedup of 6.5X
over GPU.Coalesce by placing each tile’s scan data in con-
stant memory rather than global memory. GPU.ConstMem
therefore benefits from each SM’s 8 KB constant memory
cache. At 4.4 minutes and 85.8 GFLOPS, this version of
Fd is 5X faster than the optimized CPU version.

We now analyze the off-chip memory accesses on a single
SM during the execution of three thread blocks. With 7
global memory accesses per thread, 256 threads per thread
block, and 3 thread blocks per SM, there are 5,376 accesses
to global memory. Assuming no constant memory cache
evictions due to conflicts, there are also 1,280 accesses to
constant memory (256 data points per tile, with 5 floating-
point values per data element), yielding a total of 6,656 off-
chip memory accesses. The number of floating-point compu-
tations performed by the 3 thread blocks is 3*256*256*38 =
7,471,104. Thus, the ratio of FP operations to off-chip mem-

ory accesses has increased by over two orders of magnitude,
from 3:1 to 1100:1. However, GPU.ConstMem still achieves
only 85.8 GFLOPS (roughly 20% to 25% of the Quadro’s
peak theoretical throughput), which implies the existence of
another bottleneck.

5.5 GPU.FastTrig

GPU.FastTrig (Figure 5(e)) achieves acceleration of nearly
4X over GPU.ConstMem by using the special functional
units (SFUs) to compute each trigonometric operation as
a single operation in hardware. When compiled without
the use fast math compiler option, the algorithm uses im-
plementations of sin and cos provided by an NVIDIA math
library. Assuming that the library computes sin and cos us-
ing a five-element Taylor series, the trigonometric operations
require 13 and 12 floating-point operations, respectively. By
contrast, when compiled with the use_fast math option,
each sin or cos computation executes as a single floating-
point operation on an SFU. The SFU achieves low latency
at the expense of some accuracy. In our experiments (not
shown), the images reconstructed by GPU.FastTrig often
had lower percent error and higher PSNR than images recon-
structed by GPU.ConstMem. In one reconstruction, how-
ever, the approximate trigonometric operations introduced
significant additional error. Thus, while the SFU’s approx-
imate implementations of sin and cos often have negligible
impact on the reconstruction’s accuracy, further experimen-
tation is necessary to determine the conditions under which
these instructions may decrease the quality of a reconstruc-
tion.

5.6 GPU.Tune

While GPU.FastTrig overcomes the potential bottlenecks
related to off-chip memory accesses and trigonometric
computations, the algorithm still performs at only 127.5
GFLOPS, which is roughly one-third of the Quadro’s peak
theoretical performance. There are two culprits: instruction
mix and resource utilization. When the inner loop is not un-
rolled, the ratio of overhead instructions (such as memory
accesses, address calculations, and branches) to FP instruc-
tions is far too high. Unrolling the main loop decreases
the ratio of overhead-to-FP ratio. However, the per-thread
register usage also increases as the loop unrolling factor in-
creases. Because the number of threads that can execute
simultaneously is inversely proportional to the number of
registers per thread, the loop unrolling optimization must
carefully balance the competing goals of increasing the per-
centage of FP instructions and maintaining high utilization
of the G80’s cores [27, 28].

To determine the potential performance impact of
experiment-driven code transformations, we conducted an
exhaustive search that varied the number of threads per
block from 32 to 512 (by increments of 32), the tiling fac-
tor from 32 to 2,048 (by powers of 2), and the loop un-
rolling factor from 1 to 8 (inclusive). Recent work has
demonstrated that this type of experimental tuning can
be performed quickly and accurately using static analysis
techniques, as long as the code is parameterized correctly
[28]. For reference, all previous configurations (GPU.Base -
GPU.FastTrig) performed no loop unrolling and set both the
number of threads per block and the tiling factor to 256. The
exhaustive, experiment-driven search selects 320 threads per
block, a tiling factor of 2,048, and a loop unrolling factor of

5. This configuration increases the algorithm’s performance
by 20%, with the runtime decreasing to 59 seconds and the
throughput increasing to 152.5 GFLOPS.

5.7 GPU.Multi

In this final experiment, the voxels are divided into four
distinct subsets, with one of four Quadros computing F7d
for each subset. This optimization decreases the time re-
quired to compute F7d to 18 seconds and increases the
throughput to nearly 500 GFLOPS. The acceleration is
slightly sub-linear because the 3.5 second overhead required
to marshal the data represents 25% of the time required to
compute FEd for each subset of voxels. With F¥d’s run-
time reduced to just 18 seconds, Amdahl’s law is beginning
to assert itself.

6. RELATED WORK

General-purpose computing on graphics processing units
(often termed GPGPU or GPU computing) supports a broad
range of scientific and engineering applications, including
physical simulation, signal and image processing, database
management, and data mining [24]. Medical imaging was
one of the first GPU computing applications, with computed
tomography (CT) reconstruction achieving a speedup of two
orders of magnitude on the SGI RealityEngine in 1994 [5].
A wide variety of CT reconstruction algorithms have since
been accelerated on graphics processors [19, 40, 7, 20], and
the Cell Broadband Engine [3, 29]. In [20] the GPU is
used to accelerate Simultaneous Algebraic Reconstruction
Technique (SART), an algorithm that increases the quality
of image reconstruction relative to the conventional filtered
backprojection algorithm under certain conditions. SART,
which requires significantly more computation than back-
projection, becomes a viable clinical option when executed
on the GPU.

By contrast, MRI reconstruction on the GPU has not
been studied extensively. Research in this area has focused
on accelerating the fast Fourier transform (FFT), which is
a key component of many MRI reconstruction algorithms.
Speedups on the order of 2x-9x have been reported [35, 30,
16]. In [33], Sgrensen et al. use a GPU to accelerate a
gridding algorithm for MRI reconstruction, achieving a sub-
stantial speedup over the baseline implementation. Finally,
the acceleration of the advanced reconstruction algorithm
described in this paper builds on our earlier work with the
same algorithm [34].

7. CONCLUSIONS AND FUTURE WORK

In many applications, magnetic resonance imaging is lim-
ited by high noise levels, imaging artifacts, and long scan
times. Advanced image reconstruction, which can operate
on arbitrary scan trajectories and incorporate anatomical
constraints, can mitigate these limitations at the expense
of substantial computation. The computational resources,
architectural features, and programmability of the Quadro
FX 5600 reduce the time for an advanced reconstruction of
non-uniform MRI scan data from 23 minutes on a quad-
core CPU to less than 2 minutes, making the reconstruction
practical for many clinical applications.

The single-precision floating-point arithmetic and approx-
imate trigonometric operations that help accelerate the ad-
vanced reconstruction may also, under certain conditions,

degrade the quality of the reconstructed image. We view
further investigation of the advanced reconstruction algo-
rithm’s sensitivity to numerical approximations as impor-
tant future work.

8. ACKNOWLEDGMENTS

The authors wish to thank Keith Thulborn and Tan Atkin-
son of the Center for MR Research at the University of
Illinois at Chicago for assisting with an earlier version of
this paper and for providing the scan trajectory used in
some of our experiments. We acknowledge the support of
the Gigascale Systems Research Center, one of five research
centers funded under the Focus Center Research Program,
a Seminconductor Research Corporation program. This
material is based on work supported under two National
Science Foundation Graduate Research Fellowships (Sam
Stone, Justin Haldar). Any opinions, findings, conclusions,
or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the
NSF. Experiments were made possible by generous dona-
tions of hardware from NVIDIA and Intel and by NSF CNS
grant 05-51665. This work was supported in part by research
grants NIH-P41-EB03631-16 and NIH-R01-CA098717.

9. REFERENCES
[1] C. B. Ahn, J. H. Kim, and Z. H. Cho. High-speed

spiral-scan echo planar NMR imaging. IEEE Trans.
Med. Imag., 5(1):2-7, 1986.

[2] AMD Stream Processor.
http://ati.amd.com/products/
streamprocessor/index.html.

[3] O. Bockenbach, M. Knaup, and M. KachelrieB3.
Implementation of a cone-beam backprojection
algorithm on the Cell Broadband Engine processor. In
SPIE Medical Imaging 2007: Physics of Medical
Imaging, 2007.

[4] 1. Buck. Brook Specification v0.2, October 2003.

[5] B. Cabral, N. Cam, and J. Foran. Accelerated volume
rendering and tomographic reconstruction using
texture mapping hardware. In 1994 Symposium on
Volume Visualization, 1994.

[6] Cg. http://developer.nvidia.com/page/cg_main.html.

[7] K. Chidlow and T. Méller. Rapid emission
tomography reconstruction. In Int’l Workshop on
Volume Graphics, 2003.

[8] DirectX Developer Center.
http://www.msdn.com/directx/.

[9] J. Dongarra. Compressed Row Storage (CRS).
http://netlib.org/utk/papers/templates/node91.html.

[10] J. A. Fessler, S. Lee, V. T. Olafsson, H. R. Shi, and
D. C. Noll. Toeplitz-based iterative image
reconstruction for MRI with correction for magnetic
field inhomogeneity. IEEE Trans. Signal Process.,
53(9):3393-3402, 2005.

[11] J. A. Fessler and B. P. Sutton. Nonuniform fast
Fourier transforms using min-max interpolation. I[EEE
Trans. Signal Process., 51(2):560-574, 2003.

[12] J. Haldar, D. Hernando, S.-K. Song, and Z.-P. Liang.
Anatomically-constrained reconstruction from noisy
data. Magnetic Resonance in Medicine (in press).

[13] J. P. Haldar, D. Hernando, M. D. Budde, Q. Wang,
S.-K. Song, and Z.-P. Liang. High-resolution MR,

(16]

(17]

(18]

(28]

metabolic imaging. In Proc. IEEE EMBS, pages
4324-4326, 2007.

M. Hestenes and E. Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of
Research of the National Bureau of Standards,
49(6):409-436, 1952.

J. I. Jackson, C. H. Meyer, D. G. Nishimura, and

A. Macovski. Selection of a convolution function for
Fourier inversion using gridding. IEEE Trans. Med.
Imag., 10(3):473-478, 1991.

T. Jansen, B. von Rymon-Lipinski, N. Hanssen, and
E. Keeve. Fourier volume rendering on the GPU using
a split-stream FFT. 9th International Fall Workshop
on Vision, Modeling, and Visualization, 2004.

C. Koay, J. Sarlls, and E. Ozarslan. Three dimensional
analytical magnetic resonance imaging phantom in the
Fourier domain. Magn. Reson. Med., 58:430-436, 2007.
P. C. Lauterbur. Image formation by induced local
interactions: Examples employing nuclear magnetic
resonance. Nature, 242:190-191, 1973.

K. Mueller, F. Xu, and N. Neophytou. Why do
commodity graphics hardware boards (GPUs) work so
well for acceleration of computed tomography? In
SPIE Electronic Imaging 2007, Computational
Imaging V Keynote, 2007.

K. Mueller and R. Yagel. Rapid 3-D cone-beam
reconstruction with the simultaneous algebraic
reconstruction technique (SART) using 2-D texture
mapping hardware. IEEE Transactions on Medical
Imaging, 19(12):1227-1237, 2000.

J. Nickolls and I. Buck. NVIDIA CUDA software and
GPU parallel computing architecture. Microprocessor
Forum, May 2007.

NVIDIA Corporation. CUDA CUFFT Library,
version 1.1, 2007.

NVIDIA Corporation. NVIDIA CUDA Programming
Guide, version 1.1, 2007.

J. Owens, D. Luebke, N. Govindaraju, M. Harris,

J. Kriiger, A. Lefohn, and T. Purcell. A survey of
general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80-113, March 2007.
K. P. Pruessmann, M. Weiger, P. Bornert, and

P. Boesiger. Advances in sensitivity encoding with
arbitrary k-space trajectories. Magn. Res. Med.,
46(4):638-651, 2001.

S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone,

D. Kirk, and W. m.W. Hwu. Optimization principles
and application performance evaluation of a
multithreaded GPU using CUDA. In Symposium on
Principles and Practice of Parallel Programming
(PPOPP), 2008.

S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi,

S. Ueng, and W. Hwu. Program optimization study on
a 128-core GPU. First Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU),
2007.

S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S.-Z.
Ueng, J. Stratton, and W. m.W. Hwu. Optimization
space pruning for a multithreaded GPU. In
International Symposium on Code Generation and
Optimization (CGO), 2008.

[29] M. Sakamoto and M. Murase. Parallel implementation

(30]

(31]

(32]

33]

(34]

(35]

for 3-D CT image reconstruction on Cell Broadband
Engine. In International Conference on Multimedia
and Ezxpo, 2007.

T. Schiwietz, T. Chang, P. Speier, and

R. Westermann. MR image reconstruction using the
GPU. In SPIE Medical Imaging 2006, 2006.

H. Schomberg and J. Timmer. The gridding method
for image reconstruction by Fourier transformation.
IEEE Trans. Med. Imag., 14(3):596-607, 1995.

M. Segal and K. Akeley. The OpenGL Graphics
System: A Specification (Version 2.0). Silicon
Graphics, Inc., October 2004.

T. Sgrensen, T. Schaeffter, K. Noe, and M. Hansen.
Accelerating the non-equispaced fast Fourier
transform on commodity graphics hardware. IEEE
Transactions on Medical Imaging (in press).

S. Stone, H. Yi, J. Haldar, W. Hwu, B. Sutton, and
7. Liang. How GPUs can improve the quality of
magnetic resonance imaging. First Workshop on
General Purpose Processing on Graphics Processing
Units (GPGPU), 2007.

T. Sumanaweera and D. Liu. Medical image
reconstruction with the FFT. In M. Pharr, editor,
GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose
Computation, pages 765—784. Addison-Wesley, March
2005.

(36]

37]

(38]

B. P. Sutton, D. C. Noll, and J. A. Fessler. Fast,
iterative image reconstruction for MRI in the presence
of field inhomogeneities. IEEE Trans. Med. Imayg.,
22(2):178-188, 2003.

D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using
data parallelism to program GPUs for general-purpose
uses. In Int’l Conference on Architectural Support for
Programming Languagues and Operating Systems
(ASPLOS-XII), 2006.

P. Trancoso and M. Charalambous. Exploring
graphics processor performance for general purpose
applications. In Euromicro Symposium on Digital
System Design, Architectures, Methods, and Tools
(DSD 2005), 2005.

F. T. A. W. Wajer. Non-Cartesian MRI Scan Time
Reduction through Sparse Sampling. PhD thesis,
Technische Universiteit Delft, Delft, Netherlands,
2001.

X. Xue, A. Cheryauka, and D. Tubbs. Acceleration of
fluoro-CT reconstruction for a mobile C-Arm on GPU
and FPGA hardware: A simulation study. In SPIFE
Medical Imaging 2006, 2006.

