
16 This arTicle has been peer-reviewed. Computing in SCienCe & engineering

C o m p u t e r
A r c h i t e c t u r e

1521-9615/09/$25.00 © 2009 ieee

CopubliShed by the ieee CS and the aip

C omputational scientists have long
been interested in graphics process-
ing units (GPUs) due to their relative-
ly low cost per unit of floating-point

(FP) performance. Unlike conventional multi-
processors, a GPU’s processor cores are special-
ized for program behaviors common to graphics
shaders—thousands of independent threads, each
comprising only dozens or hundreds of instruc-
tions, performing few memory accesses and pro-
ducing a small number of output values.1 Recent
advances in hardware and programmability have
opened GPUs to a broader community of devel-
opers. GPUs’ throughput-optimized architec-
tural features can outstrip CPU performance on
numerical computational workloads, depending
on how well the workload matches the computa-
tional behavior for which the GPU is designed.

An important question for many developers is
whether they can map particular applications to
these new GPUs to achieve significant perfor-
mance increases over contemporary multicore

processors. In this article, we describe our find-
ings through an effort in mapping a wide variety
of numerical applications to the Nvidia GeForce
8800 GTX using its compute unified device ar-
chitecture (CUDA).

programming for Gpu performance
Each GeForce-8 Series GPU is effectively a large
set of processor cores with the ability to directly
address a global memory. This allows for a more
general and flexible programming model than
previous generations of GPUs, making it easier for
developers to implement data-parallel kernels of
numerical applications. CUDA and GeForce 8800
have specific microarchitectural features that ap-
peal to application developers—the CUDA pro-
gramming guide has a more complete description
(www.developer.nvidia.com/object/cuda.html).

threading model
In the CUDA programming model, the system
consists of a host that’s a traditional CPU and one
or more massively data-parallel coprocessing com-
pute devices. A CUDA program consists of mul-
tiple phases that are executed on either the host or
a compute device such as a GPU (Figure 1). The
program designates the phases that exhibit little
or no data parallelism in host (CPU) code and
compiles it with the host’s standard C compiler,

Graphics processing units (GPUs) can provide excellent speedups on some, but not all,
general-purpose workloads. Using a set of computational GPU kernels as examples, the
authors show how to adapt kernels to utilize the architectural features of a GeForce 8800
GPU and what finally limits the achievable performance.

Wen-Mei Hwu, Christopher Rodrigues, Shane Ryoo,
and John Stratton
University of Illinois, Urbana-Champaign

Compute Unified Device
Architecture Application Suitability

may/June 2009 17

which runs as an ordinary process. The phases
that exhibit rich data parallelism are implemented
in the device (GPU) code, which is written using
ANSI C extended with keywords for labeling data-
 parallel functions, called kernels, and associated
data structures. Host code uses a CUDA-specific
function-call syntax to invoke kernel code.

The runtime system executes kernels as batches
of parallel threads in a single-program, multiple-
 data (SPMD)2 programming style, in which
kernels specify all simultaneous threads. These
kernels typically comprise thousands to millions
of lightweight GPU threads per kernel invocation.
Creating enough threads to fully utilize the hard-
ware often requires a fine-grained decomposition
of work; for example, the kernel might compute
each result array’s element in a separate thread.

We can use dense matrix multiplication to il-
lustrate the CUDA threading model. In this ex-
ample, each thread calculates one product-matrix
element, which involves a dot product of a row of
the first input array and a column of the second
input array, shown as the kernel function matrix-
Mul() in Figure 2b. The kernel takes a pointer to
a row of the first input matrix A and a pointer to a
column of the second input matrix B, performs a
dot product, and writes the value into an element
of the output array C.

CUDA’s threads are organized into a two-level
hierarchy, at the highest of which all threads in a
data-parallel execution phase form a grid. Figure 1
shows an example of thread organization and calls
to two different kernel functions. Each call to a
kernel initiates a thread grid; the system normally
waits for all threads in the grid to complete before
it lets the next grid begin. Each grid consists of
many thread groupings, called thread blocks. All
blocks in a grid have the same number of threads,
with a maximum of 512. In Figure 1, the calls to
kernels 1 and 2 create grids, wherein each thread
block has 192 and 256 threads, respectively. Each
thread in a thread block has a unique ID in the
form of a three-dimensional (3D) coordinate, and
each block in a grid also has a unique two-dimen-
sional (2D) coordinate. Threads determine the
work that they must do and the data they’ll access
by inspecting their own thread and block IDs.

Threads in a thread block can also communi-
cate and barrier-synchronize with one another.
This coordination feature distinguishes CUDA’s
programming model from shader programming
of previous general-purpose computing on GPU
(GPGPU) models. Coordination is essential for
some parallel algorithms and many optimizations
that boost performance.3

Figure 2 shows a matrix multiplication ex-
ample that multiplies two 4,096 × 4,096 ele-
ment matrices. In this kernel, each thread block
comprises 256 threads organized into two di-
mensions of 16 threads in each dimension. Each
thread block calculates one 16 × 16 product ma-
trix’s submatrix. The kernel generates 256 × 256
thread blocks to cover the entire output matrix.
The thread and thread-block organization is set
in host code.

When host code invokes a kernel, it sets the
grid and thread-block dimensions by passing
them as parameters. Figure 2a shows two declared
structures of type dim3: the first defines the con-
figuration of blocks as 16 × 16 groups of threads
in our example. The second is for the grid, which
consists of 256 × 256 blocks. The final line of code
invokes the kernel (see Figure 2b). Each thread
calculates the starting positions in the input ma-
trices based on its unique block and thread coor-

Ti
m

e

DeviceHost

call
kernel 1

call
kernel 2

Grid
Block 0 Block 1 Block 2 Thread 191

...

Thread 2
Thread 1

Thread 0

Thread 191

Thread 2
Thread 1

Thread 0

Thread 191

Thread 2
Thread 1

Thread 0

Grid
Block 0 Block 1 Block 2 Thread 255

...

Thread 2
Thread 1

Thread 0

Thread 255

Thread 2
Thread 1

Thread 0

Thread 255

Thread 2
Thread 1

Thread 0

Figure 1. Compute unified device architecture (CUDA) threading
structure. Threads are the fundamental units of parallel execution in
CUDA. Each call to a CUDA kernel function creates a grid, which is a
two-level hierarchy of threads. The hardware maintains thread IDs so
that threads can manage themselves in aspects such as what part of
the data structure to process.

18 Computing in SCienCe & engineering

dinates. It then iterates through a loop to calculate
the result and finally stores it to memory.

The way the runtime system instantiates a
CUDA kernel as SPMD threads with unique IDs
is similar to the way a parallel loop executes in
other languages, such as a parallel for loop in
OpenMP.4 Whereas OpenMP lets all threads ac-
cess a single shared memory, CUDA exposes the
multiple memory spaces of a GPU’s memory sys-
tem. The host, which has a separate memory from
the device’s, uses API calls to allocate memory on
the GPU and transfer data between memories.
Different memory spaces on the device are also
separate from one another. The developer bears
the responsibility of selecting the appropriate
data placement and layout for a given application,
which requires knowledge of each memory’s char-
acteristics, as we’ll explain later.

Other programming languages that support
GPGPUs include Brook5 and Accelerator.6 Simi-
lar to CUDA, Brook requires the developer to di-
vide the program into kernels and manage GPU
resources. A Brook application performs data-
parallel operations by calling a kernel function
on one or more streams, which are collections of
values that can be distributed to or collected from
parallel computations. A Brook programmer can
use streams in data-parallel reductions, scatter
operations (indexed writes), or gather operations
(indexed reads). Unlike CUDA thread blocks, the
Brook programming model doesn’t permit syn-
chronization or communication between kernel
iterations processing separate stream elements.
Accelerator provides high-level data-parallel array
operations through a library in the C# program-
ming language. The accelerator runtime system
dynamically and transparently compiles array op-
eration sequences to GPU kernels, which doesn’t
expose any aspect of the GPU to the developer.
Both Brook and Accelerator limit the size and
complexity of GPU code due to their underlying
graphics’ API-based implementations.

microarchitectural Support
for parallel execution
The GeForce 8800 is a multiprocessor that’s heav-
ily specialized for graphics processing. Figure 3
depicts GeForce 8800’s microarchitecture, which
consists of 16 streaming multiprocessors (SMs),
each containing eight streaming processors (SPs),
or processor cores, running at 1.35 GHz. Cores in
an SM execute instructions in single- instruction,
multiple-data (SIMD) fashion, with the SM’s
instruction unit broadcasting the current in-
struction to the cores. Each core has one 32-bit,
single-precision FP multiply-add arithmetic unit
that can also perform 32-bit integer arithmetic.
Additionally, each SM has two super functional
units (SFUs) that execute more complex FP op-
erations such as trigonometry functions with high
throughput. The arithmetic units and the SFUs
are fully pipelined, yielding 388.8 Gflops of peak
theoretical performance for the GPU.

The GeForce 8800’s unit of SIMD execution
is a warp of 32 parallel threads. The CUDA run-
time system forms warps from contiguous groups
of threads in a thread block: the first 32 threads
form the first warp, and so on. Although CUDA
code doesn’t explicitly declare warps, knowledge
of them can enable useful code and data optimiza-
tions on the GeForce 8800. The hardware selects
and executes one warp at a time. When threads
within a warp take different control-flow paths (a

(a)

float * gpu_A, float * gpu_B, float * gpu_C;

// allocate GPU input and output matrices
cudaMalloc((void**) &gpu_A, mem_sizeA);
cudaMalloc((void**) &gpu_B, mem_sizeB);
cudaMalloc((void**) &gpu_C, mem_sizeC);

// copy input matrices from host to device
cudaMemcpy{gpu_A, host_A, mem_size_A,
 cudaMemcpyHostToDevice);
cudaMemcpy{gpu_B, host_B, mem_size_B,
 cudaMemcpyHostToDevice));

// set up execution parameters
dim3 blocks(16, 16);
dim3 grid(256, 256);

// execute the kernel
matrixMul<<< grid, blocks >>>(gpu_C, gpu_A, gpu_B);

(b)

global void
matrixMul(float* C, float* A, float* B)
{
 // Calculate index of the first element of A
 int indexA = 16 * blockIdx.y + threadIdx.y;
 ...

 // Initialize the result to 0
 float Csub = 0;

 for (i = 0; i < widthA; i++)
 {
 Ctemp += A[indexA] * B[indexB];
 indexA++;
 indexB += widthB;
 }
 C[c} = Csub;
}

Figure 2. Matrix multiplication example. (a) The host code sets up
and executes the kernel, and (b) the kernel code shows the workings
of a kernel function and how it can be invoked with a particular
thread configuration.

may/June 2009 19

situation known as branch divergence), the hard-
ware executes multiple passes through the code
with thread suppression on divergent paths to
complete execution. Execution is slowed as much
as if each thread had executed all control-flow
paths involved. This effect makes kernels with a
large number of data-dependent control flows un-
suitable for the GPU.

The GPU generates SIMD execution from
threads “on the fly,” saving programmers the
effort of manually restructuring control flow
and data into SIMD form. This works well for
graphics shaders and many data-parallel kernels
in which all threads execute the same instruction
sequences. In contrast, programmers must fore-
cast control flow within a SIMD execution unit
as predication for multicore architectures such
as Larrabee.7 The AMD/ATI runtime system
transparently compiles shaders or Brook compute
kernels to predicated SIMD code for AMD’s Fire-
Stream.8 The availability of SIMD scatter-gather
memory operations and predication in AMD
GPUs makes explicit SIMD nearly equivalent to
CUDA’s warp-based execution; the latter’s main
advantage is programming convenience.

An SM can perform zero-overhead schedul-
ing to interleave warps and hide the latency of

long-latency arithmetic and memory operations.
When one warp stalls, the SM can instantly
switch to a ready warp resident in the SM—the
SM stalls only if no warps with ready operands
are available. Scheduling freedom is high in
many applications because threads in different
warps are independent with the exception of ex-
plicit barrier synchronizations among threads
in the same thread block. This lets the GPU
maintain highly parallel execution using a small
amount of chip area, in contrast to area-hungry
speedup methods such as large caches or out-of-
order execution.

Each SM supports a maximum of 768 simulta-
neously active thread contexts. The CUDA run-
time assigns an integral number of up to eight
thread blocks to an SM at any time to fill these
thread contexts. When assigning a thread block
to an SM, the CUDA runtime system automati-
cally allocates the necessary amount of several
hardware resources including thread contexts,
shared memory, and registers. When optimizing
device code, developers need to be aware of how
these limits affect the number of parallel threads
that can run on the device. Some conventional
code optimizations might have negative effects in
some cases because small increases in resource us-

Shared memory
16 Kbytes per SM, read/write
Latency: same as register access

A local scratchpad memory shared
among threads in a thread block, used
for temporary shared data storage. Data
are organized into 16 banks. Simultane-
ous accesses to different addresses in the
same bank cause a stall. To avoid delays,
data should be laid out so the simultane-
ous accesses operate on seperate banks.

Register file
8,192 registers, dynamically partitioned
among the SM’s threads.

Constant memory
64 Kbytes with 8-Kbyte cache, read-only
Hit latency: same as register access

Cacheable memory often used for lookup
tables. To avoid delays, simultaneous
requests within an SM must be to the
same address.

Texture memory
Large, with 16-Kbyte cache, read-only
Hit latency: > 100 cycles

Holds 1D and 2D arrays with less limitation on
capacity and access patterns than other
memories. Total capacity is limited by
available global memory. The cache capitalizes
on 2D access locality and can perform
interpolation, both of which are useful for
some tasks.

Global memory
768 Mbytes, read/write
Latency: 200-300 cycles

A large, pointer-addressible memory that’s
used more efficiently when multiple threads
simultaneously access contiguous elements
of memory, enabling the hardware to coalesce
memory accesses to the same DRAM page.

Local memory
Private memory allocated to each thread. It
has the same properties as global memory.

SM

Texture cache

Shared memory

Register file

Constant cache

SM

Processors

GeForce 8800

Off-chip DRAM
(global, local, constant,
and texture memory)

Figure 3. Processor organization and memory characteristics of the GeForce 8800. Code executing on a processor can access
several memory spaces. Memories sited physically close to a processor (left column) are smaller and faster than more distant
memories (right column).

20 Computing in SCienCe & engineering

age can cause fewer thread blocks, and thus many
fewer threads, to simultaneously execute.

Since the introduction of the GeForce 8800,
other vendors have introduced similar architec-
tures that combine graphics and general- purpose
workloads. Like the GeForce 8800, AMD’s
FireStream8 is a GPU with specialized memory
systems and SIMD hardware. FireStream has
scatter-gather operations, but it doesn’t support
pointers or have an equivalent to thread blocks.
Currently, developers can choose between a high-
level stream programming language, Brook, or a
low-level assembly-like language, CAL (compute
abstraction layer). FireStream and the more re-
cent Nvidia Tesla GPUs support double-precision
FP. The proposed Larrabee8 graphics processor
adheres to a multicore design philosophy and con-
sists of single-threaded, in-order x86 cores with
16-wide SIMD units. The cores maintain shared-
memory coherence through a ring network that
connects their L2 caches. The hardware doesn’t
utilize multithreading to tolerate latency but
provides explicit cache-control instructions that
programmers can use to avoid waiting for antici-
patable memory accesses.

memory Spaces
Figure 3 describes the device’s accessible memo-
ries. The developer can place data in global, shared,

local, constant, or texture memory. The GPU’s
memories are specialized and have different access
times and throughput limitations. Some memo-
ries furnish fast access only for limited patterns
of memory references. Consequently, developers
must use their understanding of the memory sys-
tem to structure both data and kernel code for high
performance. The layout of key data structures of-
ten determines kernel performance.

Global memory is a large, long-latency memory
that exists physically as off-chip dynamic RAM
(DRAM); it serves the same purpose as main
memory in a chip multiprocessor. The developer
must write a kernel’s output to global memory to
be readable after the kernel terminates. To avoid
wasting hundreds of cycles while a thread waits
for a long-latency global-memory load or store
to complete, a common technique is to execute
batches of global accesses, one per thread, exploit-
ing the hardware’s warp scheduling to overlap the
threads’ access latencies. Global-memory band-
width is very high at 86.4 Gbyte/sec, but memory
bandwidth can saturate if many threads request
access within a short period of time. In addition,
the system can sustain this bandwidth only when
warps access contiguous 16-word lines; in other
cases, the achievable bandwidth is a fraction of the
maximum. Code transformations to coalesce ac-
cesses into 16-word lines and reuse data are gener-
ally necessary to achieve good performance. If a
developer doesn’t know a kernel’s memory- access
pattern in advance, it’s typically not possible to
overlap latencies or form contiguous accesses,
which results in painfully slow access times to
global memory.

Constant memory is specialized for situations in
which many threads will read the same data simul-
taneously. A value read from the constant cache
is broadcast to all threads in a warp, effectively
serving 32 loads from memory with a single-cache
access. This enables a fast, single-ported cache to
feed multiple simultaneous memory accesses, as il-
lustrated schematically in Figure 4. Recall that all
threads in a warp execute the same instruction at
any point in time. When all load-instruction in-
stances access the same constant-memory location,
the value at the location is broadcast to all threads,
as shown by the horizontal arrows crossing the
threads in a warp (see Figure 4). The GPU’s tight-
ly coupled cores let constant memory effectively
multiply the GPU’s memory bandwidth by 32,
compared to a regular multiprocessor. The most
dramatic performance gains we observed were in
kernels that could take advantage of this effect.

Two magnetic resonance imaging (MRI)

Ti
m

e

O
ff-

ch
ip

 m
em

or
y

MISS

C
on

st
an

t
ca

ch
e

MISS

Warp 0
(threads 0–31)

Warp 1
(threads 32–63)

M
em

or
y

tr
af

�c
 t

o
co

ns
ta

nt
ca

ch
e

M
em

or
y

tr
af

�c
 t

o
of

f-
ch

ip
m

em
or

y

Figure 4. Constant memory. A fast, single-ported cache can feed
many loads (gold arrowheads) with few cache accesses (gold arrows).

may/June 2009 21

benchmarks, abbreviated MRI-Q and MRI-FHD,
demonstrate the use of constant memory. The raw
digital data that an MRI scanner produces consists
of many sample measurements in the frequency do-
main, which must be transformed into the spatial
domain to produce an image. Fast algorithms such
as the fast Fourier transform (FFT) are applicable,
but advanced iterative algorithms can significantly
increase the signal-to-noise ratio and decrease the
artifacts in the reconstructed image. When us-
ing the advanced iterative algorithm described in
another study,9 computing the vector FHD is the
most time-consuming step in the reconstruction.
The FHD kernel transforms each sample into the
spatial domain and sums the results for each coor-
dinate


x in a Cartesian lattice, where each point

corresponds to a pixel in the reconstructed image.
The pseudocode for FHD is as follows:

for each coordinate

x in lattice, do

 a ← 0
 for each


k,φ() in samples, do

 {Add the contribution of

k

 to the signal at

x }

a a e

i
← +

⋅()φ
π

*
 
k x

fhd a

x

 ←

To map this pseudocode to CUDA, the developer
assigns each outer loop’s iteration to a separate
thread. The kernel function contains the inner
loop. The key indicator that constant memory
suits this code is that all threads in the inner loop
traverse the same sample data. As the kernel ex-
ecutes, the warp’s threads will simultaneously load
the same


k and φ values from constant memory.

Hardware detects that the addresses are equal and
performs a single-cache access for all loads.

In vectorized code on a CPU, loading a sca-
lar value from cache into all elements of a vector
register achieves the effect of a constant-memory
load. Using SSE (streaming SIMD extensions),
the developer does this with a load instruction fol-
lowed by a shuffle instruction. As we show later,
GPU kernels relying on constant memory can
outperform CPU code using SSE. This is largely
due to the fact that SSE only exploits four-way
SIMD parallelism per CPU core, whereas an en-
tire GeForce 8800 is 128-wide.

Texture memory holds 1D- or 2D-array data
and takes advantage of 2D access locality. Unlike
other memories, its performance doesn’t suffer
under irregular, random-access patterns, but its
access latency is quite long. A good example of

texture memory’s use is in the motion estimation
stage of an H.264 video encoder. The H.264 ker-
nel that we evaluated accelerates a full-search mo-
tion estimation algorithm. The kernel compares
small 4 × 4 pixel blocks from a reference video
frame to blocks from a frame that the kernel is
encoding. Each comparison generates a value in-
dicating how similar the blocks are; a later scan
of these values selects the best match. Thread
blocks group together threads that inspect the
same block of the current frame.

Using texture memory to hold the reference
frame, the kernel takes advantage of locality and
hardware support for boundary-value calcula-
tion that software would otherwise need to per-
form. However, the latency of texture memory
is exposed to the kernel. The fastest kernel from
H.264 that we’ve developed spends 20 percent
of its time waiting for texture memory. Even
so, the use of texture memory improves kernel
performance by 2.8 times over storing the refer-
ence frame in global memory. Because texture
memory’s latency often impacts performance, it’s
usually the fallback when an algorithm’s memory
behavior strongly matches the hardware capabili-
ties of the texture memory.

An SM’s shared memory is useful for data
that multiple threads in a thread block can share
and reuse to eliminate redundant accesses to the
global memory. Its contents only exist during
thread-block execution and are discarded when
the thread block completes. Kernels that read or
write a known range of global memory with spa-
tial or temporal locality can employ shared mem-
ory as a software-managed cache. Such caching
potentially reduces global-memory bandwidth
demands and improves performance.

Figure 5 shows an example of a tiled matrix-
multiplication kernel. Unlike the original code
shown earlier, threads in a 16 × 16 thread block
cooperatively load two input tiles into shared
memory. This amortizes the cost of global-mem-
ory access because each thread performs 1/16 the
number of global loads. Threads calculate a partial
dot product with the values in the tiles and repeat
the process. Barrier synchronization ensures that
the threads use and discard correct values when
appropriate. Because the kernel performs tile
loading separately from the subsequent compu-
tation, global-memory loads can be reorganized
to achieve coalescing by having a half-warp’s 16
threads load a row of 16 matrix elements.

Applications
As with other parallel computers, a parallel al-

22 Computing in SCienCe & engineering

gorithm’s characteristics can significantly affect
the GeForce 8800’s performance. The algorithm
should be decomposable into many independent
threads, and to accommodate the GPU’s SIMD-
like execution behavior, the computational work
should be nearly uniform across all threads. The
algorithm should have a high ratio of computa-
tion to global-memory accesses, keeping itself
busy with many arithmetic operations for each
element of data that it consumes. Table 1 lists
a group of applications that pass this first set of
criteria, showing the breadth of scientific and
engineering problems that can take advantage of
parallel processing.

Our application selection is biased toward class-
es of problems such as linear algebra—Mat Mul
and Saxpy—and stencil- and grid-based compu-
tations—the lattice Boltzmann method (LBM),
MRI-Q, MRI-FHD, and the Coulombic Poten-
tial (CP)—that operate on data structures with
very simple array layouts. Predictable, uniform
array accesses conform much more easily to the
necessary access patterns to utilize the GPU’s
hardware. Although the hardware permits random
access reads and writes, kernels that extensively

use random access to memory other than texture
are unlikely to muster improvement over an op-
timized CPU version. Our selection also satisfies
the requirement for SIMD-like execution. Kernel
code ranges from 31 to 280 lines of code per appli-
cation. Applications range from a few hundred to
a few thousand lines of code (excluding comments
and white space). H.264 is an outlier with roughly
35,000 lines of code.

We executed applications on a base system con-
sisting of an Intel Core2 Extreme Quad running
at 2.66 GHz with 4 Gbytes of main memory. For
all applications except H.264, the unparallelized
kernel code occupies the majority of the execu-
tion time; for H.264, it occupies 35 percent. Ker-
nel speedup depends on CPU-only execution. We
measure the CPU execution time of matrix multi-
plication using the Intel Math Kernel Library 8.0,
which is multithreaded. CP, MRI-Q, and MRI-
FHD were vectorized with SSE, and MRI-Q and
MRI-FHD were additionally parallelized on four
CPU cores. For the remaining applications, CPU
times represent single-threaded C code. Speedup
isn’t directly comparable between kernels because
of the different degrees of CPU parallelism.

To help explain kernel speedup, we state the
ratio of global-memory access time to computa-
tion time to indicate approximately how memory
intensive an application is. We compute the ratio
from the lower bounds on memory-access time,
assuming peak bandwidth, and on computation
time, assuming no execution stalls. We also state
the architectural bottlenecks that appear to limit
the implementation from achieving a higher per-
formance. The current generation of CUDA pro-
filing tools can count undesirable events such as
uncoalesced global loads, but individual contribu-
tions to a kernel’s execution time can’t be directly
measured. We’ve found it useful to identify bot-
tlenecks by comparing different implementations
of the same kernel. If performance is insensitive to
changes in the number of global-memory access-
es, for example, then global access latency isn’t a
bottleneck. This general strategy provides the de-
tailed insight into performances explained later.

Some performance differences are due to the
GPU’s hardware support for specific opera-
tions. In the MRI applications, for instance, a
substantial number of executed operations are
trigonometry functions. The GPU’s hard-
ware trigonometric operations are faster than
even CPU fast math libraries, which accounts
for approximately 30 percent of the speedup.
Hardware trigonometry operations also speed
up the Rys polynomial equation solver (RPES)

Csub = 0;
for (...) {
 //Allocate arrays for tiles
 _shared_float AS[16][16];
 _shared_float BS[16][16];

 // Cooperatively load two import
 // tiles into shared memory
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16; * widthB;

 // Synchronous to ensure safety
 _syncthreads();

 // Calculate partial dot product
 for (i = 0; i < 16; 1++)
 {
 Csub += As[ty][i]
 * Bs[i][tx];
 }
 // Synchronize again before
 // loading new tiles
 _syncthreads();
}
C[c] = Csub;

Figure 5. Tiled matrix-multiplication kernel. It
shared memory to reduce redundant global-
memory accesses made by multiple threads to
reduce global-memory bandwidth demands and
improve performance.

may/June 2009 23

and CP. A different compute resource, the tex-
ture unit’s built-in clamping and interpolation,
speeds up H.264.

When a kernel attains sufficient throughput
in the GPU’s memory system and enough si-
multaneously executing threads to hide memo-
ry-access latency, the kernel’s execution rate is
limited only by the maximum rate at which an
SM can issue instructions. This situation maxi-
mizes the time that the GPU spends perform-
ing useful computation and is the most desired
outcome. Matrix multiply, MRI-Q, MRI-
FHD, and CP are in this category. They satisfy
most memory accesses using shared or constant
memory in ways that don’t cause stalls.

Every thread in CP, MRI-Q, and MRI-
FHD reads the same sequence of memory ad-
dresses within the primary data-parallel loop.
Placing the data in constant memory exploits
the hardware’s ability to service many accesses
to the same address with a single-cache access,
as described earlier in the section on memory
spaces. These kernels are able to run without
waiting for memory accesses.

Matrix multiplication exploits tiling to
achieve high memory throughput. This ker-
nel has regular access patterns to its input data
and uses the data repeatedly. The input arrays
are decomposed into tiles, which are explicitly
copied into shared memory as needed. Once

table 1. Application suites.

Kernel Description Global-memory-
to-computation-
time ratio

Architectural bottlenecks Kernel speedup
on Gpu

Mat Mul Multiplication of two 4k × 4k dense
matrices.

0.016 Instruction issue 9.3×

H.264 Modified version of the 464.h264ref
benchmark from SPEC CPU2006 is an
H.264 (MPEG-4 AVC) video encoder;
the kernel computes SADs (sums of
absolute differences) for full search
motion estimation.

0.006 Register file capacity and
cache latencies

12.23×

LBM Modified version of the 470.lbm
benchmark from SPEC CPU2006 that
uses the lattice Boltzmann method
for simulating 3D fluid dynamics; the
program has been changed to use
single-precision floating point (FP).

0.066 Shared-memory capacity 30.6×

RPES Rys polynomial equation solver;
calculates two-electron repulsion
integrals, which are a subproblem of
molecular dynamics.

0.01 Instruction issue 205×

PNS Petri net simulation; distributed system’s
mathematical representation simulation.

0.241 Global-memory latency and
branch divergence

26.8×

Saxpy Single-precision FP implementation of
Saxpy from high-performance Linpack;
used as part of a Gaussian elimination
routine.

0.375 Global-memory bandwidth 13.5×

MRI-Q Computation of a matrix Q,
representing the scanner configuration;
used in a 3D magnetic resonance image
reconstruction algorithm in non-
Cartesian space.

0.008 Instruction issue 31.2×

MRIFHD Computation of an image-specific
matrix FHD; used in a 3D magnetic
resonance image reconstruction
algorithm in non-Cartesian space.

0.006 Instruction issue 11×

CP Computation of electric potential in a
volume containing point charges; based
on direct Coulomb summation.10

0.0005 Instruction issue 64×

24 Computing in SCienCe & engineering

copied, the data is accessible with single-cycle
access time. The tile size must be a multiple of
16 to achieve global-memory coalescing. With
a 16 × 16 block size from each input matrix,
each value is reused from shared memory 16
times, which is enough to shift the bottleneck
from global-memory bandwidth to instruction
issue. We use a 16 × 16 tile from one matrix,
employing register tiling11 to distribute addi-
tional computation among threads to further re-
duce the instruction count.

The main computational kernel of RPES is the
most FP intensive out of all our applications. Its
main loop performs eight table lookups from tex-
ture memory followed by 37 to 105 FP operations
(some are conditionally executed). Fifteen per-
cent of its execution time is spent reading from
texture memory. Although the GPU’s memory
system doesn’t feed this kernel as efficiently as it
does the previously mentioned kernels, this ker-
nel is issue-limited due to the great quantity of
FP computation.

RPES’s irregular memory-access pattern is a
consequence of how it was adapted to CUDA’s
thread-block and grid structure. RPES com-
putes two-electron repulsion integrals, used to
characterize the properties of atomic bonds from
first principles. Electron distributions are repre-
sented as linear combinations of basis functions.
A contribution to the electron repulsion integral
is computed for every combination of four basis
functions, giving the algorithm O(n4) complexity.
On the CPU, this computation is performed in
eight nested loops: the outer four loops traverse
electron shells, and the inner four traverse basis
functions. The number of basis functions varies
for different electron shells; consequently, the
inner loops have varying trip counts, and there’s
no simple way to map CUDA thread IDs to
CPU loop iterations. To distribute computation
to GPU threads, our implementation computes
an assignment of work to thread blocks prior to
launching the GPU kernel. An array holds the at-
oms’ and electron shells’ indices that each thread
block should process. Within a thread block, each
thread uses these indices and its own ID to fetch
and process a single set of basis functions. The fi-
nal distribution of computation has little in com-
mon with the distribution of data that it accesses,
resulting in an irregular memory-access pattern.
Texture memory accommodates these irregular
accesses with significant but acceptable latency.

Capacity-limited kernels are based on algo-
rithms that can mitigate the impact of memory-
access latency or bandwidth through hardware- or

software-managed caching but would require a
larger shared memory or cache to eliminate it.
H.264 uses register tiling to reduce the number
of texture accesses by half. The size of the regis-
ter file constrains the extent of register tiling, and
the developer has to experimentally determine an
acceptable tile size. At larger tile sizes, an SM is
occupied by threads that are individually more ef-
ficient but fewer in number, trading a reduction in
texture accesses for an increase in the amount of
time per access that’s not covered by useful work
from other threads.

LBM is a time-stepped stencil simulation that’s
computation-bound on a CPU, but bandwidth-
bound on a GPU due to shared-memory capacity
limitations. The simulation uses a 3D lattice of
cells, each storing 19 data elements representing
fluid flow through the cell. We transformed the
original array of structures to 19 arrays to meet
the requirements of global-memory coalescing.
The stencil for LBM is the pattern of 18 neighbors
of any given cell (six sharing a face and 12 sharing
an edge with the cell) that the algorithm uses to
compute the cell’s new fluid flow at each time step.
The kernel reads the entire simulation lattice from
global memory and writes back the updated lattice
in each time step. This data transfer saturates the
GPU’s global-memory bandwidth.

A well-known multiprocessor technique for re-
ducing communication in stencil computations
is to compute multiple time steps of a sublattice
using a private data area (GPU shared memory)
before writing the results back to main memory
(GPU global memory). However, each additional
time step computed locally requires that a larger
ghost area of the lattice be saved in shared mem-
ory. For this optimization to save bandwidth, the
size of the ghost area must be small compared to
the size of the sublattice. The largest sublattice
that shared memory can hold for LBM is a cube
of 43 cells with a cell envelope (144 ghost cells, ex-
cluding eight corner cells that aren’t needed); the
envelope is more than twice the size of the sublat-
tice, nullifying any potential bandwidth savings.

Bandwidth-limited kernels such as Saxpy over-
whelm the memory system’s ability to supply data
because they don’t reuse data. Saxpy uses each
input value only once, and performs only one
FP multiply-accumulate operation for every two
memory accesses. Adjacent threads access adja-
cent data values, enabling the kernel to exploit
spatial locality.

Memory latency can also limit kernels. An ex-
ample would be a kernel that relies heavily on
pointer chasing or indirect array access to data

may/June 2009 25

stored in global memory. Because such a kernel is
unlikely to outperform a CPU, we avoided select-
ing applications with data-dependent memory-
access patterns.

The main computational kernel of our Petri net
simulation (PNS) algorithm is large and complex,
making it harder to pinpoint a single bottleneck.
A PNS is a Monte Carlo simulation of a Petri net.
Each thread block runs an independent simula-
tion with a different random number generator
seed. The number of thread blocks is limited by
the amount of simulation state that can be stored
in global memory. The random number genera-
tor has a fixed degree of concurrency that deter-
mines the number of threads per block. Together,
these two limits cap the amount of thread-level
parallelism in the kernel. Limited thread paral-
lelism exposes some of the latency of updating
the simulation state in global memory. Besides
suffering from limited concurrency, execution is
also slowed down as threads within a block take
different control-flow paths, some of which are
data-dependent. Frequent explicit barrier syn-
chronization between threads of a single block
along with high memory-to-computation-cycle
ratios can also degrade PNS kernel performance.

Application optimization
In general, we obtained significant kernel and
application speedup across our suite (see Table
1). Compute-intensive kernels with relatively
few global-memory accesses achieve very high
performance. Even kernels that don’t have high
compute- to-global-memory access ratios still
achieve respectable performance increases be-
cause of the GeForce 8800’s ability to run a large
number of threads simultaneously. However, the
performance shown in the table was generally
obtained after a significant amount of hand tun-
ing. We’ve already mentioned some of the mem-
ory optimizations that improve performance—we
discuss several others here.

The distribution of computation threads is gen-
erally decided in the initial phases of program
optimization, but it has long-reaching effects.
Thread granularities might be too small to take
advantage of data reuse or too large to fit many
threads onto the hardware simultaneously. Loop
interchange—changing how loops nest—is a use-
ful strategy prior to distributing work because
it can alter the threads’ data-access patterns and
enable better memory usage; MRI kernels are a
prime example of this. Although in the optimized
CPU code, the outer loop traverses sample values,
in the GPU kernel, the loops are interchanged so

that the inner loop traverses sample values, allow-
ing them to be placed in constant memory.

Loop unrolling and other classic compiler
optimizations such as those found in Kennedy
and Allen’s work12 can have unexpected results,
but, in general, local optimizations on the most
frequently executed parts of the code have ben-
eficial effects. These optimizations directly tar-
get the instruction-issue bottleneck by reducing
the number of executed operations or through
strength reduction. In H.264 and matrix multi-
plication, complete unrolling of the innermost
loop obtains significant performance increase, as
does register tiling.11

When attempted optimizations have nega-
tive effects, the most common cause is that they
increase the number of registers per thread as a
side effect, forcing the GeForce 8800 to schedule
fewer thread blocks per SM and thus degrading
performance. The cases where this is most of-
ten seen are common-subexpression elimination
and redundant-load elimination. Even relatively
simple instruction scheduling by CUDA’s run-
time can change the live ranges of variables and
increase register usage. Researchers have investi-
gated register-pressure-sensitive code-scheduling
algorithms and optimization strategies in the
context of instruction-level parallelism- extracting
compilers; additional research is necessary to ap-
ply these strategies to massively threaded envi-
ronments such as CUDA.

G PUs have been available for more
than a decade but only recently have
they had a programming model and
architecture that opens them up as

more general computing platforms. We’ve shown
that a variety of kernels achieve significant speed-
ups on a system equipped with a GPU. However,
the optimization process requires strong knowl-
edge of both application and architecture and still
requires major time and effort to achieve near-
peak performance. We and other researchers are
working on better techniques, tools, and compil-
ers to make mapping applications to these systems
easier in the future.

references
J. Owens, 1. GPU Gems 2, Addison-Wesley, 2005, pp. 457–470.

M.J. Atallah, ed., 2. Algorithms and Theory of Computation
Handbook, CRC Press, 1998.

S. Ryoo et al., “Optimization Principles and Application Per-3.
formance Evaluation of a Multithreaded GPU Using CUDA,”
Proc. 13th ACM SIGPLAN Symp. Principles and Practice of Paral-
lel Programming, ACM Press, 2008, pp. 73–82.

26 Computing in SCienCe & engineering

OpenMP Architecture Rev. Board, “OpenMP Application Pro-4.
gram Interface,” May 2005; www.openmp.org/mp-documents/
spec25.pdf.

I. Buck et al., “Brook for GPUs: Stream Computing on 5.
Graphics Hardware,” ACM SIGGRAPH 2004 Papers, ACM
Press, 2004, pp. 777–786.

D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using Data 6.
Parallelism to Program GPUs for General Purpose Uses,” Proc.
12th Int'l Conf. Architectural Support for Programming Languag-
es and Operating Systems, ACM Press, 2006, pp. 325–335.

L. Seiler et al., “Larrabee: A Many-Core x86 Architecture for Vi sual 7.
Computing,” ACM Trans. Graphics, vol. 27, Aug. 2008, pp. 1–1 5.

AMD, 8. R600-Family Instruction Set Architecture, tech. rep.,
Advanced Micro Devices, May 2007.

S.S. Stone et al. “Accelerating Advanced MRI Reconstruc-9.
tion using GPUs,” ACM Computing Frontiers Conf. 2008, ACM
Press, 2008, pp. 251–260.

J.E. Stone et al., “Accelerating Molecular Modeling Applica-10.
tions with Graphics Processors,” J. Computational Chemistry,
vol. 28, Dec. 2007, pp. 2618–2640.

D. Callahan, S. Carr, and K. Kennedy, “Improving Register 11.
Allocation for Subscripted Variables,” ACM SIGPLAN Notices,
vol. 9, no. 4, 2004, pp. 328–342.

K. Kennedy and J.R. Allen, 12. Optimizing Compilers for Modern
Architectures: A Dependence-Based Approach, Morgan Kauf-
mann, 2002.

wen-Mei hwu is a professor and holds the Sanders-
AMD Endowed Chair of the Electrical and Computer

Engineering Department at the University of Illinois.
His research interests include compiler technology and
programming techniques for parallel systems. Hwu
has a PhD in computer science from the University of
California, Berkeley. Contact him at w-hwu@uiuc.edu.

christopher rodrigues is a graduate research assis-
tant at the University of Illinois. His research interests
include language and compiler support for paral-
lelization and memory safety. Rodrigues has an MS in
electrical and computer engineering from the Univer-
sity of Illinois. Contact him at cirodrig@illinois.edu.

shane ryoo is a senior software engineer at ZeroSoft.
His research interests include application-specifi c com-
pilation and holistic optimization. Ryoo has a PhD in
electrical and computer engineering from the Universi-
ty of Illinois. Contact him at sryoo@illinoisalumni.org.

John stratton is a graduate research assistant at the
University of Illinois. His research interests include
parallel programming models, parallel application
portability, and programming productivity. Stratton
has a BS in computer engineering from the University
of Illinois. Contact him at stratton@illinois.edu.

To submit a manuscript, log on to Manuscript Central: https://mc.manuscriptcentral.com/cs-ieee

Call for Papers

Extend your range.
Reach the whole world of computational science.

Computing in Science & Engineering (CiSE) magazine is soliciting papers for

publication in 2009 and 2010. CiSE, a joint publication of the American Institute

for Physics and the IEEE Computer Society, is a voice for computational science

and engineering. Articles in CiSE’s range can be opinion pieces, tutorials

on useful and interesting topics, or reports on research in the practice and

application of computational science. A peer-reviewed publication, appearing

six times per year, CiSE is read by thousands of scientists and engineers

active in a wide variety of disciplines.

