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C omputational scientists have long 
been interested in graphics process-
ing units (GPUs) due to their relative-
ly low cost per unit of floating-point 

(FP) performance. Unlike conventional multi-
processors, a GPU’s processor cores are special-
ized for program behaviors common to graphics 
shaders—thousands of independent threads, each 
comprising only dozens or hundreds of instruc-
tions, performing few memory accesses and pro-
ducing a small number of output values.1 Recent 
advances in hardware and programmability have 
opened GPUs to a broader community of devel-
opers. GPUs’ throughput-optimized architec-
tural features can outstrip CPU performance on 
numerical computational workloads, depending 
on how well the workload matches the computa-
tional behavior for which the GPU is designed.

An important question for many developers is 
whether they can map particular applications to 
these new GPUs to achieve significant perfor-
mance increases over contemporary multicore 

processors. In this article, we describe our find-
ings through an effort in mapping a wide variety 
of numerical applications to the Nvidia GeForce 
8800 GTX using its compute unified device ar-
chitecture (CUDA).

programming for Gpu performance
Each GeForce-8 Series GPU is effectively a large 
set of processor cores with the ability to directly 
address a global memory. This allows for a more 
general and flexible programming model than 
previous generations of GPUs, making it easier for 
developers to implement data-parallel kernels of 
numerical applications. CUDA and GeForce 8800 
have specific microarchitectural features that ap-
peal to application developers—the CUDA pro-
gramming guide has a more complete description 
(www.developer.nvidia.com/object/cuda.html).

threading model
In the CUDA programming model, the system 
consists of a host that’s a traditional CPU and one 
or more massively data-parallel coprocessing com-
pute devices. A CUDA program consists of mul-
tiple phases that are executed on either the host or 
a compute device such as a GPU (Figure 1). The 
program designates the phases that exhibit little 
or no data parallelism in host (CPU) code and 
compiles it with the host’s standard C compiler, 
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which runs as an ordinary process. The phases 
that exhibit rich data parallelism are implemented 
in the device (GPU) code, which is written using 
ANSI C extended with keywords for labeling data-
 parallel functions, called kernels, and associated 
data structures. Host code uses a CUDA-specific 
function-call syntax to invoke kernel code.

The runtime system executes kernels as batches 
of parallel threads in a single-program, multiple-
 data (SPMD)2 programming style, in which 
kernels specify all simultaneous threads. These 
kernels typically comprise thousands to millions 
of lightweight GPU threads per kernel invocation. 
Creating enough threads to fully utilize the hard-
ware often requires a fine-grained decomposition 
of work; for example, the kernel might compute 
each result array’s element in a separate thread.

We can use dense matrix multiplication to il-
lustrate the CUDA threading model. In this ex-
ample, each thread calculates one product-matrix 
element, which involves a dot product of a row of 
the first input array and a column of the second 
input array, shown as the kernel function matrix-
Mul() in Figure 2b. The kernel takes a pointer to 
a row of the first input matrix A and a pointer to a 
column of the second input matrix B, performs a 
dot product, and writes the value into an element 
of the output array C.

CUDA’s threads are organized into a two-level 
hierarchy, at the highest of which all threads in a 
data-parallel execution phase form a grid. Figure 1 
shows an example of thread organization and calls 
to two different kernel functions. Each call to a 
kernel initiates a thread grid; the system normally 
waits for all threads in the grid to complete before 
it lets the next grid begin. Each grid consists of 
many thread groupings, called thread blocks. All 
blocks in a grid have the same number of threads, 
with a maximum of 512. In Figure 1, the calls to 
kernels 1 and 2 create grids, wherein each thread 
block has 192 and 256 threads, respectively. Each 
thread in a thread block has a unique ID in the 
form of a three-dimensional (3D) coordinate, and 
each block in a grid also has a unique two-dimen-
sional (2D) coordinate. Threads determine the 
work that they must do and the data they’ll access 
by inspecting their own thread and block IDs.

Threads in a thread block can also communi-
cate and barrier-synchronize with one another. 
This coordination feature distinguishes CUDA’s 
programming model from shader programming 
of previous general-purpose computing on GPU 
(GPGPU) models. Coordination is essential for 
some parallel algorithms and many optimizations 
that boost performance.3

Figure 2 shows a matrix multiplication ex-
ample that multiplies two 4,096 × 4,096 ele-
ment matrices. In this kernel, each thread block 
comprises 256 threads organized into two di-
mensions of 16 threads in each dimension. Each 
thread block calculates one 16 × 16 product ma-
trix’s submatrix. The kernel generates 256 × 256 
thread blocks to cover the entire output matrix. 
The thread and thread-block organization is set 
in host code.

When host code invokes a kernel, it sets the 
grid and thread-block dimensions by passing 
them as parameters. Figure 2a shows two declared 
structures of type dim3: the first defines the con-
figuration of blocks as 16 × 16 groups of threads 
in our example. The second is for the grid, which 
consists of 256 × 256 blocks. The final line of code 
invokes the kernel (see Figure 2b). Each thread 
calculates the starting positions in the input ma-
trices based on its unique block and thread coor-
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Figure 1. Compute unified device architecture (CUDA) threading 
structure. Threads are the fundamental units of parallel execution in 
CUDA. Each call to a CUDA kernel function creates a grid, which is a 
two-level hierarchy of threads. The hardware maintains thread IDs so 
that threads can manage themselves in aspects such as what part of 
the data structure to process.
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dinates. It then iterates through a loop to calculate 
the result and finally stores it to memory.

The way the runtime system instantiates a 
CUDA kernel as SPMD threads with unique IDs 
is similar to the way a parallel loop executes in 
other languages, such as a parallel for loop in 
OpenMP.4 Whereas OpenMP lets all threads ac-
cess a single shared memory, CUDA exposes the 
multiple memory spaces of a GPU’s memory sys-
tem. The host, which has a separate memory from 
the device’s, uses API calls to allocate memory on 
the GPU and transfer data between memories. 
Different memory spaces on the device are also 
separate from one another. The developer bears 
the responsibility of selecting the appropriate 
data placement and layout for a given application, 
which requires knowledge of each memory’s char-
acteristics, as we’ll explain later.

Other programming languages that support 
GPGPUs include Brook5 and Accelerator.6 Simi-
lar to CUDA, Brook requires the developer to di-
vide the program into kernels and manage GPU 
resources. A Brook application performs data-
parallel operations by calling a kernel function 
on one or more streams, which are collections of 
values that can be distributed to or collected from 
parallel computations. A Brook programmer can 
use streams in data-parallel reductions, scatter 
operations (indexed writes), or gather operations 
(indexed reads). Unlike CUDA thread blocks, the 
Brook programming model doesn’t permit syn-
chronization or communication between kernel 
iterations processing separate stream elements. 
Accelerator provides high-level data-parallel array 
operations through a library in the C# program-
ming language. The accelerator runtime system 
dynamically and transparently compiles array op-
eration sequences to GPU kernels, which doesn’t 
expose any aspect of the GPU to the developer. 
Both Brook and Accelerator limit the size and 
complexity of GPU code due to their underlying 
graphics’ API-based implementations.

microarchitectural Support  
for parallel execution
The GeForce 8800 is a multiprocessor that’s heav-
ily specialized for graphics processing. Figure 3 
depicts GeForce 8800’s microarchitecture, which 
consists of 16 streaming multiprocessors (SMs), 
each containing eight streaming processors (SPs), 
or processor cores, running at 1.35 GHz. Cores in 
an SM execute instructions in single- instruction, 
multiple-data (SIMD) fashion, with the SM’s 
instruction unit broadcasting the current in-
struction to the cores. Each core has one 32-bit, 
single-precision FP multiply-add arithmetic unit 
that can also perform 32-bit integer arithmetic. 
Additionally, each SM has two super functional 
units (SFUs) that execute more complex FP op-
erations such as trigonometry functions with high 
throughput. The arithmetic units and the SFUs 
are fully pipelined, yielding 388.8 Gflops of peak 
theoretical performance for the GPU.

The GeForce 8800’s unit of SIMD execution 
is a warp of 32 parallel threads. The CUDA run-
time system forms warps from contiguous groups 
of threads in a thread block: the first 32 threads 
form the first warp, and so on. Although CUDA 
code doesn’t explicitly declare warps, knowledge 
of them can enable useful code and data optimiza-
tions on the GeForce 8800. The hardware selects 
and executes one warp at a time. When threads 
within a warp take different control-flow paths (a 

(a)

float * gpu_A, float * gpu_B, float * gpu_C;

// allocate GPU input and output matrices
cudaMalloc((void**) &gpu_A, mem_sizeA);
cudaMalloc((void**) &gpu_B, mem_sizeB);
cudaMalloc((void**) &gpu_C, mem_sizeC);

// copy input matrices from host to device
cudaMemcpy{gpu_A, host_A, mem_size_A,
          cudaMemcpyHostToDevice);
cudaMemcpy{gpu_B, host_B, mem_size_B,
          cudaMemcpyHostToDevice) );

// set up execution parameters
dim3 blocks(16, 16);
dim3 grid(256, 256);

// execute the kernel
matrixMul<<< grid, blocks >>>(gpu_C, gpu_A, gpu_B);

(b)

_global_ void
matrixMul( float* C, float* A, float* B)
{  
  // Calculate index of the first element of A
  int indexA = 16 * blockIdx.y + threadIdx.y;
  ...

  // Initialize the result to 0
  float Csub = 0;

  for (i = 0; i < widthA; i++)
    {
      Ctemp += A[indexA] * B[indexB];
      indexA++;
      indexB += widthB;
    }
  C[c} = Csub;
}

Figure 2. Matrix multiplication example. (a) The host code sets up 
and executes the kernel, and (b) the kernel code shows the workings 
of a kernel function and how it can be invoked with a particular 
thread configuration.



may/June 2009  19

situation known as branch divergence), the hard-
ware executes multiple passes through the code 
with thread suppression on divergent paths to 
complete execution. Execution is slowed as much 
as if each thread had executed all control-flow 
paths involved. This effect makes kernels with a 
large number of data-dependent control flows un-
suitable for the GPU. 

The GPU generates SIMD execution from 
threads “on the fly,” saving programmers the 
effort of manually restructuring control flow 
and data into SIMD form. This works well for 
graphics shaders and many data-parallel kernels 
in which all threads execute the same instruction 
sequences. In contrast, programmers must fore-
cast control flow within a SIMD execution unit 
as predication for multicore architectures such 
as Larrabee.7 The AMD/ATI runtime system 
transparently compiles shaders or Brook compute 
kernels to predicated SIMD code for AMD’s Fire-
Stream.8 The availability of SIMD scatter-gather 
memory operations and predication in AMD 
GPUs makes explicit SIMD nearly equivalent to 
CUDA’s warp-based execution; the latter’s main 
advantage is programming convenience.

An SM can perform zero-overhead schedul-
ing to interleave warps and hide the latency of 

long-latency arithmetic and memory operations. 
When one warp stalls, the SM can instantly 
switch to a ready warp resident in the SM—the 
SM stalls only if no warps with ready operands 
are available. Scheduling freedom is high in 
many applications because threads in different 
warps are independent with the exception of ex-
plicit barrier synchronizations among threads 
in the same thread block. This lets the GPU 
maintain highly parallel execution using a small 
amount of chip area, in contrast to area-hungry 
speedup methods such as large caches or out-of-
order execution.

Each SM supports a maximum of 768 simulta-
neously active thread contexts. The CUDA run-
time assigns an integral number of up to eight 
thread blocks to an SM at any time to fill these 
thread contexts. When assigning a thread block 
to an SM, the CUDA runtime system automati-
cally allocates the necessary amount of several 
hardware resources including thread contexts, 
shared memory, and registers. When optimizing 
device code, developers need to be aware of how 
these limits affect the number of parallel threads 
that can run on the device. Some conventional 
code optimizations might have negative effects in 
some cases because small increases in resource us-

Shared memory
16 Kbytes per SM, read/write
Latency: same as register access

A local scratchpad memory shared 
among threads in a thread block, used 
for temporary shared data storage. Data 
are organized into 16 banks. Simultane-
ous accesses to different addresses in the 
same bank cause a stall. To avoid delays, 
data should be laid out so the simultane-
ous accesses operate on seperate banks.

Register file
8,192 registers, dynamically partitioned 
among the SM’s threads.

Constant memory
64 Kbytes with 8-Kbyte cache, read-only 
Hit latency: same as register access

Cacheable memory often used for lookup 
tables. To avoid delays, simultaneous 
requests within an SM must be to the 
same address.

Texture memory
Large, with 16-Kbyte cache, read-only
Hit latency: > 100 cycles

Holds 1D and 2D arrays with less limitation on 
capacity and access patterns than other 
memories. Total capacity is limited by 
available global memory. The cache capitalizes 
on 2D access locality and can perform 
interpolation, both of which are useful for 
some tasks.

Global memory
768 Mbytes, read/write
Latency: 200-300 cycles

A large, pointer-addressible memory that’s 
used more efficiently when multiple threads 
simultaneously access contiguous elements 
of memory, enabling the hardware to coalesce 
memory accesses to the same DRAM page.

Local memory
Private memory allocated to each thread. It 
has the same properties as global memory.

SM

Texture cache

Shared memory

Register file

Constant cache

SM

Processors

GeForce 8800

Off-chip DRAM
(global, local, constant,
and texture memory)

Figure 3. Processor organization and memory characteristics of the GeForce 8800. Code executing on a processor can access 
several memory spaces. Memories sited physically close to a processor (left column) are smaller and faster than more distant 
memories (right column). 
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age can cause fewer thread blocks, and thus many 
fewer threads, to simultaneously execute.

Since the introduction of the GeForce 8800, 
other vendors have introduced similar architec-
tures that combine graphics and general- purpose 
workloads. Like the GeForce 8800, AMD’s 
FireStream8 is a GPU with specialized memory 
systems and SIMD hardware. FireStream has 
scatter-gather operations, but it doesn’t support 
pointers or have an equivalent to thread blocks. 
Currently, developers can choose between a high-
level stream programming language, Brook, or a 
low-level assembly-like language, CAL (compute 
abstraction layer). FireStream and the more re-
cent Nvidia Tesla GPUs support double-precision 
FP. The proposed Larrabee8 graphics processor 
adheres to a multicore design philosophy and con-
sists of single-threaded, in-order x86 cores with 
16-wide SIMD units. The cores maintain shared-
memory coherence through a ring network that 
connects their L2 caches. The hardware doesn’t 
utilize multithreading to tolerate latency but 
provides explicit cache-control instructions that 
programmers can use to avoid waiting for antici-
patable memory accesses.

memory Spaces
Figure 3 describes the device’s accessible memo-
ries. The developer can place data in global, shared, 

local, constant, or texture memory. The GPU’s 
memories are specialized and have different access 
times and throughput limitations. Some memo-
ries furnish fast access only for limited patterns 
of memory references. Consequently, developers 
must use their understanding of the memory sys-
tem to structure both data and kernel code for high 
performance. The layout of key data structures of-
ten determines kernel performance.

Global memory is a large, long-latency memory 
that exists physically as off-chip dynamic RAM 
(DRAM); it serves the same purpose as main 
memory in a chip multiprocessor. The developer 
must write a kernel’s output to global memory to 
be readable after the kernel terminates. To avoid 
wasting hundreds of cycles while a thread waits 
for a long-latency global-memory load or store 
to complete, a common technique is to execute 
batches of global accesses, one per thread, exploit-
ing the hardware’s warp scheduling to overlap the 
threads’ access latencies. Global-memory band-
width is very high at 86.4 Gbyte/sec, but memory 
bandwidth can saturate if many threads request 
access within a short period of time. In addition, 
the system can sustain this bandwidth only when 
warps access contiguous 16-word lines; in other 
cases, the achievable bandwidth is a fraction of the 
maximum. Code transformations to coalesce ac-
cesses into 16-word lines and reuse data are gener-
ally necessary to achieve good performance. If a 
developer doesn’t know a kernel’s memory- access 
pattern in advance, it’s typically not possible to 
overlap latencies or form contiguous accesses, 
which results in painfully slow access times to 
global memory.

Constant memory is specialized for situations in 
which many threads will read the same data simul-
taneously. A value read from the constant cache 
is broadcast to all threads in a warp, effectively 
serving 32 loads from memory with a single-cache 
access. This enables a fast, single-ported cache to 
feed multiple simultaneous memory accesses, as il-
lustrated schematically in Figure 4. Recall that all 
threads in a warp execute the same instruction at 
any point in time. When all load-instruction in-
stances access the same constant-memory location, 
the value at the location is broadcast to all threads, 
as shown by the horizontal arrows crossing the 
threads in a warp (see Figure 4). The GPU’s tight-
ly coupled cores let constant memory effectively 
multiply the GPU’s memory bandwidth by 32, 
compared to a regular multiprocessor. The most 
dramatic performance gains we observed were in 
kernels that could take advantage of this effect.

Two magnetic resonance imaging (MRI) 
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Figure 4. Constant memory. A fast, single-ported cache can feed 
many loads (gold arrowheads) with few cache accesses (gold arrows).
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benchmarks, abbreviated MRI-Q and MRI-FHD, 
demonstrate the use of constant memory. The raw 
digital data that an MRI scanner produces consists 
of many sample measurements in the frequency do-
main, which must be transformed into the spatial 
domain to produce an image. Fast algorithms such 
as the fast Fourier transform (FFT) are applicable, 
but advanced iterative algorithms can significantly 
increase the signal-to-noise ratio and decrease the 
artifacts in the reconstructed image. When us-
ing the advanced iterative algorithm described in 
another study,9 computing the vector FHD is the 
most time-consuming step in the reconstruction. 
The FHD kernel transforms each sample into the 
spatial domain and sums the results for each coor-
dinate 


x  in a Cartesian lattice, where each point 

corresponds to a pixel in the reconstructed image. 
The pseudocode for FHD is as follows:

for each coordinate 

x  in lattice, do

  a ← 0
  for each 


k,φ( ) in samples, do

       {Add the contribution of 

k   

   to the signal at 

x }

       
a a e

i
← +

⋅( )φ
π

*
 
k x

 
  

fhd a

x

 ←

To map this pseudocode to CUDA, the developer 
assigns each outer loop’s iteration to a separate 
thread. The kernel function contains the inner 
loop. The key indicator that constant memory 
suits this code is that all threads in the inner loop 
traverse the same sample data. As the kernel ex-
ecutes, the warp’s threads will simultaneously load 
the same 


k  and φ values from constant memory. 

Hardware detects that the addresses are equal and 
performs a single-cache access for all loads.

In vectorized code on a CPU, loading a sca-
lar value from cache into all elements of a vector 
register achieves the effect of a constant-memory 
load. Using SSE (streaming SIMD extensions), 
the developer does this with a load instruction fol-
lowed by a shuffle instruction. As we show later, 
GPU kernels relying on constant memory can 
outperform CPU code using SSE. This is largely 
due to the fact that SSE only exploits four-way 
SIMD parallelism per CPU core, whereas an en-
tire GeForce 8800 is 128-wide.

Texture memory holds 1D- or 2D-array data 
and takes advantage of 2D access locality. Unlike 
other memories, its performance doesn’t suffer 
under irregular, random-access patterns, but its 
access latency is quite long. A good example of 

texture memory’s use is in the motion estimation 
stage of an H.264 video encoder. The H.264 ker-
nel that we evaluated accelerates a full-search mo-
tion estimation algorithm. The kernel compares 
small 4 × 4 pixel blocks from a reference video 
frame to blocks from a frame that the kernel is 
encoding. Each comparison generates a value in-
dicating how similar the blocks are; a later scan 
of these values selects the best match. Thread 
blocks group together threads that inspect the 
same block of the current frame.

Using texture memory to hold the reference 
frame, the kernel takes advantage of locality and 
hardware support for boundary-value calcula-
tion that software would otherwise need to per-
form. However, the latency of texture memory 
is exposed to the kernel. The fastest kernel from 
H.264 that we’ve developed spends 20 percent 
of its time waiting for texture memory. Even 
so, the use of texture memory improves kernel 
performance by 2.8 times over storing the refer-
ence frame in global memory. Because texture 
memory’s latency often impacts performance, it’s 
usually the fallback when an algorithm’s memory 
behavior strongly matches the hardware capabili-
ties of the texture memory.

An SM’s shared memory is useful for data 
that multiple threads in a thread block can share 
and reuse to eliminate redundant accesses to the 
global memory. Its contents only exist during 
thread-block execution and are discarded when 
the thread block completes. Kernels that read or 
write a known range of global memory with spa-
tial or temporal locality can employ shared mem-
ory as a software-managed cache. Such caching 
potentially reduces global-memory bandwidth 
demands and improves performance.

Figure 5 shows an example of a tiled matrix-
multiplication kernel. Unlike the original code 
shown earlier, threads in a 16 × 16 thread block 
cooperatively load two input tiles into shared 
memory. This amortizes the cost of global-mem-
ory access because each thread performs 1/16 the 
number of global loads. Threads calculate a partial 
dot product with the values in the tiles and repeat 
the process. Barrier synchronization ensures that 
the threads use and discard correct values when 
appropriate. Because the kernel performs tile 
loading separately from the subsequent compu-
tation, global-memory loads can be reorganized 
to achieve coalescing by having a half-warp’s 16 
threads load a row of 16 matrix elements.

Applications
As with other parallel computers, a parallel al-
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gorithm’s characteristics can significantly affect 
the GeForce 8800’s performance. The algorithm 
should be decomposable into many independent 
threads, and to accommodate the GPU’s SIMD-
like execution behavior, the computational work 
should be nearly uniform across all threads. The 
algorithm should have a high ratio of computa-
tion to global-memory accesses, keeping itself 
busy with many arithmetic operations for each 
element of data that it consumes. Table 1 lists 
a group of applications that pass this first set of 
criteria, showing the breadth of scientific and 
engineering problems that can take advantage of 
parallel processing.

Our application selection is biased toward class-
es of problems such as linear algebra—Mat Mul 
and Saxpy—and stencil- and grid-based compu-
tations—the lattice Boltzmann method (LBM), 
MRI-Q, MRI-FHD, and the Coulombic Poten-
tial (CP)—that operate on data structures with 
very simple array layouts. Predictable, uniform 
array accesses conform much more easily to the 
necessary access patterns to utilize the GPU’s 
hardware. Although the hardware permits random 
access reads and writes, kernels that extensively 

use random access to memory other than texture 
are unlikely to muster improvement over an op-
timized CPU version. Our selection also satisfies 
the requirement for SIMD-like execution. Kernel 
code ranges from 31 to 280 lines of code per appli-
cation. Applications range from a few hundred to 
a few thousand lines of code (excluding comments 
and white space). H.264 is an outlier with roughly 
35,000 lines of code.

We executed applications on a base system con-
sisting of an Intel Core2 Extreme Quad running 
at 2.66 GHz with 4 Gbytes of main memory. For 
all applications except H.264, the unparallelized 
kernel code occupies the majority of the execu-
tion time; for H.264, it occupies 35 percent. Ker-
nel speedup depends on CPU-only execution. We 
measure the CPU execution time of matrix multi-
plication using the Intel Math Kernel Library 8.0, 
which is multithreaded. CP, MRI-Q, and MRI-
FHD were vectorized with SSE, and MRI-Q and 
MRI-FHD were additionally parallelized on four 
CPU cores. For the remaining applications, CPU 
times represent single-threaded C code. Speedup 
isn’t directly comparable between kernels because 
of the different degrees of CPU parallelism.

To help explain kernel speedup, we state the 
ratio of global-memory access time to computa-
tion time to indicate approximately how memory 
intensive an application is. We compute the ratio 
from the lower bounds on memory-access time, 
assuming peak bandwidth, and on computation 
time, assuming no execution stalls. We also state 
the architectural bottlenecks that appear to limit 
the implementation from achieving a higher per-
formance. The current generation of CUDA pro-
filing tools can count undesirable events such as 
uncoalesced global loads, but individual contribu-
tions to a kernel’s execution time can’t be directly 
measured. We’ve found it useful to identify bot-
tlenecks by comparing different implementations 
of the same kernel. If performance is insensitive to 
changes in the number of global-memory access-
es, for example, then global access latency isn’t a 
bottleneck. This general strategy provides the de-
tailed insight into performances explained later.

Some performance differences are due to the 
GPU’s hardware support for specific opera-
tions. In the MRI applications, for instance, a 
substantial number of executed operations are 
trigonometry functions. The GPU’s hard-
ware trigonometric operations are faster than 
even CPU fast math libraries, which accounts 
for approximately 30 percent of the speedup. 
Hardware trigonometry operations also speed 
up the Rys polynomial equation solver (RPES) 

Csub = 0;
for (...) {
  //Allocate arrays for tiles
  _shared_float AS[16][16];
  _shared_float BS[16][16];

  // Cooperatively load two import
  // tiles into shared memory
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16; * widthB;

  // Synchronous to ensure safety
  _syncthreads();

  // Calculate partial dot product
  for (i = 0; i < 16; 1++)
    {
      Csub += As[ty][i]
        * Bs[i][tx];
    }
  // Synchronize again before
  // loading new tiles
  _syncthreads();
}
C[c] = Csub; 

Figure 5. Tiled matrix-multiplication kernel. It 
shared memory to reduce redundant global-
memory accesses made by multiple threads to 
reduce global-memory bandwidth demands and 
improve performance.
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and CP. A different compute resource, the tex-
ture unit’s built-in clamping and interpolation, 
speeds up H.264.

When a kernel attains sufficient throughput 
in the GPU’s memory system and enough si-
multaneously executing threads to hide memo-
ry-access latency, the kernel’s execution rate is 
limited only by the maximum rate at which an 
SM can issue instructions. This situation maxi-
mizes the time that the GPU spends perform-
ing useful computation and is the most desired 
outcome. Matrix multiply, MRI-Q, MRI-
FHD, and CP are in this category. They satisfy 
most memory accesses using shared or constant 
memory in ways that don’t cause stalls.

Every thread in CP, MRI-Q, and MRI-
FHD reads the same sequence of memory ad-
dresses within the primary data-parallel loop. 
Placing the data in constant memory exploits 
the hardware’s ability to service many accesses 
to the same address with a single-cache access, 
as described earlier in the section on memory 
spaces. These kernels are able to run without 
waiting for memory accesses.

Matrix multiplication exploits tiling to 
achieve high memory throughput. This ker-
nel has regular access patterns to its input data 
and uses the data repeatedly. The input arrays 
are decomposed into tiles, which are explicitly 
copied into shared memory as needed. Once 

table 1. Application suites.

Kernel Description Global-memory-
to-computation-
time ratio

Architectural bottlenecks Kernel speedup 
on Gpu

Mat Mul Multiplication of two 4k × 4k dense 
matrices.

0.016 Instruction issue 9.3×

H.264 Modified version of the 464.h264ref 
benchmark from SPEC CPU2006 is an 
H.264 (MPEG-4 AVC) video encoder; 
the kernel computes SADs (sums of 
absolute differences) for full search 
motion estimation.

0.006 Register file capacity and 
cache latencies

12.23×

LBM Modified version of the 470.lbm 
benchmark from SPEC CPU2006 that 
uses the lattice Boltzmann method 
for simulating 3D fluid dynamics; the 
program has been changed to use 
single-precision floating point (FP).

0.066 Shared-memory capacity 30.6×

RPES Rys polynomial equation solver; 
calculates two-electron repulsion 
integrals, which are a subproblem of 
molecular dynamics.

0.01 Instruction issue 205×

PNS Petri net simulation; distributed system’s 
mathematical representation simulation.

0.241 Global-memory latency and 
branch divergence

26.8×

Saxpy Single-precision FP implementation of 
Saxpy from high-performance Linpack; 
used as part of a Gaussian elimination 
routine.

0.375 Global-memory bandwidth 13.5×

MRI-Q Computation of a matrix Q, 
representing the scanner configuration; 
used in a 3D magnetic resonance image 
reconstruction algorithm in non-
Cartesian space.

0.008 Instruction issue 31.2×

MRIFHD Computation of an image-specific 
matrix FHD; used in a 3D magnetic 
resonance image reconstruction 
algorithm in non-Cartesian space.

0.006 Instruction issue 11×

CP Computation of electric potential in a 
volume containing point charges; based 
on direct Coulomb summation.10

0.0005 Instruction issue 64×
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copied, the data is accessible with single-cycle 
access time. The tile size must be a multiple of 
16 to achieve global-memory coalescing. With 
a 16 × 16 block size from each input matrix, 
each value is reused from shared memory 16 
times, which is enough to shift the bottleneck 
from global-memory bandwidth to instruction 
issue. We use a 16 × 16 tile from one matrix, 
employing register tiling11 to distribute addi-
tional computation among threads to further re-
duce the instruction count.

The main computational kernel of RPES is the 
most FP intensive out of all our applications. Its 
main loop performs eight table lookups from tex-
ture memory followed by 37 to 105 FP operations 
(some are conditionally executed). Fifteen per-
cent of its execution time is spent reading from 
texture memory. Although the GPU’s memory 
system doesn’t feed this kernel as efficiently as it 
does the previously mentioned kernels, this ker-
nel is issue-limited due to the great quantity of 
FP computation.

RPES’s irregular memory-access pattern is a 
consequence of how it was adapted to CUDA’s 
thread-block and grid structure. RPES com-
putes two-electron repulsion integrals, used to 
characterize the properties of atomic bonds from 
first principles. Electron distributions are repre-
sented as linear combinations of basis functions. 
A contribution to the electron repulsion integral 
is computed for every combination of four basis 
functions, giving the algorithm O(n4) complexity. 
On the CPU, this computation is performed in 
eight nested loops: the outer four loops traverse 
electron shells, and the inner four traverse basis 
functions. The number of basis functions varies 
for different electron shells; consequently, the 
inner loops have varying trip counts, and there’s 
no simple way to map CUDA thread IDs to 
CPU loop iterations. To distribute computation 
to GPU threads, our implementation computes 
an assignment of work to thread blocks prior to 
launching the GPU kernel. An array holds the at-
oms’ and electron shells’ indices that each thread 
block should process. Within a thread block, each 
thread uses these indices and its own ID to fetch 
and process a single set of basis functions. The fi-
nal distribution of computation has little in com-
mon with the distribution of data that it accesses, 
resulting in an irregular memory-access pattern. 
Texture memory accommodates these irregular 
accesses with significant but acceptable latency.

Capacity-limited kernels are based on algo-
rithms that can mitigate the impact of memory-
access latency or bandwidth through hardware- or 

software-managed caching but would require a 
larger shared memory or cache to eliminate it. 
H.264 uses register tiling to reduce the number 
of texture accesses by half. The size of the regis-
ter file constrains the extent of register tiling, and 
the developer has to experimentally determine an 
acceptable tile size. At larger tile sizes, an SM is 
occupied by threads that are individually more ef-
ficient but fewer in number, trading a reduction in 
texture accesses for an increase in the amount of 
time per access that’s not covered by useful work 
from other threads.

LBM is a time-stepped stencil simulation that’s 
computation-bound on a CPU, but bandwidth-
bound on a GPU due to shared-memory capacity 
limitations. The simulation uses a 3D lattice of 
cells, each storing 19 data elements representing 
fluid flow through the cell. We transformed the 
original array of structures to 19 arrays to meet 
the requirements of global-memory coalescing. 
The stencil for LBM is the pattern of 18 neighbors 
of any given cell (six sharing a face and 12 sharing 
an edge with the cell) that the algorithm uses to 
compute the cell’s new fluid flow at each time step. 
The kernel reads the entire simulation lattice from 
global memory and writes back the updated lattice 
in each time step. This data transfer saturates the 
GPU’s global-memory bandwidth.

A well-known multiprocessor technique for re-
ducing communication in stencil computations 
is to compute multiple time steps of a sublattice 
using a private data area (GPU shared memory) 
before writing the results back to main memory 
(GPU global memory). However, each additional 
time step computed locally requires that a larger 
ghost area of the lattice be saved in shared mem-
ory. For this optimization to save bandwidth, the 
size of the ghost area must be small compared to 
the size of the sublattice. The largest sublattice 
that shared memory can hold for LBM is a cube 
of 43 cells with a cell envelope (144 ghost cells, ex-
cluding eight corner cells that aren’t needed); the 
envelope is more than twice the size of the sublat-
tice, nullifying any potential bandwidth savings.

Bandwidth-limited kernels such as Saxpy over-
whelm the memory system’s ability to supply data 
because they don’t reuse data. Saxpy uses each 
input value only once, and performs only one 
FP multiply-accumulate operation for every two 
memory accesses. Adjacent threads access adja-
cent data values, enabling the kernel to exploit 
spatial locality.

Memory latency can also limit kernels. An ex-
ample would be a kernel that relies heavily on 
pointer chasing or indirect array access to data 
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stored in global memory. Because such a kernel is 
unlikely to outperform a CPU, we avoided select-
ing applications with data-dependent memory-
access patterns.

The main computational kernel of our Petri net 
simulation (PNS) algorithm is large and complex, 
making it harder to pinpoint a single bottleneck. 
A PNS is a Monte Carlo simulation of a Petri net. 
Each thread block runs an independent simula-
tion with a different random number generator 
seed. The number of thread blocks is limited by 
the amount of simulation state that can be stored 
in global memory. The random number genera-
tor has a fixed degree of concurrency that deter-
mines the number of threads per block. Together, 
these two limits cap the amount of thread-level 
parallelism in the kernel. Limited thread paral-
lelism exposes some of the latency of updating 
the simulation state in global memory. Besides 
suffering from limited concurrency, execution is 
also slowed down as threads within a block take 
different control-flow paths, some of which are 
data-dependent. Frequent explicit barrier syn-
chronization between threads of a single block 
along with high memory-to-computation-cycle 
ratios can also degrade PNS kernel performance.

Application optimization
In general, we obtained significant kernel and 
application speedup across our suite (see Table 
1). Compute-intensive kernels with relatively 
few global-memory accesses achieve very high 
performance. Even kernels that don’t have high 
compute- to-global-memory access ratios still 
achieve respectable performance increases be-
cause of the GeForce 8800’s ability to run a large 
number of threads simultaneously. However, the 
performance shown in the table was generally 
obtained after a significant amount of hand tun-
ing. We’ve already mentioned some of the mem-
ory optimizations that improve performance—we 
discuss several others here.

The distribution of computation threads is gen-
erally decided in the initial phases of program 
optimization, but it has long-reaching effects. 
Thread granularities might be too small to take 
advantage of data reuse or too large to fit many 
threads onto the hardware simultaneously. Loop 
interchange—changing how loops nest—is a use-
ful strategy prior to distributing work because 
it can alter the threads’ data-access patterns and 
enable better memory usage; MRI kernels are a 
prime example of this. Although in the optimized 
CPU code, the outer loop traverses sample values, 
in the GPU kernel, the loops are interchanged so 

that the inner loop traverses sample values, allow-
ing them to be placed in constant memory.

Loop unrolling and other classic compiler 
optimizations such as those found in Kennedy 
and Allen’s work12 can have unexpected results, 
but, in general, local optimizations on the most 
frequently executed parts of the code have ben-
eficial effects. These optimizations directly tar-
get the instruction-issue bottleneck by reducing 
the number of executed operations or through 
strength reduction. In H.264 and matrix multi-
plication, complete unrolling of the innermost 
loop obtains significant performance increase, as 
does register tiling.11

When attempted optimizations have nega-
tive effects, the most common cause is that they 
increase the number of registers per thread as a 
side effect, forcing the GeForce 8800 to schedule 
fewer thread blocks per SM and thus degrading 
performance. The cases where this is most of-
ten seen are common-subexpression elimination 
and redundant-load elimination. Even relatively 
simple instruction scheduling by CUDA’s run-
time can change the live ranges of variables and 
increase register usage. Researchers have investi-
gated register-pressure-sensitive code-scheduling 
algorithms and optimization strategies in the 
context of instruction-level parallelism- extracting 
compilers; additional research is necessary to ap-
ply these strategies to massively threaded envi-
ronments such as CUDA.

G PUs have been available for more 
than a decade but only recently have 
they had a programming model and 
architecture that opens them up as 

more general computing platforms. We’ve shown 
that a variety of kernels achieve significant speed-
ups on a system equipped with a GPU. However, 
the optimization process requires strong knowl-
edge of both application and architecture and still 
requires major time and effort to achieve near-
peak performance. We and other researchers are 
working on better techniques, tools, and compil-
ers to make mapping applications to these systems 
easier in the future. 
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