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Abstract

In this paper we describe techniques for compiling fine-
grained SPMD-threaded programs, expressed in program-
ming models such as OpenCL or CUDA, to multicore execu-
tion platforms. Programs developed for manycore processors
typically express finer thread-level parallelism than is appro-
priate for multicore platforms. We describe options for im-
plementing fine-grained threading in software, and find that
reasonable restrictions on the synchronization model enable
significant optimizations and performance improvements
over a baseline approach. We evaluate these techniques
in a production-level compiler and runtime for the CUDA
programming model targeting modern CPUs. Applications
tested with our tool often showed performance parity with
the compiled C version of the application for single-thread
performance. With modest coarse-grained multithreading
typical of today’s CPU architectures, an average of 3.4×
speedup on 4 processors was observed across the test appli-
cations.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming ]: Parallel Programming

General Terms Algorithms, Performance

Keywords CUDA, Multicore, CPU, SPMD

1. Introduction

In the coming years, commercial application developers will
have a strong incentive to develop highly parallel software
to take advantage of widespread parallel processors in the
consumer market. However, it is unclear whether each po-
tential user of an application will have a computing subtrate
with a similar degree, granularity and style of parallelism.
Even if an application is amenable to targeting a wide vari-
ety of parallel computational platforms, it is unclear whether
a single expression of the application in any one program-
ming model will be sufficient. The model must be powerful
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enough to effectively capture many applications, yet have
enough constraints to enable a wide range of architectures
to be effectively supported.

We present some initial findings of a case study testing
one parallel programming model that industry is hoping will
be such a portable model: fine-grained Single Program Mul-
tiple Data (SPMD) kernels, with limited thread coopera-
tion, controlled by a centralized process. CUDA [16] and
OpenCL [12], for example, are both built on an underly-
ing programming model of fine-grained SPMD threads. For
the experiments presented here, we will be working with
the CUDA programming model, noting in advance that the
same techniques would be applicable to OpenCL and other
SPMD programming models as well.

The CUDA programming model is a hybrid of two par-
allel programming models initially tailored to GPU archi-
tectures. It supports bulk synchronous task parallelism [24],
where each task is composed of fine-grained SPMD threads.
Programmers have been using CUDA with significant suc-
cess in many application fields, such as bioinformatics [19],
molecular dynamics [21], machine learning [4], and medical
imaging [22]. We view these successes as sufficient evidence
that the fine-grained SPMD model is effective for program-
ming a manycore architecture with explicit support for fine-
grained threads. However, previously there has not been in-
vestigation of how such a model could effectively map to
a more coarsely threaded architectures such as the current
commodity multicore processors.

The contributions of this paper are:

• An implementation and comparison of two approaches to
implementing a fine-grained SPMD programming model
on a processor with coarse-grained thread-level paral-
lelism.

• A description of programming model restrictions nec-
essary to implement the intuitively more effective ap-
proach.

• Optimizations enabled by the serialization of a parallel
model, primarily redundancy removal in both computa-
tion and data storage.

• Experimental evidence confirming the intuition, and
comparing it with standard compiled C on current mul-
ticore CPUs.

The primary enabling factors for generating efficient C
code from a fine-grained threading model are the restrictions



on synchronization usage. These restrictions allow stronger
reasoning in the compiler about execution semantics in
the static code. The baseline microthreading approach to
serializing an SPMD programming model is described in
Section 4. The baseline approach represents what we be-
lieve to be the state of the art in implementing general
finely-threaded programs on a system with significantly less
thread-level parallelism. The second approach is summa-
rized in our own previously published work [23] and that
of Shirako et al. [20], describing a basic approach for gen-
erating structured code serializing fine-grained SPMD code.
We have reimplemented and extended the functionality of
these algorithms within a production-level compiler, and
compile the full CUDA language without the limitations of
the previous work. We show with experimental results that
the structured approach enabled by restrictions on synchro-
nization usage does indeed provide significant performance
benefits over the more general baseline.

In the context of a serialized parallel model, several opti-
mizations not available to the parallel form of the code are
enabled. The optimizations detailed in Section 6 are notably
analogous to existing redundancy removal optimizations in
sequential programming models. However, we can leverage
knowledge of explicit parallelism to reduce the burden of
analysis or surpass the typical capabilities of commercial
implementations.

We highlight some of the related work in cross-architecture
parallel programming models in Section 2. A concise descrip-
tion of CUDA’s execution and memory models relevant to
this work is presented in Section 3. The general microthread-
ing and structured microthreading techniques are discussed
in Sections 4 and 5 respectively, followed by a description of
enabled optimizations in Section 6. We describe the prac-
tical details of our compiler and runtime environment in
Section 7 to provide a full context for our performance re-
sults presented in Section 8. We summarize the experiments
and lessons learned in the concluding remarks of Section 9.

2. Related Work

The issue of mapping small-granularity parallel work units to
CPU cores has been addressed in other programming mod-
els, such as parallel simulation frameworks [7] and dataflow
or message-driven programming models [2, 3]. Such mod-
els typically implement a user-level microthreading tech-
nique similar to our baseline approach. Microthreading im-
plementation is simplified when implemented within a sin-
gle code object, as an SPMD programming model provides.
OpenCL [12] is a programming model closely related to
CUDA that claims such platform portability as we would
like to explore. However, it has not matured to demon-
strate such portability at this time. The methods and re-
sults presented here would be directly applicable to all finely-
threaded SPMD programming models, including OpenCL.

Shirako et al. [20] applied many of the same transforma-
tion methodologies to serialize data-parallel loops contain-
ing barriers. We demonstrate how similar techniques can be
utilized in an SPMD programming model, and demonstrate
the further optimizations enabled by the application of these
techniques.

Numerous other frameworks and programming models
have been proposed for data-parallel applications for multi-
processor architectures. Some examples include OpenMP [17]
and HPF [11]. Although widely used in a CPU symmet-
ric multiprocessor environment, these models are yet to be
proven for manycore chips. Lee et al. have described a sys-

1 __global__ small_mm_list(float* A_list, float* B_list,

, const int size)
{

2 float sum;
3 int matrix_start, col, row, out_index, i;
4 matrix_start = blockIdx.x * size * size;

5 col = matrix_start + threadIdx.x;
6 row = matrix_start + (threadIdx.y * size);

7 sum = 0.0;

8 for(i = 0; i < size; i++)
9 sum += A_list[row + i] * B_list[col + (i*size)];

// Barrier before overwriting input data

10 __syncthreads();

11 out_index = matrix_start +

(threadIdx.y * size) + threadIdx.x;
12 A_list[out_index] = sum;

Figure 1: Multiplying many small matrices in CUDA.

tem for compiling OpenMP programs to CUDA [13] which,
if successful, could provide similar experimental benefit as
extending CUDA to CPUs.

Diamos has implemented a binary translation framework
from GPU binaries to x86 [10]. While binary translators
have advantages in knowing statically unavailable runtime
parameters, compilers have more high-level program infor-
mation available to them in the structured and symbolic
source code. It is unclear which of the high-level transfor-
mations we propose would be possible without high-level
compiler information available, if any.

Liao et al. designed a compiler for efficiently mapping the
stream programming model to a multicore CPU architec-
ture [14]. Their implementation attempted to build into the
compiler capability for removing many of the restrictions of
the stream programming model. In many ways, fine-grained
SPMD-threaded models remove from the stream program-
ming model those same limitations addressed by Liao et al.’s
compiler. The programmer has control over tiling and ker-
nel merging optimizations, the range of which is potentially
broader than can be discovered and applied in an automated
framework.

NVIDIA has released a toolset for CUDA program em-
ulation on a CPU, designed for debugging. In the emula-
tion framework, each fine-grained thread is executed by a
separate runtime OS thread, incurring significant thread-
scheduling overhead, and performing orders of magnitude
more poorly than any of our approaches in informal experi-
ments.

3. CUDA Programming Model

CUDA as a programming model has several interacting con-
structs for composing parallel programs on a shared-memory
system [16]. The programming model allows sequential code
in the standard C language with library APIs to control and
manage grids of parallel execution specified by kernel func-
tions. The host portion of the code is compiled using tradi-
tional methods and tools, while the kernel code introduces
constructs for expressing SPMD parallelism. This work pri-
marily focuses on the compilation and execution of the par-
allel kernel functions. We will be using the example kernel
function of Figure 1 throughout this paper.

Within the SPMD kernel functions, threads are distin-
guished by an implicitly defined 3-tuple index uniquely iden-



tid = threadIdx.x;
while(i < end)
{

x += input[i];
if(i == end-1) {

//segmented circular shift
data[(tid + 1) % shift] = x;
__syncthreads();

output = data[tid];
break;

}
else {

i++;
}

}

(a) Incorrect Usage

tid = threadIdx.x;
while(i < end)
{

x += input[i];
if(i == end-1) {

break;
}
else {

i++;
}

}
//segmented circular shift

data[(tid + 1) % shift] = x;
__syncthreads();
output = data[tid];

(b) Correct Usage

Figure 2: Synchronization within control flow. (b) shows
code semantically equivalent to that of (a), and obeys the
synchronization usage constraints.

tifying threads within a thread block. Thread blocks them-
selves are distinguished by an implicitly defined 2-tuple vari-
able. The ranges of these indexes are defined at runtime by
the host code in special kernel invocation syntax. In the ex-
ample of Figure 1, each thread block is computing one small
matrix multiplication out of the list, while each thread is
computing one element of the result matrix for its block.

CUDA guarantees that threads within a thread block
will be live concurrently, and provides constructs for threads
within a thread block to perform fast barrier synchroniza-
tions and local data sharing. Distinct thread blocks within
a grid have no ordering imposed on their creation or execu-
tion. Atomic operations provide limited interblock commu-
nication.

CUDA uses textually-aligned static barrier semantics,
such as those of the Titanium language [1]. For instance,
it is illegal to invoke a barrier intrinsic in both paths of
an if-else construct when CUDA threads may take different
branches of the construct. Although all threads within a
thread block will reach one of the intrinsics, they represent
separate barriers, each requiring that either all or none of
the threads reach it.

As a more general example, consider the constructed
example of Figure 2. We assume that end is a function
of the thread index, while the initial value of i is thread-
invariant. Although each logical thread will hit the barrier
exactly once, the code of Figure 2a will have unpredictable
runtime behavior. Figure 2b shows how the code may be
restructured to achieve the desired effect without violating
this constraint.

CUDA is less restrictive than Titanium in that barri-
ers can be dependent on statically thread-dependent expres-
sions. It only requires that the dynamic evaluation of those
expressions results in a uniform boolean value at runtime.
For instance, if end and the initial value of i are functions
of the thread index such that (i - end) is thread-invariant,
the code of Figure 2a will function correctly, in constrast
with the restrictions of Titanium that would prohibit this
case as well.

The CUDA memory model, at the highest level, separates
the host and device memory spaces, such that host code and
kernel code can only access their respective memory spaces
directly. The device memory spaces are the global, constant,
local, shared, and texture memory spaces. A summary of the
memory spaces is given in Table 1.

1 __global__ small_mm_list(float* A_list, float* B_list,
const int size)

{
2 float sum[];
3 int matrix_start[], col[], row[], out_index[], i[];

int current_restart, next_restart;
next_restart = 0;
// Loop over barrier synchronization intervals
while (next_restart != -1) {

current_restart = next_restart;
//Loop over threads within an interval
for(each tid) {
switch (current_restart) {

case 0:
goto RESTART_POINT_0;

case 1:
goto RESTART_POINT_1;

}

// Original program beginning:
RESTART_POINT_0:

4 matrix_start[tid] = blockIdx.x * size * size;
5 col[tid] = matrix_start[tid] + tid.x;
6 row[tid] = matrix_start[tid] + (tid.y * size);

7 sum[tid] = 0.0;

8 for(i[tid] = 0; i[tid] < size; i[tid]++)
9 sum[tid] += A_list[row[tid] + i[tid]] *

B_list[col[tid] + (i[tid]*size)];

// restart point induced by syncthreads()
10 next_restart = 1;

goto end_of_thread_loop;
RESTART_POINT_1:

11 out_index[tid] = matrix_start[tid] +
(tid.y * size) + tid.x;

12 A_list[out_index[tid]] = sum[tid];
next_restart = -1; // indicates "return"
end_of_thread_loop:
}

} // while
}

Figure 3: Microthreaded code for our example kernel

These memory spaces follow general microarchitecture
principles. Large memory spaces are expected to have long
latencies and limited random-access bandwidth, while small
memory spaces can reliably satisfy low-latency accesses. Ef-
ficient CUDA programs make these cost trade-offs explicitly
by using localized access patterns and limiting the active
working set. However, if an application is written assuming
significant hardware acceleration of texture processing oper-
ations, it could lead to design choices that perform poorly
on processors implementing those features in software.

4. Baseline SPMD Microthreading

The term microthreading describes software techniques
used in contexts where parallel work units are too small
to efficiently schedule individually [2, 7]. The key concept
is that software emulates the execution of multiple con-
ceptually parallel threads or computation objects in a sin-
gle, sequential program. The result of applying such a mi-
crothreading technique to the kernel of Figure 1 is shown in
Figure 3. Note that the implicitly defined variable threa-
dIdx has been shortened to tid for brevity. The compiler
begins by labeling each barrier with a unique number, re-



Table 1: CUDA Device Memory Spaces in GPU Execution Context
Memory
Space

Permissions Scope of an
Object

Capacity Latency Special Features

Global Read/Write All threads DRAM capacity High Requires aligned, contiguous simultaneous accesses for
best bandwidth.

Constant Read-Only All threads 64KB Low
(cached)

Single-banked cache with broadcast capability to mul-
tiple threads.

Local Read/Write Single thread DRAM capacity High Most often promoted to private registers, which are
shared between threads. Values not promoted to regis-
ters have long latency access.

Shared Read/Write Single thread
block

16KB Low Scratchpad memory shared between thread blocks.
More shared memory used per thread block means
fewer thread blocks can be simultaneously active.

Texture Read-Only All threads DRAM capacity,
limits per object

High Hardware interpolation, indexable by real-valued in-
dexes, and other features for image processing.

serving the number zero for the implicit barrier at the be-
ginning of the program. In our example, the single barrier
gets labeled with the number 1. The original code for the
program is modified, with each barrier replaced by a unique
label, an assignment of the next_restart variable with the
barrier’s ID, and a jump to begin executing the next concep-
tual thread. All exit points from the function are replaced by
statements assigning an exit flag (-1) to the next_restart
variable. The compiler then generates the microthreading it-
eration structures. The master while-loop iterates over the
number of times the threads will synchronize, each time up-
dating the current restart point to the place the threads
synchronized. A for-loop iterates over thread indexes, and
uses a switch structure to begin each thread’s execution at
the current restart point. For each iteration of the concep-
tual thread for-loop, a single conceptual thread is advanced
from its previous synchronization point to its next synchro-
nization point. The master while-loop then iterates again to
emulate all conceptual threads executing the original pro-
gram from the barrier statement to the next point of syn-
cronization, unless the original program end was reached by
the conceptual threads being emulated.

In our example, the master while-loop control structure
will begin executing the SPMD code of the original parallel
program, marked by RESTART_POINT_0. The program exe-
cutes the original, SPMD source code until it reaches state-
ment 10, the original synchronization point. It then marks
the synchronization point it reached, and program execu-
tion continues with the next conceptual thread at the origi-
nal program beginning (statement 4). When all intances of
conceptual threads have been iterated over (each tid is ex-
hausted), the barrier is marked as the next restart point.
This corresponds to the release of all conceptual threads
from the barrier, so each microthread is executed again start-
ing at the barrier release. Each conceptual thread then writes
its output and reaches the original function’s end. When all
conceptual thread indexes have been processed again, the
master while-loop detects that all conceptual threads have
completed, and exits the function.

The memory model must also be adapted to fit a mono-
lithic shared memory system. The globally visible memory
regions already fit this model, and need not be changed.
The features of the texture fetching functions must be im-
plemented in a software library. The host and device memory
spaces must generally be kept distinct, implying that API
functions copying between host and device memory spaces

should still operate as specified. Removing this overhead is
a potential target for future work.

Local memory regions must be allocated per thread. The
simplest method accomplishing this is to change each local
memory object into an array of objects accessed by the
CUDA thread index. The shared memory regions, private
to a thread block, should be dynamically allocated for the
thread blocks actively executing. For shared memory arrays
of fixed size, this can be done using the program function
stack. However, CUDA allows shared array of statically
unspecified size, determined at kernel launch time. In C,
this is most feasibly addressed by dynamically allocating
a shared memory buffer of the appropriate size for each
actively executing thread block. This is addressed in the
runtime portion of the system.

The runtime environment is responsible for the execu-
tion of the programming model, given the adapted kernel
functions generated by the compiler. Considering the thread
blocks as work units, the runtime essentially implements a
bulk-synchronous parallism model. It is responsible for the
parallel processing of the work units within a grid, ensuring
that different grids will be synchronized with each other and
with the host.

5. Structured Microthreading

Consider a common case in which a kernel function has
no synchronization. In this case, complex microthreading
techniques are unnecessary, as the threads can be interleaved
in any way we desire, including complete serialization. When
barrier synchronization is present, complete serialization is
not possible, but unstructured control flow caused by the
added goto statements to and from the restart points of the
previous approach is less easily analyzed by most compilers,
especially for optimizations like automatic vectorization.
The improved approach described in this section summarizes
a variation of previous work [23] taking advantage of the
synchronization restrictions to more efficiently implement
microthreading.

Algorithm 1 partitions an SPMD program with textually-
aligned static barriers and regular control flow into groups of
statements not containing barrier synchronization. For each
statement in sequence, we examine whether it is or con-
tains a barrier statement. If not, it is included in the current
partition. If it is a barrier statement, it defines a partition
boundary, ending the current partition and beginning an-
other. If it is a control-flow construct containing a barrier,
then by the restrictions on the correct usage of barriers, all



Input: List of Statements F in AST representation
Output: List X of Code Partitions Free of Barriers
Begin new partition P ;
while F has next statement S do

switch type of statement S do

case barrier
Add P to X;
P = new partition;

end

case simple statement
Add S to P ;

end

case seq
Prepend statements comprising S to F ;

end

otherwise

if S contains a barrier statement then
Add P to X;
Invoke algorithm recursively on the body
of S, producing a list L of partitions
within S; Append L to X;
P = new partition;

else
Add S to P ;

end

end

end

end

if P not empty then
Add P to X;

end

Algorithm 1: Construction of code partitions free of
barriers

1 __global__ small_mm_list(float* A_list, float* B_list,
, const int size)

{

2 float sum[];
3 int matrix_start, col[], row[], out_index[], i[];

for( each tid ) {

4 matrix_start = blockIdx.x * size * size;

5 col[tid] = matrix_start + tid.x;
6 row[tid] = matrix_start + (tid.y * size);

7 sum[tid] = 0.0;

8 for(i[tid] = 0; i[tid] < size; i[tid]++)
9 sum[tid] += A_list[row[tid] + i[tid]] *

B_list[col[tid] + (i[tid]*size)];
}

10
for( each tid ) {

11 out_index[tid] = matrix_start +

(tid.y * size) + tid.x;
12 A_list[out_index[tid]] = sum[tid];

}
}

Figure 4: Partitioned translation of our example kernel

threads must reach or not reach the construct, making it a
valid partition boundary itself. The same algorithm is in-
voked recursively on the internal contents of the construct
to partition the statements within.

These partitions define regions of code where the execu-
tion of different CUDA threads may be interleaved in any
way, including complete serialization, as shown in Figure 4,
where each partition is enclosed within a nested loop struc-
ture iterating through all thread indexes. Comparing Fig-
ure 4 to the previous Figure 3, we see that both perform the

same sequential ordering of the original statements. How-
ever, Figure 4 does so with significantly less complex code
in comparison, both inherently simpler and more easily an-
alyzable for later optimization. For each statement of the
program, the code generator also finds references to vari-
ables in the local memory space in that statement, and con-
servatively converts these into references to the replicated
arrays.

6. Optimizations Enabled

Programmers writing parallel software make significant
tradeoffs between the cost of redundant computation among
parallel execution units and the cost of synchronization and
communication. However, when these parallel applications
are serialized to execute on a sequential processor, the cost
of communication largely vanishes, and redundant compu-
tation often no longer makes sense. In sequential-program
compilers, redundancy removal has been very successful,
but somewhat limited by the conservative assumptions nec-
essary to preserve sequential semantics when analysis falls
short. However, when the sequential program is actually an
explicitly parallel program serialized, the need for analysis
is either greatly reduced or removed entirely, as interthread
ordering semantics are much more loosely constrained than
a typical sequential loop nest. While such optimizations
should be possible within the baseline approach, it would
not be possible to leverage the existing work on loop nest
transformations in that context.

Variance Analysis Opportunities for redundancy re-
moval are exposed by discovering what portions of the ker-
nel code will produce the same value for all thread indexes.
Computation that was previously performed redundantly by
multiple CUDA threads now can be executed once in the sin-
gle CPU thread. The core of variance analysis is the forward
program slice of each element of the thread index tuple. We
compute these program slices, annotating each statement
with those program slices they comprise. We refer to these
annotations as variance vectors. For instance, statement 9
of our example kernel has a variance vector of (x,y), be-
cause it depends on the results of statements 5 and 6 that
respectively read the x and y index components. Implicitly,
atomic intrinsics are considered as a use of each element of
the thread index, as their return value could vary for each
CUDA thread.

When no statement in a partition contains a particular
element in its variance vector, the partition does not need to
be executed for each value in the index range of that element.
Its results are independent of that element of the conceptual
thread index. In the simplest case, and perhaps the most
common, a programmer could intend to only use a subset of
the elements of the thread index tuple to distinguish threads,
implicitly assuming that all of the other elements will have
a constant value of 1. In this case, the programmer writes a
kernel never using some elements of the thread index tuple.
The variance analysis will not annotate any statement with
an unused component, directing the code generator to not
create any loops over those elements of the thread index for
any partition. This is the case for our example kernel, where
the z index is unused.

Adaptive Loop Nesting Even when loops over certain
elements are required for a partition, perhaps not all state-
ments in a partition require execution for all thread indexes,
analogous to loop invariant removal. However, we propose a
technique called adaptive loop nesting that is more general in
that it simultaneously evaluates transformations equivalent



1 __global__ mm_list(float* A_list, float* B_list,

, const int size)
{

2 float sum[];
3 int matrix_start, col[], row[], out_index, i;

4 matrix_start = blockIdx.x * size * size;
for(tid.x = 0; tid.x < blockDim.x; tid.x++) {

5 col[tid] = matrix_start + tid.x;

for(tid.y = 0; tid.y < blockDim.y; tid.y++) {
6 row[tid] = matrix_start + (tid.y * size);
7 sum[tid] = 0.0;

8 for(i = 0; i < size; i++)

9 sum[tid] += A_list[row[tid] + i] *
B_list[col[tid] + (i*size)];

}

}
10

for(tid.x = 0; tid.x < blockDim.x; tid.x++)
for(tid.y = 0; tid.y < blockDim.y; tid.y++) {

11 out_index = matrix_start +
(tid.y * size) + tid.x;

12 A_list[out_index] = sum[tid];

}
}

Figure 5: Optimized translation of our example kernel

to loop interchange, loop fission, and loop invariant removal
to achieve the best redundancy removal, similar to polyhe-
dral modeling of loop nests for sequential languages [8]. The
significant distinction from typical loop-nest optimization
is that all iterations can be assumed independent without
analysis because of their origin from parallel threads.

The compiler may generate loops over thread index ele-
ments only around those statements that contain that ele-
ment in their variance vector. To remove loop overhead, the
compiler may fuse adjacent statement groups where one has
a variance vector that is a subset of the other. All of the tra-
ditional cost analysis applied to loop fusion operations may
apply here.

Typical cost analysis must be used to determine cases
such as statements 5-9 of our example kernel. Statements
7-9 must be included in a loop nest over both x and y com-
ponents of the conceptual thread index, as the computation
is unique to each CUDA thread. As each of statements 5
and 6 is only dependent on one index element, either can
be merged into a loop nest with statements 7-9, inside the
outer loop over one component but before the inner loop
of the other index. However, choosing either statement 5 or
6 to merge will lead to one of two choices for the other.
We may choose to force the other into the innermost loop,
causing unnecessary redundant execution, since it was inde-
pendent of one of the loops now containing it. Otherwise,
me must enclose it in an extra, separate loop nest for that
statement alone, incurring extra control overhead. We chose
a cost heuristic that in this case would determine that the
extra control overhead is more costly, and would generate
the control flow observed in Figure 5 that redundantly exe-
cutes statement 6 for every x index.

Optimizing Local Variable Replication We note
that because of the serialization of the computation in the
fine-grained threads, not all data conceptually private to
each thread must necessarily be instantiated as separate
memory locations per thread. In particular, it is not nec-
essary to create private memory locations for values that
have a live range completely contained within a partition.
In such cases, one memory location reused by all threads is
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Figure 6: Compiler implementation diagram

sufficient. Another case is where, even though the variable is
live through multiple partitions, its value is thread-invariant.
This is the case when a variable definition has an empty vari-
ance vector.

Two cases arise in which variable replication must be
applied to the output value of an assignment with a non-
empty variance vector. The first is if a value defined by the
assignment reaches a use in another partition. As stated
previous, values with a live range completely contained
within a partition will never need to be saved for the same
conceptual thread to use in some later partition. The second
is if, in the presence of the loop over thread indexes placed
around the partition, the defined value would reach a use
that it previously would not have.

Assignments with an empty variance vector technically
never need to write to a replicated location, such as state-
ment 4 of Figure 5. However, we decided that for any use
reachable by at least one replicated definition, all its po-
tential definitions must write to the replicated location for
simplicity.

Minimal variable replication and adaptive loop nesting
share an interesting interplay in that the maximal fusing of
loops over indexes can introduce additional cases requiring
replication. This has been well established in work on loop
fusion. The final results of these optimization algorithms
would result in a generated kernel code like that shown in
Figure 5.

7. Implementation

The compiler is implemented within NVIDIA’s produc-
tion CUDA compilation toolchain. The toolchain provides
a CUDA compiler driver, called nvcc. We added a new
compiler flag enabling multicore compilation. The compiler
structure is shown in Figure 6. At a high level the com-
piler consists of two main components: a frontend (CUD-
AFE) and the Open64 [9] high-level backend. CUDAFE is



the standard CUDA production compiler front-end without
modifications, just as it is used for GPU compilation.

In our implementation we generate HI-WHIRL interme-
diate representation (IR) for the Open64 backend infrastruc-
ture [9]. We implemented all the optimizing transformations
at the HI-WHIRL level, chosen because almost all machine-
independent analysis and optimization passes are available
there [6]. The backend consists of five main components.

PreOpt- We use the standard Open64 optimizer to per-
form a few simple optimizations and, more importantly, to
generate data flow information in the form of def-use chains.

Variance Analysis- The variance analysis we described
earlier computes forward program slices on the thread index
variables, annotating every statement with the components
of the threadIdx variable on which that statement depends.

Partitioning- The partitioning algorithm described in
Section 5 builds a list of partitions and, within each parti-
tion, collects a list of statements.

Local Variable Replication- Def-use chains restricted
to the set of local variables of a function determine which
variable references are read and written in multiple parti-
tions. Each statement is annotated with the list of variable
references within that statement needing to reference the
expanded version of the variable.

Code Generation- This phase completes the genera-
tion of IR that is the complete, optimized transformation of
the input into executable code. It traverses each partition,
grouping adjacent statements if desirable given their vari-
ence vectors. It also transforms statements to use replicated
versions of variables as necessary. Finally, it surrounds each
grouped cluster of statements within a partition by the nec-
essary thread loops, as required by the variance vectors of
those statements.

WHIRL2C- We use the WHIRL2C [5] component from
the Open64 distribution to generate C code from the trans-
formed IR.

Thread blocks in the CUDA programming model repre-
sent independent tasks, each embodied by a sequential pro-
gram following our compiler’s translation. Many frameworks
exist for distributing such parallel tasks to processors. Our
implementation uses POSIX threads as an example. The
runtime system creates several OS worker threads, the num-
ber of which can be controlled by an environment variable.
At a kernel launch, the number of CUDA thread blocks in
the grid to be launched is statically partitioned to the run-
time threads. Each runtime thread executes its chunk se-
quentially and waits on a barrier. When all runtime threads
reach the barrier, the grid has completed, and control is re-
turned to the host thread.

8. Performance Evaluation

We present results on the eight CUDA benchmarks in Ta-
ble 2 from application fields including fluid dynamics, as-
trophysics, and financial modeling. These applications were
written specifically for a GPU target architecture, and have
shown significant performance on that platform, some re-
ported in previous work [18]. For benchmarking, we used an
Intel Core2 Quad processor system running RedHat Enter-
prise Linux 4 (Update 7). We use gcc version 3.4.6 as the
final C compiler, with -O3 optimization for all tests.

Table 3 shows that optimizations of the structured mi-
crothreading implementation dramatically reduced the num-
ber of replicated variables, with direct effect on reducing
cache pressure. The number of references to replicated vari-
ables is also consequently reduced, intuitively leading gcc to

Benchmark App. domain Kernel
lines

Static
barriers

petrinet stochastic models 191 5
blinn volume rendering 155 0
blackscholes financial models 43 0
nbody astrophysics sim. 180 3
lbm fluid sim. 285 1
tpacf astronomy data

processing
98 4

binoption financial models 121 5
FDTD electromagnetic

simulation
263 6

Table 2: Benchmark summary

Benchmark Local
objects

Static lo-
cal object
references

Replicated
local ob-
jects

Static ref-
erences to
replicated
objects

petrinet 72 623 0 0
blinn 93 343 0 0
blackscholes 35 133 0 0
nbody 82 498 18 141
lbm 110 1269 11 51
tpacf 36 196 6 25
binoption 51 215 6 6
FDTD 46 481 13 94

Table 3: Static Results of Optimizing Transformations

promote a larger fraction of variable accesses to register ac-
cesses. The variance analysis correctly detected that, out of
all of the benchmarks, only tpacf used two dimensions of
the thread index, while all the other applications used only
one.

Figure 7 shows the benefits of our optimizations over
a traditional microthreaded approach. Those applications
with the least performance differences, blinn and blacksc-
holes, do not use any synchronization within the CUDA
kernel. In these cases, the performance benefits of the struc-
tured implementation are primarily due to the removal of the
redundant local memory objects, as the control flow struc-
ture is practically the same between the two implementa-
tions. The rest of the applications do use synchronization,
and gain significant performance benefits from the struc-
tured implementation, with an average of approximately 2×
performance difference between the baseline and structured
implementations of microthreading.

The most extreme cases of disparity between structured
and unstructured microthreading were BinOption and FDTD.
These were also the applications with the most synchroniza-
tion, showing that the advantage of strutured microthread-
ing and optimization generally increases with kernel pro-
gram complexity.

Finally, we can see that the performance compared to a
native C application varies widely. This is to be expected,
as the implementation decisions were made in different pro-
gramming models, although the task and general algorithm
were fixed. petrinet and FDTD required the most parrallel
algorithm implementation overhead, reflected in the compar-
ison with sequential execution. Some applications even saw
single thread performance gains over the existing C imple-
mentation. This indicates that the optimization effort spent



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

petrinet blinn blackscholes nbody lbm tpacf BinOption FDTD

N
o

rm
a
li
z
e
d

 R
u

n
ti

m
e

Application

9.35C
Baseline

Structured

Figure 7: Translated CUDA application runtime relative to a native C implementation, each using one CPU execution thread.
Only nominal programmer optimization effort was applied to either the C or CUDA versions of the code.

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4

S
p

e
e
d

u
p

# of CPU cores

petrinet
blinn

blackscholes
nbody

lbm
tpacf

BinOption
FDTD
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on the CUDA implementation, for the GPU, was more ef-
fective for the CPU than the optimization effort spent on
the C implementation.

All applications also saw significant performance gains
from multithreading across the coarse-grained cores. We can
see in Figure 8 that the performance scaling of the translated
applications is very good, with close to ideal linear scaling
for a small number of processor cores for most applications.
The only application that reaches a scaling ceiling on our
test system is lbm, as the application becomes bottlenecked
by system memory bandwidth. Several other applications
show somewhat less than ideal scaling, primarily due to
load imbalance caused by our simplistic work partitioning
implementation developed under the assumption of large
numbers of equal-latency tasks. The two applications most
affected by load imbalance are tpacf and petrinet, which
have large variations in the runtimes of each block. A large
existing body of work explores more effective dynamic work
scheduling policies [15] applicable to our implementation

would likely move some of the applications closer to the ideal
scaling curve.

9. Conclusions

We have described techniques for efficiently implementing
the CUDA programming model on a conventional multipro-
cessor CPU architecture. We have described a baseline mi-
crothreading approach, showing that a microthreading ap-
proach based on structured control flow has significant com-
parative performance advantages, in part due to additional
optimizations that are enabled.

We observe that a fine-grained SPMD decomposition can
be translated into more coarse-grained work units effectively,
but only with reasonable restrictions on the synchronization
model. Fine-grained threads that may interact arbitrarily
must resort to some form of unstructured microthreading,
which has shown to as much as double execution times
compared to the structured approach, and in no case was
it better. Our results also suggest that there is a class of
parallel kernels where the finely-threaded version of the
code shows parity with a native C implementation in single-
thread performance.

Finally, our results have shown a particular software en-
gineering advantage for current CUDA developers requir-
ing some CPU fallback implementation when CUDA is not
installed on a particular client’s system. Using these tech-
niques, such developers could translate their CUDA code
directly into multithreaded C that is almost always better
than a quickly written sequential program on a small mul-
tiprocessor typical in today’s systems, while still keeping a
single code base.
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