
Throughput-Oriented Kernel Porting onto FPGAs

Alexandros
Papakonstantinou

ECE Department
University of Illinois

Urbana-Champaign, IL, USA
apapako2@illinois.edu

Deming Chen
ECE Department

University of Illinois
Urbana-Champaign, IL, USA

dchen@illinois.edu

Wen-Mei Hwu
ECE Department

University of Illinois
Urbana-Champaign, IL, USA

w-hwu@illinois.edu

Jason Cong
CS Department

University of California
Los Angeles, California, USA

cong@cs.ucla.edu

Yun Liang
EECS School

Peking University
Beijing, China

ericlyun@pku.edu.cn

ABSTRACT
Reconfigurable devices are often employed in heterogeneous
systems due to their low power and parallel processing advan-
tages. An important usability requirement is the support of a
homogeneous programming interface. Nevertheless, homoge-
neous programming interfaces do not eliminate the need for
code tweaking to enable efficient mapping of the computation
across heterogeneous architectures. In this work we propose a
code optimization framework which analyzes and restructures
CUDA kernels that are optimized for GPU devices in order
to facilitate synthesis of high-throughput custom accelerators
on FPGAs. The proposed framework enables efficient perfor-
mance porting without manual code tweaking or annotation
by the user. A hierarchical region graph in tandem with code
motions and graph coloring of array variables is employed to
restructure the kernel for high throughput execution on FP-
GAs.

1. INTRODUCTION
Tighter integration of latency oriented CPUs with through-

put oriented compute architectures with massive parallelism
and low power characteristics is becoming common in many
compute domains (e.g. mobile, high-performance, compute
clusters, etc) [1, 17, 16]. Programming efficiency is a prerequi-
site for leveraging the benefits of heterogeneous systems. The
introduction of parallel programming models and semantics
such as CUDA [15], OpenCL [2] and OpenACC [3] addresses
the need for programming heterogeneous processors through
a homogeneous programming interface. Homogeneous pro-
gramming models facilitate functionality porting but often
necessitate device-specific code tweaking to achieve perfor-
mance porting.

In this work we propose a throughput oriented performance
porting (TOPP) framework that leverages code restructur-
ing techniques to enable automatic performance porting of
CUDA kernels onto FPGAs. CUDA offers explicit control
over (i) data memory spaces, (ii) computation distribution
across cores, and (iii) thread synchronization. Hence, CUDA
kernels designed for the GPU architecture may not map effi-
ciently on reconfigurable devices. The TOPP framework pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

posed in this work, leverages the hierarchical region graph
(HRG) representation to efficiently analyse and restructure
the kernel code. Restructuring entails a wide range of trans-
formations including code motions, synchronization elimina-
tion (through array renaming), data communication elimina-
tion (through rematerialization), and idle thread elimination
(through control flow fusion and loop interchange). As data
handling plays a critical role in the performance of massively
parallel CUDA kernels, the proposed flow employs advanced
dataflow and symbolic analysis techniques to efficiently man-
age data. Graph coloring in tandem with throughput esti-
mation techniques is used to optimize kernel data structure
allocation and utilization of on-chip memories. Through or-
chestration of different code transformation and optimization
techniques, the TOPP framework generates C code which is
fed to high-level synthesis (HLS) to generate high-throughput
custom accelerators on the reconfigurable architecture. Our
experimental study shows that the proposed flow improves
FPGA execution performance by more than 4X without man-
ual code tweaking from the user.

The main contributions of this work are summarized below:

• Introduction of the hierarchical region graph represen-
tation of CUDA kernels.

• Implementation of an automated performance porting
flow from CUDA to FPGAs.

• Description of efficient throughput metrics for through-
put oriented kernel restructuring.

• Experimental evaluation of the performance porting ca-
pability of the TOPP framework.

In the next Section we provide further background infor-
mation on CUDA-to-FPGA flows and introduce the HRG
representation. Section 3 offers an overview of the TOPP
framework which is complemented by algorithms and other
implementation details in the Appendices. Finally, Section
4 contains the experimental evaluation of TOPP followed by
conclusion in Section 5.

2. MOTIVATION AND BACKGROUND
CUDA employs a SIMT (single instruction, multiple threads)

parallel programming interface which efficiently expresses mul-
tiple fine-grained threads executing as groups of cooperative
thread arrays (CTA). The GPU architecture comprises high-
throughput compute cores grouped in Streaming Multiproces-
sors (SMs). Computation is distributed across SMs at CTA
granularity [15]. A carefully crafted interconnect scheme be-
tween SMs and off-chip memory facilitates high-bandwidth
data accesses at low latency overhead.

Listing 1: CUDA code for DWT kernel
1 for (t i d =0; t id<bdim ; t i d++){
2 shr [t i d] = id [idata] ;
3 s yn c th r e ad s () ;
4 data0 = shr [2∗ t i d] ;
5 s yn c th r e ad s () ;
6 od [t i d g l o b a l] = data0∗SQ2 ;
7 shr [t i d] = data0∗SQ2 ;
8 s yn c th r e ad s () ;
9 numThr = bdim >> 1 ;

10 int d0 = t id ∗ 2 ;
11 for (int i =1; i<l ev ;++ i){
12 i f (t i d < numThr){
13 c0 = id0+(id0>>LNB) ;
14 od [gpos] = shr [c0]∗SQ2 ;
15 shr [c0] = shr [c0]∗SQ2 ;
16 numThr = numThr>>1;
17 id0 = id0<<1; }
18 syn c th r e ad s () ; } }

Listing 2: C code for DWT kernel
1 for (t i d =0; t id<bdim ; t i d++){
2 shr [t i d] = id [idata] ; }
3 for (t i d =0; t id<bdim ; t i d++){
4 d0 [t i d] = shr [2∗ t i d] ; }
5 for (t i d =0; t id<bdim ; t i d++){
6 od [t i d g l o b] = d0 [t i d]∗SQ2 ;
7 shr [t i d] = d0 [t i d]∗SQ2;}
8 for (t i d =0; t id<bdim ; t i d++){
9 numThr = bdim >> 1 ;

10 id0 [t i d] = t id ∗ 2;}
11 for (int i =1; i<l ev ;++ i){
12 for (t i d =0; t id<bdim ; t i d++){
13 i f (t i d < numThr){
14 c0 = id0 [t i d]+(id0 [t i d]>>LNB) ;
15 od [gpos] = shr [c0]∗SQ2 ;
16 shr [c0] = shr [c0]∗SQ2 ;
17 numThr = numThr>>1;
18 id0 [t i d] = id0 [t i d]<<1; }}}

Reconfigurable devices, on the other hand, offer grids of
fine-grained compute and storage resources that can be syn-
thesized into parallel processing custom cores (CCs) at dif-
ferent granularities. FPGAs offer the benefit of application-
driven compute customization at the cost of area overhead
for reconfigurability. HLS flows enhance FPGA design effi-
ciency by facilitating fast and easy design at higher abstrac-
tion. Achieving high-throughput implementations on FPGA
requires cautious allocation and coordination of the available
compute and storage resources. This depends heavily on par-
allelism expression and organization in the input code of HLS
design flows. The TOPP framework combines advanced code
transformations to enable high-throughput designs in CUDA-
to-RTL HLS flows.

2.1 SIMT-to-C Compilation
Previous works have described SIMT-to-C (S2C) compila-

tion flows porting kernels onto multicore CPUs [23] and FP-
GAs [20, 22, 19, 13]. A common characteristic of these S2C
flows is the expression of threads as loops over the CTA thread
ID (tID), hereafter referred to as tID-loop. Thread synchro-
nization is enforced through loop fission (e.g. tID-loop in line
1 of List. 1 is split into 5 loops in List. 2), loop interchange
(e.g. loops in lines 11, 12 in List. 2) and variable privatiza-
tion transformations (e.g. d0 in line 4 of List. 2). Thread-loop
unrolling in tandem with vector loads/stores may be used to
exploit the CUDA thread parallelism in the kernel.

Kernel decomposition into computation (COMP) and com-
munication (COMM) tasks has been proposed in [20, 22, 21].
Communication tasks comprise data transfers to/from off-
chip memory. Task decomposition is critical in optimizing
CTA execution latency on the reconfigurable fabric. Aggre-
gating off-chip memory accesses across CTA threads within
COMM tasks facilitates efficient off-chip memory bandwidth
through data transfer bursts. Decomposition may also benefit
COMP task latency by eliminating data fetch latency through
data prefething. The kernel decomposition proposed in [20,
22, 21] is based on user-injected annotations that assist the
compiler in identifying COMP and COMM tasks.

This work employs the kernel decomposition philosophy but
eliminates the need for user-injected annotations. The pro-
posed flow leverages sophisticated analysis and transforma-
tion techniques to identify and re-organize kernel tasks so as
to optimize execution throughput on the FPGA architecture.

Region
Analysis

SNC
Motions

Burst
Conversion

TRN
Motions

CF
Normalize

FCUDA
Pre-

Processing

Throughput-
Oriented GC

FCUDA
Post-

Processing

Analysis
(Code Annot.)

Latency Optimization
(Region Motions)

Throughput Opt.
(Storage Allocation)

S2C S2C

Figure 1: TOPP framework integrated in FCUDA

We will use the Nvidia SDK kernel for discreet wavelet trans-
forms (DWT) as a running example to motivate the impor-
tance of throughput-oriented performance porting (TOPP).
The DWT kernel (List. 1) contains thread-dependent con-
trol flow (line 12), thread synchronization directives (line 3,
5, 8, 18), and intermingled computation and communication
regions/statements (lines 6,14) which render manual task an-
notation cumbersome. Moreover, code restructuring may be
required to eliminate kernel fragmentation into fine grained
COMP/COMM tasks; e.g. tsk(6), tsk(7), tsk(9,10), etc. in
List. 1, where tsk(x[, y]) denotes the task contained within
line(s) x (to y). Fine-grained tasks can negatively impact
performance through (i) overhead of implicit thread synchro-
nization across tasks and (ii) increased storage overhead due
to variable privatization for variables referenced across tasks
(e.g. data0 is referenced in tsk(4) and tsk(6) and hence it is
privatized with respect to tid).

The proposed framework leverages rigorous analysis and
transformations in tandem with throughput estimation tech-
niques to maximize execution throughput on FPGA. With
regard to previous works, the proposed flow elevates the im-
portance of data communication and storage in execution
throughput and tries to balance task latency optimization
with memory resource allocation for each task in order to
maximize kernel execution throughput. Dataflow, value range
and symbolic expression analysis in tandem with efficient code
motions, and memory allocation optimizations are applied in
a phased approach depicted in Figure 1. TOPP is integrated
in the FCUDA flow [20, 21] and comprises three major phases:
(i) kernel analysis (code analysis and annotation), (ii) task la-
tency optimization (code restructuring) and (iii) throughput
optimization (efficient storage allocation). A hierarchical re-
gion graph (HRG) representation of the kernel is built during
the analysis phase and it is used throughout the subsequent
transformation stages.

2.2 Hierarchical Region Graph (HRG)
Hierarchical task graphs (HTGs) have been previously pro-

posed for code representation as a means of extracting paral-
lelism in compilers [10] and HLS flows [12]. In these works the
HTG is generated from a sequential low-level 3-address rep-
resentation of the application and incorporates control and
data dependence information along with control-flow hierar-
chy. The HRG, on the other hand, is generated from high-level
SIMT code and summarizes the computation, communication
and synchronization characteristics of the application along
with data and control flow dependence. The HRG represents
the kernel as a tree graph GHRG = (V,E), where each leaf
vertex, vl ∈ V , represents a code region of type tr and each
internal vertex, vh ∈ V , represents a control-flow (CF) struc-
ture of type tf . Fig. 2 depicts the HRG for the DWT kernel.
Region type, tr, specifies whether the leaf node corresponds
to a compute (CMP), communication (TRN), or synchro-
nization (SNC) region. Control-flow type, tf , identifies the
dependence of the CF condition expression from thread ID
(tID). Double-rimmed (purple) nodes represent tID-variant
(TVAR) CF whereas single-rimmed (green) nodes represent
tID-invariant (TiVAR) CF. HRG edges, E, include a set of
hierarchy edges, EH (non-dashed edges connecting nodes into
a tree, which denote CF structure), and a set of data depen-
dence edges, ED (dashed edges). Control flow dependencies

DWT

IF9CMP0 TRN1 SNC2 CMP3 SNC4 CMP5 TRN6 CMP7 SNC8

CMP9

SNC13

CMP10 TRN11 CMP12

TRN14

IF14

IF10

FOR10

Figure 2: HRG for DWT kernel

can be extracted by a depth-first traversal of the HRG tree
(non-dashed edges), i.e. child nodes are ordered in control-
flow order.

The HRG summarizes the kernel region organization and
enables easy and throughput-driven kernel decomposition into
COMP and COMM tasks through depth-first traversals (DFT)
of the HRG tree. Moreover, it facilitates efficient feasibil-
ity and cost/gain analysis of different code transformations.
Hence, transformations may be evaluated on the HRG repre-
sentation before being applied on the SIMT code. Sequences
of transformations implemented on the HRG can be applied
to source code by translating the resulting HRG tree to C or
CUDA code. The algorithm for CUDA-to-HRG translation is
described in Appendix A.

3. TOPP FRAMEWORK OVERVIEW
TOPP has been implemented in the FCUDA flow [20, 21],

as an interleaved sequence of analysis and transformation phases
(Fig. 1). An overview of the integration of TOPP in FCUDA
is provided in Appendix B. TOPP analysis and transforma-
tion phases are discussed in the following subsections.

3.1 Analysis Phase
Region analysis, (Fig. 1), identifies the CMP, TRN and

SNC regions of the kernel and annotates each statement with
region and thread-variance (TVAR) information. The an-
notated information is used in the generation of the HRG.
The analysis process is carried out as a sequence of six steps:
(A1) Identify global memory accesses, (A2) Normalize multi-
type statements, (A3) Build Def-Use chains [18], (A4) Find
tID-variant (TVAR) statements, (A5) Annotate TVAR state-
ments, and (A6) Build the kernel HRG. Initially global mem-
ory variables are identified and all global memory references
are collected in step A1. Global memory variables include
CUDA __constant__ variables and C-pointer parameters of
the kernel procedure, as well as all of their alias definitions
through pointer arithmetic. During step A2, kernel state-
ments are scanned for multi-type statements, i.e. statements
entailing both CMP and TRN operations. Each such state-
ment is converted into separate single-typed CMP and TRN
statements. Subsequently, dataflow analysis is used to build
Def-Use chains (step A3) which facilitate tID-variant (TVAR)
variable and statement identification during step A4 and tag-
ging during step A5 (a statement is tagged as TVAR, if it
contains the definition of a TVAR variable). Finally the HRG
is constructed in step A6 (Alg. 1) based on the analysis in-
formation annotated on the kernel statements.

3.2 Latency Optimization Phase
The latency optimization phase in TOPP comprises differ-

ent region motion stages which aim to eliminate the execution
latency overhead resulting from excessive (i) CMP and TRN
interleaving, and (ii) synchronization directives. Hence, the

SNCx

SNCz

CMPr
def1
def2

CMPv
use1
def3

CMPs
use2
use3

(CHN1: DSYNC.)

(CHN2: NA)

(CHN3: SYNC)

SNCn’

SNCn

E
xecution order

(a) Forward SNC shift

SNCx

SNCz

CMPr
def1
def2

CMPv
use1
def3

CMPs
use2
use3

(CHN1: SYNC)

(CHN2: NA)

(CHN3: DSYNC)

SNCn’

SNCn

(b) Backward SNC shift

Figure 3: SNC region motions

goal of the transformations applied in this phase is to reduce
CTA execution latency through region reorganization so as to
enable the creation of coarser COMP and COMM tasks. As
an example we can use the organization of regions in the ini-
tial DWT HRG (Figure 2) which can be arranged into eight
tasks (marked with red dashed circles). Since each task is out-
lined in a separate task procedure in the FCUDA flow, task
boundaries represent implicit synchronization points (ISPs)
imposing synchronization overhead and bounding ILP extrac-
tion space at the thread level. Moreover, multiple fine-grained
tasks result in extra TVAR variables with ISP-crossing life-
times. This is dealt in FCUDA with variable privatization
along the tID dimension, leading to higher BRAM resource
usage (e.g. variables d0 and id0 in List. 1 are privatized after
task decomposition in List. 2). The TOPP framework con-
siders the impact of privatization on BRAM allocation and
employs region motions and merging to reduce ISP count.

The HRG in tandem with the annotated Def-Use chain
information plays a critical role in region motion feasibil-
ity analysis and cost/gain estimation during this optimiza-
tion phase. Each Def-Use chain that crosses multiple re-
gions is characterized as either thread shared chain (TSC)
or thread private chain (TPC). TSCs refer to chains corre-
sponding to __shared__ or global variables, where explicit
synchronization between the definition region and the use re-
gion may be required (e.g. chain corresponding to def and
use of __shared__ variable shr in lines 2 and 4, respectively
of List. 1; represented with dependence edge between TRN1
and CMP3 regions in Figure 2). TPCs, on the other hand,
correspond to variables that host values read by the thread
that wrote them (i.e. same def and use thread per value)
which are not affected by CTA synchronization dependence-
wise. Nonetheless, synchronization might affect the storage
allocation of TPC variables as discussed earlier. Hence, TSCs
affect the feasibility of region motions, whereas TPCs affect
the cost/gain estimation analysis of region motions. There are
three possible effects that region motions may have on Def-Use
chains: (i) Desynchronization (DSYNC), (ii) Synchronization
(SYNC), or (iii) Not affected (NA). Desynchronization hap-
pens in the case that the explicit or implicit synchronization
points between source and sink regions of a chain are removed.
For example, chain CHN1 comprised of def1 and use1, in Fig.
3(a), is desynchronized when SNCn region is shifted below
CMPv becoming SNCn’. Correspondingly, chain CHN3 be-
tween def3 and use3 is synchronized for the same motion of
SNCn, whereas CHN2 is not affected by this region motion.
Determining which case a region motion corresponds to, is
based on the partial ordering enforced by the region identi-
fiers (rIDs) of the involved regions.

The feasibility of a region motion with respect to a TSC is
determined by the motion effect on the chain (i.e. DSYNC,
SYNC or NA) in combination with the value of its dependence
distance vector [5]. Specifically, in case of SYNC or NA mo-
tion effects on the TSC, feasibility is positive regardless of the

dependence vector distance (e.g. CHN2 and CHN3 in Figure
3(a)). However, in case of DSYNC motion effect on the TSC,
the dependence distance vector needs to be examined in or-
der to determine feasibility. We leverage the work in [11] and
extend it by applying dependence distance vectors in deter-
mining region motion feasibility. Specifically, the authors of
[11] show that it is feasible to remove implicit synchronization
points (ISPs) between the source and sink of a Def-Use chain
as long as one of the following rules holds with respect to the
chain’s distance dependence vector v:

• v[0] == 0
• v[0] < 0 ∧ v[1 : (|v| − 1)] == 0
• v[0] == v[i] : i ∈ [1 : (|v| − 1)] ∧ v[1 : i] == 0

where v[0] corresponds to the index of the tID-loop and v[0] <
0 denotes an inter-thread data dependence. For the purpose
of determining the feasibility of a region motion we also apply
this test to explicit synchronization points (ESPs). Distance
vectors are evaluated leveraging symbolic analysis ([18]) in
combination with range analysis ([6, 9]) and array dependence
analysis ([18, 5]). If none of the conditions can be proven, fea-
sibility is not confirmed and the corresponding region motion
is rejected. In each of the TRN motions and SNC motions
stages, cost-function based evalution is used to quantify the
benefit of a motion with regard to the following factors:

• De-synchronized TPCs gain

• Synchronized TPCs cost

• Explicit synchronization point (ESP) elimination gain

• Implicit synchronization point (ISP) overhead cost

Appendix C discusses in further detail the transformation
stages in the latency optimization phase of TOPP.

3.3 Througput Optimization Phase
During this phase TOPP leverages throughput estimation

techniques along with resource information to guide kernel
restructuring. Hence, the optimization goal is shifted toward
CTA grid execution throughput (vs. CTA execution latency,
previously), taking into account the available resource on the
target device.

3.3.1 Throughput Factors and Metrics
Throughput of system configuration C with N custom cores

(CCs), TPC , can be expressed as: TPC = EPN
cp

, where EPN

represents the cumulative CTA execution progress across all
CCs completed per clock period, cp. For the purpose of
throughput-oriented kernel restructuring we leverage the clock
period selection feature offered by the HLS engine used in
our flow. That is, the generated RTL is pipelined accord-
ing to the selected clock period, and operation cycle laten-
cies are adjusted accordingly. We have created cycle latency
tables (CLTcp) by characterizing operation cycle latencies
for different clock periods (cp). These tables are used in
TOPP to estimate cycle latency and throughput for a cho-
sen clock period. Hence, the CTA execution throughput met-
ric can be expressed in terms of cycle latencies as: TPC =
NCC ÷ (CLCOMP + CLCOMM), where configuration C has
NCC cores with compute and communication task cycle la-
tencies of CLCOMP and CLCOMM , respectively. The num-
ber of cores, NCC , is estimated for the selected FPGA device
based on (i) the number of arrays required per CTA by con-
figuration C and (ii) resource allocation feedback provided
from the HLS engine. Latencies CLCOMP and CLCOMM

are calculated as the sums of the sequential CMP and TRN
region latencies per CTA in configuration C, respectively:
CLCOMP =

∑
i CLCMPi , and CLCOMM =

∑
j CLTRNj .

Concurrent tasks are represented by the latency of the longer
task (the HLS engine schedules tasks in a bulk synchronous

way; tasks may either start concurrently, if not dependent, or
sequentially, otherwise.) Cycle latency CLCMPi of compute
region CMPi, is estimated by determining the task’s critical
execution path. Def-Use chains are used for identifying the
critical execution path, while operation cycle latencies are ref-
erenced from CLTcp tables. Cycle latency estimate, CLTRNj ,
of data transfer region TRNj is affected by two main fac-
tors: (i) the on-chip memory bandwidth and (ii) the off-chip
memory bandwidth. The former is estimated based on the
on-chip SRAM memory port bandwidth (BWS), the execu-
tion frequency and the read/write data volume. The latter
depends on the off-chip DDR memory system peak band-
width, (BWD), provided by the user, the extent of static
coalescing achieved by the burst conversion stage in the la-
tency optimization phase and the read/write data volume
of the task. The final COMM task latency is calculated
as CLTRNj = max(CLSMj , CLDMj), where CLSMj corre-
sponds to the on-chip memory access latency and CLDMj cor-
responds to the off-chip memory access latency. As described
above, CLSMj is mainly dependent on the architecture of the
chosen configuration, C, while CLDMj is mainly constrained
by the value of BWD provided by the user.

3.3.2 Throughput-Driven Graph Coloring
Graph coloring is often used in compilers for the allocation

of registers to program variables and temporary values [8, 7],
due to its ability to lead to efficient solutions. Registers rep-
resent the most scarce but efficient storage resource at the
topmost level of memory hierarchy and thus good register al-
location is critical to performance. The SIMT programming
model used in FCUDA offers visibility of different memory
address spaces with different memory attributes. The goal
of the throughput-driven graph coloring (TDGC) transfor-
mation in TOPP is to enhance the allocation of kernel arrays
onto FPGA Block-RAM (BRAM) memories, considering both
kernel characteristics and resource availability. The proposed
TDGC algorithm leverages the throughput metrics described
in Section 3.3.1 to optimize performance through efficient (i)
allocation of arrays onto BRAMs and (ii) off-chip data trans-
fer scheduling.

TDGC entails three main steps: (GC1) Array coloring,
(GC2) Throughput estimation, and (GC3) Data communi-
cation task (COMM) rescheduling. The three steps may be
iterated until no more throughput improving rescheduling al-
ternatives are available. In most cases, the number of iter-
ations is small (not exceeding 3). Initially, candidate arrays
for allocation are identified (step GC1) and an interference
graph, GI , is generated (Fig. 12(a)). Vertices in GI corre-
spond to array lifetimes, whereas edges represent overlapping
array lifetimes in the kernel. The interference graph, GI , is
colored using a modified R-coloring [18] algorithm (R repre-
sents the number of BRAMs per CTA). Coloring determines
a BRAM allocation configuration which is used in step GC2
to estimate throughput using the metric discussed in 3.3.1.
The number of instantiated CCs, NCC , is determined based
on the BRAM allocation selected in step GC1 and resource
estimation feedback from the HLS with respect to other type
of resources. If BRAM turns out to be the throughput lim-
iting resource (i.e. it constrains NCC), we employ COMM
task rescheduling in step GC3 as a means to reduce BRAM
requirements. Specifically, GI nodes are characterized based
on their interference degree, LID, and their idle lifetime in-
tervals (ILI), LII ; we define as idle the intervals of an array
lifetime that correspond to HRG regions where the array is
not accessed. Subsequently, nodes are sorted with respect to
lifetime scatter : LS = LID ∗ LII

LT
, where LT represents the

total lifetime interval. Nodes are examined in decreasing LS

order with regard to the feasibility of reducing their ILI (and
subsequently their interference degree) through TRN region

motions and the benefit of such motions in the interference
degree of the GI graph. If a node fulfilling these requirements
is found, the HRG is modified and the TDGC steps reiterated
until no further candidate nodes are available. At each itera-
tion of the TDGC steps, the TPC of the new configuration is
estimated (step GC2) and the TRN region motion is commit-
ted only for configurations with higher TPC (See Appendix
D for further details in TDGC and R-coloring).

4. EXPERIMENTAL EVALUATION
TOPP framework is implemented within the FCUDA flow

and its analysis phase essentially replaces the (manual) an-
notation task (Fig. 7). Moreover, the latency and through-
put optimization phases of TOPP apply performance oriented
code restructuring prior to compiling the SIMT code into ex-
plicitly parallel C code for the HLS engine. The HLS engine
integrated in the flow is Vivado-HLS [4], which is the succes-
sor of AutoPilot [24] used in [20, 22]. The CUDA kernels used
in our experiments have been selected from the Nvidia SDK
[15] suite. Our experimental evaluation is centered around
exposing the effect of the employed TOPP transformations
on performance. Specifically, in the next section we measure
the performance impact from the individual latency oriented
transformations on execution. Subsequently, the effectivenes
of the metric used to guide throughput optimization is tested
in Section 4.2. Finally, we evaluate the total kernel execu-
tion speedup achieved by integrating TOPP into FCUDA, in
Section 4.3.

4.1 Latency Optimization Evaluation
First we evaluate the effect of the transformations applied

during the latency optimization phase (Figure 1) on CTA
compute task latency. Specifically, we measure the effect of
each individual transformation on latency by disabling the
TDGC transformation in the throughput optimization phase
of TOPP and enabling only the desired latency transforma-
tions in the latency optimization phase. Initially we enable
only the SNC motions (SM) transfomation and measure the
relative speedup of the compute latency over FCUDA. We
gradually enable the other transformations of the latency op-
timization phase in the order executed within TOPP (1) and
compare the cummulative speedups achieved over the original
FCUDA flow in [20] (Fig. 4). The speedup achieved by each
set of enabled latency transformations depends on the kernel
and code structure characteristics. Kernels that either contain
long dataflow paths (e.g. FWT2) or more convoluted control
flow paths (e.g DWT) offer more opportunities for optimiza-
tion. We observe that TRN motions (TM) can have significant
impact in the compute latency (e.g. FWT2 and DWT). This
is due to enabling the generation of coarser COMP tasks by
shifting interleaved TRN regions. It is interesting to observe
that burst conversion (BC) results in good speedups for some
kernels (e.g. FWT1 and FWT2), even though COMM task
latency is not considered in Fig. 4. This is mainly due to
the address calculation simplification from consolidating the

1

2

3

4

up
 (

no
rm

al
iz

ed

er
 F

C
U

D
A

)

SM
SM+BC
SM+BC+TM
SM+BC+TM+CFN

0

1

FWT1 FWT2 DWT MM MMp

Sp
ee

du ov
e

Figure 4: Execution speedup over FCUDA from cum-
mulative application of latency transformations: (i)
SNC region motions (SM), (ii) burst conversion (BC),
(iii) TRN region motions (TM), and (iv) control flow
normalization (CFN).

1.60E+073.E-04

1 00E+07

1.20E+07

1.40E+07

2 E 04

2.E-04

yc
le

s)

s/
cy

cl
e)

6.00E+06

8.00E+06

1.00E+07

1.E-04

2.E-04

L
at

en
cy

ut

io
n

cy

ut
 (C

T
A

s

LAT
TPc

2.00E+06

4.00E+06
5.E-05

L
(e

xe
cu

hr
ou

gh
pu

0.00E+000.E+00
C1 C2 C3 C4 C5 C6

T
h

Figure 5: Effectiveness of TPc metric (Left axis shows
TPc value, right axis shows execution latency).

memory address computation from all the threads into burst
address computations at the CTA level. On the other hand,
SNC region motions do not seem to affect compute latency in
a considerable way. However, they enable elimination of ex-
cessive variable privatization during FCUDA postprocessing,
optimizing BRAM resource per CC, and hence throughput.
Finally, note that the MMp kernel is an optimized version of
the MM kernel derived through loop pipelining during HLS.
The MMp speedup values are normalized over FCUDA la-
tency of MM kernel. This shows that TOPP and HLS opti-
mizations can be applied cummulatively.

4.2 Throughput Metric Evaluation
Here we measure the correlation of the throughput estima-

tion metric to the actual execution latency. For this purpose
we use the DWT kernel that has served as a running example
throughout the previous sections. Specifically, intermediate
configurations Ci, of DWT during compilation through the
TOPP stages are extracted and fed to FCUDA postprocessing
stage to collect execution results. TPC is calculated for each
configuration and it is depicted with execution latency results
in Fig. 5. The gray bars correspond to execution latency,
whereas the blue line corresponds to calculated TPC values.
We can observe the inverse correlation between the two perfor-
mance metrics. This shows the effectiveness of the throughput
metric in guiding the selection of high-performance configu-
rations during the throughput latency phase.

4.3 TOPP vs. FCUDA
This evaluation measures the total kernel execution speedup

achieved with TOPP over FCUDA [20]. Here, all transforma-
tions are enabled in both latency and throughput optimization
phases of TOPP. In order to evaluate the performance effect
of the code transformations in TOPP, we target the same ex-
ecution frequency for all the kernels. Thus, we eliminate the
fuzziness induced by the effect of synthesis and place-and-
route optimizations on different RTL structures. Instead, we
synthesize all the kernels at 200MHz, but run them at 100MHz
to ensure that routing will not affect our evaluation (note that
overconstraining the clock period during synthesis is a com-
mon practice in industry, in order to absorb the frequency
hit from routing delays). In terms of memory interface and
bandwidth we model in our evaluation a similar memory in-
terface as the one used in the [14] hybrid computer, where
the compute-acceleration FPGA leverages the high-speed se-
rial tranceivers to transfer data to off-chip memory controllers
that support high-banwidth DDR memory accesses.

Figure 6 depicts the speedup of the TOPP-compiled kernels
against the FCUDA-compiled ones. The FP-SX50 and FP-
SX95 bars use floating point kernels and target SX50T and
SX95T Virtex-5 devices, respectively. The third bar (INT-
SX50) uses integer kernels and targets device SX50T. Each
bar is normalized against the execution latency of FCUDA for
the same device and kernel. We can observe that the speedup
achieved on the bigger SX95T device is slightly lower than the
SX50T (even though in absolute terms latency on SX95T is
lower from latency on SX50T). The main reason for this trend

6
FP SX50

4

5

up
 (o

ve
r

A
)

FP-SX50
FP-SX95
INT-SX50

2

3
P

Sp
ee

du
FC

U
D

A INT-SX50

0

1

T
O

PP

0
FWT1 FWT2 DWT MM MMp

Figure 6: TOPP execution speedup over FCUDA

is due to the fact that the compute/memory resource capacity
of SX95T is 1.8X higher then SX50T resource capacity, but
the off-chip bandwidth of SX95T is only 50% higher than
the off-chip bandwidth in SX50T thus limiting the speedup
that can be achieved by the TOPP transformations. With
regard to speedup of the integer kernels, this is similar to
speedup for floating point kernels in most cases. FWT1 and
MMp stand out for different reasons; FWT1 optimizes away
integer multipliers for powers of two, while MMp expoits loop
pipelining more efficiently with integer operations (Note: the
MMp kernel speedup is here, also, normalized against the
FCUDA-compiled latency of MM kernel.)

Finally, comparing the speedup corresponding to bars FP-
SX50 with the compute latency results in Section 4.1, we can
observe that the performance advantage of the TOPP flow is
further improved. This is partially due to the better allocation
of BRAMs achieved by the TDGC stage and partially due to
more efficient exploitation of the off-chip memory bandwidth
(i.e. transfers can be more efficiently disentangled from com-
pute and converted to bursts).

5. CONCLUSIONS
In this paper we present the throughput-oriented paral-

lelism synthesis (TOPP) framework which aims to provide
throughput-oriented performance porting of CUDA kernels
onto FPGAs. The techniques applied in this work could po-
tentially be employed in other application programming inter-
faces with similar SIMT programming semantics that target
heterogeneous compute systems (e.g. OpenCL [2]). Our ex-
perimental evaluation demonstrates the effectiveness of per-
formance porting achieved through orchestration of advanced
analysis with latency and throughput optimizations in the
TOPP framework.

As computing is moving toward massively parallel process-
ing for big data applications, it is critical to increase the
abstraction level of optimization and transformation tech-
niques. Representing and leveraging application algorithms
at a higher level is crucial for delivering high throughput and
high performance in massively-parallel compute domains. In
this work, we have dealt with the issue of raising the abstrac-
tion level in the field of high-level synthesis of parallel custom
processing cores. We have developed efficient throughput es-
timation and optimization techniques that improve perfor-
mance beyond thread latency by dealing with conflicting per-
formance factors at the CTA level and managing the compute
and storage resources accordingly.

6. ACKNOWLEDGMENTS
This work is partially supported by the Gigascale Systems

Research Center (GSRC) and Intel Corporation. We also
thank Steven Burns, Mustafa Ozdal, Kanupriya Gulati and
Taemin Kim of Intel and Kyle Rupnow of ADSC (Illinois Cen-
ter in Singapore) for their helpful comments and discussions.

7. REFERENCES
[1] AMD Fusion family of APUs: Enabling a superior, immersive PC expe-

rience. White Paper. http://sites.amd.com/us/Documents/
48423B_fusion_whitepaper_WEB.pdf, Mar. 2010.

[2] The OpenCL specification. http://www.khronos.org/

registry/cl/specs/opencl-1.1.pdf, Sept. 2010.
[3] The OpenACC application programming interface. http:

//www.openacc.org/sites/default/files/OpenACC.1.

0_0.pdf, Nov. 2011.
[4] Vivado design suite user guide: High-level synthesis.

UG902(v2012.2). http://www.xilinx.com/support/

documentation/sw_manuals/xilinx2012_2/

ug902-vivado-high-level-synthesis.pdf, July 2012.
[5] R. Allen and K. Kennedy. Optimizing compilers for modern

architectures. Morgan Kaufmann, first edition, 2002.
[6] W. Blume and R. Eigenmann. The range test: A dependence test for

symbolic, non-linear expression. In Proc. ACM/IEEE Conf. on
Supercomputing (SC’94), Nov. 1994.

[7] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph color-
ing register allocation. ACM Transactions on Prog. Languages
and Systems, 16(3):428–455, May 1994.

[8] G. Chaitin. Register allocation and spilling via graph coloring. ACM
SIGPLAN Notices - Best of PLDI 1979-1999, 39(4):66–74,
Apr. 2004.

[9] C. Dave, H. Bae, S. J. Min, S. Lee, R. Eigenmann, and S. Midkiff. Ce-
tus: A source-to-source compiler infrastructure for multicores. IEEE
Computer, 42(12):36–42, Dec. 2009.

[10] M. Girkar and C. Polychronopoulos. Extracting task-level parallelism.
ACM Transactions on Prog. Languages and Systems,
17(4):600–634, 1995.

[11] Z. Guo, E. Z. Zhang, and X. Shen. Correctly treating synchroniza-
tions in compiling fine-grained spmd-threaded programs for cpu. In
Proc. ACM Int’l Conference on Parallel Architectures
and Compilation Techniques (PACT’11), Sept. 2011.

[12] S. Gupta, R. Gupta, and N. Dutt. Coordinated parallelizing compiler op-
timizations and high-level synthesis. ACM Transactions on De-
sign Automation of Electronic Systems, 9(4):441–470, 2004.

[13] S. Gurumani, K. Rupnow, Y. Liang, H. Cholakkail, and D. Chen. High
level synthesis of multiple dependent CUDA kernels for FPGAs. In
Proc. IEEE/ACM Asia and South Pacific Design Au-
tomation Conference, Jan. 2013.

[14] The Convey HC-1: The world’s first hybrid core computer.
Datasheet. http://www.conveycomputer.com/Resources/

HC-1\%20Data\%20Sheet.pdf, 2009.
[15] CUDA: Parallel programming and computing platform. http://

www.nvidia.com/object/cuda_home_new.html, 2012.
[16] Zynq-7000 all programmable SoC. http://www.xilinx.com/

products/silicon-devices/soc/zynq-7000/index.

htm, 2012.
[17] Tegra super processors. http://www.nvidia.com/object/

tegra-4-processor.html, 2013.
[18] S. Muchnick. Advanced compiler design and implementa-

tion. Morgan Kaufmann, first edition, 1997.
[19] M. Owaida, N. Bellas, K. Daloukas, and C. Antonopoulos. Synthesis of

platform architectures from opencl programs. In Proc. IEEE Sym-
posium on Field-Programmable Custom Computing Ma-
chines (FCCM’11), May 2011.

[20] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and
W. Hwu. FCUDA: enabling efficient compilation of cuda kernels onto
FPGAs. In Proc. IEEE Symposium on Application Specific
Processors, June 2009.

[21] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and
W. Hwu. Efficient compilation of CUDA kernels for high-performance
computing on FPGAs. ACM Transactions in Embedded Com-
puting Systems, Vol. 13, 2014.

[22] A. Papakonstantinou, Y. Liang, J. Stratton, K. Gururaj, D. Chen,
W. Hwu, and J. Cong. Multilevel granularity parallelism synthe-
sis on FPGAs. In Proc. IEEE Int’l Symposium on Field-
Programmable Custom Computing Machines, May 2011.

[23] J. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu, and
W. Hwu. Efficient compilation of fine-grained SPMD-threaded pro-
grams for multicore cpus. In Proc. ACM Int’l Symposium on
Code Generation and Optimization (CGO’10), Feb. 2010.

[24] Z. Y. Zhang, F. W. Jiang, G. Han, C. Yang, and J. Cong. Autopilot: A
platform-based ESL synthesis system. In P. Coussy and A. Moraviec,
editors, High-Level Synthesis: From Algorithm to Digital
Circuit, chapter 6, pages 99–112. Springer, 2008.

APPENDIX
A. HRG GENERATION

As described in Section 3.1 the HRG is generated during
step A6 in the analysis phase. Having identified the global
memory accesses in step A1 and split the multitype state-
ments into single-type ones in step A2, a depth-first traver-
sal (DFT) is carried out on the kernel AST (abstract syntax
tree) representation used in the FCUDA compiler [9]. DFT
is implemented by the recursive hrgGen() procedure (Alg. 1)
which classifies each kernel statement as TRN, CMP, SNC
or CF. Non CF statements are collected into a list (sLst)
which is used to build HRG leaf nodes from statements of
same type (sTyp()) and same AST level (lvl). Each region
is assigned a region ID (rID) which helps maintain partial
ordering of the HRG nodes. CF statements form HRG inter-
nal nodes by themselves and get assigned the smallest rID of
their child leaf nodes (Alg. 1). Region IDs infer execution
ordering and facilitate region motion feasibility checks during
latency and throughput optimization phases of TOPP. The
generated HRG is also structured as an AST and each node
contains pointers to the code statements summarized by the
HRG node. Hence, it is easy to reconstruct a new kernel
AST from an optimized HRG. Finally, a similar traversal of
the HRG tree is used to group HRG nodes into tasks that
satisfy two rules, (i) a task may contain control-flow (CF)
nodes as long as every child node of a contained CF node is
also included in the task, and (ii) a task may contain nodes
across different control-flow hierarchy levels as long as the
corresponding CF nodes are also included in the task (e.g.
grouping nodes CMP12 and SNC13 in Fig. 2 within the same
task is only allowed if nodes IF10, CMP10 and TRN11 are also
included in the task). Note that HRG leaf nodes are grouped
into tasks based on their type; COMM tasks comprise only
TRN nodes whereas COMP tasks may include CMP and SNC
nodes.

B. FCUDA FLOW DETAILS
FCUDA (Fig. 7(a)) provides the underlying basis flow on

which TOPP is built to provide throughput-oriented kernel re-
structuring. The proposed flow (Fig. 7(b)) leverages FCUDA
utilities during preprocessing and postprocessing stages for
conditioning the input CUDA code and translating the TOPP
output into parallel C code, respectively (Fig. 1). Moreover,
integration of TOPP in FCUDA removes the burden of man-
ual annotation from the user. FCUDA annotations consist
of lightweight pragma directives that provide user guidelines
for the transformations and optimizations applied in the flow.
The main types of annotations are COMPUTE and TRANS-
FER directives which guide decomposition of the kernel into
COMP and COMM tasks. Other types of annotation include
SYNC and BLOCK directives which guide the synchroniza-
tion of tasks and the logical layout of threads in CTAs. The
analysis phase in TOPP in combination with the generated
HRG representation and the throughput estimation metric
eliminate the need for user annotations and help increase the
exploited optimization opprotunities.

Preprocessing utilities entail kernel procedure identification
and code conditioning through a sequence of transformations:
(i) declaration normalization (i.e. hoist declarations out of
executable kernel regions), (ii) return normalization (i.e. con-
vert multiple return points into a single return point), (iii)
procedures inlining (i.e. inline non-library procedure calls
within the kernel procedure) and (iv) unsupported code iden-
tification and assertions (i.e. check and flag unsupported
code structures). Note that callee inlining in the current im-
plementation facilitates easier kernel restructuring in subse-
quent processing stages, but is not required for most transfor-
mations. Unsupported code structures include unstructured

Algorithm 1: HRG generation

/* hrgGen(hAST,level,cID,sLst): Generate HRG
through code depth first traversal (DFT) */

Input: Abstract syntax tree of code hierarchy hAST
Input: Level in kernel lvl, region ID pID
Output: region ID rID
Output: region statement list: sLst

1 cID ← pID // Update current ID
2 cTyp ← -1 // Invalidate current type
3 while S ← next(hAST) do // Get next statement
4 switch typ← sTyp(S) do // get type of S
5 case TRN // S type is TRN
6 if typ 6= ctyp then // Different region
7 n← hrgNod(sLst) // New HRG node
8 pn← getNod(hAST) // parent node
9 addChld(n, pn) // Link n to pn

10 empty(sLst) // Clean sLst
11 cID ← cID + 1 // Update region ID

12 annot(S, TRN) // Annotate S
13 annot(S, cID) // Annotate S
14 annot(S, lvl) // Annotate S
15 push(sLst,S) // Push S into sLst list
16 cTyp ← typ // Update type

17 case CMP // S type is CMP
18 ... // Similar to TRN case

19 case SNC // S type is SNC
20 ... // Similar to TRN case

21 case CF // Control flow
22 n← hrgNod(sLst) // New HRG node
23 pn← getNod(hAST) // Get parent node
24 addChld(n, pn) // Link n to pn
25 empty(sLst) // Clean sLst
26 cAST ← getAST(S) // get AST of S
27 annot(S, cID) // Annotate S with cID

// Recurse for next AST level
28 cID ← hrgGen(cAST,lvl+1,cID,sLst)
29 n← hrgNod(S) // New HRG node
30 addChld(n, pn) // Link n to pn
31 return cID

control flow (e.g. goto statements) and other CUDA features
not currently supported by the compiler (e.g. texture mem-
ory variables). Postprocessing entails (i) variable privatiza-
tion (i.e. variables referenced across different HRG regions
with thread-variant data), (ii) kernel task outlining (i.e. ex-
tracting the TOPP-generated COMP and COMM tasks into
separate procedures), (iii) intra-CTA parallelism extraction
(i.e. tID-loop unrolling and on-chip memory banking), and
(iv) inter-CTA parallelism extraction (i.e. replication of task
calls, through CTA-loop unrolling). Preprocessing and post-
processing transformations, as well as annotation directives
are discussed in further detail in [20, 23, 21].

C. LATENCY PHASE TRANSFORMATIONS
The transformations applied in the latency phase of TOPP

aim to facilitate the generation of coarser tasks through region
motions in the kernel HRG. Each region is assigned a region
ID, rID, which is updated after every region motion to ensure
that partial ordering with respect to rID reflects execution
ordering. Reflection of execution ordering in the rID value in
tandem with Def-Use chains facilitates easy motion feasibility
testing. HRG nodes corresponding to CF structures are ini-
tially assigned the same rID as their first (in DFT order) leaf
node. The space of rIDs in the HRG may be sparse due to
transformations that result in region merging or elimination.
A region motion can be encoded with respect to the initial
rID, i and the final rID, j, as mot(i,j). Reflecting the execu-
tion ordering in the rID field during region motion mot(i,j)
may require updates in the rID of regions with rID = k, where
i < k ≤ j, if i < j or j ≤ k < i, if i > j.

Logic/Physical
Synthesis

HLS
Synthesis

FCUDA
Compilation

Manual
Annotation

CUDA
Code

Annotated
CUDA
Code

C
Code

RTL

FPGA
Netlist

(a) Original FCUDA

FCUDA
Postcompilation

Logic/Physical
Synthesis

HLS
Synthesis

TOPP

FCUDA
Precompilation

CUDA
Code

C
Code

RTL

FPGA
Netlist

(b) FCUDA with TOPP

Figure 7: Integration of TOPP in FCUDA

DWT

IF9CMP0 TRN1 SNC2 CMP3 TRN6 CMP7 SNC8

CMP9

SNC13

CMP10 TRN11 CMP12

TRN14

IF14

IF10

FOR10

Figure 8: DWT HRG after SNC motions (SM)

C.1 SNC Region Motions (SM)
This stage identifies feasible SNC motions that facilitate

region merging. The only type of SNC region motions consid-
ered are those with destinations within the same HRG level.
SM stage involves four main steps: (SM1) Collect all SNC re-
gions, (SM2) Get feasible destinations, (SM3) Estimate mo-
tion cost/gain, and (SM4) Perform motion. Initially SNC
regions are collected (step SM1) and ordered with respect to
their region identifier, rID. For each synchronization region,
SNCn (with rID(SNCn) = n), feasible destination candidates
are identified in step SM2. Candidate destination locations
are explored in two sweeps of the corresponding HRG level:
a forward and a backward sweep (Fig. 3) starting from the
initial location of SNCn in the HRG. During a sweep, the
candidate destinations are sequentially evaluated until (i) an-
other SNC region is encountered, (ii) a destination is assesed
as non-feasible or (iii) no candidates are left. Feasibility is
tested as described in Section 3.2. TSCs with source rID,
r : r < n and sink rID, v : v > n do not break feasibility if the
destination rID, n′, satisfies the following condition: n′ > v,
for forward sweeps (Fig. 3(a)), or n′ < v, for backward sweeps
(Fig. 3(b)). A destination location is selected based on the
evaluation of all feasible destinations. Application of SM on
the DWT HRG (Fig. 2) shifts SNC4 immediately after SNC2
region, effectively resulting in its elimination (Figure 8).

C.2 Burst Conversion (BC)
This latency optimization stage analyzes the address com-

putation patterns of global memory accesses and determines
the feasibility for coalescing memory accesses across threads
into burst transfers. Moreover, this transformation offers two
additional benefits: (i) reduces address computation overhead
(base address calculation shared by all threads) and (ii) facil-
itates region consolidation in the HRG (address computation
combined with data transfer in one region) which may reveal

DWT

IF9TRN1 SNC2 CMP3 TRN6 CMP7 SNC8

CMP9

SNC13

CMP10 TRN11 CMP12

TRN14

IF14

IF10

FOR10

Figure 9: DWT HRG after burst conversion (BC)

new optimization opportunities. Region consolidation from
burst conversion results in the elimination of CMP0 region in
our DWT running example (Fig. 9).

Burst conversion involves four main steps: (BC1) Iden-
tify all CMP regions involved in address calculation, (BC2)
Analyze coalesced accesses with respect to tID, (BC3) Ana-
lyze address coalescing with respect to TiVAR loop indexes
in the kernel, and (BC4) Perform HRG restructuring. Ini-
tially, the Def-Use chains computed earlier in the flow are
leveraged to identify statements containing address computa-
tion (step BC1). Subsequently, symbolic analysis and value
range analysis is used to determine whether the range of com-
puted addresses per CTA is coalesced with respect to tID. In
particular, forward substitution is used to derive the address
calculation expression, EA. Then, the tID variant (TVAR)
analysis performed during region analysis stage is used to de-
compose the expression into a TVAR part, ETV AR, and a tID
invariant part, ETiV AR: EA = ETV AR + ETiV AR. Symbolic
and range analyses are used to examine the ETV AR expres-
sion and determine whether memory accesses are coalesced in
piecewise ranges, (si, ei), of the tID domain. If such piecewise
domain ranges can be identified, their maximum range value
is returned; otherwise, a negative value is returned. Subse-
quently, a similar analysis of the address calculation expres-
sions is carried out to identify coalescing opportunities across
piecewise ranges of non tID-loops (step BC3). Any additional
piecewise ranges found are used to extend the tID piecewise
ranges identified previously (step BC2). Finally, during the
last step of this stage, the address computation analysis re-
sults are utilized to perform any required HRG modifications.
In the case of statically identified coalesced address ranges, in-
dividual thread accesses are converted into memcpy calls where
ETiV AR serves as the source/destination address and the size
of the piecewise address range, (si, ei), as the transfer length.
memcpy calls are subsequently transformed into DMA-based
bursts by the HLS engine. In the case that no address ranges
are returned by static analysis, address computations are kept
within CMP regions and computed addresses are stored for
use by the corresponding TRN regions.

C.3 TRN Region Motions (TM)
This transformation stage shifts TRN regions to more prof-

itable locations within their current HRG level. In particular,
TRN-Read (TRN-R) regions (i.e. off-chip reads) are shifted
toward the beginning of the HRG level, whereas TRN-Write
(TRN-W) regions (i.e. off-chip writes) are shifted toward the
end of the HRG level. This transformation aims to enable
coarsening of CMP regions into bigger regions with more op-
portunity for ILP extraction and resource sharing. For exam-
ple, Fig. 10 depicts the DWT HRG after TM transformation,
where TRN6 is shifted to the right of the level and CMP3
and CMP7 are merged into CMP3. TRN motions involve four
main steps: (TM1) Collect all TRN regions in two lists repre-
senting TRN-R and TRN-W regions, respectively, (TM2) Get
feasible shift destinations, (TM3) Estimate motion cost/gain,

DWT

IF9TRN1 SNC2 CMP3 TRN6SNC8

CMP9

SNC13

CMP10 TRN11

TRN14

IF14

IF10

FOR10

Figure 10: DWT HRG after TRN motion (TM)

Listing 3: Unnormalized CF with CMP and TRN
1 // t ID := t h r e a d I d x . x
2 t idx=(blockIdx . x∗blockDim . x) ;
3 for (tID=0; tID<blockDim . x ; tID++) // tID− l o o p
4 for (pos=t idx+tID ; pos<N; pos+=numThreads){ // TVAR
5 locA1 = (locA0 ∗ (locB ∗ rcpN)) ; // CMP
6 d A [pos] = loc1A ; } // TRN

and (TM4) Perform TRN motion.
Initially, TRN regions are sorted with regard to their re-

gion ID into two lists corresponding to TRN-R and TRN-W
transfers (step TM1). Regions in the TRN-R (TRN-W) list
are processed in increasing (decreasing) rID order to find can-
didate destination locations (step TM2) within their current
HRG level. In the case of TRN-R (TRN-W) regions with rID
= r, candidate destinations include earlier (later) points in
the HRG level with rID = z. The TRN motion, mot(r,z),
is feasible unless there is a region with rID = q that bears
true dependence to the TRN-R (TRN-W) region and its rID
satisfies the expression z ≤ q < r (r < q ≤ z). The candidate
destination locations are examined for feasibility in increasing
order of: |r− z|; if a nonfeasible destination is identified, any
remaining candidates are dumped from the candidate list. Fi-
nally, a destination location for each considered TRN region is
selected based on the candidate destination evaluation (step
TM3) and the motion is applied (step TM4).

C.4 Control Flow Normalization (CFN)
This stage handles control-flow (CF) structures that use

TVAR expressions as conditions. TVAR CF structures con-
taining CMP and TRN regions need special handling in order
to expose the implicit synchronization points (ISPs) between
compute and communication tasks. Exposing the ISPs is crit-
ical in exploiting data transfer coalescing across neighboring
threads in TRN regions as well as exposing the data-level
compute parallelism in CMP regions. Exposing the ISPs re-
quires interchanging the TVAR CF with the tID-loop which
expresses the CTA threads. List. 3 depicts a TVAR loop
(line 4) within the tID-loop (line 3) which contains a CMP
(line 5) and a TRN statement (line 6). The CF normalization
converts the TVAR loop into a TiVAR loop (line 6 in List. 4)
preceded by initialization of the induction variable (lines 3-4)
of the original TVAR loop. Thus, the ISPs between regions
are exposed through tID-loops wrapped around each region
(lines 7, 10). Note that variables in List. 4 are in SIMT no-
tation. Postprocessing stage in FCUDA determines whether
they should be privatized (storage redundancy) or reimple-
mented (compute redundancy). Variable pos, for example,
would become an array of size blockDim.x in the case of pri-
vatization, whereas reimplementation would result in the code
shown in List. 5. Figure 11 depicts the resulting HRG repre-
sentation of the DWT after CF normalization: IF10 node is
split into IF10 and IF11 nodes

Listing 4: CF normalization using privatization
1 // t ID := t h r e a d I d x . x ;
2 t id=(blockIdx . x∗blockDim . x) ;
3 for (tID=0; tID<blockDim . x ; tID++)
4 pos = t idx+tID ;
5 cfCond=true ;
6 while (cfCond){
7 for (tID=0;tID<blockDim . x ; tID++)// tID− l o o p
8 i f (pos<N)
9 locA1 = (locA0 ∗ (locB ∗ rcpN)) ;

10 for (tID=0; tID<blockDim . x ; tID++)// tID− l o o p
11 i f (pos<N)
12 d A [pos] = loc1A ;
13 cfCond = f a l s e ;
14 for (tID=0;tID<blockDim . x ; tID++)// tID− l o o p
15 i f (pos<N) {
16 pos += numThreads ;
17 cfCond |= (pos<N) ; }}

Listing 5: CF normalization using reimplementation
1 // t ID := t h r e a d I d x . x ;
2 t idx=(blockIdx . x∗blockDim . x) ;
3 pos = t idx ;
4 cfCond=true ;
5 while (cfCond) {
6 for (tID=0;tID<blockDim . x ; tID++)// tIDX− l o o p
7 i f ((pos+tID)<N)
8 locA1 = (locA0 ∗ (locB ∗ rcpN)) ;
9 for (tID=0;tID<blockDim . x ; tID++)// tIDX− l o o p

10 i f ((pos+tID)<N)
11 d A [pos] = loc1A ;
12 cfCond = f a l s e ;
13 pos += numThreads ;
14 cfCond |= (pos<N) ; }

DWT

IF9TRN1 SNC2 CMP3 TRN6SNC8

CMP9

SNC13

CMP10 TRN11

TRN14

IF14

IF10

FOR10

IF11

Figure 11: DWT HRG after CF normalization (CFN)

D. TDGC ALGORITHM DETAILS
Alg. 2 provides an overview of the TDGC flow described in

Section 3.3.2. The three steps of the TDGC flow (GC1, GC2,
GC3) are distinguished in the algorithm comments. During
step GC3 a recursive call to tdgc procedure with the resched-
uled HRG is made (if node n can be shifted.) If the resched-
uled HRG does not provide a higher throughput (TPc), the
rescheduled HRG is discarded and the next candidate node n
is evaluated for rescheduling. R-coloring is discussed in the
next section.

D.1 R-Coloring Algorithm
As mentioned in Section 3.3.2 an interference graph, GI ,

is generated based on the analysis of the array lifetimes with
respect to the regions in the HRG. The interference graph
is colored using a modified R-coloring [18] algorithm which
dynamically determines the value of R, i.e. the number of
allocated BRAMs. Note that the interference graph repre-
sents the lifetime interferences of arrays per CTA; these in-
terferences affect the BRAM resource requirement per CC.
For a total BRAM count of NB at the system level, there is a
tradeoff between the number of instantiated CCs, NCC , and
the number of BRAMs, R, allocated per CC: R = b NB

NCC
c.

Unlike traditional graph coloring implementations where the
number of colors (resource units), R, is a fixed constraint, the
number of allocated BRAMs per CC, in TDGC, can range
across a set of values that fulfill the previous constraint on
R. In other words, by modifying the CTA region schedule we
can generate different HRG configurations that have different

Algorithm 2: TDGC Flow overview

Input: HRG: Gin, Throughput: TPci
Output: New HRG: Gout

1 arrs← getArr(Gin) // Collect array variables
// GC1 step

2 Gi← bldInterf(arrs,Gin) // Build interference
// graph

3 rColor(Gi) // do R-coloring
// GC2 step

4 TPco← getTput(Gin) // Estimate throughput
5 if TPco < TPci then // Previous TPc is better
6 return 0

7 if tpcLim(TPco) == BRAM then // Is BRAM
// throughput limiter?

// GC3 step
8 calcILI(Gi) // Calculate ILI in Gi
9 nods← calcLs(Gi) // Calculate scatter,

// (Ls) in Gi and
// sort nodes wrt Ls in nods

10 foreach n ∈ nods do
// Check dependency constraints for move

11 if canMov(n,Gin) then
12 Gout← movNod(n,Gin) // Build new HRG
13 Gout← tdgc(Gout,TPco) // Try TDGC on

Gout
14 if Gout 6= 0 then // if success
15 break // Do not check more nodes

16 else
17 Gout← Gin // Move failed

18 return Gout

aLT1 aLT3

aLT2 aLT4

(a) Interference graph
before TDGC

aLT1 aLT3

aLT2 aLT4

(b) Interference graph after
TDGC

Figure 12: DWT interference graphs

resource requirements and latencies, hence different NCC and
throughput. The goal of TDGC is to identify the value of R
(and the corresponding feasible HRG configuration) that max-
imizes system execution throughput under a given resource
constraint. Hence, our graph coloring initially sets R to one
and dynamically adjusts its value during the first phase of
graph coloring.

Algorithm 3: Graph coloring of the interference graph

/* tdgc(Gin): Throughput Driven Graph Coloring
*/
Input: Uncolored interference graph GI

Output: Colored interference graph G′
I

1 nodes← nods(GI)
2 R← 1 // initialize max R
3 while nodes 6= ∅ do // Node pushing
4 sort(nodes) // Sort nodes wrt interf. degree
5 n← getNod(nodes) // Get first node
6 d← minDegree(n) // Get interference degree
7 R← max(R, (d+1)) // Update degree
8 push(n, stack) // Push to stack and prune graph

9 while stack 6= ∅ do // Node poping
10 n← pop(stack) // Pop node from stack and

// add back to graph
11 getMinColor(n, R) // Allocate min color id≤R

// not used by neighbors of n

The coloring process comprises an initial node pushing phase,
during which, nodes are pruned in increasing order of interfer-
ence degree from GI and pushed into a stack. (This resembles
traditional R-coloring with fixed R, where nodes with degree
less than R are pruned first based on the observation that
a graph with a node of degree less than R is R-colorable if
and only if the graph without that node is R-colorable.) Dur-
ing each node pruning, R is adjusted as depicted in line 7 of
Alg. 3 and the interference degrees of its neighboring nodes
are decremented. Once all of the nodes are pushed into the
stack, they are popped back into the graph in reverse order
and assigned a color (Alg. 3). The assigned color for each
popped node is the minimum color number that has not been
assigned to any of the previously popped neighboring nodes.
At the end of node popping all the graph nodes are going to be
colored with at most Rm colors, where Rm is the maximum
value of R used during the node pushing phase of coloring.

Figure 12(b) depicts the updated interference graph for
DWT kernel after the throughput optimization phase. The
new interference graph entails lower BRAM pressure and col-
oring results in the allocation of two BRAMs (compared to
three BRAMs for the initial interference graph in Figure 12(a)).

