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Abstract
Explicitly-Parallel Instruction Computing (EPIC) provides
architectural features, including predication and explicit
control speculation, intended to enhance the compiler’s
ability to expose instruction-level parallelism (ILP) in
control-intensive programs. Aggressive structural trans-
formations using these features, though described in the
literature, have not yet been fully characterized in com-
plete systems. Using the Intel Itanium 2 microproces-
sor, the SPECint2000 benchmarks and the IMPACT Com-
piler for IA-64, a research compiler competitive with the
best commercial compilers on the platform, we provide
an in situ evaluation of code generated using aggres-
sive, EPIC-enabled techniques in a reality-constrained mi-
croarchitecture. Our work shows a 1.13 average speedup
(up to 1.50) due to these compilation techniques, relative
to traditionally-optimized code at the same inlining and
pointer analysis levels, and a 1.55 speedup (up to 2.30) rel-
ative to GNU GCC, a solid traditional compiler. Detailed
results show that the structural compilation approach pro-
vides benefits far beyond a decrease in branch mispredic-
tion penalties and that it both positively and negatively im-
pacts instruction cache performance. We also demonstrate
the increasing significance of runtime effects, such as data
cache and TLB, in determining end performance and the
interaction of these effects with control speculation.

1 Introduction
Most contemporary, mainstream microarchitectures have
increased performance by sharply decreasing the clock
period, sacrificing (non-pipeline) instruction-level paral-
lelism and adding complex and potentially inefficient re-
play mechanisms to meet this goal (e.g. Pentium 4) [1].
These systems rely on essentially classical compiler tech-
nology; in this “hectic” model of parallelism, it is the mi-
croarchitecture that ensures in a highly dynamic manner
that pipeline parallelism is effectively exploited.

Explicitly-parallel instruction computing (EPIC) sys-
tems such as Intel’s IA-64, however, deliver performance in
an entirely different way, which might be termed a “delib-
erate” model of parallelism. Here, the compiler must pro-

duce explicit, static directions for utilization of each pro-
cessor issue cycle. Placing this onus on the compiler al-
lows the processor to provide wide issue with a minimum
of execution core overhead. A simpler, wider pipeline, ex-
ecuting at a comfortably lower clock frequency, has merely
to crunch through the compiler’s plan-of-execution. The
architecture provides a suite of features, including large
register files, wide issue, predication and explicit control
and data speculation, to enhance the compiler’s ability to
exploit instruction-level parallelism (ILP) in common pro-
grams. Complexity is displaced from the chip to the com-
piler, increasing efficiency so long as the compiler can
“plan” sufficiently parallel execution and the microarchi-
tecture can execute the plan without too many expensive
dynamic anomalies. Which model is ultimately more ef-
ficient for a particular application set is beyond the scope
of this paper; the importance of strong control-intensive,
general-purpose application performance to the success of
EPIC systems, however, is beyond dispute.

The compiler can approach the compilation of control-
intensive codes for EPIC performance in a variety of ways.
One may choose an “incremental”1 approach that uses
EPIC features to enhance traditional, global-scheduling-
based schemes for ILP exploitation, incrementally en-
hancing the application of traditional compilation mod-
els, within the existing program control structure. Con-
temporary production compilers operate mostly within this
model [3, 4]. Alternatively, one may take a “structural” ap-
proach, using the new features to perform more radical pro-
gram control transformations, replicating code, predicat-
ing, and speculating freely to generate a vastly different and
hopefully more efficient program representation [5, 6, 7, 8].
This approach is more consistent with EPIC’s research lin-
eage. While the literature includes some real-machine eval-
uations of EPIC’s features [9, 10], they are based on com-
pilers taking primarily an incremental approach.

Other research-based evaluations [8] examined the
structural interaction of predication and speculation tech-

1To label this approach “incremental” is not to disparage it, as it is a
stable and predictable means of extending conventional compilation tech-
niques to EPIC. It does, however, make less aggressive use of EPIC fea-
tures than the “structural” approach and therefore offers less opportunity
for dramatic results.
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Figure 1: Intel Itanium 2 pipeline and processor configuration[2]

niques in a hypothetical EPIC architecture, but did not
have the benefit of real, implemented machines (or very
large, complex benchmarks) to investigate many impor-
tant considerations—instruction cache effects, microarchi-
tectural implementation constraints, and exception process-
ing, to name a few. This work did elucidate, among other
important principles, that, because of the complex interac-
tion of different types of program dependences, the perfor-
mance impact of a collaborative suite of ILP transforma-
tions is greater than the sum of the parts applied individ-
ually. This means techniques must be evaluated in con-
text, considering the effects they will have when applied
in concert with other techniques; focused studies of sin-
gle transformations are likely to provide results with very
limited applicability. That EPIC performance was attain-
able, in varying degrees, in the control-intensive bench-
marks of the day was demonstrated with measurements of
the scheduled IPC of compiled code, ignoring dynamic ef-
fects. This research evaluation is heretofore unreproduced
on real hardware, taking into account instruction cache and
other secondary costs, and on the larger, more complex, and
more control-bound benchmarks of today (as even a pass-
ing comparison of SPEC92 and SPEC95 to SPEC2000 will
show [11]). These developments necessitate more transfor-
mation to achieve expected levels of instruction-level par-
allelism, complicating the compilation process.

As we today look to synthesize a consistent lesson from
these various artifacts, separated by the passage of time
and their differing assumptions, we have the benefit of a
real, second generation, EPIC implementation, the Intel
Itanium 2 microprocessor [12], and a version of the IM-
PACT compiler that targets this machine [13, 14]. This
paper provides a holistic and contemporary understanding
of EPIC performance from the structural research perspec-
tive, explaining the benefits and costs of the more radical,
structural techniques using experiments on real EPIC hard-
ware and with modern, control-intensive benchmarks. We
demonstrate the general effectiveness of these techniques
in producing high performance, showing a speedup of up

to 2.30 (average 1.55) over GCC and up to 1.50 (aver-
age 1.13) relative to IMPACT’s classical optimization level.
Excluding nondeterminisms such as data and instruction
cache misses, as most simulation-based experiments [8]
have done, IMPACT achieves an average speedup of 1.36
relative to the classically optimized baseline, a result com-
parable with past investigations. Starting from these re-
sults, we explain the increasingly important secondary ef-
fects that today need to be considered to generalize the ben-
efit of structural EPIC transformations. This paper provides
an in-depth first look at the real-machine performance that
results from pairing IA-64 with one of today’s most aggres-
sive EPIC research compilers.

2 IA-64 and structural transforms
Our experiments characterize the effects of aggressive ILP
transformations on SPECint2000 programs running on a
1GHz Itanium 2 processor with 3MB L3 cache. Config-
uration details are provided in Figure 1 and Table 1. For a
compiler we use the OpenIMPACT framework [14], which
affords a greater degree of flexibility and more aggressive
utilization of EPIC features than would be available in com-
mercial production compilers or GCC. Section 3 outlines
the compiler’s important features.

Except for SPEC ratios, obtained using SPEC runtime
measurement scripts, all performance results presented
here were obtained using the Itanium 2’s hardware perfor-
mance monitoring features as supported by Perfmon ker-
nel support and the Pfmon interface developed by Hewlett-
Packard Laboratories [15]. This combination allows over
four hundred events to be either counted or sampled (corre-
lating events to instruction or data addresses), up to four at a
time, in a low-overhead, per-process measurement environ-
ment. This information has proven invaluable, not only in
demonstrating performance benefits, but also in localizing
performance problems.

The Itanium 2 is nominally a six-issue processor, with
six general-purpose ALU (specialized as two load units,
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two store units, and two integer units), two FPU, and three
branch units, all fully pipelined. The processor is in-order
and provides no register renaming. As indicated in Fig-
ure 1, instruction fetch and alignment are decoupled from
the processor back end by a small buffer (48 operations)
to allow limited fetching ahead during back end stalls [2].
Any ILP to be exploited in the microarchitecture must be
included in the compiler’s plan of execution. Up to six op-
erations, as grouped by the compiler, are presented to exe-
cution units in each cycle.

Performance in control-intensive, general-purpose pro-
grams, therefore, depends heavily on the compiler’s ILP-
exposing transformations, which IA-64 supports with pred-
ication, explicit control speculation, data speculation, and
modulo scheduling aids[16]. The IMPACT compiler cur-
rently makes use of all these features except for data spec-
ulation. Although IMPACT’s aggressive pointer analysis
reduces the benefit IMPACT-compiled code could derive
from data speculation (perhaps in contrast to production
compilers), the authors do observe many opportunities for
data speculation. Aside from the obvious candidates (eon
and perlbmk, in which pointer analysis is currently dis-
abled) gap shows much promise. In gap, pointer analysis
is unable to resolve critical spurious dependences in oth-
erwise highly-parallel loops. A limited initial application,
currently in progress, is providing a 5% speedup; much
more is attainable. Aside from mitigating deficiencies in
alias analysis, data speculation can also allow the compiler
to manage even “known-sometimes” dependences. Other
researchers have shown opportunities to exist for profitable
integration of data speculation into optimizations [17].

2.1 High-level results
Table 1 shows estimated SPECint2000 performance ra-
tios (higher is better) for GNU and IMPACT compilers
on a Linux system (implying 64-bit pointers, which affect
data cache performance). All three versions of IMPACT-
compiled code use interprocedural analysis, profile feed-
back (using SPEC’s training inputs) and the same degree
of cross-file procedure inlining. O-NS is a classically-
optimized baseline that does not make use of predica-
tion or speculation. ILP-NS applies predication and ILP-
formation techniques, but not support for control specula-
tion of potentially-excepting instructions, achieving an av-
erage speedup of 1.10. ILP-CS, finally, adds control spec-
ulation, achieving a cumulative average speedup of 1.13.2

2These results are generated in real SPEC evaluation runs, on real hard-
ware, in the spirit of SPEC’s run rules (training/reference inputs, compila-
tion setting consistency, etc.) but are “experimental” in nature. In keeping
with SPEC’s policy on research use, we therefore label our results “es-
timated.” GCC 3.2 is run with “-O3 -fomit-frame-pointer” and without
profile feedback (as it is as yet largely unsupported). IMPACT pointer
analysis and, consequently, modulo scheduling are disabled for eon and
perlbmk, due to non-support of C++ and a scalability issue, presently be-

Table 1: Estimated SPECint2000 performance ratios
Benchmark GCC 3.2 O-NS ILP-NS ILP-CS
164.gzip 374 602 677 752
175.vpr 497 607 644 719
176.gcc 521 828 964 792
181.mcf 333 332 330 341
186.crafty 489 646 677 704
197.parser 410 520 523 541
252.eon 273 364 428 429
253.perlbmk 472 661 704 676
254.gap 375 558 573 599
255.vortex 550 843 1129 1264
256.bzip2 414 652 658 698
300.twolf 557 724 830 921
GEOMEAN 430 591 645 668

Hewlett-Packard zx6000: 2× 1GHz/3MB Itanium 2,
8GB RAM, linux 2.4.21-gspec (LP64 mode)

Key to results
O-NS IMPACT code, classical optimization only, no

control speculation
ILP-NS IMPACT code, classical and ILP-enhancing

optimizations, no control speculation
ILP-CS IMPACT code, classical and ILP-enhancing

optimizations, control speculation

As Table 1 indicates, IMPACT’s performance far ex-
ceeds that of GCC on Itanium 2, even when only traditional
optimizations are performed. With ILP transformations,
IMPACT achieves an average speedup of 1.55 (maximum
2.30) relative to GCC. While GCC performs a very compe-
tent level of traditional optimizations, it is not equipped to
deliver even minimal levels of ILP on IA-64. It performs
little inlining, no interprocedural pointer analysis and no
ILP-enhancing techniques. While we do not here show
a comparison with Intel’s production compiler for IA-64,
ecc [4], because Intel has not to date released SPEC re-
sults for our configuration, we can state that IMPACT com-
piled code performance is comparable to or in excess of that
we obtained using ecc3 in all benchmarks except for mcf,
in which Intel’s compiler performs a highly effective data
prefetching optimization not implemented in the IMPACT
compiler, and eon, in which the disabling of IMPACT’s
pointer analysis and its current lack of data speculation sup-
port limit optimization potential.

When we examine previous, simulation-derived EPIC
results, such as the performance of the nine SPECint92
and SPECint95 benchmarks in [8], we find a speedup of
1.17 for ILP techniques and 1.68 for ILP with speculation
on the IMPACT EPIC simulator. The fact that this far ex-
ceeds our results on IA-64 is explained in three ways. First,
past “clean” simulations did not model data and instruction
cache stall cycles or other dynamic events. When we cor-
rect for this using measurements of these effects from per-
formance monitoring counters, we find much better agree-
ment with these past results. Figure 2 shows the relation

ing addressed. These results reflect 64-bit pointers, in contrast to most
published Itanium 2 results.

3version 7.1, -O3 -ipo, with profile guided optimization
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Figure 2: IMPACT SPECint2000 speedup: planned
(subtracting stalls) and exploited

of the ILP-configured compilations to the IMPACT base-
line (O-NS). The “exploited” speedup reflects the change
in total execution cycles, as was indicated in Table 1. The
“planned” speedup, on the other hand, measures the change
in the number of execution cycles statically anticipable by
the compiler.4 Considering only these cycles, as in past
simulations, IMPACT achieves an average speedup of 1.36,
closer to the 1.68 speedup achieved in past work. (To
emphasize the importance of data cache stall as a con-
tributor, excluding only this runtime effect category, IM-
PACT achieves a speedup of 1.21. Clearly, this is an as-
pect that needs to be addressed to strengthen the compiler’s
ability to plan for high EPIC performance.) Second, the
SPECint2000 benchmarks are substantially harder to par-
allelize than the older benchmarks; as they have more fre-
quent and more irregular control flow, they require more
code-expanding transformations to expose the same degree
of ILP, but their larger code size can cause such expansion
to have undesired effects on instruction cache performance.
Finally, the benchmarks of [8] benefited from data specula-
tion, which IMPACT does not currently exploit on IA-64.

2.2 Impediments to ILP
Before examining specifics of the IMPACT compiler’s be-
havior on IA-64, we should summarize the obstacles the
compiler needs to clear to expose ILP in an EPIC system;
these fall into four broad categories:

Control. By definition, in control-intensive programs,
control operations are frequent. In imperative programs,
branches serve two purposes: first, they form the decision-
making apparatus of the program, deciding how the control
flow graph will be traversed; second, they delimit groups
of instructions having the same execution condition. Like

4This measure includes the unstalled and the three scoreboard com-
ponents of Figure 5; it subtracts out all “dynamic effects.” The “planned”
execution time assumes, for example, that all branches are predicted cor-
rectly and all loads complete with minimum latency.

any modern architecture, an EPIC microarchitecture usu-
ally succeeds for the most part in hiding the latency of
the decision-making aspect with branch prediction. Unlike
other microarchitectures, however, EPIC does not provide
for the runtime intermingling of operations across a branch.
Predication, as it converts control into data dependence and
allows instruction-granularity execution control, enables
the compiler to attack both these aspects, simplifying the
program control apparatus, removing branches that might
otherwise mispredict, and permitting the general intermin-
gling of instructions having different execution conditions.
Control speculation allows likely-to-execute instructions
to move above their controlling branches. Compile-time,
structural code transformations to eliminate control ineffi-
ciency are a primary enabler of EPIC performance and the
central focus of this study.

False dependences. Memory accesses and subroutine
calls can pose barriers to code motion, impeding both opti-
mization and scheduling, if their dependences are resolved
only conservatively. Alias and array dependence analysis
aim to determine the true, minimum set of dependences
needing to be drawn among these operations to preserve
program correctness. IMPACT applies a sophisticated in-
terprocedural pointer analysis algorithm [18] and Pugh’s
Omega Test [19] to reduce spurious dependences.

Occasional dependences. Out-of-order processors to-
day successfully reorder loads and stores, checking for
runtime dependences and stalling, buffering or replay-
ing operations as necessary to preserve program correct-
ness [1]. This allows them usually to reorder “mostly
independent” operations, something the compiler cannot
do statically without additional hardware support for data
speculation [16, 20]. The IMPACT compiler does not cur-
rently make use of this feature on IA-64, although it holds
promise.

Non-determinism. Finally, variable-latency and
potentially-excepting instructions, such as loads, pose a
challenge for statically-scheduled machines, as is evident
from the fraction of machine stall cycles due to data cache
misses. Complicating the basic scheduling problem, when
speculated, each off-path instance of these operations be-
comes a potential performance “landmine.” Various soft-
ware prefetching schemes and microarchitectural exten-
sions have been proposed to help “smooth over” these
events [21, 22]. Section 4.2 describes the interaction of
these events with structural optimization.

2.3 Releasing parallelism from control
Like an out-of-order machine, EPIC compilers exploit ILP
across branches by relying on the notion that program exe-
cution is comprised mostly of a composition of stable, pre-
dictable traces through the control flow graph. Compiler-
based trace selection and EPIC features together allow for
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improved region selection, region customization, and de-
cision interleaving difficult or impossible to conceive in
the traditional instruction-set architecture. First, by using
predication to control the execution of instructions individ-
ually, the compiler may incorporate multiple program paths
into a single trace, or hyperblock [6]. This increases the
scalability of trace formation, as it counters the exponen-
tial code growth entailed in expanding each path into its
own superblock trace. Furthermore, because the execution
of instructions is no longer solely determined by the po-
sition of instructions relative to branches, ILP may be ex-
ploited more freely among groups of instructions with in-
dependent execution conditions. The example of Figure 3,
to be discussed in detail shortly, illustrates this effect. Fi-
nally, the selection of these large, stable, traces at compile-
time allows for extensive and efficient optimization of en-
closed computation. Code sequences can be specialized for
their path context, and speculation can be performed easily
and efficiently within the trace by moving instructions up
past branches or weakening operations’ predicates, allow-
ing them to bypass their predicate definitions in the sched-
ule but permitting them to execute more frequently.

2.4 A motivating example from crafty
Crafty, a chess program, serves as one of the most control-
intensive of the SPECint2000 benchmarks [11]. It in-
cludes not only intensively “branchy” code segments but
also many reasonably serial and low-iteration-count loops.
Exposing ILP requires finding ways both to eliminate
branches (by creating efficient predicated regions) and to
interleave execution from different loop bodies in an ef-
ficient way. These are common features of SPECint2000
programs, but their necessity is particularly pronounced in
crafty. Complicating the problem is crafty’s large instruc-
tion footprint, which threatens to erode the benefit of any
transformations that result in increased code size.

The crafty function Evaluate(), which evaluates the
strength of each player’s position on a chess board, pro-

vides an example of sophisticated region formation. This
function contains several sequential while loops, two of
which are shown in Figure 3(a). Both loops contain sub-
stantial internal control flow, each loop has little inherent,
intra-loop ILP due to serial data dependences, and each
loop body typically executes exactly once.5 Simply form-
ing hyperblocks for each of the loop bodies, as indicated by
the enclosing boxes 2 and 5 in (a), prevents misprediction
and streamlines instruction issue but does not help develop
additional planned ILP (each loop is inherently serial due to
data dependences). More aggressive transformations, how-
ever, can exploit this situation. The code in (b) has been
transformed using peeling; one iteration of each loop has
been pulled out. Now, the ordinarily taken path (1 2’ 3 4
5’ 6) traverses the peeled iterations only; the original loops
are left to “clean up” any unlikely remaining iterations. Fi-
nally, (c) shows the result of trace formation through the
transformed region. The two hyperblocks, once trapped in-
side loop backedges, are merged to form a single schedul-
ing region. Predication allows independent decisions (cf.
the original control flow within the two loop bodies in (a))
to be made in parallel, and useful ILP is increased.

This example, representative of transformations applied
throughout SPECint2000 by the IMPACT compiler, typ-
ifies the “structural” approach to EPIC compilation, by
which EPIC features enable radical transformation of pro-
gram control structures in the search for more ILP. The
costs of these transformations include an increased reliance
on profile information (if the case in which neither loop
executed any iterations becomes frequent, many useless,
predicate-squashed instructions would be issued) and an in-
crease in code size due to region-related code replication
(this becomes significant if the remainder loops are tra-
versed; otherwise, there is no negative impact on instruc-
tion cache footprint, and the untouched excess code can be
placed harmlessly in a cold location).

3 ILP transformations and benefits
The structural transformations of an ILP compiler like IM-
PACT must be both effective, producing regions of code
suitable for highly instruction-parallel execution, and effi-
cient, not unduly disrupting the work of other transforma-
tions or the execution of the program. While various in-
dividual ILP enhancement techniques are well-known [5,
6, 23, 24, 25, 26], their collective effect on contemporary
programs is not well characterized. This is the aim of our
experiments with IMPACT and IA-64.

In our experiments on the six-issue Itanium 2 micropro-
cessor, the IMPACT compiler (ILP-CS) today schedules,
on average, 2.63 useful (non-nop, non-predicate-squashed)

5These particular loops evaluate the position of the two players’
queens; typically, each has a single queen.
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Figure 4: The IMPACT compiler for Itanium 2

operations per cycle6 and causes the microarchitecture to
sustain execution of 1.23 useful operations per cycle. (See
Figure 6 for per-benchmark values.) This result, an increase
from 2.00 planned / 1.10 achieved for O-NS code and 2.21
planned / 1.12 achieved for ILP-NS, is very competitive
with good production compilers, and illustrates the ILP-
enhancing character of IMPACT’s transformations. Im-
provements in this result can come from two sources: first,
increasingly aggressive ILP transformations, increasing the
amount of planned parallelism; and, second, trying to close
the gap between planned and exploited parallelism by miti-
gating stalls due to runtime events, including primarily data
cache misses (cf. Figure 5).

Figure 4 shows the major phases comprising the IM-
PACT compiler. IMPACT’s “structural” emphasis means
that the transformation process first simplifies the control
flow graph, forming large, stable execution regions, and
then customizes and schedules code within these regions.
This section highlights the important parts of this process
and their participation in the experimental results that fol-
low. One of the common features of all these phases is that
specialization for ILP is “purchased” at the cost of code
expansion, whether, for example, by performing procedure
inlining or by forming region traces without side entrances
to enhance scheduling. As interesting programs become in-
creasingly larger and more control-bound, exposing a con-
stant level of ILP requires more aggressive specialization.
At the same time, this specialization must also operate more
surgically, avoiding secondary costs like instruction cache
thrashing. Our experiments are beginning to expose the
importance of these traditionally second-order effects. We
will consider these after a brief survey of the positive ef-
fects of IMPACT’s transformations.

6In well-scheduled kernels, the full issue width of 6 is often filled; gzip,
gcc and vortex all have average planned IPC over 3.0.

3.1 High-level analyses and transformations
C source code is converted to Pcode, IMPACT’s high-
level intermediate representation, which is then annotated
with control flow profiling results from a training run of
the program. Procedure inlining depends on profile infor-
mation to expand callsites in priority order (priority =
exec weight√

callee size
) until the amount of touched code is expanded

by a factor of 1.6 (an empirically determined value; because
this transformation is performed at the high level, this is
only approximate). This tended to provide enough inlining
to achieve good levels of ILP while not unduly impacting
instruction cache performance. Again using profile infor-
mation, IMPACT converts selected indirect function calls
to direct calls by inserting control flow and “specialized”
direct calls to the most popular callee functions, which then
may be inlined according to the normal method. This is
important for programs, like eon and gap, that make ex-
tensive and often very biased use of indirect calls (in the
C++ program eon, monomorphic virtual invocations). Pro-
cedure inlining sets the stage for subsequent, effective ILP
optimizations, influencing performance outcomes by up to
20% in our experiments. Although it is typically consid-
ered part of the ILP exposing apparatus, we applied it to
the IMPACT baseline as well as ILP compilation paths, to
improve the comparability of the results.

Interprocedural alias analysis, as discussed in Sec-
tion 2.2, provides later stages with dependence arcs for
loads, stores and subroutine calls [18]. It too has a sub-
stantial effect on output code quality. While no explicit ILP
transformations take place in the high-level phase, it is re-
sponsible for setting the stage for subsequent optimizations.

3.2 Low-level analyses and transformations
The bulk of EPIC transformation, including predication and
speculation, is performed in Lcode, a low-level representa-
tion. First, classical optimization, similar to that in GCC
or any other compiler, is performed. This classically opti-
mized code is scheduled and register allocated to produce
the baseline for our experiments, referred to as O-NS, for
“optimized, no speculation.” Even this level of optimiza-
tion handily outstrips the performance of GCC on IA-64,
but because IMPACT does not apply global scheduling in
the manner of production compilers [3], this code is usually
slightly inferior to their compiled code.

Rather than applying global scheduling techniques at
this point (as would an incremental approach), however,
IMPACT transforms the program control structure into one
more conducive to efficient optimization and subsequent
execution. Frequently traversed traces are identified; those
sharing substantial code and having compatible depen-
dence heights and resource utilization are combined using
predication into hyperblocks [6] and singleton traces are ex-
panded into superblock regions [5]. To increase the amount

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04) 
1063-6897/04 $ 20.00 © 2004 IEEE 



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

O
-N

S

IL
P

-N
S

IL
P

-C
S

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

N
o

rm
a
li
z
e
d

 e
x
e
c
u

ti
o

n
 t

im
e

kernel cycles

register stack

engine

br. mispr. flush

front end bubble

micropipe stall

integer load

bubble

MISC

float scoreboard

unstalled

execution

Category MISC includes int scoreboard, misc. scoreboard and exception flush.

Figure 5: IMPACT compiled-code cycle accounting, relative to O-NS baseline

of code eligible for these transformations, tail duplication
(node splitting) is performed. This enables continuation
of a single-entry trace region across a control flow merge
point by replicating subsequent code. Loop peeling [8],
as illustrated in Figure 3(b), can be viewed as an exten-
sion of tail duplication. While the complex heuristics con-
trolling these transformations are beyond the scope of this
paper, our branch removal rate (27% of dynamic branches
are eliminated) indicates the aggressiveness of IMPACT’s
region-forming transformations. On average, IMPACT’s
superblock and hyperblock heuristics apply tail duplication
to an extent that causes a 21% increase in static code size;
peeling adds an additional 2%.

After region formation, additional code optimizations
take place, including control and data height reduction,
pre- and post-pass local instruction scheduling, and mod-
ulo scheduling-based software pipelining. In the ILP-CS
mode, control speculation, both in the form of moving op-
erations above side-exit branches and in the form of pred-
icate promotion (weakening the predicates that guard the
execution of operations), is performed as required to enable
optimizations and freer scheduling. IMPACT’s optimiza-
tions are also enhanced to use control speculation, e.g. in
the form of speculative partial redundancy elimination, and
predication, e.g. to sink non-exit-dominating, potentially-
excepting operations out of loops.

3.3 Structural transformation for ILP
Let us now turn to the data to consider the performance ef-
fects of these transformations. Figure 5 shows a breakdown
of execution cycles into nine categories, for each of three
IMPACT compilations of each program.7 The total height
of each bar reflects the program execution time, normalized

7micropipe refers to a collection of microarchitectural stalls, here re-
lated to the memory subsystem. The increase with optimization seen in
this category for bzip, for example, reflects spurious store-to-load forward-
ing detections that become more costly as loops are tightened by optimiza-
tion. See [2] for Itanium 2 performance monitoring information.

to the baseline level of optimization. The bottom three seg-
ments, unstalled execution, float scoreboard and MISC
(scoreboard contributors only; exception flush is insignif-
icant), those used to compute the “planned” speedup of Fig-
ure 2, are statically anticipable by the compiler. As the
optimization level is increased, most of the performance
gain derives from a reduction in these cycle counts, re-
flecting increased planned ILP. Creation of larger, single-
entry scheduling regions allows extensive, low-cost instruc-
tion scheduling. Within these regions, control speculation
frees operations from dependences imposed by branches
and predicate defining instructions, increasing scheduling
freedom. As shown in the peel-and-merge example of the
previous section, additional gain comes from the overlap-
ping of independent control constructs. On Itanium 2, these
mechanisms, not removal of branch misprediction penalty,
yield most of the benefit of region formation.

Dynamic effects, harder to anticipate or accommodate at
compile-time, are less sensitive to IMPACT’s transforma-
tions. Stalls on variable-latency events, such as data cache
misses (integer load bubble), not scheduled by the com-
piler, are affected in various ways (as described further in
Section 4.2). Usually, and on average, positive and neg-
ative effects “cancel out,” rendering ILP transformations
relatively neutral with respect to these events. There are,
however, more consistent effects on two particular dynamic
events. Branch misprediction stall cycles (br. mispr. flush)
are reduced according to the number of branches removed
by if-conversion (Section 3.5). Abrupt increases in kernel
cycles (e.g. in gcc) are due to wild loads, as will be dis-
cussed in Section 4.3.

3.4 Effects on dynamic instruction count and
cache performance

Unlike the conceptual IMPACT EPIC machine of [8], Ita-
nium 2 is not simply a general six-issue processor; the
IA-64 architecture treats instructions in bundles of three
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Figure 6: Operation accounting and IPC

and sometimes requires encoding of nop instructions when
slots cannot be filled with independent operations. This
elicits the curious property that, because code-replicating
transformations allow specialization of replicated paths, as
long as these transformations allow more parallel instruc-
tion issue, instruction cache performance and fetch effi-
ciency may actually be increased. This phenomenon is
due to the use of fewer nop instructions in better-scheduled
code. This effect can be observed (indirectly) in Figure 6,
in which the number of nops retired is almost univer-
sally decreased in ILP-optimized code, and in Figure 5, in
which ILP optimization typically reduces instruction cache
miss cycles (front end bubble), averaging a 15% reduc-
tion (more sequential fetch may also contribute to this im-
provement). In short, increasing specialization makes each
access contain more useful operations (reducing the num-
ber of L1I cache line fetches by 10% on average), but can
increase total footprint if multiple versions need to be res-
ident. Excessive code replication can overwhelm the in-
struction cache; we revisit this phenomenon in Section 4.

While control speculation causes operations to execute
more frequently than in the original program, Figure 6
shows that our speculation benefits reflect only a fairly se-
lective speculation of operations (a pronounced rise in exe-
cuted operations is not observed in the speculation-enabled,
ILP-CS version). Likewise, relatively few operations wind
up being predicated-off (p=0), even though the hyperblock
formation being performed is much more proactive than
typical commercial approaches. The number of “useful”
ops increases between ILP-NS and ILP-CS because of op-
eration speculation, since in this context “useful” means
“non-nop, pred=1” operations. Careful use of profile data
and selective region formation allow few excess operations
to be fetched or executed.

3.5 Effects on branches and prediction
Figure 7 shows the change in the number of branches
and mispredicted branches between baseline and ILP-
optimized code, as well as in the branch prediction
rate. In our experiments, region formation (including
code-expanding transformations) reduces the number of
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Figure 7: Effects on branch prediction

branches by 27%, on average, and misprediction stall cy-
cles by an average of 22%. IMPACT currently does not
make use of the exact counted loop prediction available on
IA-64, and does not unroll loops to be modulo-scheduled.
Enabling either of these features would further improve
compiled code control flow efficiency. It should be pointed
out that branch misprediction accounts for relatively few
cycles on Itanium 2, so its avoidance is not the primary mo-
tivation for forming if-converted regions; rather, the regions
enable powerful ILP-enhancing transformations.

A previous study [9] on the Itanium (1) processor, using
Intel’s production compiler, found only a 7% reduction in
the number of executed branches at what were considered
“reasonable” levels of aggressiveness in forming predicated
regions. As the results of [9] show static code size to de-
crease uniformly with increasing aggressiveness of predi-
cation, it appears no code-replicating transformations (such
as loop peeling or tail duplication) were performed to cul-
tivate opportunities for region formation in their experi-
ments. This limits possible transformations and potential
for gain, resulting in a total reduction in execution cycles
by only 2% (tied largely to a 20% reduction in branch mis-
prediction stall cycles), compared to the 10% reported for
our ILP-NS configuration.

4 Side-effects of EPIC transforms
At the time most EPIC techniques were developed, industry
standard benchmarks had, or could easily be transformed
to have, small, highly optimized kernels which dominated
program execution time. Effects on the rest of the pro-
gram, no matter how egregious, were not a primary con-
cern. This is true to a great extent even in the SPEC95
benchmarks used in [8]. Today, in larger and increasingly
control-intensive programs, however, these once-secondary
effects can emerge as primary limiters on performance gain.
An effective EPIC compiler needs to manage these costs
without hobbling crucial transformations.

4.1 Effects of code-expanding transforms
Even with highly inclusive hyperblock formation heuris-
tics, code growth in the form of tail duplication is not al-
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ways completely avoidable, as including infrequent or in-
congruous paths into hyperblock regions can degrade per-
formance. Blocks along these paths must be excluded from
regions, and the subsequent copying necessary to render the
regions from which they were excluded single-entry cre-
ates code bloat. Likewise, code-expanding transformations
such as loop peeling, as we have seen, are necessary facil-
itators of region formation. This is one of the fundamental
tensions of EPIC compilation: the specialization required
for performance entails code expansion, which may cause
deleterious effects of its own.

Code expansion due to EPIC compilation techniques is
tolerable if it causes no instruction cache footprint in the
program to be spread beyond the capacity of the enclos-
ing cache. Code replicating transformations that condense
“hot” segments by ejecting “cold” copies (e.g., by exclud-
ing never-visited paths from a hyperblock, creating zero-
weight tails), therefore, generally improve performance,
since the cold copies only infrequently enter the cache.

Replicating transformations that generate volumes of
“lukewarm” code (code that is traversed with some fre-
quency), however, can cause instruction cache thrashing
when these copies compete with each other and with other
nominally-resident code in their enclosing footprint. This
can offset or reverse any gains from specialization, paral-
lelism, or misprediction elimination.

As a representative case, we note crafty, a benchmark
with a large instruction cache footprint. Even at baseline
levels of optimization, it spends much time waiting on the
instruction cache (front end bubble in Figure 5). While
IMPACT ordinarily improves instruction cache behavior by
improving the efficiency of instruction fetch (in crafty L1I
accesses are decreased 8.7%), the code bloat involved in
transforming crafty instead causes these fewer accesses to
miss more often, in the end increasing I-cache stalls by 5%.
Using hardware performance monitoring samples and code
annotations by the compiler, this increase can be traced to
lukewarm code copies created in formation of otherwise de-
sirable customized regions. Tail duplicated code accounted
for 4.4% of L1I misses and 6.4% of expensive L2I misses.
Residual loops (those having had iterations peeled out of
them, as in the example of Figure 3) accounted for an addi-
tional 2.4% of L1I and L2I misses. A similar phenomenon
occurs in twolf (14.4% L1I access rate reduction), where a
loop is peeled and the remainder loop, which is itself luke-
warm, is then specialized, creating two new, lukewarm re-
gions. Here, I-cache stall time increases 35%. In an uncon-
strained environment, these would all in fact be appropriate
transformations; here, however, some may sacrifice poten-
tial performance because they cause the footprint of their
enclosing loops to exceed the capacity of the L1I cache.
While both crafty and twolf benefited in the net from ag-
gressive transformation (achieving speedups of 1.09 and
1.38, respectively), their gains would have been larger apart
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Figure 8: Effects on data cache stall cycles

from these code bloat effects. In the aggregate, however, it
is important to note that IMPACT’s I-cache effects are posi-
tive, delivering a 15% decrease in stalls. Thus there is great
potential for a better means of regulating these effects.

4.2 Off-path speculative execution
Speculating operations to reduce dependence height or al-
low removal of program control apparatus causes these op-
erations to execute more frequently. Executions not in the
original program may incur unexpected latencies or addi-
tional exception handling overhead. Aggressive control
speculation of loads (as variable latency operations) and
their consumers may therefore cause an increase in the
number of cycles spent stalled waiting on memory.

Figure 8 shows the variation in data cache stall cycles
with optimization (relative to O-NS). Changes in ILP-NS
are related to the aforementioned scheduling phenomena.
Where increases occur between ILP-NS and ILP-CS, con-
trol speculation, often in the form of predicate promotion
(the weakening of a predicate guarding an instruction), has
allowed loads that miss in cache (and their consumers) to
execute more frequently, generating stalls not observed in
the original program. Where the opposite is true, loads
freed from control dependence have been scheduled farther
away from their consumers, accommodating some miss la-
tency. We used performance monitor sampling to identify
the speculative loads most influential in causing these in-
creases; even though these extra load executions (in many
cases, due to predicate promotion) occasionally generate
extra data cache miss stalls, the benefit to schedule height
achieved by their control speculation usually outweighs the
cost. The data cache effect of off-path speculative loads
was predicted in [8], although it is less pronounced in this
experimental context, probably due to more selective con-
straints on instruction speculation.

4.3 Control speculation model
Several schemata have been proposed to support explicit
control speculation of potentially-excepting instructions
(PEI), each of which has its own set of benefits and costs.
IA-64 provides for two models: sentinel speculation with
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Figure 9: General and sentinel speculation models

explicit recovery blocks and general speculation; it is the
prerogative of the operating system developer to support
either or both of these models [16]. As the IMPACT com-
piler on IA-64 currently supports only the general specu-
lation model, we modified the Linux kernel to support that
schema. This patch is available from the authors.

Typically, PEI are load operations. In either schema,
control-speculative load instructions are marked “specula-
tive” when relocated by the compiler to a program position
(or promoted to a predicate) in which they execute more
frequently than in the original program. Every such opera-
tion must be treated specially; otherwise, in one of its “off-
path” executions (one not dictated by the original program)
it might trigger a spurious page fault to a non-existent page,
inappropriately terminating the program.

Figure 9 shows the events entailed in completing a spec-
ulative load in the two schemata supported on IA-64. In the
general speculation model, any speculative load that can
be completed successfully (in a non-program-terminating
way) is completed at the time the speculative load is ex-
ecuted. A speculative load to an invalid location returns
the value “NaT” (not a thing) and does not terminate the
program (though doing so may involve an expensive query
of the O/S page table). Since nothing remains at the orig-
inal load site, a predicate used to guard the load, for ex-
ample, may no longer be necessary, allowing a further op-
timization. In the sentinel model (early deferral mode), a
speculative load checks only the data translation look-aside
buffer (DTLB) for an entry. If one is not found, the load
returns a “NaT.” This model defers execution of an expen-
sive page search (which occurs speculatively under general
speculation) but requires additional overhead: a “check”
instruction needs to be left at the original load location,
to complete execution of speculative loads that missed in
DTLB when it is determined that their execution was re-
quired. Some state must also be preserved to the point of
this check, to support the initiation of recovery code.

While general speculation avoids the expense of recov-
ery blocks and state preservation, it incurs a more subtle
cost, the magnitude of which becomes evident only in real-
machine experimentation. This is that speculative loads
may occasionally attempt, for example in the case of pro-
grams using pointer/integer union types, to access nonsen-

sical addresses (non-NULL and not in a mapped page).
These wild loads traverse the page mapping hierarchy, but
do not update entries to “cache” their results, and can thus
be very expensive.8 This phenomenon is evident in four
benchmarks (gcc in a prominent way, causing it to spend
20% of its execution time chasing spurious page faults, and
less so in parser, perlbmk and gap), as indicated by the
amount of kernel time incurred in these benchmarks in the
control-speculative compiled code (ILP-CS) in Figure 5.
Ongoing work suggests pointer analysis-based heuristics
may help to identify and avoid speculating these dangerous,
improving the economy of the general speculation model.

4.4 Register utilization
Exploitation of ILP by overlapping independent strands of
computation requires allocation of many register names,
even given predicate-aware dataflow and register allocation
techniques [27, 28] that reduce the number of live range
conflicts in predicated code. In certain benchmarks (e.g.
crafty and parser) IMPACT transformations consume many
registers in an attempt to expose parallelism. The cost of
allocating these registers appears as register stack engine
activity (register stack engine in Figure 5).

4.5 Finer-grain results
Linux kernel support and the Pfmon performance moni-
toring tool allow binning of sampled events by instruc-
tion address. Using this facility, we can approximate per-
function performance comparisons between two versions
of compiled code. We used this capability to find the exam-
ples presented here and to diagnose performance effects of
transformations, as benchmark-level performance changes
often aggregate too many effects to be useful guides. As
an example, Figure 10 shows a comparison of O-NS code
to ILP-NS code (a) and O-NS code to ILP-CS code (b)
for the benchmark vortex. The horizontal space taken
by a function is its contribution to O-NS execution time;
the height of each is the ratio of ILP execution time to
O-NS execution time. The arrow on the left indicates
the total benchmark runtime relative to O-NS. The three
prominent functions with little benefit, chunk free(),
chunk alloc(), and memcpy(), are provided from
gcc-compiled system libraries. The substantial contribution
of these currently unoptimizable functions motivates li-
brary and cross-module compilation using IMPACT. Other
functions in general show improvement from ILP formation
techniques and from control speculation, and this holds true
for the most part across the suite. In order for these com-
parisons between compilation versions to make sense, pro-
cedure contents must be consistent across the versions; this

8Common NULL dereferences are handled using a special, architected
NaT page at address 0; these typically execute with only a 2-cycle penalty
in either model.
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(a) ILP-NS execution time relative to O-NS
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(b) ILP-CS execution time relative to O-NS

Figure 10: Function-level execution time, 255.vortex

was the primary reason for allowing the O-NS baseline the
same inlining aggressiveness as the ILP versions.

4.6 Profile variation
A real concern for EPIC compilation effectiveness is the
provision of correct profile data to the compiler. This data
is used to guide all important ILP formation phases, includ-
ing procedure inlining, region formation, block layout and
instruction scheduling. SPEC practices model some degree
of variation, as benchmarks are “trained” with inputs dif-
ferent from those used for performance evaluation. A dif-
ference in behavior between these two input sets, a “pro-
file variation,” can result in reduced performance gain. To
examine the magnitude of this effect for ILP transforma-
tions in SPECint2000, we compiled the benchmarks using
the reference inputs for training, for comparison with the
ordinary runs. We identified three measurable differences:
crafty’s performance improved by 5%, perlbmk’s by 10%,
and gap’s by 3%. These benchmarks are quite sensitive to
inlining decisions, and crafty and perlbmk have large in-
struction cache footprints. Since ensuring representative
training inputs for “real” programs could be considered to
be much more difficult than for a carefully constructed set
of benchmarks, this poses important issues for EPIC com-
pilation. We are therefore exploring means of improving
transformation stability across profile changes.

5 Related work
August et al. presented a hypothetical EPIC system and
expounded on the constructive collaboration between if-
conversion and speculation techniques [8]. We show how

instruction cache, data cache, branch prediction, exception
handling and operating system model color a modern real-
ization of the technology outlined by the earlier paper.

A long heritage of other VLIW and superscalar compiler
work contributed features that are now part of IA-64. This
work included complete, hypothetical machines that sup-
ported extensive research projects [29]. As real EPIC hard-
ware only recently became available, and as research com-
pilation environments are still adapting to it, the validation
and recalibration of these results to the modern situation is
work just begun. Triantafyllis et al. demonstrated using
the Intel production compiler that controlling optimization
for EPIC systems is a difficult problem, as large fluctua-
tions in performance can be observed with only changes in
how, when, and to what degree existing optimizations are
applied [10]. Their work pointed out interactions similar
to those indicated here, within a very different compiler in-
frastructure. Choi et al. performed a focused evaluation of
if-conversion on the Itanium processor, in the context of a
more conservative production compiler [9]. Our relation to
this work was discussed in Section 3.5.

6 Conclusions

We have demonstrated how IMPACT’s “structural” ap-
proach to compilation for Itanium 2 provides a 1.13 av-
erage speedup (including single-benchmark speedups of
up to 1.50) relative to traditional optimization of code at
the same inlining and interprocedural analysis levels and
a 1.55 speedup relative to GCC. We show that the bene-
fit of these techniques far exceeds the removal of branch
misprediction and that their code size expansion cost is
usually performance-justified. We observe significant im-
provements in instruction fetch efficiency as the result of
specializing transformations, suggesting that simply cur-
tailing static code size is not the best means of improving
Itanium 2’s front-end performance. These positive results
are, however, colored by a quantitative understanding of
potential risks: in a few cases, excessive replication led
to deleterious I-cache effects; elsewhere, control specula-
tion of “wild loads” exacted a heavy toll. This work pro-
vides an important milestone in the development of EPIC,
showing that further gains will rely on more sophisticated,
as well as more aggressive, compiler techniques, capa-
ble both of exposing more ILP and of managing tradition-
ally secondary elements such as instruction cache and the
performance-stability of speculation. Finally, we point to
the increasing significance of runtime effects, such as data
cache and DTLB stalls, in determining end application per-
formance. This calls for better microarchitectural manage-
ment of these events or new research that puts them within
the compiler’s understanding.
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