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ABSTRACT
Data-parallel co-processors have the potential to improve perfor-
mance in highly parallel regions of code when coupled to a general-
purpose CPU. However, applications often have to be modified in
non-intuitive and complicated ways to mitigate the cost of data
marshalling between the CPU and the co-processor. In some ap-
plications the overheads cannot be amortized and co-processors are
unable to provide benefit. The additional effort and complexity of
incorporating co-processors makes it difficult, if not impossible, to
effectively utilize co-processors in large applications.

This paper presents CUBA, an architecture model where co-
processors encapsulated as function calls can efficiently access their
input and output data structures through pointer parameters. The
key idea is to map the data structures required by the co-processor
to the co-processor local memory as opposed to the CPU’s main
memory. The mapping in CUBA preserves the original layout of
the shared data structures hosted in the co-processor local memory.
The mapping renders the data marshalling process unnecessary and
reduces the need for code changes in order to use the co-processors.
CUBA allows the CPU to cache hosted data structures with a selec-
tive write-through cache policy, allowing the CPU to access hosted
data structures while supporting efficient communication with the
co-processors. Benchmark simulation results show that a CUBA-
based system can approach optimal transfer rates while requiring
few changes to the code that executes on the CPU.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General

General Terms
Design

1. Introduction
CUBA (Champaign-Urbana/BArcelona) is an architec-

ture model for coupling data-parallel co-processors to general-
purpose CPUs. CUBA incorporates mechanisms for reduc-
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ing the communication latency and data marshalling over-
heads incurred when moving data between CPUs and co-
processors. Lowering the cost of accessing highly data-parallel
co-processors, both in terms of prolonged execution time and
programming efforts, CUBA allows for a wider range of ap-
plications to benefit from data-parallel co-processors.

Data parallelism (DP) refers to the property of an appli-
cation to have a large number of independent arithmetic op-
erations that can be executed concurrently on different parts
of the data set. Data parallelism exists in many important
applications that model reality, such as physics simulation,
weather prediction, financial analysis, medical imaging, and
media processing. We refer to data-parallel phases of an ap-
plication as kernels. Contemporary high-performance CPUs
employ instruction-level parallelism (ILP), Single-Instruction-
Multiple-Data (SIMD), memory-level parallelism (MLP), and
thread-level parallelism (TLP) techniques that all exploit
data parallelism to a certain degree. However, due to cost
and performance constraints imposed by sequential appli-
cations, these CPUs can only dedicate small portions of
their resources to the exploitation of data parallelism, which
motivates the design of co-processors for exploiting massive
amounts of data parallelism.

We define a co-processor as a programmable set of func-
tional units, possibly with its own instruction memory, that
is under the control of a general-purpose processor. Some
co-processors implement fine-grained computations, such as
floating-point arithmetic, vector operations or SIMD instruc-
tions. These fine-grained co-processors are integrated into
CPUs as functional units that support new processor in-
structions (e.g., SIMD instructions). Other co-processors,
such the Synergistic Processing Elements (SPEs) in the Cell
BE processor [5], the NVIDIA GeForce 8 Series graphics
processing units, Physics Engines or the reconfigurable logic
in the Cray XD1 [4], execute medium- and coarse-grained
operations. The software abstraction used by many coarse-
grained co-processors today is a threaded execution model
such as SPU threads in the Cell SDK.

In this paper we focus on coarse-grained co-processors
that can potentially exploit a large amount of data paral-
lelism. We argue that a programming model where coarse-
grained co-processors are encapsulated as function calls is
a useful and powerful model that presents two main bene-
fits. First, function call encapsulation provides co-processors
with a simple model similar to libraries and API (Applica-
tion Programming Interface) functions, which is familiar to
developers. As a result, co-processors can be easily incorpo-
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int dinst1(uchar *blk1, uchar *blk2, int len)
{

int i,j,s;
uchar *a,*b;
s=0; a=blk1; b=blk2;
for(j=0;j<16;j++) {

for(i=0;i<16;i++) {
s+=abs(a[i]-b[i]);

}
a+=len;
b+=len;

}
return(s);

}

(a) Motion Estimation, pixel distance function

int fullsearch(uchar *org, uchar *blk, int len,
int i0, int j0, int win)

{
int m,k,d,i,j;
. . .
for(m=1;m<=win;m++) {

i=i0-m; j=j0-m;
for(k=0;k<8*m;k++) {

d=dinst1(org+i+len*j,blk,len);
. . .
if(k<2*m) i++;
else if(k<4*m) j++;
else if(k<6*m) i--;
else j--

} } }

(b) Motion Estimation, full search (spiral pattern)

Figure 1: Source code for motion estimation in MPEG2

rated into current applications with little change to the code.
Programmers can use a sequential programming model to
develop new applications that take advantage of the paral-
lel processing capabilities of co-processors. Second, CUBA
does not prevent developers from making more complex code
changes, such as using multiple threads of execution, to im-
prove performance and enable co-processors to be employed
when the function call abstraction is not an appropriate op-
tion.

Many coarse-grained co-processors are equipped with their
own main memory, which we refer to as local storage. We
discuss two main issues regarding co-processors: communi-
cation latency and cost of extracting and arranging data to
be sent to the co-processor, the latter of which we refer to
as marshalling. Current CPU/co-processor architectures are
accessed using a long-latency system bus. The CUBA archi-
tecture requires local storage for co-processors and uses a
mechanism to collect data produced by the CPU providing
it to the co-processor local storage in the same layout as the
original CPU layout, obviating the need for the application
to do explicit marshalling. Reducing the overhead associ-
ated with communication and marshalling allows CUBA to
provide a co-processor architecture that can better acceler-
ate a wider array of data-parallel kernels.

We evaluate CUBA using multiple benchmarks on a cycle-
accurate simulator of a superscalar processor attached to a
data-parallel co-processor. CUBA is shown to reduce the
programming efforts and run-time communication overhead
for accessing co-processors compared to alternative designs.
We demonstrate speedup across our benchmarks with re-
spect to previous DMA-based CPU/co-processor architec-
tures, which have already shown speedups from 10X to 240X
with respect to a baseline CPU-only configuration [18].

The main contributions of this paper are: (1) A pro-
gramming model that encapsulates co-processors as func-
tion calls, which provides a simple programming model for
using data-parallel co-processors coupled to general-purpose
CPUs. (2) An analysis of data access and marshalling over-
heads incurred when using traditional co-processors that im-
plement data-parallel computations. Our analysis demon-
strates the importance of reducing these overheads and has
implications for the programming models used to access co-
processor functionality. (3) A mechanism to map program
data in the co-processor local memory. The main benefit
of our mechanism is that it does not penalize CPU accesses
to data not hosted by the co-processor local storage and re-
quires little additional logic. (4) A description of the hard-

ware support a co-processor would implement to allow the
virtualization of the co-processor local storage.

This paper is organized as follows. We present the pro-
gramming model we adopt for co-processors in Section 2.
In Section 3 we describe the modifications to current pro-
cessors required by CUBA and sketch how to virtualize the
co-processor local storage. We describe our experimental
methodology in Section 4 and the experimental results in
Section 5. In Section 6 we summarize the related work in
CPU/co-processor architectures. In Section 7 we conclude
and present potential future work.

2. Co-processor Programming Model
We present an example of the data parallelism that ex-

ists in many applications. Figure 1 shows two functions
that implement motion estimation in an MPEG2 video en-
coder. Function dinst1() calculates the sum of absolute
differences (SAD) for a block of 256 image pixels. The ker-
nel is rich in data parallelism and amenable to execution
by a co-processor designed to exploit a large amount of data
parallelism. We will use motion estimation as an example to
illustrate the overall programming model adopted in CUBA.

In the programming model adopted for CUBA, each co-
processor is viewed as an extension of the CPU and can
be invoked in much the same way as a library function.
For instance, consider a co-processor that implements the
dinst1() code in Figure 1a. The call to the co-processor
appears in the motion estimation fullsearch() code (Fig-
ure 1b) as a function call to dinst1() as if it were imple-
mented in software. However, the call to dinst1() invokes
the co-processor instead. The co-processor uses a large num-
ber of execution units and potentially a large number of
threads to exploit the data-parallelism in the kernel. We
will assume that the code running in the CPU calls the co-
processor using a special user-mode instruction and synchro-
nizes with the co-processor using a polling loop. Interface
logic hides the low-level details of data transfers to and from
the co-processors and does not require major modifications
in the application code that invokes them. Note that the
application could include two versions of the same function:
one using the co-processor and another one only using the
CPU. Hence, the same application can be executed in sys-
tems with and without co-processors. Only co-processor ex-
ecution is considered in this work.

We have identified three models of data transfer between
the CPU and co-processor. The first model is the simplest
among the three, but achieves the lowest performance. The
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int dinst1(uchar *blk1, uchar *blk2, int len)
{
int i,s;
uchar *dma_blk1, *dma_blk2;
dma_blk1=dmalloc(16*16);
dma_blk2=dmalloc(16*16);
for(i=0;i<16;i++) {
dmacpy(dma_blk1+i*16,blk1+i*len,16);
dmacpy(dma_blk2+i*16,blk2+i*len,16);

}
s=dinst_coproc(dma_blk1,dma_blk2,len);
return(s);

}

(a) Motion Estimation, pixel distance stub
in Per-Call model

int dinst1(uchar *blk1, uchar *blk2, int len)
{
int s;
s=dinst_coproc(co_addr(blk1),

co_addr(blk2),len);
return(s);

}

(b) Motion Estimation, pixel distance
stub in Co-Processor-Hosted model

int fullsearch(uchar *org, uchar *blk, int len, int i0, int j0, int win)
{

int m,k,d,n, q = 0;
uchar *dma_org[2], *dma_blk;
. . .
dma_blk=dmalloc(16*16);
dma_org[0]=dmalloc(16*16);
dma_org[1]=dmalloc(16*16);
for(n=0;n<16;n++) {

dmacpy(dma_blk+n*16,blk+n*len,16);
dmacpy(dma_org[0]+n*16,org+n*len,16);

}
for(m=1;m<=win;m++) {

i=i0-m; j=j0-m;
for(k=0;k<8*m;k++) {

d=dinst1_coproc(dma_org[q%2],dma_blk,len);
. . .
if(k<2*m) i++;
else if(k<4*m) j++;
else if(k<6*m) i--;
else j--
q++;
for(n=0;n<16;n++) dmacpy(dma_org[q%2]+n*16,org+i+len*(n+j),16);
wait_coproc();

} } }

(c) Motion Estimation, fullsearch in Double-Buffered model

Figure 2: Source code for different co-processor programming models

second model achieves higher performance than the first
model, but requires high level of programming effort. The
third model is the one we advocate in this paper. It uses
a hardware mechanism to achieve higher performance while
keeping the additional programming efforts low.

The first data transfer model, Per-Call, uses the co-pro-
cessor local storage to hold only the data required for a sin-
gle call to the co-processor. This model has the smallest
local storage requirement among the three models. In the
MPEG2 example, the co-processor local storage holds two
16 ∗ 16 blocks (blk1[] and blk2[]). The dinst1() function
on the CPU is modified to collect the relevant subarrays
of the org and blk arrays, then transfers them from main
memory to the co-processor local storage before calling the
co-processor. In the Per-Call model the complexity of the
co-processor data transfer is encapsulated in the dinst1()

function and the code in fullsearch() does not change.
Figure 2a shows the code that collects and transfers the

data. The code marshals the input parameters: it col-
lects non-consecutive portions of org and blk from the CPU
memory and transfers the data to consecutive memory lo-
cations of the co-processor local storage. The need for data
marshalling arises from the fact that the call to the origi-
nal dinst1() function uses the call-by-reference convention
for passing the pointers into two large arrays to the func-
tion, which uses these pointers to access the subarrays in
the memory space. As shown in Figure 1a, after processing
each row of the subarrays, the original CPU code advances
both pointers a and b by the row length of the large array. In
CPU execution, whenever the two subarrays reside in cache,
the dinst1() function can access them at very little cost.
In the Per-Call model, the explicit collection and transfer of
these subarrays to the co-processor local memory effectively
changes the calling convention to call-by-value for the sub-
arrays. The data marshalling and transfer times are added
to the computation latency for the co-processor, possibly
negating the benefit of using a data-parallel co-processor.

The second model, Double-Buffered, uses the co-processor
local storage to hold the input data required for both the

current and next co-processor calls. The Double-Buffered
model may require up to twice the local storage capacity
as the Per-Call model, but allows the CPU to transfer data
for the next invocation while the co-processor is executing
the current call. If the co-processor computation latency
is longer than the data transfer latency, the latter can be
masked. Furthermore, if some inputs are constant across
calls, they can be transferred once and used by many calls.
In our MPEG2 example, blk2[] is persistent state that is
maintained across calls to the dinst1() function. If we dou-
ble buffer blk1[], the co-processor local storage hosts one
16 ∗ 16 block blk2[] and two 16 ∗ 16 blocks blk1[] for both
the current invocation of dinst1() and the next invocation.

The code in fullsearch() requires major changes to im-
plement double buffering as shown in Figure 2c. Before en-
tering the outer loop, the code collects and transfers blk1[]
and blk2[] to the co-processor local storage. The code in-
side the inner loop calls dinst1(), which returns immedi-
ately without returning any value. Immediately after the
call, we add code to collect and transfer blk1[] for the next
invocation and wait for the co-processor to finish. When the
co-processor returns the output value, the code in the CPU
uses it and iterates in the loop. If the data transfer time
takes longer than the computation in the co-processor, the
communication overhead becomes unacceptable.

For the Double-Buffered model, the code in fullsearch()

needs to know the data access range for dinst1() in order
to collect all elements of blk1[]. This requirement violates
commonly held software engineering principles and is com-
plicated by the fact that the next block to be processed is
determined by a fairly complex set of conditions. There also
may be cases where the access range for the next iteration
is not determinable at compile time, which makes double
buffering even more difficult to implement. Furthermore,
the code modifications to fullsearch() also depend on the
co-processor being used. Hence, the resultant fullsearch()
code is unlikely to be shared across systems without co-
processors or with different co-processors.
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The third model is Co-Processor-Hosted and is the model
adopted for CUBA. In this model the co-processor local stor-
age hosts all data used in a group of consecutive calls to
the co-processor by fullsearch(), which requires more lo-
cal storage capacity than the previous models. However,
the program data layout in this model can be exactly the
same as the data layout for the original application. Hence,
there is no data marshalling overhead or major changes to
the CPU portion of the application. For the MPEG2 exam-
ple, the two large arrays, blk[] and org[], are mapped to
the local storage of the co-processor rather than the CPU
main memory. Thus, they are automatically written to the
co-processor local storage as soon as they are produced, be-
fore the first call to fullsearch() (in this example, when
read from the disk). Therefore, the data arrives at the co-
processor local storage before it is needed by the dinst1()

function implemented in the co-processor. Figure 2b shows
the code inside dinst1(). The code calls the co-processor
and waits for it to return the output value to fullsearch(),
which requires no modification to the code in fullsearch().
For these reasons, the Co-Processor-Hosted model can be
much easier to use for complex applications.

A potential penalty imposed by the Co-Processor-Hosted
model is additional access time overhead for the CPU to
access these two arrays, which the CUBA architecture ad-
dresses by allowing the CPU to cache the contents of the
co-processor’s local storage, as discussed in the next sec-
tion. The other main disadvantage is that it requires more
co-processor local storage than the other two models. As-
suming a nominal 640 ∗ 360 frame size for the MPEG-2 ex-
ample, the co-processor must host 450KB, instead of the
512B and 768B required for the two previous models, re-
spectively. The local storage capacity requirement can be
easily met by off-chip co-processors today (e.g., the NVIDIA
8800 GTX card has 768MB of local storage), but it restricts
the set of computations that can be implemented by cur-
rent on-chip co-processors (e.g., each SPE in the Cell BE
has 256KB of local storage). In Section 3 we discuss how
to virtualize the co-processor local storage, which enables
a given co-processor to support computations that require
more memory than its physical local storage.

3. Overall Design of CUBA
CUBA is applicable to both on-chip and off-chip

co-processors. We will illustrate our descriptions with an
off-chip co-processor coupled to a CPU with an interconnect
similar to what the Torrenza initiative defines [10] (see Fig-
ure 3). The CPU and the co-processor are interconnected us-
ing a HyperTransport-like link [2]. We assume that the link
supports CPU access to the co-processor memory-mapped
registers and to the co-processor local storage.

The co-processor, on the other hand, has no direct ac-
cess to the CPU memory; all its effects on the CPU memory
system are through its local storage and managed by a mech-
anism located in the main memory controller. A benefit of
this design is that a CUBA co-processor does not have the
ability to accidentally or maliciously corrupt the memory
contents of any CPU processes other than the user process
calling the co-processor. Thus, a failing co-processor will
behave like a defective third party software library function
with limited scope of damage.

In this section we will describe the modifications to the
CPU memory management unit (MMU) logic and the mem-

ory controller. The objective of these modifications is to se-
lectively map application data structures into the
co-processor local storage on the fly to implement the Co-
Processor-Hosted model described in the previous section.
The application requests this mapping by calling API func-
tions supported by the operating system (details to follow).

3.1 CUBA Architecture Model
In CUBA, the application data structures accessed by co-

processors are hosted by the co-processor local storage in-
stead of the CPU main memory. When the CPU reads or
writes such data, it effectively accesses the co-processor lo-
cal storage. The co-processor local storage contents can be
cached by the CPU. Thus, CPU accesses to contiguous mem-
ory locations or repeated accesses to the same data can take
advantage of the short cache latency. For this work, the co-
processor local storage is restricted to only contain data for
a single application at any time.

CUBA hides the data movement overhead by dynamically
collecting the co-processor input data as it is being produced
by the CPU. A Co-processor Local Storage Collector (CLSC)
is integrated with the CPU main memory controller. The
CLSC inspects every memory request going into and out of
the controller to identify writes to the data that are being
hosted by the co-processor. The CLSC determines if an ac-
cess is for the local storage based on the mapping designated
by the application. Whenever a memory write involves the
co-processor local storage, the CLSC forces a write-through
action from the main memory controller to the co-processor.
With additional buffering, the CLSC coalesces writes to se-
quential locations for better transfer efficiency. The CLSC
and the write-through policy for the hosted data structure
when they reside in the L1 and L2 caches maximize the prob-
ability that when the co-processor starts computing, all of
its input data will be already present in its local storage. We
will relax the constraint of using a write-through L2 cache
later in this paper.

Let us consider an MPEG2 application that uses a co-
processor to implement both functions of the motion es-
timation code in Figure 1. The application first allocates
co-processor local storage to store the current and previous
video frame objects by calling the operating system, which
sets up the necessary mappings. At the end of each time
step, the MPEG2 application logically copies the current
frame into the previous frame and reads in the new current
frame. In the original code, this copying is accomplished
by assigning the address of the current frame object of the
ending time step to org and the address of the new input
frame object to blk before reading the new input frame.

While the MPEG2 application code reads a new input
frame from disk, the CLSC sees a series of memory writes
to locations mapped to the co-processor storage. It collects
these writes, coalesces them into larger transfer units, and
sends them to the co-processor. When the application calls
the fullsearch() function, it first writes the input parame-
ters (*org, *blk, len, i0, j0 and win) into the co-processor
registers. The previous and current frame objects are passed
by-reference using the org and blk pointers. When the co-
processor finishes computing, the CPU gets the output value
from one of the co-processor registers. For the next time
step, the application calls fullsearch() using the same in-
put parameters, except for *org and *blk, which contains
new addresses in them. Note that *org and *blk contain ad-
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Figure 3: General Model of the CUBA architecture

dresses within the virtual address space of the application.
However, when calling the co-processor, the co-processor re-
quires addresses from its own local address space. Thus,
when passing these parameters, the application uses the in-
formation contained in an OS-provided table to translate
from its virtual address space to the co-processor local ad-
dress space1. Finally, the application calls the co-processor
to execute the fullsearch and dinst1() functions.

3.2 Co-processor Local Storage Collector
Co-processor data hosting is implemented using a TLB

assisted mechanism: the page table entry is extended with a
one-bit C field, which is set for those pages containing data
hosted by the co-processor. The L1 and L2 caches also store
the C field for each cache line.

The C field is used to implement a hybrid write-back/write-
through L2 cache. The L2 cache controller follows a write-
through/write-no-allocate policy only for those cache lines
whose C field is set. A hybrid policy provides three main
benefits: (1) the data will be present in the co-processor local
storage before launching the computation, (2) co-processor
data is still cached so repeated CPU accesses or accesses to
contiguous co-processor data are not penalized, and (3) write
accesses to other data structures do not incur write-though
actions by the L2 cache.

The L2 cache controller sends the C field to the main
memory controller for every memory write operation. Write
requests whose C bit is set are handled by the CLSC. The
CLSC implements a write buffer to store pending write oper-
ations to the co-processor local storage. Pending requests in
the write buffer are coalesced and sent to the co-processor
local storage through the Hyper-Transport link. A single
core system requires a write buffer with as many entries as
the maximum number of outstanding memory requests the
L2 can support. If the ISA does not allow write reordering,
coalescing write operations might lead to race conditions.
For instance, a write to a lock variable might be done before
actually writing the data that is locked. We expect the co-
processor local storage to only host “pure data” structures
while synchronization variables are stored in main memory.

The CLSC presents the following interface to the CPU:
applications use the scop (Start Co-Processor) instruction
to signal the CLSC to complete the data movement neces-

1
Accessing the table does not require any system call to be performed

by the applications.

Figure 4: Actions performed in the CLSC when a
scop instruction commits

sary and begin execution of the co-processor. Figure 4 shows
the actions performed by the CLSC when it gets a scop re-
quest. First, it waits for all pending write-through activities
to the co-processor to finish. Then the CLSC invalidates
those cache lines in the L1 and L2 caches whose C field is
set and sends the scop request to the co-processor. Note
that these two actions can be performed in parallel if the
CPU does not request any data during this process. To en-
force this constraint, when the scop instruction enters into
the processor issue queue, the processor stops fetching new
instructions. When the scop instruction commits, it is sent
to the CLSC. At this point there are no other instructions
in flight since the issue queue is empty. The CLSC signals
completion (all write-through activities and invalidations are
done) to the CPU by asserting a line that enables fetching
and issuing new instructions.

The write-through cache policy for the co-processor data
allows us to overlap the execution in the CPU with the data
movement, as illustrated in Figure 5a. When the application
calls the co-processor, the CLSC ensures that the single valid
copy for the co-processor data is in the co-processor local
memory (Figure 5b). The application implements a polling
loop to wait for the co-processor to finish. Hence, only the
co-processor can access those data (Figure 5c) while it is
computing. Once the co-processor is done, any CPU access
to the co-processor data will miss in the L1 and L2 caches
since all the cache lines containing data hosted by the co-
processor were invalidated. Both caches fill from the co-
processor local storage (Figure 5a).

3.3 Benefits and Limitations of CUBA
The design of CUBA has several implications for appli-

cations performance. The hybrid write-back/write-through
L2 cache used in CUBA is the key to overlap data trans-
fers between the CPU and the co-processor. Furthermore,
the hybrid policy increases the probability of having the data
present in the co-processor local storage when the CPU calls
the co-processor. However, there is a potential side-effect
that might reduce the benefit of the hybrid write policy
of CUBA. Every time the CPU modifies the data hosted
by the co-processor local storage, a write-through action is
triggered at the L2 cache. Hence, repeated writes to the
same memory location from the CPU before the co-processor
is called lead to several write-through actions, increasing
the amount of data transferred from the CPU to the co-
processor local storage. Thus, the average bandwidth of the
L2 cache, the L2 bus, the memory controller and, the Hyper-
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(a) The application accesses data in
main memory and co-processor mem-
ory through the cache

(b) Before starting the computation the
CLSC invalidates those cache lines con-
taining co-processor data

(c) When the co-processor starts com-
puting all the data is only in its local
memory

Figure 5: Data movement in CUBA

Transport link required by CUBA is higher than the band-
width required by traditional DMA architectures. However,
CUBA redistributes write and reads operations to the co-
processor local storage across the total execution time of
the application. Thus, in many cases the maximum instan-
taneous bandwidth required by CUBA is much smaller than
the instantaneous bandwidth required during a DMA trans-
fer between the CPU main memory and the co-processor
local storage. A given hardware element only limits ap-
plications performance when it is not able to deliver the
instantaneous bandwidth required by the application. Be-
cause CUBA reduces the maximum value of the instanta-
neous bandwidth requirements, we expect CUBA to perform
better than current DMA-based architectures.

A benefit of CUBA is its ability to perform DMA transfers
from I/O devices to the co-processor local storage, since this
is mapped in the system physical address space. In many
applications, the data used by co-processors is directly read
from the disk. In these applications CUBA might decrease
the amount of data transferred between the CPU main mem-
ory and the co-processor local storage significantly.

3.4 Support for Virtualization
CUBA targets a programming model where the co-processor

local storage hosts the data used during consecutive invoca-
tions of the co-processor (as discussed in Section 2). We ex-
pect programmers to map to the co-processor local storage
any data structure that might be needed by the co-processor.
Hence, some local storage capacity might be wasted. For in-
stance, the programmer might map an array of structures
where only one field of many is required by the co-processor.

The capacity of the local storage might limit the num-
ber of applications that benefit from CUBA. To overcome
this limitation, the co-processor local storage can be virtu-
alized. The virtualization mechanism is used whenever the
size of the mapped data overflows the capacity of the lo-
cal storage. If the overhead produced by the local storage
virtualization is unacceptable, programmers might need to
re-organize data structures to fit the data in the co-processor
local storage. We describe the hardware support necessary
to virtualize the co-processor local storage as follows.

Applications request co-processor local memory from the
OS, which sets the corresponding entries in the page table to
map a co-processor memory range to the application virtual
address space. It also sets the C bit for this range. If there
is no co-processor memory available, the OS maps a range
of main memory instead. When the application executes a
scop, the co-processor data is split between main memory
and co-processor memory.

To virtualize the co-processor local storage, it is necessary
to detect memory accesses from the co-processor to data not
present in its local storage and send an exception (data not
present) to be handled by the OS. The OS then selects a
range within the co-processor local storage to be swapped
out to main memory, swaps in the required data from main
memory to the co-processor local storage and modifies the
necessary entries in the co-processor page table to reflect the
changes in the mappings. The OS code that swaps the data
in and out of the co-processor memory must not bring any
co-processor data to the L2 cache. This constraint can be
easily fulfilled by moving all the data using DMA transfers.
First, the OS swaps data out using a DMA transfer from
the co-processor local memory to main memory. Then the
OS initiates a new DMA transfer to swap the required data
from main memory to the co-processor local memory.

The co-processor might send a data not present exception
while the CLSC is invalidating the caches. This case does
not present any problem, because the code that handles the
exception will not be executed until the CLSC enables the
instruction issue logic again. Therefore, when the processor
starts executing the exception handling code, all cache lines
have been already invalidated.

4. Experimental Setup
We use execution-driven simulation to evaluate the CUBA

architecture design. The architecture of the simulated pro-
cessor is shown in Table 1. We simulate three configura-
tions: dma-opt, dma, and cuba. In dma-opt, data transfer is
assumed to take zero time and demonstrates the maximum
speedup a co-processor system can achieve using DMA. Dma
uses DMA transfers, similar to what is used by the NVIDIA
CUDA model, between the CPU and the co-processor. The
simulated DMA controller can read data from the L2 cache
if present and from main memory otherwise. DMA transfers
use burst reads and writes of 128 bytes.

The evaluation is performed using a cycle-accurate simu-
lator based on SESC [17], which was modified to incorporate
DMA transfers, co-processor execution and CUBA.

4.1 Workloads
We have selected four different applications suitable for ac-

celeration using massively data parallel co-processors. These
applications have been selected from the set of benchmarks
presented in [18], where actual speed-ups are reported when
using NVIDIA CUDA. We select benchmarks that exhibit
different data access patterns and that we are able to simu-
late in a reasonable time. In our simulations we assume that
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Processor Memory Subsystem

Freq: 5GHz L1 ICache: 16K (4-way, 1 port)
Fet/Iss/Ret width: 4/4/5 L1 DCache:16K (4-way, 1 port)
LdSt/Int/FP units: 4/4/3 L1 Hit/Miss Delay: 2/13
RAS: 32 L2 Cache: 1MB (16-way, 2 ports)
BTB: 2K entries, 2-way assoc. L2 Hit/Miss Delay: 10/105
Branch pred: ITLB entries: 64 (4-way)
bimodal size: 16K entries DTLB ent: 64 (4-way)
gshare-11 size: 16K entries Main Mem: 240
I-window: 92 Coproc Mem Delay: 240
ROB size: 176 Coproc Link Channels: 4
Int regs: 96 Coproc Link Latency: 10
FP regs: 80 CLSC WBuff: 32 * 4
Ld/St Q entries: 56/56
IMSHR/DMSHR: 4/16

Table 1: Simulation parameters. Latencies shown in
processor cycles representing minimum values.

Benchmark
CUDA

Kernel CallsCo-Proc Kernel Appl.
Execution Speed-up Speed-up

h264 2.6% 20.2X 1.47X 2
lbm 98.3% 12.5X 12.3X 20
mri 99% 316X 263X 1
saxpy 88% 19.4X 11.8X ≈26,000

Table 2: Workloads used in our experiments

the co-processor achieves the same level of speedup for each
application as that reported in [18]. The simulated processor
is more aggressive than the one used in [18]; we assume that
the co-processor is scaled in its parallelism to match the in-
creased CPU speed. Note that we aim to simulate a generic
co-processor, not only GPUs. Thus, the estimated value for
the co-processor execution time is likely to fit within the
range of possible execution times for a certain co-processor.
Table 2 show the benchmarks used in our simulations.

h264 is based on the 464.h264ref SPEC CPU2006 bench-
mark, which is an H.264 video encoder. A dependence be-
tween motion estimation of consecutive macroblocks in a
video frame was removed to enable parallel execution of the
motion estimation code on multiple macroblocks. This mod-
ification changes the seed motion vector for each macroblock
and therefore sightly affects the output of the program, but
it is allowed by the H.264 standard. Lbm is based on the
470.lbm benchmark from SPEC CPU2006, which uses the
Lattice-Boltzmann Method for simulating 3D fluid dynam-
ics. The program has been modified to print fewer status re-
ports. Mri implements the computation of a vector F Hd, an
image-specific vector, used in a 3D magnetic resonance im-
age reconstruction algorithm based on non-uniform Fourier
Transform. Saxpy is a single-precision floating-point imple-
mentation of saxpy from High-Performance LINPACK, used
by a Gaussian elimination routine.

We compile the CPU code using gcc version 3.4 with the
-O3 flag to MIPS binaries. To compare the performance we
use the slow-down of the configuration with respect to the
dma-opt version of the benchmark.

4.2 Comparing Data Transfer Mechanisms
We evaluate two different data transfer mechanisms: DMA

(dma) and CUBA (cuba). For the DMA configuration we
modify the NVIDIA CUDA version of the benchmark, which
has already been optimized to reduce the overhead of data
movement between the CPU and the co-processor. The
CUDA API calls for allocating DMA memory buffers, per-

Figure 6: Slow-down with respect to the dma-opt
configuration achieved for the benchmarks shown in
Table 2 (the lower the better)

forming data transfers and launching co-processor computa-
tion are substituted by the analogous ones provided by the
simulation platform. For dma-opt we use the same code as
the DMA model, but we comment out the code that allo-
cates DMA memory and performs the data transfer. For
the cuba configuration, we only perform two modifications
from the original code: First, we add the necessary calls to
allocate the data structures used by the co-processor in the
co-processor memory. Second, we substitute the code now
executed by the co-processor with the API calls to launch
the computation.

5. Evaluation

5.1 Performance
We compare the performance of CUBA with DMA data

transfer between CPU and Co-processor. Figure 6 shows
the results for the different configurations and benchmarks.
Results are shown as the the slow-down with respect to the
dma-opt configuration (instantaneous DMA).

CUBA performs better than the other configurations for
three of the four benchmarks we simulate: lbm, mri and
saxpy, but for h264 CUBA is 0.3% slower than DMA. The
data transfer between the CPU and the co-processor in all
benchmarks benefits from using CUBA. Figure 7 shows that
in h264 there are more writes to the co-processor local mem-
ory than in DMA. A detailed analysis of the experimental
results shows that the slight slow-down in CUBA is due to
a 10.32% increase in the number of TLB misses. In CUBA
there are more TLB misses due to the page table entries
needed for mapping the co-processor local memory data.

There is an anomaly in lbm: CUBA performs better than
the DMA optimal configuration. In the DMA configuration
four kernels are implemented by the co-processor, but two
of these kernels are more efficiently executed by the CPU.
Dma and dma-opt execute them on the co-processor to avoid
data movement overheads, but CUBA executes them in the
CPU, since the data movement overheads are much smaller.
Figure 7 shows that in this benchmark CUBA reduces the
number of write-back operations in the L2 cache. In DMA
many L2 write-back operations affect the data used by the
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Figure 7: Number of accesses to the CPU main
memory or the co-processor local storage per access
to the L2 cache. L2 write-backs and main memory
reads are accesses to the CPU main memory. L2
write-through and local memory reads are accesses
to the co-processor local storage. DMA read/write
operations involve accessing to the CPU main mem-
ory and the co-processor local storage

co-processor. Since CUBA implements a write-through pol-
icy for the co-processor data, in CUBA these L2 write-backs
do not occur. Moreover, the write-no-allocate policy for the
co-processor data increases the number of cache lines in the
L2 that can be used to cache other data because many co-
processor data are only written (but not read) by the pro-
cessor. As a result, the number of L2 misses in CUBA is
smaller than in the DMA and DMA optimal configurations.
These are the main sources of the slight speed-up provided
by CUBA with respect to the optimal DMA configuration.

The performance of CUBA for mri is near the DMA op-
timal configuration. In CUBA, the co-processor input set is
transfered directly from the disk to the co-processor mem-
ory. CUBA allows DMA transfers from I/O devices to the
co-processor local memory because the co-processor local
memory is mapped in the system physical address space.
The mri code requires two transfers when using DMA. First
the code reads the data from the disk to main memory. A
second transfer copies the data from main memory to the co-
processor memory. Finally the code calls the co-processor.
Figure 7 shows that DMA requires 190 times more mem-
ory accesses than CUBA due to this two-step I/O transfer
process to the co-processor local storage.

In saxpy, CUBA produces the largest performance im-
provement. In this benchmark the co-processor is called
thousands of times (see Table 2). The data transfer time is
a significant portion (17.16%) of the total execution time
in the DMA version where there are thousands of DMA
transfers. Each DMA transfer requires a polling loop, which
might take few cycles to detect the end of each transfer.
These extra cycles add to the DMA transfer time. In CUBA
more data is transferred to the co-processor local memory
in the form of L2 write-through actions. Data transfers in
CUBA are overlapped with CPU computation before the co-
processor is invoked and the transfers do not require polling.

Figure 8: Slow-down with respect to the dma-opt
configuration for different memory latencies

5.2 Memory Latency
Figure 8 shows the slow-down with respect to the dma-opt

configuration for different memory access latencies. Many
existing co-processors, such as GPUs, include GDDR mem-
ories which deliver higher bandwidth compared to regular
DDR memories. However, we conservatively assume the
same latency for both the CPU main memory and the co-
processor local storage.

The co-processor execution time depends on the memory
latency. We assume a linear dependency between the co-
processor execution time and the co-processor local storage
latency. We use this approximation because we only have
actual kernel speedups for estimating the memory latency of
the NVIDIA GeForce 8800 GTX used in [18]. For each ker-
nel we use the memory access to computation ratio reported
in [18] as scaling factor for the linear variable.

CUBA scales better than DMA for lbm and mri. More-
over, for all simulated memory latencies, CUBA performs
better than DMA in both benchmarks. CUBA scales better
for mri because there are fewer accesses to the CPU main
memory, as shown in Figure 7. In lbm, although CUBA
requires more accesses to the local storage than DMA, it re-
duces the number of accesses to main memory (see Figure 7),
as discussed previously.

Figure 8 shows that CUBA scales worse than DMA for
saxpy and h264. As show in Figure 7 CUBA increases the
number of memory accesses, both to main memory and to
the co-processor local. For the longest simulated memory
latency (786 cycles), CUBA still performs better than DMA
in saxpy but is 8.21% worse than DMA for h264 because of
the extra write-through traffic.

5.3 Link Latency
Figure 9 shows the slow-down with respect to the dma-opt

configuration as the latencies of the link interconnecting the
CPU and the co-processor vary from 20 to 100 cycles.

The results show that the lbm performance only varies
1.8% for cuba, while it is constant for dma. A similar be-
havior is found in h264, but in this case, it varies less than
1%. Figure 7 shows that for these two benchmarks, CUBA
requires accessing the co-processor local storage more often
than DMA. Hence, the effect of increasing the link latency
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Figure 9: Slow-down with respect to the dma-opt
configuration for different link latencies

is higher in CUBA. For mri the performance is constant for
all the simulated link latencies, with little contribution of
data transfers to the total execution time.

The performance figure for saxpy presents a very irregu-
lar pattern. The execution time for each invocation of the
kernels implemented in the co-processor for saxpy is rela-
tively short, but they are called thousands of times during
execution (see Table 2). Each kernel call requires several
non-cacheable writes to the co-processor memory-mapped
registers that use the link. The CPU will then execute the
scop instruction which prevents the CPU from fetching new
instructions until it commits (see Section 3). As a result,
the processor does not execute any other instructions until
the non-cacheable writes reach the co-processor. For h264,
lbm, and mri the time spend waiting for these memory in-
structions to complete is less than 0.01%. However, in saxpy
the CPU is stalled about 50% of the total execution time.
Hence, the variability in the stall time is a very important
part of the total execution time.

Notice that the slow-down with respect to the dma-opt
configuration in the benchmark decreases for certain link-
latency steps. This effect is mainly due to the non-cacheable
accesses to the co-processor registers in the CPU polling loop
while waiting for the co-processors. For certain link latency
values, the increased time for accessing the co-processor reg-
isters results in one more iteration of the polling loop. Be-
cause the co-processor is called thousands of times, even
the single extra iteration has a visible effect on the total
execution time. Because the relative increment to the total
execution time for dma-opt configuration is higher than dma
and cuba, the ratio plotted in Figure 9 is reduced.

6. Related Work
In this section we discuss previous implementations of

CPU/co-processor systems and provide examples of
co-processors being used to exploit data-level parallelism.

6.1 Co-processor Architectures
Examples of fine-grained co-processors that are currently

integrated into processors include SIMD and floating-point
units, such as the SSE [11] and 3DNow! [1] instructions
found in x86 CPUs, and more general interfaces, such as the

MIPS [16] and ARM [19] co-processor interfaces. The com-
munication between integrated co-processors and the CPU
is done by means of registers and is controlled by instruc-
tions that extend the ISA. There are several proposals for
integrating more flexible and coarse-grained co-processors in
a similar way. For instance, Chimaera integrates reconfig-
urable logic as a functional unit inside the core [8] which is
able to access the general-purpose registers of the processor
and perform arbitrary arithmetic functions. In CUBA, we
restrict the focus of co-processors to data-parallel kernel ac-
celeration where the working set of each kernel far exceeds
the number of registers available and instead choose a model
where co-processors have their own local memory for trans-
ferring data between the CPU and the co-processor.

There are examples of CPU/co-processor interconnects in
the field of reconfigurable co-processors. Garp [9] connects
a reconfigurable co-processor to the processor registers and
the data cache. MorphoSys [20] allows co-processors to ac-
cess the system main memory using DMA. OneChip [12]
connects a reconfigurable co-processor to the main memory
controller instead of to the system bus while providing a
mechanism to keep the co-processor local memory and the
system memory coherent. CUBA avoids the need to keep
coherence by hosting the data in its local memory, ensuring
that all input data is available to the co-processor before
computation begins. Co-processors in CUBA do not access
main memory, but only their own local storage.

As an alternative to tightly integrated co-processors, there
are architectures where co-processors are external to the pro-
cessor, whose memory and registers are mapped into the
processor address space. Co-processors can be implemented
on-chip, similar to the SPEs in the Cell BE processor [5] or
reconfigurable co-processors in the Virtex-II Pro from Xil-
inx [21]. On-chip co-processors are typically attached to
the same interconnection network as the memory and I/O
controllers. The NVIDIA GeForce 8 Series is an off-chip
architecture where the co-processor is attached to a Periph-
eral Component Interconnect Express (PCIe) bus. The Cray
XD1 connects an FPGA chip to the processor using a direct
connection through a dedicated I/O bus [4].

Unlike related architectures, CUBA does not constrain
the co-processor memory to be mapped into a given range
of the physical address space. In CUBA, the co-processor
local memory is dynamically mapped to whatever address
space in the process virtual address space required by the
application. When a given mapping is set in CUBA, the co-
processor local memory actually hosts the same data that
system memory in that range would.

6.2 Data Transfer
The two preliminary steps for mapping applications into

a data-parallel architecture are profiling to identify the com-
putation intensive parts of the applications [3] and a detailed
analysis of these parts to determine, for a given co-processor
architecture, if they are suitable to be implemented by a co-
processor [7]. With these analyses in hand, the application is
modified to perform data transfers and synchronization be-
tween the CPU and the co-processor. There are frameworks
that help automate these tasks such as CIGAR [13].

Coarse-grained co-processor architectures implement data
transfer as a marshalling process and a copy of the input
data from the main memory to the co-processor local mem-
ory and vice versa using DMA [14]. For instance, Mor-
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phoSys [20], the Cell processor [5], and the NVIDIA GeForce 8
Series include DMA engines to copy data between the co-
processor and the main memory. CUBA avoids data mar-
shalling by hosting the data structures used by co-processors
in their local memory. Input data is written directly to the
co-processor memory while it is being produced by the CPU.

Garp [9] and OneChip [12] avoid data copying by allow-
ing the co-processor to access the CPU memory hierarchy.
This approach requires implementing a memory controller
for each co-processor that must implement the memory co-
herence protocol, perform memory translation, and ensure
protection. In CUBA, the OS makes use of the MMU to en-
sure that the co-processor cannot affect any data other than
the appropriate virtual locations of the process currently
mapped to its co-processor memory.

Guo [7] identified the data transfer process as a bottle-
neck in co-processor architectures. He proposes the smart
buffer, a compiler technique that minimizes the data to be
copied [6]. A smart buffer compiler exploits the fact that
the input data on consecutive calls to a given co-processor
frequently share items with previous calls; these items do
not need to be copied. Similar techniques for propagating
values in shared memory multiprocessors, such as data for-
warding [15], can be used. CUBA allows data to be hosted
by the co-processor local storage and uses a hybrid write-
through/write-back L2 cache policy. CUBA produces a sim-
ilar buffering effect, but it is complementary to these tech-
niques.

7. Conclusions and Future Work
Co-processors represent an opportunity to perform the

data-parallel portions of applications much faster and more
efficiently than CPUs. However, managing data communi-
cation between the CPU and co-processors is a challenging
problem. In order to cope with data communication over-
heads, applications use techniques such as double-buffering,
which usually implies rewriting the code for the applica-
tion, increased resource usage, and additional overheads that
must be amortized by co-processor speedups.

We presented CUBA, an architecture for CPU/co-processors
that allows overlapping data communication and computa-
tion while requiring few changes to applications. The CUBA
model is based on mapping the data structures required by
the co-processor into a memory local to the co-processor.
Thus, the CPU effectively accesses the co-processor mem-
ory whenever it must read or modify shared data structures.
The co-processor memory is not accessed directly by the
CPU. Instead, the co-processor memory is accessed through
the cache hierarchy, so repeated accesses by the CPU to the
same data are not penalized.

We evaluated CUBA by comparing it to existing DMA-
based architectures using data-parallel benchmarks. In most
cases, CUBA performs better than DMA-based architec-
tures while requiring minimal changes to the code.

There is room for further optimization in CUBA. Appli-
cations using CUBA must implement a polling loop to wait
for the co-processor. Furthermore, CUBA may slow down
the portion of the application that is executed on the CPU.
Our future work will focus on new mechanisms that allow
for implicit synchronization that avoids polling loops. We
will add support for fine grained mappings and discuss the
support required for multi-core architectures.
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