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Abstract

Software pipelining is a compile-time scheduling

technique that overlaps successive loop iterations to

expose operation-level parallelism. An important prob-

lem with the development of e�ective software pipelin-

ing algorithms is how to handle loops with conditional

branches. Conditional branches increase the complex-

ity and decrease the e�ectiveness of software pipelin-

ing algorithms by introducing many possible execution

paths into the scheduling scope. This paper presents

an empirical study of the importance of an archi-

tectural support, referred to as predicated execution,

on the e�ectiveness of software pipelining. In order

to perform an in-depth analysis, we focus on Rau's

modulo scheduling algorithm for software pipelining.

Three versions of the modulo scheduling algorithm,

one with and two without predicated execution support,

are implemented in a prototype compiler. Experiments

based on important loops from numeric applications

show that predicated execution support substantially

improves the e�ectiveness of the modulo scheduling al-

gorithm.

1 Introduction

Software pipelining has been shown to be an e�ec-

tive scheduling method for exploiting operation-level

parallelism [1] [2] [3] [4]. The basic idea behind soft-

ware pipelining is to overlap the iterations of a loop

body and thus expose su�cient parallelism to utilize

the underlying hardware. There are two fundamental

problems that must be solved for software pipelining.

The �rst is to ensure that overlapping lifetimes of the

same virtual register are allocated to unique physical

registers. The second problem is enabling loop itera-

tions with conditional branches to be overlapped.

These problems have been solved in the compiler

implementations for the Warp [5] [3] and Cydra 5 [6]

machines. Both implementations are based on the

modulo scheduling techniques proposed by Rau and

Glaeser [7]. The Cydra 5 has special hardware sup-

port for modulo scheduling in the form of a rotating

register �le and predicated operations [8]. In the ab-

sence of special hardware support in the Warp, Lam

proposes modulo variable expansion and hierarchical

reduction for handling register allocation and condi-

tional constructs respectively [3]. Rau has studied the

bene�ts of hardware support for register allocation [9].

In this paper we analyze the implications and ben-

e�ts of predicated operations for software pipelining

loops with conditional branches. In particular, the

analysis presented in this paper is designed to help

future microprocessor designers to determine if predi-

cated execution support is worthwhile given their own

estimation of the increased hardware cost.

Although software pipelining has been shown to be

e�ective for many di�erent architectures, in this paper

we limit the discussion to VLIW and superscalar pro-

cessors. For clarity, we use VLIW terminology. Thus,

an instruction refers to a very long instruction word

which contains multiple operations.

2 Modulo Scheduling

In a modulo scheduled software pipeline, a loop it-

eration is initiated every II cycles, where II is the Ini-

tiation Interval [7] [3] [10] [11]. The II is constrained

by the most heavily utilized resource and the worst

case recurrence for the loop. These constraints each

form a lower bound for II. A tight lower bound is the

maximum of these lower bounds. In this paper, this

tight lower bound is referred to as the minimum II. If

an iteration uses a resource r for cr cycles and there

are nr copies of this resource, then the minimum II
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Figure 1: Modulo scheduling a loop without recur-

rences.
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where R is the set of all resources. If a dependence

edge, e, in a cycle has latency le and connects opera-

tions that are de iterations apart, then the minimum

II due to dependence cycles, CII, is

CII = max
c2C

2
66666
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X
e2Ec

de

3
77777
;

where C is the set of all dependence cycles and Ec is

the set of edges in dependence cycle c.

Figure 1 shows how modulo scheduling is applied to

a loop without recurrences. The loop has four opera-

tions with dependences shown in the data dependence

graph. The arcs on the dependence graph show the

type of the dependence (
ow) and latency. In this ex-

ample, a 2-issue VLIW with uniform function units

is assumed. The load operation has a 4-cycle latency

and the add and multiply have unit latencies. Since

there are no recurrences, the minimum II depends on

the maximum of the resource constraints. Since there

are two uniform function units and four operations in

the loop, the minimum II is d4
2
e = 2. With no recur-

rences, the operations can be list scheduled using the

modulo resource reservation table [12]. The modulo

resource reservation table has a column for each func-

tion unit and a row for each cycle in II. Note that

after the load, add, and multiply are scheduled, the

store operation can be scheduled in cycle 6. However,

there are no available resources at cycle 0 (6 mod 2)

in the reservation table and thus the store operation

is delayed a cycle and scheduled in cycle 7.

If a schedule is not found for a given II, then

II is incremented and the loop body is rescheduled.

This process repeats until an II is found that satis-

�es the resource and dependence constraints. If the

loop does not have any recurrences, a schedule can

usually be found for the minimum II [7]. In the pres-

ence of recurrences, heuristics were developed in the

Cydra 5 compiler to generate near-optimal schedules.

The basic principle is to schedule the recurrence node

�rst and then the nodes not constrained by recur-

rences [12] [11].

After II is scheduled, the code for the software

pipelined loop is generated. Since not every in-

struction is issued in the �rst II cycles, a prologue

is required to \�ll" the pipeline. There are p =��
latest issue time

II

�
� 1

�
II's or stages in the prologue.

In the example in Figure 1, p
�
= d7+1

2
e � 1

�
= 3. The

kernel of the software pipeline corresponds to the por-

tion of the code that is iterated. Since the loop body

spans multiple II's, a register lifetime may overlap it-

self. If this happens, the registers for each lifetime

must be renamed. This can be done in hardware us-

ing a rotating register �le as in the Cydra 5 [6]. With

this support, the kernel has one stage. Without special

hardware support, modulo variable expansion can be

used to unroll the kernel and rename the registers [3].

The number of times the kernel is unrolled, u, is de-

termined by the maximum register lifetime modulo II.

The last part of the pipeline is the epilogue which con-

sists of p stages needed to complete executing the last

p iterations of the loop. In total, the software pipeline

has 2p+ u stages.

3 Scheduling Loops with Conditional

Branches

In order to apply modulo scheduling to loops with

conditional branches, the loop body must �rst be con-

verted into straight-line code. Two techniques, hier-

archical reduction [13] [3] and if-conversion [14] [15],

have been developed for converting conditional con-

structs (e.g., if-then-else constructs) into straight-line

code for the Warp [5] and Cydra 5 [6] machines re-

spectively. In this section, we analyze the impact of

these two conversion techniques on the scheduling con-

straints.

3.1 Hierarchical Reduction

Hierarchical reduction is a technique that con-

verts code with conditional constructs into straight-

line code by collapsing each conditional construct into

a pseudo operation [13] [16] [3]. In this section, these
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pseudo operations will be referred to as reduct op's.

It is a hierarchical technique since nested conditional

constructs are reduced by collapsing from the inner-

most to the outermost. After hierarchical reduction,

reduct op's can be scheduled with other operations in

the loop. Hierarchical reduction assumes no special

hardware support. Thus, the conditional constructs

are regenerated after modulo scheduling, and all oper-

ations that have been scheduled with a reduct op are

duplicated to both paths of the conditional construct.

A reduct op is formed by �rst list scheduling both

paths of the conditional construct. The resource us-

age of the reduct op is determined by the union of

the resource usages of both paths after list scheduling.

The dependences between operations within the con-

ditional construct and those outside are replaced by

dependences between the reduct op and the outside

operations. A dependence between two operations is

characterized by the type (
ow, anti, output, and con-

trol), distance, and latency. The distance is the num-

ber of loop iterations the dependence spans. The la-

tency is the minimum number of cycles that must be

between the operations to guarantee the dependence

is met. While the type and distance of the dependence

does not change, the latency for a given dependence is

modi�ed to take into account when the original oper-

ation is scheduled with respect to the reduct op. Con-

sider two operations opi and opj where where opj is

an operation from the conditional construct that has

been list scheduled at time tj . A dependence arc with

latency d, source opi, and destination opj , is replaced

by a dependence arc between opi and the reduct op,

opr, with latency d0 = d � tj.
1 If instead, opj is the

source and opi is the destination, the latency for the

dependence between opr and opj is d+ tj .

Figure 2 shows a C code segment of a loop and the

corresponding assembly code. Figures 3 and 4 show

how the hierarchical reduction technique reduces the

control construct in this code segment. The machine

being scheduled in this example is a VLIW with two

uniform function units. All operations have a one cy-

cle latency. Figure 3 shows the dependence graph for

the loop body. The dependence arcs are marked with

the type, distance and latency. The types are abbrevi-

ated as follows: 
ow (f), anti (a), and control (c). Fig-

ure 4a shows how the reduction operation is formed by

list scheduling the two paths op5, op6, op7 and op5,

op8. The resultant resource usage of the reduct op

op5 0 is also shown. Figure 4b shows the modi�ed loop

1It is possible to have a dependence with a negative latency.

After opi is scheduled, opr can be scheduled d0 cycles earlier

if there are no resource con
icts and all other dependences are

satis�ed.

r1 <- 0
r2 <- label_A
r3 <- max*8
r4 <- mem[r2+r1]L1:

jump L3

mem[r2+r1] <- r5
r1 <- r1 + 8
bne r1, r3, L1

L2:
L3:

op2:
op1:

op3:
op4:
op5:
op6:
op7:
op8:
op9:
op10:
op11:

bne r1, 0, L2

for (i = 0; i < max; i++) {

} else {

}

}

a:  C code segment.

if(i == 0) {

A[i] = k;

k = c1 * A[i];

k = c2 * A[i];

r5 <- r4 * c1

r5 <- r4 * c2

b:  Assembly language segment

Figure 2: Example C loop segment with assembly cor-

responding assembly code.

dependence graph. Note that the latency for the 
ow

dependence between operations op4 and op6 (and also

between op4 and op8) is originally one. These de-

pendences are replaced by a 
ow dependence between

op4 and op5 0 with zero latency since op6 and op8 are

scheduled one cycle later than op5 0. Note that there

are no control dependences after the graph has been

reduced. This code can now be modulo scheduled.

After scheduling, the reduct op's must be expanded.

Any operations scheduled within a reduct op must be

copied to both paths of the regenerated conditional

construct.

While hierarchical reduction allows a loop with con-

ditional constructs to be modulo scheduled, it places

some arti�cial scheduling constraints on the loop by

�rst list scheduling the operations of the conditional

construct. The list schedule causes the reduct op to

have a complex resource usage which may con
ict with

already scheduled operations during modulo schedul-

ing. Figure 4 illustrates the complex resource usage

patterns formed by hierarchical reduction. In addi-

tion, if a reduct op spans more than one II, it may

con
ict with itself and thus no schedule for that II can

be found. Since a reduct op can be overlapped with

other reduct op's, including itself, there is a potential

for large code expansion. If a reduct op is overlapped

n times, there are 2n possible execution paths. Other

operations scheduled with the overlapping reduct op

must be copied to each of these paths.

3.2 If-conversion

If-conversion is another technique that can be

used to convert loops with conditional constructs into

straight-line code [14]. The basic concept behind if-

conversion is to replace conditional branch operations

with equivalent compare operations which set a 
ag.



Published in HICSS-26 Conference Proceedings, January 1993, Vol. 1, pp. 497-506. 4

op5

op4

op6

op7

op8

op9

op10

op11

<f,0,1>

<f,0,1>

<f,0,1>

<c,0,1>

<a,0,1>

<f,0,1>

<f,1,1>

Figure 3: Dependence graph of example code segment.

0

1

op5

op6 op7

op5

op8

FU1 FU2 FU1 FU2cycle list
schedule
for each

path

resource
usage of op5’

union

a:  resource usage of reduct_op

resource
usage of orignial

operations

op4

op5’

op11

op10

op9

<a,0,0>

<f,1,1>

<f,0,2>

<f,0,0>

<f,0,1>

b:  modified loop 
dependence graph

Figure 4: Applying hierarchical reduction to example

code segment.

r1 <- 0
r2 <- label_A
r3 <- max*8
r4 <- mem[r2+r1]L1:

mem[r2+r1] <- r5
r1 <- r1 + 8
bne r1, r3, L1

op2:
op1:

op3:
op4:

<p1, F>
<p1, T>

op5’:
op6’:
op8’:
op9:
op10:
op11:

r5 <- r4 * c1
r5 <- r4 * c2

pred_ne r1, 0, p1

op4

op5’

op11

op10

op9

op6’

op8’

<f,0,1>

<f,0,1>

<f,0,1>

<a,0,0>

<f,0,1>

<f,1,1>

a:  assembly code segment
after if-conversion

b:  modified loop dependence graph

Figure 5: Assembly code segment after if-conversion.

Operations that are control dependent on the condi-

tional branch are converted into operations that only

execute if the 
ag is set properly. In this way, control

dependences are converted into data dependences [15].

To execute if-converted code, hardware support must

be available for setting a conditional execution 
ag

and to allow conditional execution of operations. In

a vector processor, if-conversion is supported by a

mask vector. In a superscalar or VLIW processor, if-

conversion can be supported by predicated execution.

The architecture support for predicated execution is

presented in Section 4.

Figure 5a shows the assembly code after if-

conversion for the example in Figure 2. A predicate

has an id and type, represented as < id; type >,

where type is either true or false. The predicate

compare operation op5 0 sets (clears) the predicate

< p1;T > (< p1;F >) if r1 is not equal to zero. Oth-

erwise, it will clear (set) < p1;T > (< p1;F >). Op-

eration op6 0 executes if < p1;F > is set and oper-

ation op8 0 executes if < p1;T > is set. Note that

while only one of these operations executes, both will

be fetched. Thus, with if-conversion, the resource

constraints along both paths are summed. There-

fore, if-conversion will usually require more resources

than hierarchical reduction but operation placement is

more 
exible since these operations are not list sched-

uled prior to modulo scheduling. Also note that if-

conversion removes the need for the jump operation

op7. However, if a predicate compare operation is not

guaranteed to be executed during the execution of the

loop body, then the predicate must be invalidated at

the beginning of the loop. In the example in Figure 5a,
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the predicate compare operation op5 0 will always be

executed and thus no predicate invalidate operation is

required. The modi�ed dependence graph in Figure 5b

illustrates that the control dependences in Figure 3

have been converted into data dependences.

4 Architecture Support for Predicated

Execution

The architecture support required for predicated

execution consists of: 1) predicate compare opera-

tions, 2) predicate invalidate operations, 3) a predi-

cate register �le, and 4) predicated operations. An

example of an architecture similar to the Cydra 5 is

shown in Figure 6 [6] [8] [11]. There are 14 types of

predicate compare operations: integer, single precision


oating-point; double precision 
oating-point versions

of equal, not equal, greater than, and greater than

equal; and unsigned integer versions for greater than

and greater than equal. These operations compare two

source operands and set the value of the destination

predicate register accordingly. A predicate invalidate

operation is used to invalidate the speci�ed predicate

register.

The predicate register �le has R 2-bit registers.

The low-order bit corresponds to the predicate being

false and the high-order bit corresponds to the pred-

icate being true. Both bits should never be set at

the same time. If both are cleared, the predicate is

invalid. A predicate compare operation will set the

low-order bit and clear the high-order bit if the result

of the comparison is false. Likewise, it will set the

high-order and will clear the low-order bit if the result

is true. The predicate invalidate operation clears both

bits of a predicate register. Each operation within the

wide instruction word has a predicate register speci�er

of width log2R+1, where log2R bits specify the pred-

icate register and the remaining bit speci�es the type

(true or false). The width can be reduced if the pred-

icate register �le is implemented as a rotating register

�le as in the Cydra 5 [11].

All operations within the wide instruction are ex-

ecuted. After the predicate register �le access delay,

an operation in the execution pipeline that references

a cleared predicate register will be squashed.

5 Compiler Support

Both hierarchical reduction and if-conversion, as

well as modulo scheduling, have been implemented in

the IMPACT C compiler. These techniques are ap-

plied to the appropriate loops after classical code op-

timizations have been performed [17] and after they

have been translated into the target machine assem-

bly code, but before register allocation. In our current

implementation, we apply software pipelining to inner

loops that do not have function calls or early exits

from the loop.

After a loop is determined to be appropriate for

software pipelining, either hierarchical reduction or if-

conversion is applied to remove conditional constructs.

Then the loop is modulo scheduled. Next, modulo

variable expansion is applied to rename overlapping

register lifetimes. The resultant kernel code is used to

generate the prologue and epilogue where operations

that are not issued in a given cycle are replaced by

no-op's. If hierarchical reduction has been performed,

the reduct op's are expanded. Since there can be no

early exits from the software pipeline2, the loop must

execute p + k � u times, where p is the number of

stages in the prologue, k is an integer greater than or

equal to one, and u is the number of stages in the

kernel determined by modulo variable expansion. A

non-software pipelined version of the loop is required

to execute the remaining number of iterations. If the

loop trip count is greater than p + u, the remaining

number of iterations is (trip count� p) mod u. If the

trip count is less than p + u, only the non-software

pipelined loop is executed. If the trip count is known

to be less than p + u at compile time, the software

pipeline is not generated.

2Early exits require a special epilogue for each stage in the

prologue and kernel which increases the code generation com-

plexity and code expansion considerably.
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r2 <- label_A
r3 <- max*8

op2:
op3:

L1:

jump L3
L2:
L3:

op5:
op6:
op7:
op8:
op9:
op11:

r5 <- r4 * c1

r5 <- r4 * c2

bne r1, r3, L1

op10:

r1 <- -8op1:

r1 <- r1 + 8
r4 <- mem[r2+r1]
bne r1, 0, L2

mem[r2+r1] <- r5

op4:

(1)

(2)

Figure 7: Assembly code segment after induction vari-

able reversal.

In the presence of recurrences, Dehnert et. al., dis-

cuss the importance of compiler optimizations such

as back-substitution and load-store removal to reduce

CII [8]. Another important optimization is needed

to remove recurrences involving induction variables.

When an induction variable is post-incremented (as

in the example in Figure 2a), any operations that use

the induction variable will cause a recurrence as shown

in Figure 2b. This recurrence will force all of the op-

erations in the cycle to be scheduled within one II.

However, the recurrence can be removed by convert-

ing the induction variable to be pre-incremented. We

refer to this optimization as induction variable rever-

sal. To perform this optimization, the operation that

increments the induction variable is moved to the be-

ginning of the loop, and the initial value of the induc-

tion variable is decremented by the increment value.

The code after applying induction variable reversal

to the assembly code segment in Figure 23 is shown in

Figure 7. First op10 is moved to the beginning of the

loop and then 8 is subtracted from the initial value in

op1. Note that there is still a recurrence due to op10.

However, since only one operation is in the recurrence

cycle, the cycle can always be scheduled. After this op-

timization, op4, op5 and op9 are no longer constrained

to be scheduled within one II. When the induction

variable spans more than one II, overlapping lifetimes

are renamed using modulo variable expansion.

6 Experimental Results

In order to determine the bene�ts of predicated ex-

ecution, we ran experiments for three forms of modulo

scheduled loops: 1) with if-conversion, 2) with hierar-

chical reduction, and 3) with limited hierarchical re-

3The code in Figure 2 has been optimized by the classical op-

timizations induction variable strength reduction and induction

variable elimination [17].

duction. The limited hierarchical reduction form does

not allow any reduct op to overlap itself (i.e., to span

more than one II).

6.1 Machine Model

The machine model for these experiments is a

VLIW processor with Cray-style interlocking. There

are uniform resource constraints with the exception

that only one branch can be issued per cycle. There

are 14 branch operations (in order to be compati-

ble with predicate compare operations). There are

no branch delay slots. Other than the branch opera-

tion, we use the instruction set and operation laten-

cies of the Intel i8604. Most integer operations take

1 cycle except for the integer load which takes 2 cy-

cles. The integer multiply and divide and the 
oating-

point divide are implemented using approximation al-

gorithms [18]. The 
oating-point load, ALU, and

single-precision multiply take 3 cycles, and the double

precision multiply takes 4 cycles. For if-conversion, we

assume the predicate execution support discussed in

Section 4. The predicate compare operations have a

one cycle latency. In order to measure the predicate

register requirements, the size of the predicate register

�le is unlimited. The model has an in�nite register �le

and we assume an ideal cache. The experiments were

performed using machines with instruction widths or,

equivalently, issue rates of 2, 4, and 8.

The base processor for these experiments is a RISC

processor with an in�nite register �le and an ideal

cache. The base schedule is a basic block schedule.

6.2 Benchmarks

To run our experiments, we collected a set of 28

loops with conditional branches from the Perfect and

SPEC benchmarks. Since the focus of this study

is to analyze the relative performance of conditional

branch handling techniques, only DOALL loops (loops

without cross-iteration memory dependencies) were

included in the test suite.

6.3 Results

Performance

The speedup results presented are the harmonic mean

of the speedup for each loop. We assume that the

loop executes an in�nite number of times. Thus, the

e�ect of the prologue and epilogue are not accounted

4We assume that the load and 
oating-point pipelines are

automatically advanced.
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Figure 8: Speedup before induction variable reversal.

for. Figure 8 shows the performance of the three tech-

niques before induction variable reversal. Comparing

this graph with the graph of the performance after

induction variable reversal shown in Figure 9, we see

that the optimization improves the performance of hi-

erarchical reduction by as much as 160% for an issue-

8 machine and the performance of if-conversion by as

much as 157% for an issue-8 machine.

In Figure 9 modulo scheduling with if-conversion

performs approximately 25%, 29%, and 48% better

than hierarchical reduction for issue rates 2, 4 and 8

respectively. For lower issue rates, hierarchical reduc-

tion performs worse since it is more di�cult to sched-

ule the reduct op using fewer resources. The reason

the relative performance increases for issue-8 is that

the constraint of one branch per cycle becomes a limit-

ing factor. For an issue-2 machine, limited hierarchical

reduction has approximately the same performance as

hierarchical reduction. This is due to the fact that

the reduced resources increases II such that a condi-

tional construct can usually be scheduled within one

II. However, for issue 4 and 8, hierarchical reduction

performs approximately 10% and 45% better than lim-

ited hierarchical reduction.

0

2

4

6

8

10

12

2 3 4 5 6 7 8

Speedup

Issue Rate

if-conversion 4

4

4

4hierarchical reduct 2

2

2

2

limited hierarchical reduct �

�

�
�

Figure 9: Speedup after induction variable reversal.

Code Expansion

Figure 10 shows the average code expansion of the

three techniques. This is the code expansion for the

software pipelined loop including the prologue, kernel,

and epilogue5. It does not include the code expansion

for the extra loop required to execute the remaining

iterations that do not �t into the software pipeline.

Figure 10 shows that hierarchical reduction has 5%

and 27% more code expansion than if-conversion for a

issue 2 and 4 respectively. As the issue rate increases,

more conditional constructs overlap and thus the code

expansion increases. For an issue-8 machine the code

expansion for hierarchical reduction is approximatedly

78% greater than that for if-conversion. If the loop has

a high trip count, the working set is the kernel code.

In this case, if-conversion will have a much smaller

working set than hierarchical reduction. Also, after if-

conversion there is straight-line code which increases

the data locality. While limited hierarchical reduction

has comparable code expansion to if-conversion, it's

performance is too poor to o�set this bene�t.

5Explicit prologue and epilogue code is not required with

predicated execution. However, if they are generated, the com-

piler can overlap their execution with operations outside the

loop.
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Figure 10: Code expansion.

Predicate Register File Size

Figure 11 gives the percentage of the loops that can

�t into the speci�ed predicate register �le size. As ex-

pected, the predicate register requirements increase as

the issue rate increases and more iterations are over-

lapped. A predicate register �le with R registers re-

quires log2R + 1 bits in the predicate register speci-

�er. To schedule all of the loops for an issue-8 machine

would require a 6-bit predicate register speci�er. How-

ever, the majority of the loops scheduled have only one

conditional construct per loop. Thus, if a rotating reg-

ister �le is used [8], a 1-bit predicate register speci�er

would be adequate.

Minimum Loop Trip Count

The minimumloop trip count for a loop to be software

pipelined is the number of stages in the prologue and

epilogue. This metric can be used to determined the

magnitude of the trip count required to see a bene-

�t from software pipelining. Figures 12-14 show the

distributions of the minimum loop trip count for is-

sue 2, 4, and 8. The numbers on the x-axis represent

the upper bound of a given range (e.g., 8 refers to the

range 5-8). As expected, as the issue rate increases

the minimum loop trip count increases because the II

decreases, and thus the loop body is scheduled across

more stages. For the same reason, the minimum trip

count is the greatest for if-conversion.
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Figure 11: Number of predicated registers.
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Figure 12: Minimum loop trip count for issue-2.
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Figure 13: Minimum loop trip count for issue-4.
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7 Related Work

Modulo scheduling schedules operations for a given

iteration interval by delaying operations to elim-

inate resource con
icts [19]. Other global soft-

ware pipelining techniques rely on global compaction

where operations are scheduled as early as possible.

Aiken and Nicolau's perfect pipelining technique com-

pacts and unrolls the loop body until a pattern is

reached [20]. Su and Wang have developed a sim-

ilar technique, GURPR*, that does not require the

computational complexity of determining a repeating

pattern and that reduces the code expansion over-

head [21]. Ebcioglu and Nakatani's enhanced pipeline

scheduling also compacts the code by moving opera-

tions upward until an instruction is �lled. Once an

instruction is �lled, it is moved across the backedge

and is again available for scheduling. In this fashion,

operations are scheduled across iteration boundaries

enabling software pipelining [22].

Enhanced pipeline scheduling also requires spe-

cial hardware support for a decision tree which

allows operations from the same conditional con-

structs in di�erent iterations of the loop to over-

lap. Jones and Allan showed that modulo schedul-

ing performs slightly better than their implementa-

tion of enhanced pipeline scheduling for loops with-

out conditional statements [23]. They also predicted

that enhanced pipeline scheduling would perform bet-

ter than Lam's implementation of modulo scheduling

due to the constraints imposed by hierarchical reduc-

tion. The drawback to modulo scheduling with both

if-conversion and hierarchical reduction is that the II

remains constant for every iteration [24]. Thus, a loop

that has a conditional construct with an infrequently

executed path much longer than the frequently exe-

cuted path will take longer to execute than techniques

which have a variable II such as enhanced pipeline

scheduling [25] [22].

Since predicated instructions remove the condi-

tional branches, operations can be moved without wor-

rying about code duplication to guarantee that the

proper operations are executed along both paths of a

branch. Perfect pipelining, enhanced pipeline schedul-

ing, and GURPR* all require code duplication and

thus do not have the code space e�ciency a�orded by

scheduling with predicated execution.

8 Conclusion

In order to study the bene�t of predicated execution

for software pipelining, we have implemented hierar-

chical reduction, if-conversion and modulo scheduling

in a prototype compiler. The implementation e�ort

allows us to gain insight into the complexity and con-

straints imposed by conditional branches on the mod-

ulo scheduling technique.

With this implementation, we are able to quantify

the impact of architectural support for predicated ex-

ecution on the performance of loops with conditional

branches. For our benchmarks, software pipelined

loops with predicated execution support execute on

the average 34% faster than without the support.

The primary reason for this improvement is that the

pre-pass list scheduling in the hierarchical reduction

method creates pseudo operations with complex re-

source usage patterns. These pseudo operations limit

the e�ectiveness of software pipelining for many loops.

On the other hand, the if-conversion method does not

need pre-pass list scheduling. This increased 
exibil-

ity accounts for the superior performance results with

predicated execution support.
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