
Proceedings of the 21st Annual International Conference on Parallel Processing 1

EXECUTING NESTED PARALLEL LOOPS ON SHARED-MEMORY

MULTIPROCESSORS

Sadun Anik Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois
Urbana, Illinois 61801

Abstract - - Cache-coherent, bus-based shared-memory

multiprocessors are a cost-e�ective platform for parallel pro-

cessing. In scienti�c parallel applications, most of the com-

putation involves processing of large multidimensional data

structures which results in a high degree of data parallelism.

This parallelism can be exploited in the form of nested par-

allel loops. Most existing shared memory multiprocessors

exploit this multi-level parallelism at only one level. In this

paper, we explore e�cient algorithms and models for exe-

cuting nested parallel loops and present a simulation based

performance comparison of di�erent techniques using real

application traces. We show that it is possible to exploit

the parallelism in nested parallel loops with the use of good

scheduling and synchronization algorithms.

INTRODUCTION

Bus-based shared memory multiprocessors have a moderate
number of processors (8-32), and unlike the grand challenge

problems to be solved on massively parallel systems, most

applications to be run on these multiprocessors are mod-
erate in size. In this study, we examine several compiler

parallelized applications from the Perfect Club Benchmark

Suite [1] which have nested loop parallelism These programs
are parallelized with the KAP parallelizer [2]. Our expe-

rience with these applications is that most programs use

moderate sized data structures, in the range of 400-10000
elements. When a two dimensional array of 900 elements

(30�30) is processed in a doubly nested parallel loop, the

parallelism at each level is limited to 30. This demonstrates
the need to exploit the parallelism at both loop nest levels

e�ciently.

One source of overhead in executing parallel loops is due

to scheduling tasks (parallel loops) to processors and syn-

chronizing processors at the end of loop execution[3][4].

This overhead becomes signi�cant when the total amount

of computation in a parallel loop is small. This is frequently

the case for innermost parallel loops due to both �ner gran-
ularity and relatively small number of iterations.

A component of overhead in parallel loop execution is the
time spent by processors waiting to acquire locks, which are

used in scheduling algorithms. Most existing high perfor-

mance lock algorithms, e.g. tournament lock and queuing

lock, are blocking algorithms[5][6]. That is, a processor

which is trying to acquire a lock is committed until the
lock is acquired. This makes it impossible for a processor

to utilize the idle time spent waiting for a lock. In the next

section we present a non-blocking version of the queuing
lock algorithm and describe a task distribution algorithm

which uses this non-blocking property to allow processors

to wait for multiple task queues simultaneously.

MODELS FOR NESTED PARALLEL LOOP

EXECUTION

An application with nested parallel loops can be executed in

several ways depending on the available compiler, hardware

and run-time system support. The simplest model involves
executing the outermost loop in parallel and all the inner

parallel loops sequentially. This model is employed in the

run-time system of existing shared memory multiprocessors
[7]. It has the advantage of being simple but exploits only

part of the available parallelism.

Another model for executing nested parallel loops in-
volves exploiting the parallelism at a single level but us-

ing compiler transformations to collapse the nested loops

into a one level loop. Such compiler transformations are a
current �eld of research; study of di�erent transformations

and their applicability to particular loop structures is be-

yond the scope of this paper. We will assume ideal loop re-
structuring where DOALL loop nests are transformed into

single-level DOALL loops. Although such a transformation

may not be realistic, it does provide a good reference point
in comparing performance of di�erent models.

The third model of execution is to execute the inner loops

in parallel on all processors. A blocking barrier is used at
the end of each parallel loop, which prevents the overlap-

ping between execution of inner loops. However, the exe-

cution of the sequential code after an inner loop can over-
lapped with that of the next loop at the same nest level.

A re�nement of the third model involves relaxing the def-

inition of barrier synchronization by allowing all processors

| except for the one which is going to execute the code

after the loop | to leave the barrier immediately upon en-

trance and start executing other parallel loops. This model

can improve performance by dynamically overlapping the



Proceedings of the 21st Annual International Conference on Parallel Processing 2

Table 1: Execution models for nested parallel loops

execution

model description

1 Inner loops are executed sequentially

2 Nested loops are collapsed (ideal)

3 Nested execution, blocking barriers
4 Nested execution, non-blocking barriers

5 Nested execution, multiple

simultaneous access task queues

execution of the barrier with that of another parallel loop.

The �nal model is a further re�nement of the fourth

model. This execution model increases the task scheduling
throughput by using multiple task queues. All the proces-

sors can access all the task queues, and a task, i.e., parallel

loop, can be scheduled to multiple processors. A summary
of these �ve models are shown in Table 1

Although multiple task queues have been proposed be-

fore [3] to increase task scheduling throughput, this method
does not require an assignment of processors to task queues

therefore does not introduce a load balancing problem. Ac-

cess to task queues are controlled by non-blocking locks
and each processor tries to gain exclusive access to all the

queues simultaneously. A processor checks the locks that

it is waiting for in a round robin fashion. When a pro-
cessor acquires the lock of a task queue, it stops trying to

gain access to the remaining task queue locks. We present

a non-blocking queuing lock algorithm whose operation is
similar to the queuing lock while allowing a processor to

abort a lock access. Unlike the previous low-contention,

high-performance lock algorithms such as queuing lock, this
new algorithm does not require the processors to commit

themselves upon a lock operation [5],[6].

The non-blocking queuing lock algorithm shown in Fig-

ure 1 uses the fetch&add primitive to set up a lock queue.

The atomic fetch&add operation is used to obtain a unique
number to set up a queue. The array a is used for mapping

these unique numbers to the processors. The algorithm

assumes that on a P processor system, the processors are
numbered 0 to P-1, and the variable me[lock id] is initial-

ized to this number. A processor entering the lock queue

reads array a for the id of its predecessor in the queue.

A processor in the lock queue waits for its predecessor to

release the lock. The array b is used for signaling between

the processors. A processor leaving the lock queue also uses
array b to pass the id of the processor ahead to the processor

behind for proper operation of the queue. While the lock

is held by a processor, other processors can enter and leave
the lock queue many times. The algorithm includes several

checks to prevent race conditions and to ensure the proper

use of arrays a and b.

The task scheduling algorithm we use for model 5 to in-

crease task distribution throughput is a straight forward

extension of centralized task scheduling. A �xed number of

task queues are used for distributing tasks. Each processor

tries to gain exclusive access to the queues which are not
empty. Upon gaining access to a task queue, it leaves the

other lock queues.

Figure 2 illustrates the simultaneous use of multiple task

queues. In the �rst snapshot (left side) processors P2 and
P4 own the locks for accessing the the two task queues.

Processors P1, P3 and P5 are waiting for both locks. In

the second snapshot (right side), P2 releases the lock of
task queue 1 and the next processor in the queue of lock 1,

P3, acquires lock 1. After acquiring lock 1, P3 leaves the

queue of lock 2. Therefore P1 and P5 advance in both lock
queues.

Balancing the utilization of each queue is important for

the throughput of task scheduling. In the case where all

loops are distributed from one of the task queues, the pro-
cessors execute the loops as in model 4. To balance the

number of loops scheduled from task queues, processors in-

serting tasks to the queues start from a random queue and
visit queues in round-robin fashion for each new parallel

loop.

EXPERIMENTAL RESULTS

To compare the performance of di�erent models for exe-

cuting nested parallel loops, we use traces from three par-

allelized Perfect Club applications: FLO52, DYFESM and
ADM. Of the thirteen programs in the Perfect Club set,

four of them are parallelized to the extend that at least half

of the computation is done in parallel loops. Out of these
four applications, the parallel loops in the BDNA program

are not nested. This leaves us with the three applications

listed above for this study.

Among the three programs, FLO52 has the highest level

of parallelization. Only 1% of the dynamic instructions
in the program trace are in sequential sections. The per-

centage of sequential instructions in the trace is consider-
ably higher for the other two programs; around 25% for

DYFESM and 32% for ADM. The programs have vary-

ing levels of granularity and parallelism for the innermost
parallel loops. FLO52 has an average parallelism of 58 it-

erations per innermost parallel loop and a granularity of

39 instructions per inner loop iteration. DYFESM has an
average parallelism of 14 and a granularity of 112 at inner-

most parallel loops, and these numbers for ADM are 11 and

48 respectively.

The performance results are obtained using a trace

driven, bus transaction level shared-memory multiproces-
sor simulator. The simulated multiprocessor supports an

atomic fetch&add operation and this operation is used to
implement iteration self-scheduling and linear barrier algo-

rithms. We would like to note that exploitation of high

degree of parallelism in a single level DOALL loop may
make it possible to e�ciently use di�erent types of itera-

tion scheduling algorithms other than self-scheduling [8].

The speedup �gures for the three programs, FLO52,

DYFESM, and ADM are shown in Figures 3, 4, and 5 re-

spectively. These �gures show that nested parallel loop exe-



Proceedings of the 21st Annual International Conference on Parallel Processing 3

void initialize(lock id)

f for (i=0;i<P+1;i++) a[lock id][i] = EMPTY ;

a[lock id][P+1] = 2*P

for (i=0;i<2*P;i++) b[lock id][i] = BUSY ;

b[lock id][2*P] = FREE ;

lock counter = 0 ;

g

int lock(lock id)

f myturn = fetch&add(lock counter,1) % (P+2) ;

myturn minus one = myturn+P+1 % (P+2)

my id = me[lock id] ;

me[lock id] = (me[lock id] + P) % (2*P) ;

while(a[lock id][myturn minus one] == EMPTY) ;

ahead of me[lock id]=a[lock id][myturn minus one];

while(b[lock id][my id] != BUSY) ;

a[lock id][myturn] = my id ;

a[lock id][myturn minus one] = EMPTY ;

else return(check lock(lock id)) ;

g

int check lock(lock id)

f lock status=b[lock id][ahead of me[lock id]] ;

if(lock status == BUSY) return(LOCK BUSY) ;

else if(lock status == FREE) f

b[lock id][ahead of me[lock id]] = BUSY ;

return(LOCK OWNED) ;

g else f

b[lock id][ahead of me[lock id]] = BUSY ;

ahead of me[lock id] = lock status ;

return(check lock(lock id) ;

g

g

void release lock(lock id)

f b[lock id][my id] = FREE ;

g

void leave lock(lock id)

f check lock(lock id) ;

b[lock id][my id] = ahead of me[lock id] ;

g

Figure 1: Non-blocking queuing lock algorithm with

fetch&add primitive

Queue Lock 1 Queue Lock 2

P1 P2 P4 P5

Queue Lock 1 Queue Lock 2

Task TaskTaskTask
Queue QueueQueueQueue

1 2 1 2

P1P1 P5P5P1 P3P5 P1 P3 P5P2 P4 P4P3

P1 P2 P3 P4 P5

Executing
Loop

P3

Figure 2: Operation of task distribution algorithm

1

2

3

4

5

6

7

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processors

model 1
model 2
model 3
model 4
model 5

Figure 3: Speedup of FLO52 program for di�erent execu-
tion models

1

1.5

2

2.5

3

3.5

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processors

model 1
model 2
model 3
model 4
model 5

Figure 4: Speedup of DYFESM program for di�erent exe-

cution models

cution with non-blocking barriers and multiple task queues

(model 5) and perfect loop collapsing (model 2) perform

consistently better than other execution models when the
number of processors is large. Furthermore these two

models result in similar performance. This demonstrates

that for the architecture model we used, performance gains
of perfect loop collapsing by a compiler can be achieved

by executing nested parallel loops with e�cient run-time

scheduling and synchronization algorithms.

Executing the outermost loop in parallel and inner loops

sequentially (model 1) results in di�erent execution behav-
ior among the three programs. In FLO52, where paral-

lelization is the most successful, the outer loop parallelism

is su�cient for achieving good speedup. It actually per-
forms slightly better than models 3 and 4, which are sim-

pler models for executing the innermost loop in parallel.

The poor performance of these two models for this pro-
gram can be attributed to the low granularity of innermost

loops | hence high overhead for iteration scheduling. For

DYFESM, model 1 results in the loss of almost all the avail-



Proceedings of the 21st Annual International Conference on Parallel Processing 4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processors

model 1
model 2
model 3
model 4
model 5

Figure 5: Speedup of ADM program for di�erent execution
models

able parallelism. This model also results in the worst per-

formance for program ADM though the speedup was close
to those obtained from the models 3 and 4.

Finally, we observe that use of non-blocking barriers

alone do not contribute signi�cantly to performance. The
performance e�ects of the task distribution algorithm are

much more signi�cant than those of the barrier synchro-

nization algorithm.

CONCLUDING REMARKS

In this paper, we examine several practical aspects of nested

parallel loop execution. We use �ve di�erent models for
executing nested parallel loops. We conclude that when

parallelism is exploited only at the outermost loop level,

performance can degrade due to loss of parallelism. Ex-
ploiting parallelism of a nested loop structure at a single

level through compiler loop collapsing can be very e�ective

to decrease task scheduling overhead.

We explore three variations of true nested parallel loop

execution. In the �rst one, model 3, innermost loops are

executed one at a time where synchronization is done with
a conventional barrier. We then use a non-blocking barrier

version of this model, model 4, where processor idle time

in a barrier is minimized. However, this does not result
in any signi�cant performance di�erence. As a re�nement

to this model, in model 5 we use a non-blocking queuing

lock algorithm and a multiple task queue based task dis-
tribution algorithm to decrease task scheduling overhead.

Our simulation results show that this model can achieve the

performance of a perfect loop collapsing transformation.

Acknowledgements

This research has been supported by the Joint Services

Engineering Programs (JSEP) under Contract N00014-90-

J-1270, NCR, AMD, Matsushita, Hewlett-Packard, and

NASA under Contract NASA NAG 1-613 in cooperation

with ICLASS.

REFERENCES

[1] M. Berry and et al., \The perfect club benchmarks:

E�ective performance evaluation of supercomputers,"

Tech. Rep. CSRD Rpt. No. 827, Center for Supercom-
puting Research and Development, University of Illi-

nois, 1989.

[2] Kuck & Associates, Inc., KAP User's Guide, version
6 ed., 1988.

[3] T. E. Anderson, E. D. Lazowska, and H. M. Levy,

\The performance of thread management alternatives
for shared memory multiprocessors," Proceedings of

SIGMETRICS, pp. 49{60, 1989.

[4] C. D. Polychronopoulos, \The impact of run-time over-
head on usable parallelism," Proceedings of the 1988 In-

ternational Conference on Parallel Processing, pp. 108{

112, August 1988.

[5] T. E. Anderson, \The performance of spin lock alter-

natives for shared-memory multiprocessors," Transac-

tions on Parallel and Distributed Systems, vol. 1, No. 1,
pp. 6{16, 1990.

[6] G. Graunke and S. Thakkar, \Synchronization algo-

rithms for shared-memory multiprocessors," Computer,
pp. 60{69, June 1990.

[7] Alliant Computer Systems Corp., Alliant FX/Series

Architecture Manual, 1986.

[8] C. D. Polychronopoulos, \Guided self-scheduling: A

practical scheduling scheme for parallel supercomput-

ers," Transactions on Computers, vol. C-36, No. 12,
pp. 1425{1439, December 1987.


