Proceedings of the 21st Annual International Conference on Parallel Processing 1

TOLERATING FIRST LEVEL MEMORY ACCESS LATENCY
IN HIGH-PERFORMANCE SYSTEMS

William Y. Chen

Scott A. Mahlke

Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois
Urbana, Illinois 61801

Abstract - - In order to tmprove performance, future par-
allel systems will continue to increase the processing power
of each node in a system. As node processors, though,
can execute more instructions concurrently, they become
more sensitive to the first level memory access latency.
This paper presents a set of hardware and software tech-
niques, collectively referred to as register preloading, to ef-
fectively tolerate long first level memory access latency. The
techniques include speculative execution, loop unrolling, dy-
namic memory disambiguation, and strip-mining. Results
show that register preloading provides excellent tolerance to
first level memory access latency up to 16 cycles for an issue
4 node processor.

INTRODUCTION

The objective of designing a high-performance system is
to speed up the execution of application programs. An
important approach to achieve this objective is to exploit
program parallelism at both the instruction level and the
multiprocessor level. For example, the Alliant FX/2800
system [1] supports parallel execution among its 28 Intel
1860 node processors each of which is capable of complet-
ing two instructions per clock cycle. The Intel Touchstone
system and the Thinking Machines CM5 system [2] provide
additional examples where program parallelism is exploited
at both the instruction level and the multiprocessor level.
The potential performance gain of this approach, however,
can be severely reduced by long data access latencies. In
addition, as the number of instructions a node processor
can execute per cycle increases, the sensitivity to first level
memory access latency also increases [3]. This paper pro-
poses a method, referred to as register preloading, to toler-
ate the data access latency of the first level memory, often
designed as the top level cache, in high-performance parallel
systems.

There are at least three major factors that contribute
to long access latencies to the first level memory in high-
performance systems. First, due to difficulties of main-
taining coherence among on-chip caches in multiprocessor
systems, node processors in multiprocessor systems often
bypass their on-chip caches when accessing shared data. In
this case, the first level memory is the off-chip cache as far
as the shared data is concerned. Since the processor clock
period is typically much shorter than the access time of
a large off-chip coherent cache, this design decision often
results in long first level memory access latency in multi-

processor systems.

Second, to achieve more predictable data memory ac-
cess timing, high-performance systems often come without
data cache or they bypass cache when accessing large data
sets. For example, the Multiflow TRACE system [4] and
the Cydrome Cydra-5 system [5] directly access an inter-
leaved main memory for their data. In this case, the first
level memory is the main memory whose access latency is
usually more than ten processor clock cycles.

The third factor arises when a shared data cache is used
to provide a large coherent first level memory to node pro-
cessors in a shared memory multiprocessor system. The
motivation is to avoid replicating data into private caches
so that better utilization of cache storage can be achieved.
Also, the cache coherence problem is eliminated by sharing
the cache. An example is the Alliant FX/2800 system [1]
where all 28 processors access a shared data cache as their
first level memory. The latency of this first level memory
is approximately 14 cycles and varies due to bank conflicts.
To achieve high performance in such systems, parallel pro-
grams must be able to tolerate more than 10 cycles of first
level memory access latency.

Register preloading is a suite of hardware and software
methods to collectively create opportunities to execute
many useful instructions between a memory load and the
instructions that use the fetched data. Speculative execu-
tion allows instructions to be scheduled before their preced-
ing conditional branches. Dynamic memory disambigua-
tion allows memory loads to be scheduled before their pre-
ceding memory stores even in the presence of inconclusive
data dependence analysis results. Loop unrolling increases
the scope for code motion within a loop body.! Strip-
mining is used to create sequential inner loops from par-
allel DOALL and DOACROSS loops so that these inner
loops can be further transformed with register preloading.
By creating a large code motion scope and eliminating con-
straints due to conditional branches and inconclusive data
dependence analysis results, these methods jointly enable
the instruction scheduler to schedule many useful instruc-
tions between the load instructions and their dependents.

To demonstrate the usefulness of register preloading, we
have implemented its compiler transformations and con-
ducted simulation studies on several parallel matrix kernels.
Two important considerations are addressed. First, how
sensitive is the node processor performance to the first level

INote that software pipelining can be used to achieve the
same objective.

Proceedings of the 21st Annual International Conference on Parallel Processing 2

memory latency without register preloading? Second, how
much of the first level memory latency can register preload-
ing actually tolerate for different node processor configura-
tions?

Related Work

Compiler assisted methods to reduce the penalty of travers-
ing the memory hierarchy have been developed in recent
years. Data prefetching [6] [7] [8] is used to cope with the
problem of long latency for moving data from the second
level memory into the first level. This is accomplished by re-
questing the transfer of a piece of data from the second level
memory to the first level memory when the data is expected
to be used in the future. Loop restructuring [9] [10] can be
used to improve local memory performance by grouping ref-
erences to the same memory location together to improve
the utilization of the first level memory. These techniques
do not address the problem of long latency to access data
that is available in the first level memory. However, by
combining these techniques with register preloading, one
can tolerate access latencies of both the first level and the
second level memories. Redundant data access elimina-
tion [11] [12] detects and reuses a copy of a variable if it is
available in a processor register. By reducing the needs to
access the first level memory, this technique complements
register preloading to further reduce the negative effects of
long first level memory access latencies.

REGISTER PRELOADING

Register preloading consists of a hardware support for spec-
ulative execution and a suite of compiler transformations
to facilitate effective instruction scheduling of load instruc-
tions and their dependents. The goal of register preloading
is to transform parallel program structures so that long first
level memory access latencies can be fully overlapped with
useful computation. In this section, the procedure for reg-
ister preloading is described in the context of DO, DOALL
and DOACROSS loops in parallel FORTRAN programs.

Speculative Execution Support

The key hardware feature for register preloading is spec-
ulative execution support. Speculative execution refers to
executing an instruction before it is certain that its ex-
ecution 1s required. In terms of register preloading, this
occurs when a load instruction is moved above a preceding
conditional branch or moved to a previous loop iteration.
The minimal hardware feature required to support register
preloading is a set of non-trapping load instructions whose
exception conditions will be ignored by the processor [4].
When a non-trapping load instruction is executed and an
exception occurs, the processor simply ignores the excep-
tion and writes a garbage value into the destination register.
The compiler will ensure that the garbage value will not be
used incorrectly by the subsequent instructions.

Note that few commercial microprocessor architectures
provide non-trapping load instructions. Therefore, these
architectures require an extension to their instruction sets
to fully support register preloading. The usefulness of spec-
ulative execution in register preloading will be further dis-
cussed in the next subsection.

Register Preload By One Iteration

The basic idea of register preloading is to initiate memory
accesses far enough in advance so that the data is available
in a processor register at its time of use in order to reduce
idle execution cycles. For loops, this can be realized by hav-
ing the current iteration to load data for future iterations.
The number of iterations that the memory accesses should
be initiated before the use of their data is a function of the
memory access latency and the size of each iteration.

A simple example suffices to illustrate the basic loop
transformation for register preloading one iteration ahead.
In the following example, the original code segment loads
and uses one element of the B array in every iteration.
Assume that in order to tolerate a moderate memory la-
tency, the access to each B element should be moved to
one iteration before it is used. The result of the register
preloading transformation is shown in code segment b) be-
low. The compiler creates a temporary variable, templ1,
that is assigned to a processor register. The first element
of B is loaded before entering the loop. During each itera-
tion, the B element used by the next iteration is preloaded
into templ.

a) Original code segment b) One iteration register

reloadin
do J =1, N b &
ACT) =B(J) * K templ = B(1)
endo do J =1 N

A(J) = templ * K
templ = B(J+1)
endo

Note that one extra memory load to B(N—l—l) is executed
after the transformation. Since array B may be declared
with only N elements in the original program, this extra
memory access may generate an illegal address and cause
an access violation. However, this access violation is ig-
nored by a processor with speculative execution support.
Note also that a garbage value will be assigned to temp?
when the execution of the loop completes. However, this
garbage value will not be used incorrectly by the subsequent
computation because templ! is introduced by the compiler
for the purpose of preloading the B elements only. The
compiler can easily ensure that tempf1 is never used before
defined after the execution exits the loop.

At this point, one may argue that speculative execution
is not essential for the above example. One can simply re-
duce the loop bound by 1 and execute the last iteration after
exiting the loop. However, this approach would require ad-
ditional conditional statements to test for the special case
where N is equal to 1 unless N is a compile-time constant.
The complexity increases if the memory latency requires
the memory data to be preloaded more than one iteration
ahead. Therefore, speculative execution support reduces
the compile-time complexity and run-time overhead of reg-
ister preloading for simple DO loops.

Speculative execution support becomes more essential for
loops with conditional statements. This is illustrated in the
following example. The original loop is shown in code seg-
ment a) where each loop iteration loads an element of array
B only if its index is greater than 0. Loading an element of
array B in a previous iteration would either require moving
the conditional statement along with it, or speculative exe-
cution support. The former incurs high compile-time com-

Proceedings of the 21st Annual International Conference on Parallel Processing 3

plexity in general. With speculative execution, an element
in array B can be preloaded before its use is certain. The
result of the transformation is shown as code segment b). 2

a) Original code segment

do J=1, N
if (C(J) > 0)
A(C(J)) = B(C(I)) * K
endo

b) Preloading with speculative support

il: temp = B(C(1))
doJ=1, 0N
if (C(I) > 0)
A(C(T)) = temp * K
i2: temp = B(C(J+1))
endo

Register Preload By Multiple Iterations

The simple method presented in the previous subsection
cannot preload a memory data more than one iteration be-
fore its use. The problem is that the preload instruction for
the next iteration cannot be moved beyond the use of the
temporary variable in the current iteration. This problem
is illustrated in code segment a) of the following example.
Note that the preload immediately follows the use of temp1;
the anti dependence prevents the preload from being moved
any further.
a) One-iteration register preload

templ = B(1)
doJ=1, 0N

A(J) = templ * K

templ = B(J+1)
endo

One plausible solution is to introduce I} additional tem-
porary variables when the preload is done D iterations
ahead. A data is preloaded into tempD in the current it-
eration, moved from one temporary variable to the next
in each successive iteration, until it is used I} iterations
later. The result of this code transformation for D = 2
is shown in code segment b). Unfortunately, this solution
does not improve the situation. The problem is that temp2
loaded in the current iteration is used as the source operand
of the register copying instruction 22 in the next iteration.
Again, the anti dependence prevents the preload from being
moved any further. This solution introduces extra overhead
instructions, 1 and ¢2, without enlarging the distance be-
tween the load and the use for the B array elements.

b) Two-iteration register preload without unrolling

templ = B(1)
il: temp2 = B(2)
doJ=1, 0N
A(J) = templ * K
i2: templ = temp2
temp2 = B(J+2)
endo

2Note that in our implementation, C(J) would be further
preloaded. However, C'(J) is not preloaded in the example to
keep the example simple.

Loop unrolling, though, may be utilized by the compiler
to preload D iterations ahead. In general, a loop must
be unrolled D-1 times to allow such a preload. Code seg-
ment ¢) shown below illustrates this solution. The loop
is first transformed perform one-iteration register preload
before the loop body is unrolled. After unrolling, the tem-
porary variables are renamed and the index used in the
register preload is adjusted to preload the B elements two
iterations ahead. Since the B elements are now preloaded
two iterations ahead, the elements used in the first two it-
erations are preloaded before the execution enters the loop.
Note that the preload instructions and their dependents are
now separated by two iterations of the original loop.

c) Preloading with unrolling

templ = B(1)
temp2 = B(2)
doJ=1,N, 2
A(J) = templ

templ = B(J+2)

A(J+1) = temp2

temp2 = B(J+3)
endo

The desired number of unrolls for a loop i1s a function
of the memory access latency and the size of the original
loop body. However, the total number of unrolls allowed
is limited by the number of processor registers available to
hold the preload data. It is important to keep the regis-
ter pressure under control to avoid excessive spilling after
the transformation. We will experimentally evaluate the
increase in register pressure in the experimental evaluation
section.

Dynamic Memory Disambiguation

There are situations when compile time dependence analy-
sis cannot resolve whether two memory instructions access
the same location. A common example is an array indexed
by another array (e.g., A(B(I))). Typically, parallelizing
compilers cannot parallelize loops with uncertain depen-
dences. These serial loops can have dramatic effect upon
the program performance. Thus, it is crucial to efficiently
execute these loops. Register preloading can decrease the
execution time of serial loops by reducing the number of
processor idle cycles waiting for a first level memory ac-
cess.

Dynamic memory disambiguation [13] was originally pro-
posed by Nicolau for parallelization of code with inconclu-
sive dependence analysis results. We have utilized Nicolau’s
method to allow a load to be moved above a store that may
reference the same memory location. This enables register
preloading even in the presence of inconclusive dependence
analysis results.

Dynamic memory disambiguation relies on run time
checking to guarantee correct program execution. For the
case of register preloading, the address of the preload vari-
able must be checked against all ambiguous store addresses
before the value is used in a computation. If the two ad-
dresses match, the store value must be copied into the
preload destination register to reflect the memory content
change. For example, in the following unrolled code seg-
ment, the A array is indexed by an element of the B array.

Proceedings of the 21st Annual International Conference on Parallel Processing 4

do J =1, N, 2
A(T) = A(B(D)) * K
ACQI+1) = A(B(J+1)) * K
endo

It 1s uncertain whether the uses of array A are independent
of either defines of array A. Register preloading without
dynamic memory disambiguation cannot move a preload
above a previous store. However, with dynamic memory
disambiguation, preloads can be moved much further in ad-
vance if care is taken to repair any values that are wrongly
preloaded. The previous example with register preloading
applied is shown below.

addrl = Addr(A(B(1)))
templ = A(B(1))
addr2 = Addr(A(B(2)))
temp2 = A(B(2))

doJ=1,N, 2
A(J) = templ * K
if (Addr(A(J)) == addr2) temp2 = A(J)
addrl = Addr (A(B(J+2)))
templ = A(B(J+2))
A(J+1) = temp2 * K
if (Addr(A(J+1)) == addrl) templ = A(J+1)
addr2 = Addr (A(B(J+3)))
temp2 = A(B(J+3))

endo

It is noted that storing the addresses of the load instruc-
tions requires additional registers. With more unrolling,
the number of comparison and branch instructions can be-
come quite large. The conditional branches also introduce
additional control dependences which otherwise would not
exist. These problems, however, can be reduced with hard-
ware support for predicated execution [14] [5]. The address
comparisons can be performed as soon as both the load and
store addresses are known. The compare result is stored in
a predicate register (one boolean bit). The value reassign-
ments are then conditionally executed based on the value
of the predicate register. Predicated execution reduces reg-
ister live ranges by performing the address compares early.
Also, the conditional execution of value reassignments re-
moves the additional control dependences.

Generating Sequential Inner Loops From
Parallel Loops

Our discussion on register preloading has been so far based
on sequential inner loops where multiprocessor parallelism
is exploited in outer loops. The register preloading trans-
formations cannot be directly applied to parallel loops be-
cause each iteration of a parallel loop cannot be guaranteed
to execute on any particular processor. However, register
preloading requires the iteration that preloads a datum and
the one that uses the datum to be executed by the same pro-
cessor. This is achieved by creating sequential inner loops
within each parallel loop and applying register preloading
to the sequential inner loops.

Sequential inner loops can be created for parallel loops
in the DOALL form in a straightforward manner. In the
following DOALL construct, the loop can be strip-mined

(or sectioned) into an outer loop with p iterations and an
inner loop with n iterations. *

a) Original DOALL loop b) With sequential inner

loop
doall J =1, N

Statements doall J =1, N ,n
endo do I =17, J+tn-1
Statements
endo

endo

Register preloading is directly applicable to the resulting
sequential inner loop. Note that n must be large enough
to take advantage register preloading. However, if n is too
close to N, there may be insufficient multiprocessor level
parallelism to keep all node processors busy or to maintain
load balance. A good heuristic derives the appropriate n
value by considering the memory access latency, loop body
size, the estimated N value, and the number of node pro-
cessors in the system.

Parallel loops in the DOACROSS form present more dif-
ficulties for register preloading. The following DOACROSS
loop generated by the KAP/CEDAR parallelizer [15] from
the FLOWS52 program of the PERFECT club suite [16]

presents the problem. *

a) Original DOACROSS b) With sequential inner
loop loops

doacross J =1 , N
await (0,1)
A(m-J) = ACD)
advance (0)
await(1,1)
B(m-J) = B(J) endo
advance (1) advance (0)

endo await(1,1)

do J =1, I+n-1
B(m-J) = B(J)
endo
advance (1)
endo

The parallelism for this DOACROSS loop results from over-
lapping of the computation for array B in the current itera-
tion with the computation of array A in the next iteration.
The await dependence distance is set to 1 to account for
the worst case.

In order to create sequential inner loops, we apply strip-
mining followed by a variation of loop distribution to the
DOACROSS loop [17]. The result of the transformation is
shown as code segment b) above. Note that the loop distri-
bution can only be applied when there are no backward de-
pendences between statements to be distributed into differ-
ent inner loops. With the DO loops inside the DOACROSS
loop, register preloading can be applied to the inner DO
loops directly.

Although it i1s easy to visualize why normal DO and
DOALL loops obtain speedup with register preloading, it
may not be clear why a DOACROSS loop can obtain the
same benefit. To illustrate this point, Figure 1 presents

doacross I =1, N , n
await (0,1)
do J =1, I+n-1
A(m-J) = ACD)

3Tf (p x n # N), the extra iterations can be peeled off as a
separate sequential loop.
4The array index calculations are simplified for this example.

Proceedings of the 21st Annual International Conference on Parallel Processing 5

processor
—_—
. . . . N
iteration 1 2 3. N iteration 1 2....q
A
A — X
} cycles A } Y cycles
A
A
B A
t B| A
i A B| A
B B A
m B| A
e
B . B
regi ster B
prel oadi ng B
- - B
A
A
A
A
B
B
B
A B
B
a) Before transformation b) After transformation

Figure 1: An example DOACROSS loop execution.

the execution of the above DOACROSS loops with and
without register preloading. The multiprocessor execution
timing before and after code transformations and register
preloading are shown. Note that there are N iterations of
the DOACROSS loop for the trace of Figure 1a, and there
are N/n iterations for the trace of Figure 1b.

Assume that the successive initiations of iterations of the
original DOACROSS loop are separated by # cycles. Fur-
ther assume that the delay between successive initiations
becomes y cycles after creating sequential inner loops. If
N is large, the execution time of the DOACROSS loop can
be approximated by z x N before the transformation and
y X N/n after the transformation. By applying register
preloading to each sequential inner loop, it is necessary to
make y < n X x, thereby reducing the execution time for

the DOACROSS loop.

EXPERIMENTAL EVALUATION

In this section, the effectiveness of register preloading is
analyzed for a set of kernel benchmarks. The ability of
scalar and superscalar node processors to tolerate varying
first level memory access latency with several degrees of
register preloading support is compared.

Methodology

Register preloading has been implemented in the IMPACT
compiler developed at the University of Illinois. The IM-
PACT compiler is geared towards high-performance scalar
and superscalar systems. The benchmarks used in this
study consist of the 4 numeric matrix kernels shown in Ta-
ble 1. The performance of a node processor is evaluated
with several levels of register preload support, neither com-
piler nor architectural support, compiler support only, and

Table 1: Benchmarks.

[Benchmark | Description
deter matrix determinant
inverse matrix inverse
matrix matrix multiplication
sparse solve sparse linear system

Table 2: Instruction latencies.

[INT function | latency || FP function | latency |
ALU 1 ALU 2
multiply 3 multiply 3
divide 10 divide 10
branch 2 conversion 2
load varies load (1 word) | varies
store 1 store 1

both compiler and architectural support. Execution driven
simulation is used to derive the timing for various node
processor architectures.

The performance of each node processor configuration
is reported as a mnormalized execution time relative to
a base architecture. The base node architecture is a
pipelined scalar processor. The instruction set is a RISC
assembly language similar to the MIPS R2000 instruction
set [18]. The underlying processor has CRAY-1 style in-
terlocking [19] and deterministic instruction latencies (Ta-
ble 2). The load latency is varied from 2 to 16 cycles for
the experiments. A 100% hit rate is assumed for the first
level memory system.

Three node processor architecture configurations are con-
sidered: a single issue scalar processor (base), a 4 issue
superscalar processor, and an 8 issue superscalar proces-
sor. For the superscalar node processors, uniform function
units are assumed. Therefore, each superscalar processor
can issue any combination of N (4 or 8) instructions each
cycle. For those systems which have architectural support
for preloading, the node processors are assumed to have a
non-trapping preload instruction.

Results

The normalized execution times for each benchmark and
node processor architecture configuration are shown in Fig-
ures 2 — 4. In each figure, the execution times with three
levels of register preloading support are given. Level 0 con-
sists of no register preloading support. Level 1 consists
of only the compiler support (strip-mining, loop unrolling,
and dynamic memory disambiguation). Level 2 includes
both compiler support for register preloading and architec-
tural support for speculative execution of preload instruc-
tions.

The figures show that all node processors can effectively
tolerate up to a 16 cycle load delay with both compiler and
architectural support. Only negligible performance loss is
observed for issue 1 and 4 node processors when the latency
increases from 2 to 16 cycles. For issue 8 node processors,

Proceedings of the 21st Annual International Conference on Parallel Processing 6

a) deter b) inverse
3.5 T T T T T T 3.5
3t Level 0+ 3t Level 0+
Level 1 -+ Level 1 -+
2.5 Level 2= 2.5 Level 2=
o 2 o 2
© ©
5 L5 5 L5
1¢2 1
0.5 0.5
0 P 0 P
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Load Del ay Load Del ay
¢) matrix d) sparse

3.5 T T T T T T 3.5

3t Level 0+ 3t Level
Level 1 -+

20 2.5

4 2

15

coycl es
coycl es

1

0.5 0.5

2 4 6 12 14 16 2 4 6 12 14 16

8 10 8 10
Load Del ay Load Del ay

Figure 2: Normalized execution time for issue 1.

small performance losses are observed when the load de-
lay is increased beyond 12 cycles. Without both compiler
and architecture support, the performance of all node pro-
cessor architecture configurations suffers dramatically. For
example, the execution time of deter with an issue 1 node
processor (Figure 2a) increases about 2.5 times when the
load delay is increased from 2 to 16 cycles. Similarly, the ex-
ecution time of sparse with an issue 4 node processor (Fig-
ure 3d) increases over 3 times when the load delay is varied
from 2 to 16 cycles. The importance of register preload-
ing support for a node processor to tolerate high memory
latency is clearly shown for this set of benchmarks.

The capacity of a node processor to tolerate memory la-
tency is not effectively increased with only compiler sup-
port. Strip-mining, loop unrolling, and dynamic memory
disambiguation increase the performance of all benchmarks,
however the relative decrease of performance as the load de-
lay increases is not noticeably changed. This can easily be
observed for all benchmarks by comparing the slopes of the
Level 0 performance and the Level 1 performance in Fig-
ures 2 — 4. Without the ability to speculatively execute
preloads, the compiler transformations do not increase a
node processor’s ability to tolerate high memory latency.

The performance of higher issue rate node processors is
affected more dramatically by increased load delay. For ex-
ample, consider inverse with level 0 preloading support.
For an issue 1 node processor (Figure 2b), the execution
time is increased 2.7 times when the load latency is in-
creased from 2 to 16 cycles. However, for an issue 8 node
processor (Figure 4b), the execution time is increased 3.3
times when the load latency is increased from 2 to 16 cy-
cles. This behavior could be anticipated, though. As a pro-

a) deter b) inverse
3.5 T T T T T T 3.5
3t Level 0+ 3t Level 0+
Level 1 -+ Level 1 -+
2.5 Level 2 -e 2.5 Level 2 -e ,
¢ 2 ¢ 2 g
S S
5 L5 5 L5
0.5 0.5
0 P 0 P
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Load Del ay Load Del ay
¢) matrix d) sparse
3.5 T 3.5
3t Level 0+
Level 1 -+
2.5 Level 2= v
o o 2
© ©
3 3 15
0.5 0.5
& 8 o

0 0
2 4 6 12 14 16 2 4 6

8 10 8 10
Load Del ay Load Del ay

Figure 3: Normalized execution time for issue 4.

cessor is able to execute more instructions concurrently, it
becomes more sensitive to data access latency, and there-
fore suffers more performance penalty as the data access
latency is increased.

It can be seen from the figures that register preloading
also increases the performance of each node processor for
small load latencies, e.g., 2 cycles. A maximal increase of 10
times is observed for matriz with an issue 8 node processor
(Figure 4c). This increase is due to several reasons. First,
speculative execution and dynamic memory disambiguation
increase the movement freedom of load instructions. The
load instructions can often be executed in empty cycles cre-
ated by other long latency computations. Therefore a more
efficient schedule of the loop is obtained. Second, loop un-
rolling provides more instructions to schedule within the
loop body. In this manner, a more compact schedule for
the loop can be obtained.

A side effect of register preloading is the increased phys-
ical register requirement for a program. Additional tempo-
rary registers are added with loop unrolling and dynamic
memory disambiguation. Register live ranges are increased
by preloading in previous loop iterations and above con-
ditional branches. The maximal register usage across is-
sue rates and load latencies with varying levels of register
preload support is quantified in Figure 5.

For level 1 support, address calculation can be performed
early with the compiler transformations. Thus, the life time
of the integer registers that hold effective addresses are ex-
tended, which results in a significant increase in integer
register usage. The limited increase in floating point regis-
ter usage reflects the fact that some loads cannot be moved
due to the lack of speculative execution support. This lim-

Proceedings of the 21st Annual International Conference on Parallel Processing 7

a) deter b) inverse
3.5 T T T T T T 3.5
3t Level 0+ 3t Level 0+
Level 1 -+ Level 1 -+
2.5 Level 2= 2.5 Level 2=
o 2 o 2
© ©
5 L5 5 L5
0.5 0.5
@ a 2 B o B
0 oo T 0 A — T S
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Load Del ay Load Del ay
¢) matrix d) sparse
3.5 T T T T T T 3.5
3t Level 0+
Level 1 -+
2.5 Level 22 o
o o 2
© ©
k) g 18
0.5 0.5
-
0 e 0 A

2 4 6 10 12 14 16 2 4 6

8 12 14 16
Load Del ay

8 10
Load Del ay
Figure 4: Normalized execution time for issue 8.

itation is overcome by the level 2 support, which allows
many more loads to be performed early. While the perfor-
mance improvement is impressive as shown in Figures 2-4,
the cost is the increase usage of floating point registers to
serve as the destination of these loads. For the benchmarks,
as many as 52 floating point registers are needed to effec-
tively tolerate up to 16 cycles of first level memory access
latency.

CONCLUSION

Register preloading is a combination of hardware and com-
piler techniques to create opportunities to overlap the ac-
cess of the first level memory with useful computation.
Speculative execution removes control dependences be-
tween load instructions and preceding branch instructions.
Dynamic memory disambiguation removes memory depen-
dences between memory accesses in the presence of incon-
clusive dependence analysis. A larger number of potential
independent instructions is provided in a loop body with
loop unrolling. Strip-mining is used to create sequential
inner loops from parallel DOALL and DOACROSS loops
so that these inner loops can be further transformed with
register preloading. The combination of these techniques
enables each node processor to execute useful instructions
between a memory load and the instructions that use the
fetched data. As a result, systems are able to effectively
tolerate large first level memory access latency.

The performance of systems with varying node architec-
ture configurations is evaluated with several degrees of reg-
ister preloading support. Without any support for regis-
ter preloading, the performance of a node processor suffers

No. of [iInteger registers
Regs
B Float registers

50

40

30

20

10

opti
Llevel 0 1 2 0o 1 2 0o 1 2 0o 1 2

Det er I nverse Matri x Spar se

Figure 5: Maximum register usage across register preload
support levels.

dramatically as the memory latency is increased. Larger
performance losses are observed in systems with node pro-
cessors that can execute more instructions each cycle. With
only compiler support, the performance of a node processor
is increased, however the ability to tolerate high memory la-
tency is not significantly affected. With both compiler and
architectural support for preloading, the performance of all
node processor architectures is relatively constant across all
load latencies evaluated.

In order to improve performance, future parallel systems
will continue to increase the processing power of each node
in a system. As node processors, though, can execute more
instructions concurrently, they become more sensitive to
the first level memory access latency. As shown in this
paper, increases in the memory latency can result in signif-
icant performance losses. Register preloading can be effec-
tive in hiding moderate latencies for the architectures eval-
uated. However, parallel systems based on more powerful
node processors will require additional methods to tolerate
much longer first level memory access latency. Currently,
we are investigating more sophisticated approaches to this
problem.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Nancy Warter and
all members of the IMPACT research group for their com-
ments and suggestions. Special thanks to the anonymous
referees whose comments and suggestions helped to improve
the quality of this paper significantly. This research has
been supported by the Joint Services Engineering Programs
(JSEP) under Contract N00014-90-J-1270, Dr. Lee Hoevel
at NCR, the AMD 29K Advanced Processor Development
Division, Matsushita Electric Industrial Corporation Ltd.,
Hewlett-Packard, and the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG 1-613
in cooperation with the Illinois Computer laboratory for
Aerospace Systems and Software (ICLASS).

REFERENCES

[1] Alliant Computers Systems Corporation, Alliant

Proceedings of the 21st Annual International Conference on Parallel Processing 8

[10]

FX/C-2800 Programmer’s Handbook, 1990.

G. Hodson, “Touchstone delta: Supercomputing at 32
gigaflops,” Microcomputer Solutions, pp. 1617, Sept.
1991.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J.
Warter, and W. W. Hwu, “IMPACT: An architectural
framework for multiple-instruction-issue processors,”
in Proc. 18th Ann. Int’l Symp. Computer Architecture,
(Toronto, Canada), pp. 266-275, June 1991.

R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Pap-
worth, and P. K. Rodman, “A VLIW architecture for a
trace scheduling compiler,” in Proc. Second Int’l Conf.

on Architectural Support for Prog. Lang. and Operat-
ing Systems., (Palo Alto, CA), pp. 180-192, Oct. 1987.

B. R. Rau, D. W. Yen, W. Yen, and R. A. Towle, “The
Cydra 5 departmental supercomputer,” IEEE Com-
puter, pp. 12-35, Jan. 1989.

E. H. Gornish, E. D. Granston, and A. V. Veiden-
baum, “Compiler-directed data prefetching in mul-
tiprocessor with memory hierarchies,” in Proc. Int’l
Conf. on Supercomputing, (Amsterdam, The Nether-
lands), pp. 354-368, June 1990.

D. Callahan, K. Kennedy, and A. Porterfield, “Soft-
ware prefetching,” in Proc. Fourth Int’l Conf. on Ar-
chitectural Support for Prog. Lang. and Operating Sys-
tems., pp. 40-52, Apr. 1991.

T. Mowry and A. Gupta, “Tolerating latency through
software-controlled prefetching in shared-memory mul-
tiprocessors,” J. Parallel and Distributed Computing,
vol. 12, pp. 87-106, 1991.

M. Wolfe, “Iteration space tiling for memory hierar-
chies,” in Proc. of the 4th SIAM Conference, 1989.

D. Gannon, W. Jalby, and K. Gallivan, “Strategies
for cache and local memory management by global

program transformation,” J. Parallel and Distributed
Computing, vol. 5, pp. 344-358, 1988.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Callahan, S. Carr, and K. Kennedy, “Improving
register allocation for subscripted variables,” in Proc.
ACM SIGPLAN 90 Symp. Compiler Construction,
pp. 53-65, 1990.

E. D. Granston and A. V. Veidenbaum, “Detecting
redundant accesses to array data,” in Proceeding of
Supercomputing ‘91, pp. 854-865, Nov. 1991.

A. Nicolau, “Run-time disambiguation: coping with
statically unpredictable dependencies,” IEFE Trans.
Computers, vol. 38, pp. 663-678, May 1989.

J. R. Allen, K. Kennedy, C. Porterfield, and J. War-
ren, “Conversion of control dependence to data depen-
dence,” in Proceedings of the 10th ACM Symposium
on Principles of Programming Languages, pp. 177-189,
January 1983.

Kuck & Associates, Inc., KAP User’s Guide. Cham-
paign, IL., Nov. 1988.

M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang,
R. Roloff, A. Sameh, E. Clementi, S. Chin, D. Schnei-
der, G. Fox, P. Messina, D. . Walker, C. Hsiung,
J. Schwarzmeier, K. Lue, S. Orzag, F. Seidl, O. J. nson,
G. Swanson, R. Goodrum, and J. Martin, “The PER-
FECT club benchmarks: Effective performance evalu-
ation of supercomputers,” Tech. Rep. CSRD-827, Cen-
ter for Supercomputing Research and Development,
University of Illinois, Urbana, IL, May 1989.

D. A. Padua, Multiprocessors: Discussion of Some
Theoretical and Practical Problems. PhD thesis, De-
partment of Computer Science, University of Illinois,
Urbana, Illinois, Nov. 1979. Center for Supercomput-
ing Research and Development Report No. UTUCDCS-
R-79-990.

G. Kane, MIPS RISC Architecture. Englewood Cliffs,
NJ: Prentice-Hall, 1988.

R. M. Russell, “The cray-1 computer system,” Com-
munications of the ACM, vol. 21, pp. 63-72, Jan. 1978.

