
Control Flow Optimization for Supercomputer Scalar Processing

Pohua P. Chang and Wen-mei W. Hwu

Coordinated Science Laboratory

University of Illinois

1101 W. Springfield Ave.

Urbana, IL 61801

pohua@bach.csg.uiuc.edu

Abstract
Control intensive scalar programs pose a very dif-

ferent challenge to highly pipelined supercomputers than
vectorizable numeric applications. Function call/return
and branch instructions disrupt the flow of instructions
through the pipeline, degrading the utilization of the pipe-
lined datapaths. This paper describes control flow optimi-
zation for scalar processing using an optimizing compiler.
To obtain program control flow information, a system
independent profiler has been integrated into the
IMPACT-I C compiler. The control flow information
obtained is converted into a weighted control graph.
Based on the weighted control graph, function inline
expansion, multi-way branch layout, and software branch
prediction can be implemented. Using better compiler
technology results in a very low cost hardware control
unit (architecture) for high performance scalar processors.

1. Introduction

Pipelining Kogge Pipelined Computer increases the
throughput of the instruction fetch, instruction decode,
and instruction execution portions of a high performance
scalar processor. Function call/return and branch instruc-
tions disrupt the flow of instructions through the pipeline,
degrading the utilization of the pipelined datapaths. Pro-
cedure inline expansion is a simple compile-time code
improving technique to reduce the function call/return
costs, and has been implemented in many optimizing
compilers. Auslander, Compiler, IBM801 Stallman GNU
CC Chow Hennessy Register Allocation Huson expander
Parafrase Allen Vectorization Parallelism Inline Some
recent processors also provide hardware support for
minimizing the extra memory accesses due to function
calls. For example, the Berkeley RISC processors provide
overlapping register windows to reduce the number of
memory accesses required to save/restore registers and to
pass parameters. Patterson Sequin VLSI RISC, Sep-
tember, 1982 Another example is the CRISP processor
that uses stack buffers to capture the memory accesses to
local variables so that register allocation crossing function

calls can be simulated in hardware. Ditzel Mclellan
Hardware Architecture CRISP Branch instructions can
also disrupt the flow of instructions through the processor
pipeline. Approximately one out of every three to five
instructions is a branch instruction. McFarling Branch
Emer Processor Performance, VAX The ability to reduce
branch cost is therefore essential for executing control
intensive scalar programs in highly pipelined scalar pro-
cessors. Because of its impact on processor performance,
branch handling has been studied by many researchers
who have proposed many innovative techniques to sustain
high instruction issue rate. Some branch handling
methods will be described in the next subsection.

1.1. Previous Work

Instruction issue logic, implemented using dynamic
code scheduling, have been shown to achieve substantial
speedup in program execution. Weiss, Smith, Instruction
Issue Patt, Hwu, Shebanow, HPS, Rationale Hwu, hpsm,
exploit concurrency Acosta, Torng, Dispatch Stack These
techniques provide special hardware to resolve data
dependencies and to exploit fine-grain program parallel-
ism at run-time. However, it is not clear from these stu-
dies that the reported speedup will occur when executing
large and control intensive scalar programs. Because
branch instructions are very frequent in scalar programs,
very few instructions are exposed to the instruction issue
logic before fetching a branch instruction that disrupts the
instruction fetch pipeline.

Many branch handling methods have been studied.
Some schemes employ hardware or software techniques
to predict the direction of a branch and to fetch the target
instructions of a branch, causing no or minimum slacks in
the instruction issue stream. McFarling, Branch Lee,
Smith, Branch Prediction Smith, Branch Prediction, June
1981 DeRosa, Branch Handling Ditzel, Branch folding,
CRISP Shebanow, Patt, Autocorrelation Branch Predic-
tion When the branch prediction is incorrect, instructions
of the wrong control flow direction are squashed and the
execution resumes in the correct control flow path as indi-
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cated by the result of the branch instruction. These
schemes all assume that the accuracy of the branch pred-
iction is high enough to hide the penalty of squashing and
refilling the instruction issue pipeline.

Branch predictions that are made during compile
time are called static predictions. The simplest scheme
predicts all branches as taken, and has been reported to
achieve about 65% accuracy. McFarling, Branch Emer,
Clark, VAX Lee, Smith, Branch Prediction Another
scheme predicts all backward conditional branches as
taken and all forward branches as not-taken, and has been
reported to achieve 76.5% accuracy, however in some
cases, only 35% accuracy. Smith, Branch Prediction,
June 1981 The reported prediction accuracy is highly
dependent on the compiler technology. If loop unrolling
and trace selection are used, the number of taken branches
may decrease.

Dynamic branch prediction requires additional
hardware which can make predictions based on the branch
history. The history information must also be maintained
in a high speed hardware buffer. Several dynamic predic-
tion schemes have been studied and reported to achieve
impressive performance, better than 90% accuracy. Lee,
Smith, Branch Prediction Smith, Branch Prediction, June
1981 Hwu, Conte, Chang, Branches Shebanow, Patt,
Autocorrelation Branch Prediction The performance of
these hardware schemes may be degraded due to context
swaps.

A mixed static and dynamic branch prediction
method requires the use of a profiler. The dynamic
behavior of a program, gathered while profiling the pro-
gram, can be used by a compiler to make static branch
predictions. Usually, the instruction set is modified to
include a prediction bit in the branch instruction format.
Through this bit, the compiler can convey the prediction
decision to the hardware. For example, this approach is
used in the MIPS architecture. McFarling, Branch

However, it should be noticed that branch predic-
tion does not solve the branch problem. Even with 100%
prediction accuracy, taken conditional branches still cause
slacks in the instruction issue pipeline, because the branch
target address can not be computed in time. The first
problem is that the instruction issue logic prepares to
branch only when the branch instruction has reached the
end of the decoding stage, which is usually too late. Lee
and Smith have studied some hardware mechanisms that
deliver the branch target addresses as early as possible, by
keeping the branch target address in a fast buffer which is
indexed by the address of the branch instructions. Lee,
Smith, Branch The second problem is that, accessing the
instruction cache with the target address adds additional
delay. To further reduce this delay, the instructions in the
target path can also be kept in a fast buffer to avoid the

instruction cache access latency. Caching the first few
instructions from the target paths of frequently executed
predicted-taken branches are the most beneficial.

In an attempt to reduce hardware complexity, RISC
processors, including IBM 801, Radin, March 1982
Berkeley RISC-I, Patterson, RISC, VLSI Stanford MIPS,
Hennessy, MIPS and HP Spectrum, Birnbaum, Beyond
RISC all employ the delayed branch approach. In this
approach, the compiler fills the delay slots following the
branch instruction with instructions from before the
branch. Regardless of the branch direction, the instruc-
tions in the delay slots are always executed. McFarling
and Hennessy reported that a single delay slot can be suc-
cessfully filled by the compiler for approximately 70% of
the branches, and a second delay slot can be filled only
25% of the time. McFarling, Hennessy, Branch There-
fore, it is hard to support moderately pipelined instruction
fetch units using the delayed branch technique.

McFarling and Hennessy described a squashing
branch scheme that allows more useful instructions to be
placed after branch instructions. McFarling, Hennessy,
Branch Delayed branching with squashing has been
adopted by many recent RISC processors to improve their
delayed branching performance. Hill SPUR Horowitz
Chow MIPS-X Architecture MIPS R2000 Architecture
Melear 88000 RISC Hwu, Conte, and Chang have studied
a forward semantic scheme, which requires fewer delay
slots than McFarling’s squashing branch. Hwu, Conte,
Chang, Branch Prediction Requiring fewer delay slots
implicitly reduces code expansion.

1.2. Our Approach

Figure 1 illustrates the order in which various
compile-time techniques are applied in our compiler. The
information gathered during profiling a program tells the
compiler not only the execution frequencies of all instruc-
tions, but also the frequencies of all control transfers. In
other words, for each conditional branch instruction, the
compiler knows the number of times each of the possible
branch directions is taken.

From the instruction execution frequencies, the
invocation frequencies of each procedure call site can be
deduced. With this knowledge, the compiler can selec-
tively inline expand function bodies to obtain larger leaf
procedures, and to reduce the calling overhead. Hwu,
Chang, Inline

Knowing the frequencies of all control transfers, the
compiler can apply program restructuring techniques,
such as trace selection, Chang, Hwu, Trace Selection
Ellis, Bulldog Fisher, Trace Scheduling, July 1981 to
maximize instruction sequential and spatial localities
Hwu, Chang, Instruction Placement and to reduce the
number of taken branches.
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Figure 1: Compiler Filters
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After function inline expansion, trace selection, and
placement, the compiler makes predictions for all two-
way conditional branches based on the profile informa-
tion. In addition, the compiler can intelligently implement
multi-way branches, such as switch statements in C, as
either a two-way branch sequence or a hashing jump.

This approach relies on compiler techniques to
optimize control flow in pipelined processors. Minimal
hardware is needed, only one additional bit for each con-
ditional branch instruction. Through this additional bit,
the compiler can tell the hardware control unit whether or
not the branch will likely be taken. In a later section, we
describe how a profiler can be integrated into a compiler,
and how the profiled information can be captured in a
well-defined data structure to which code improving tech-
niques can be applied.

In this paper, we report the effectiveness of profiled
branch prediction after inline expansion, trace selection,
and code restructuring to reduce likely-taken branches
have been performed.

1.3. Organization of Paper

Section 2 describes the program profiling utility in
the IMPACT-I C compiler. Section 3 shows the result of
function inline expansion. Section 4 presents a method to
reduce the cost of multi-way branches. Section 5 shows
the result of two-way conditional branch prediction. In
section 6, we give some concluding remarks.

2. Program Profiling

A system independent execution profiler Chang,
Hwu, Trace Selection has been implemented and
integrated into the IMPACT-I C compiler. To make the
profile information useful to the compiler, the profile
information must be presented in a structure which can be
easily understood by the compiler. In our C compiler, a
program is represented by a weighted call graph. A call
graph is a directed graph where every node is a function
and every arc is a function call. A weighted call graph is
one in which all the nodes and arcs are marked with their
execution frequencies.

Each node of the weighted call graph is represented
by a weighted control graph. A control graph for a func-
tion is a directed graph where every node is a basic block,
and every arc is a branch path between two basic blocks.
A weighted control graph is a control graph in which all
the nodes and arcs are marked with their execution fre-
quencies. The IMPACT-I Profiler to C compiler interface
allows the profile information to be automatically used by
the IMPACT-I C compiler.

To profile a C program, the IMPACT-I profiler con-
verts the program into a functionally equivalent C pro-
gram with all the probes inserted. This new C program
can then be compiled by the C compilers of different sys-
tems and executed on these systems to collect profile
information concurrently. When the equivalent C pro-
gram is executed, these probe function calls record the
weights of nodes and arcs of the call graph for the entire
program and the control graph for each function. It is crit-
ical that the inputs used for executing the equivalent C
program be representative. Therefore, this approach is
very suitable for characterizing programs for which
representative inputs can be easily collected.

We have chosen 14 commonly used scalar pro-
grams from several areas of scalar processing: program
compilation, text processing, data compression, and
computer-aided designing. These benchmarks all exhibit
complex control structures and are good examples of
high-level language programming. We expect that the
scalar portions of large supercomputing applications have
similar control structures. Table 1 summarizes several
important characteristics of our benchmarks. The C lines
column shows the static code size of the C benchmark
programs measured in the number of program lines. The
runs column gives the number of different inputs used in
the experiment. The size column shows the number of
bytes required to store the profile information. The aver-
age storage requirement is about six (6) bytes per one line
of C code. The description column describes the bench-
mark programs. The inputs are realistic and representa-
tive of typical uses of the benchmarks. For example, the
grammars for a C compiler and for a LISP interpreter are
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two of ten realistic inputs for bison and yacc. Twenty
files of several production quality C programs, ranging
from 100 to 3000 lines, are inputs to the cccp program.
The input description column briefly describes the nature
of theinputs for the benchmarks.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

name line run size(B) descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 6913 10 44314 GNU version of yacciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 4660 20 20411 GNU C preprocessoriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 371 16 1098 Compare text filesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 1941 20 5086 File compressioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 4167 20 15860 Typeset mathematicsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 11545 20 49805 Logic minimizationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 1302 20 2955 String searchiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 3251 4 26722 Lexical analyzer generatoriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 7043 20 24258 Maintain filesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 3186 14 11634 Tape archivesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 4497 20 30484 Format tablesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 1063 18 1846 Replicate inputiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 345 20 1056 Word countiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 3333 10 29677 Parsing program generatoriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 1. Benchmark characteristics
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

name input descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison grammar for a C compiler, etc.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp C programs (100-3000 lines)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp similar/text filesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress same as cccpiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn papers with .EQ optionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso original espresso benchmarks*iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep exercised various optionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex lexers for C, Lisp, awk, and piciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make makefiles for cccp, compress, etc.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar save/extract filesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl papers with .TS optionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee text files (100-3000 lines)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc same as cccpiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc grammar for a C compiler, etc.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 1. (continued)

3. Eliminating Function Calls

Structured programming techniques encourage the
use of functions. As a result, realistic scalar programs
often execute a large number of function calls. Unfor-
tunately, function calls cause performance problems by
hindering compiler optimizations across function boun-
daries. Examples of compiler optimizations hindered by
function calls include register allocation, code scheduling,
common subexpression elimination, and constant propa-
gation. The decreased effectiveness of these optimization
hhhhhhhhhhhhhhh

* See R. Rudell, "Espresso-MV: Algorithms for Multiple-
Valued Logic Minimization, Proc. Cust. Int. Circ. Conf.,
May 1985.

techniques increases memory accesses, decreases pipeline
efficiency, and increases redundant computation. These
consequences are particularly magnified in supercomput-
ers because of deep pipelining and large memory access
penalties. We have implemented a function inline expan-
sion algorithm, Chang, Hwu, Inline and obtained some
interesting measurements.

Table 2 shows the static function call characteristics
of the benchmarks. Each static function call corresponds
to one function call in the source program. The total
column gives the number of different function calls in the
static program. Note that different static function calls
could be calling the same function. We categorize the
static function calls into four types. The external column
gives the percentage of static function calls to functions
whose body are unavailable to inline expansion. The
pointer column gives the percentage of static function
calls through pointers. Function calls through pointers
defeat inline expansion. The unsafe column gives the
number of static function calls which either introduce
function bodies into recursive paths or have an estimated
execution count less than 10. The safe column gives the
percentage of the static functions which can be safely
inline expanded. Only the safe function calls are con-
sidered for inline expansion. Only a small percentage of
the static functions can be safely inline expanded.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

benchmark total external pointer unsafe safeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 1026 40.4% 0.0% 49.9% 9.6%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 395 16.2% 0.0% 72.2% 11.4%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 40 50.0% 0.0% 2.5% 47.5%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 192 40.6% 0.0% 58.9% 0.5%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 470 5.1% 0.0% 78.5% 16.4%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 1487 6.1% 0.7% 63.3% 29.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 90 20.0% 0.0% 73.3% 6.7%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 583 12.5% 0.0% 71.9% 15.6%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 686 15.2% 0.0% 64.1% 20.7%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 446 31.4% 0.0% 64.3% 4.3%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 797 4.4% 0.0% 74.8% 20.8%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 82 40.2% 0.0% 59.8% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 27 48.1% 0.0% 51.9% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 485 22.7% 0.0% 62.3% 15.1%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 2. Static function call characteristics.

Table 3 presents the dynamic behavior of function
calls. A dynamic function call is an invocation of a func-
tion from a particular call site. A static function call can
correspond to many dynamic function calls. Only those
static functions corresponding to a large number of
dynamic function calls should be considered for inline
expansion. Note that the small percentage (about 15%) of
safe static functions accounts for a large percentage
(about 70%) of all dynamic functions. The only excep-
tions are wc, which has almost no function calls, and tee,
which has almost no function calls to user functions, and
therefore are irrelevant to this discussion. This is
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encouraging since it implies that we only need to inline
expand a small percentage of the function calls to elim-
inate a large percentage of the dynamic calls.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

benchmark total external pointer unsafe safeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 31.1K 36.6% 0.0% 1.3% 62.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 3.4K 4.6% 4.2% 5.6% 85.5%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 1.0K 50.2% 0.0% 0.5% 49.3%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 4.3K 0.4% 0.0% 0.6% 98.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 46.6K 7.8% 0.0% 0.8% 91.4%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 295.8K 0.1% 9.4% 0.2% 90.3%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 17.5K 1.2% 0.0% 0.1% 98.8%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 55.4K 6.0% 0.0% 0.7% 93.4%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 51.7K 9.2% 0.0% 0.3% 90.5%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 1.3K 35.2% 0.0% 17.6% 47.2%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 32.0K 14.6% 0.0% 3.4% 82.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 1.6K 99.1% 0.0% 0.9% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 21 53.1% 0.0% 46.9% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 56.2K 7.7% 0.0% 0.4% 91.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 3. Dynamic function call behavior.

Table 4 offers the most important results of inline
expansion. The code inc column gives the percentage of
increase in static code size due to inline expansion. The
call dec column gives the percentage of dynamic function
calls eliminated by the inline expansion. The IL’s per call
column gives the average number of dynamic intermedi-
ate instructions executed between dynamic function calls
after inline expansion. The CT’s per call column gives
the average number of dynamic control transfers executed
between dynamic function calls after inline expansion.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
benchmark code inc call dec IL’s per call CT’s per calliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 17% 50% 630 125iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 22% 51% 424 73iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 3% 49% 254 48iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 4% 99% 21865 2735iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 20% 82% 182 41iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 23% 70% 5986 871iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 20% 95% 2522 844iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 17% 85% 4624 1386iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 20% 54% 328 62iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 13% 37% 884 110iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 30% 66% 55 13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 0% 0% 14 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 0% 0% 17478 4118iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 21% 80% 1151 266iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 4. Inline expansion results.

Note that inline expansion mechanism eliminates
large percentages of dynamic function calls for function
call intensive programs. For programs with less frequent
function calls to begin with, the inline expansion mechan-
ism does not eliminate large percentages of dynamic func-
tion calls. This is a desirable behavior because the overall
goal is to ensure infrequent function calls rather than to

achieve high elimination percentages.

All in all, the inline expansion is very effective in
that function calls only account for less than 1% of the
control transfers after inline expansion (see the CT’s per
call column) for computation intensive programs
(espresso, lex, yacc). In terms of frequency, several hun-
dreds of dynamic instructions are executed between
dynamic function calls for computation intensive pro-
grams. Therefore, function calls become unimportant in
the hardware design considerations. Also, large scopes
for compiler optimizations can be expected for the critical
parts of the programs. The price, on the average, is a 15%
increase in static code size. From a first look, this may
cause instruction cache/buffer performance degradation.
However, in a previous paper, we demonstrated that inline
expansion trades code expansion for reduced mapping
conflicts and increased sequentiality. The net results
prove that inline expansion actually improves the instruc-
tion cache/buffer performance rather than degrades it.

4. Reducing the Cost of Multiway Branches

The distribution of various types of branch instruc-
tions is listed in Table 5. The %condition column of
Table 5 indicates the percentage of conditional branch
instructions among all the dynamic control transfer
instructions. The %uncondition column of Table 5 indi-
cates the percentage of unconditional branch (including
call/return) instructions among all the dynamic control
transfer instructions. Note that the effects of inline expan-
sion to reduce function calls is included in this number.
The %multi-way column of Table 5 indicates the percen-
tage of multi-way branch instructions among all dynamic
control transfer instructions. Although the percentage of
multi-way branch instructions is small, they are neverthe-
less important due to their long potential execution time.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

name %condition %uncondition %multi-wayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 92.8% 6.8% 0.3%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 69.0% 11.0% 19.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 80.5% 19.4% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 90.5% 9.5% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 91.5% 7.4% 1.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 85.7% 13.5% 0.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 82.2% 13.3% 4.4%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 98.4% 1.5% 0.1%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 93.7% 6.0% 0.3%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 97.2% 2.8% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 81.4% 17.8% 0.8%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 79.6% 20.4% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 91.4% 8.6% 0.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 97.1% 2.7% 0.2%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 5. Percentage of various branch types

Each multi-way branch (switch statement) can be
implemented by either a hashing jump or a sequence of
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conditional branches. The IMPACT-I C compiler imple-
ments each multi-way decision as follows. First, the com-
piler sorts all the target cases by their probability of exe-
cution. Second, the compiler lays out the conditional
branches so that the ones with higher branching probabil-
ity appear before those with lower branching probabilities.
An exception to this rule is the default case which has to
be placed at the very end as an unconditional jump
instruction. Third, the compiler calculates the expected
number of comparisons to implement the multi-way deci-
sion with the sequence of conditional branches formed in
the second step. If the expected number of comparisons is
beyond a threshold (10 in this measurement), a hashing
jump will be used instead. The execution of these hashing
jumps involves hashing the input condition into a hash
table of explicit and default cases, fetching the
corresponding target address, and redirecting the instruc-
tion fetch with that target address.

Table 6 shows the results of the multi-way branch
implementation. The %default column indicates the per-
centage of the time the default case is reached for all
switch statements. For some benchmarks, the %default
percentage is high due to the low coverage of the explicit
cases. Because we must place the default case at the end
of the branch sequence as an unconditional branch
instruction, high %default percentage lessens the effec-
tiveness of compiler case layout optimization. The effect
is especially pronounced in eqn.

The %hashing column indicates the percentage of
all multi-way branches being implemented by hashing
jumps. For architectures with long scalar memory access
delays, the threshold for adopting the hashing jumps could
be increased to much more than the one we used (10
expected comparisons). Therefore, one can expect to see
a smaller percentage of hashing jumps for architectures
with long scalar memory delays.

The %sequence column of Table 6 indicates the
percentage of all switch statements being implemented by
branch sequences. The total column indicates the average
number of cases per multi-way branch implemented by
branch sequences, excluding the default case. The
expected column indicates the expected number of com-
parisons required to resolve a multi-way branch imple-
mented as a branch sequence. Note that for most bench-
marks, the sequence number is close to 100%. For
compress, grep, and lex, the high percentage of branch
sequence implementation is due to the highly biased dis-
tribution of selecting cases. For these benchmarks, the
average total number of comparisons is high (≥ 10) but
the expected number of comparisons is much lower (≤ 5).
For the other benchmarks, almost all multi-way branches
are implemented as branch sequences, due to their small
numbers of total cases.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
name %default %hashing %sequence total expectediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 74.7% 9.3% 90.7% 6.96 6.22iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 92.8% 51.8% 48.2% 3.36 3.15iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 0.0% 0.0% 100.0% 3.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 0.0% 0.0% 100.0% 10.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 84.0% 75.3% 24.7% 6.97 6.13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 66.2% 0.0% 100.0% 2.71 2.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 0.0% 0.0% 100.0% 12.00 1.50iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 35.9% 0.0% 100.0% 12.72 5.42iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 39.7% 0.0% 100.0% 8.60 4.56iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 0.0% 0.0% 100.0% 6.38 1.26iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 22.4% 0.0% 100.0% 11.99 2.94iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 0.0% 0.0% 100.0% 3.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 0.0% 0.0% 100.0% 3.00 1.60iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 48.5% 0.0% 100.0% 6.28 4.87iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6. Multiway branch statistics
Assuming a hashing jump is 10 times more expen-

sive than each conditional branch, the cost of each multi-
way branch has been reduced to about 3.5 conditional
branches per multi-way branch. Considering the low
dynamic percentage of multi-way branches among all
control transfers, we conclude that the cost of multi-way
branches is no longer a major concern.

5. Reducing the Cost of Conditional Branches

This section examines the characteristics of the con-
ditional branches corresponding to the two-way decisions
in C programs. These branches are due to if statements,
the conditional operators (&& || ?:), and the loop control
structures. The IMPACT-I C compiler uses the profile
information to lay out the instruction space to reduce the
frequency of taken branch instructions. For each function,
basic blocks which tend to execute in sequence are
grouped into traces. The traces form the basic units of
instruction placement to minimize the dynamic frequency
of taken branches. The process of grouping basic blocks
into traces is called trace selection. Fisher Trace Schedul-
ing Compaction A detailed description and evaluation of
the trace selection algorithm of the IMPACT-I C compiler
is given in a recent paper. Chang Hwu Trace Selection

Table 7 presents the trace selection results. Note
that inline expansion provides large functions to enhance
the size of the traces selected. The desirable column
gives the percentage of control transfers which go from a
basic block to its successor within a trace. The undesir-
able column gives the percentage of control transfers
which enter and/or exit traces at a non-terminal basic
block. The small average percentage (about 3%) in the
undesirable column and the large average percentage
(about 61%) in the desirable column indicate that once the
control is transferred into a trace, it is likely to remain
through the end of that trace. This justifies our approach
to use traces as units of instruction placement. By using
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traces as the units of the instruction placement algorithm,
we have at least 61% of dynamic branches not taken.
This number is further increased by placing traces care-
fully into a linear order. Note that the percentage of not
taken branches due to intra-trace sequentiality alone is
significantly higher than the traditionally reported 33%
number. Emer Clark Characterization VAX 780 Smith
Lee Target Buffer

The neutral column gives the percentage of control
transfers from the end of a trace to the start of a trace.
The average percentage (about 36%) for this category
suggests that loop unrolling and a careful selection of
linear ordering of traces could significantly reduce the
dynamic frequencies of taken branches. We start with the
entrance trace, and expand the placement by placing the
most important descendant after it. We grow the place-
ment until all the traces with non-zero execution count
(profiled count) have all been placed. Traces with zero
execution count (profiled count) are moved to the bottom
of the function.

The trace length column gives the average number
of basic blocks in each trace. On the average, each trace
contains 3.4 basic blocks. Since each basic block in the
IMPACT-I code contains about 4 machine instructions (4
bytes each), a unit of instruction placement contains about
54 bytes. Considering the spatial locality among traces, a
reasonable prediction for a good instruction buffer bank
size would be 64 bytes.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

name neutral undesirable desirable trace lengthiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 39.4% 1.4% 59.2% 2.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 49.9% 3.7% 46.4% 1.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 12.7% 4.2% 83.0% 6.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 35.1% 2.9% 62.0% 2.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 15.7% 2.0% 82.3% 5.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 49.3% 5.4% 45.3% 1.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 21.3% 1.4% 77.4% 4.6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 35.2% 1.8% 63.1% 2.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 54.2% 2.1% 43.7% 1.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 88.0% 0.5% 11.5% 1.1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 19.6% 2.4% 78.0% 4.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 24.8% 0.2% 75.0% 4.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 15.1% 9.0% 75.9% 5.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 49.2% 4.6% 46.2% 2.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 7. Trace selection results

Table 8 shows a detailed breakdown of the stati-
cally predicted and actual behavior of branches. Column
TT of Table 8 indicates the number of branches which are
predicted to be taken and are actually taken, as a percen-
tage of all conditional branches. Column TN of Table 8
indicates the number of branches which are predicted to
be taken but are actually not taken, as a percentage of all
conditional branches. Column NT of Table 8 indicates the
number of branches which are predicted not taken but are

actually taken, as a percentage of all conditional branches.
Column NN of Table 8 indicates the number of branches
which are predicted not taken and are actually not taken.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

name TT TN NT NN hit_ratioiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bison 33.4% 3.1% 5.4% 58.1% 91.5%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cccp 42.5% 6.0% 5.2% 46.3% 88.8%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cmp 0.0% 0.0% 3.1% 96.9% 96.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
compress 18.3% 2.8% 11.5% 67.4% 85.7%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
eqn 14.2% 3.3% 3.3% 79.2% 93.4%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
espresso 26.5% 6.3% 9.2% 58.0% 84.5%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
grep 8.3% 0.3% 1.7% 89.7% 98.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
lex 46.6% 1.1% 1.7% 50.6% 97.2%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
make 49.8% 3.3% 2.5% 44.4% 94.2%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tar 90.2% 0.7% 0.6% 8.6% 98.8%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tbl 24.5% 1.7% 3.7% 70.1% 94.6%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tee 12.3% 0.1% 12.7% 75.0% 87.3%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
wc 10.6% 2.9% 11.2% 75.3% 85.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
yacc 38.6% 2.0% 8.1% 51.3% 89.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 8. Conditional branch results

Two observations are worth mentioning. First,
about 65% of the dynamic branches are not taken and
almost all of them can be correctly predicted at the com-
pile time. Comparing this number with the traditional
33% number shows that our instruction placement algo-
rithm is effective in reducing taken branches. Second,
among the taken branches (which account for about 35%
of the dynamic branches), most of them can also be
correctly predicted at the compile time. Overall, about
92% of the dynamic branches can be correctly predicted
at the compile time. Supercomputer architectures which
take advantage of this compilation support can have a
significant advantage over those which do not take advan-
tage of it.

6. Conclusion

We have developed a sequence of profile-based
control flow optimizations. These optimizations reduce
the negative effects of function calls and branches on the
supercomputer scalar performance. These optimization
techniques have been implemented in our IMPACT-I C
compiler and evaluated with a set of realistic UNIX
domain programs. The results presented in this paper are
derived from the real execution of several billions of
dynamic instructions. The size of the experiment is
significantly larger than most previously reported results.

With inline expansion, we have reduced the func-
tion call frequencies to about 1% of all the control
transfers. On the average, several hundred dynamic
instructions are executed between dynamic function calls.
This eliminates function calls as a major issue of scalar
processing.

With a careful implementation of multi-way
branches, we have reduced the cost of multi-way branches
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to about 3.5 times that of a conditional branch. With a
low percentage of multi-way branches (about 10% out of
all control transfers), this leads us to believe that multi-
way branches have been removed from being a major
issue of scalar processing.

Conditional and unconditional branch instructions
remain as a critical issue of scalar processing. About 20%
of the dynamic instructions are branches. By taking
advantage of the profile information, the IMPACT-I
instruction placement has reduced the percentage of the
dynamic taken branches from 67% to 35%. This
improves the efficiency of the instruction pipeline and the
instruction cache/buffer. Meanwhile, we showed that
92% of the dynamic branches can be predicted correctly
at the compile time. Therefore, supercomputer architec-
tures can significantly improve their scalar performance
by taking advantage of the compile-time branch predic-
tion.
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