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ABSTRACT 
Much progress has been made in the design of efficient acquisition 
trajectories for high spatial and temporal resolution in magnetic 
resonance imaging (MRI). Additionally, significant developments 
in image reconstruction have enabled the reconstruction of 
reasonable images from massively undersampled or noisy data that 
is corrupted by a variety of physical effects, including magnetic 
field inhomogeneity. Translation of these techniques into clinical 
imaging has been impeded by the need for expertise and 
computational facilities to realize the potential of these methods. 
We present the Illinois Massively Parallel Acceleration Toolkit for 
Image reconstruction with ENhanced Throughput in MRI 
(IMPATIENT MRI), a reconstruction utility that enables advanced 
techniques within clinically relevant computation times by using 
the computational power available in low-cost graphics processing 
cards. 

Index Terms— magnetic resonance imaging, graphics 
processing cards, field inhomogeneity, image regularization 

1. INTRODUCTION 
Since the inception of magnetic resonance imaging (MRI), 
technology has continually evolved to improve tradeoffs between 
spatial resolution, temporal resolution, signal-to-noise ratio, image 
contrast, and examination time. Although it is still relatively 
young, MRI has reached a juncture where significant future 
advances are limited by traditional data acquisition strategies and 
image reconstruction schemes that ignore the non-idealities of the 
MR acquisition. Proprietary algorithms and a lack of access to 
sufficient computing power in the clinic, and sometimes even in 
the laboratory, have held back widespread adoption of advanced 
MRI acquisition and reconstruction schemes. This abstract seeks to 
remove this barrier to advancement by creating and validating an 
open source image reconstruction software package that leverages 
the computational power of the graphics hardware that is available 
in many PCs and reasonably affordable in stand-alone 
computational units. 
Throughout the late 1990s and early 2000s, mainstream 
microprocessors such as the Intel Pentium and the AMD Opteron 
families have driven rapid performance increases and cost 
reductions in science and engineering. Development slowed, 
however, in 2004 due to constraints on power consumption. Since 
that time, many-core processors such as graphics processing units 

(GPUs) have led the advances in computational throughput for 
science and engineering applications. We are at a crossroads where 
computational power is available through multi-core CPU and 
many-core GPU-equipped PCs and clusters. However, significant 
infrastructure investment is required to enable the medical imaging 
community to leverage these computational resources for 
furthering imaging science. This abstract introduces the Illinois 
Massively Parallel Acceleration Toolkit for Image reconstruction 
with ENhanced Throughput in MRI (IMPATIENT MRI), an open 
source GPU-based advanced image reconstruction package that 
will be available to the public through the internet by the time of 
the conference. This package builds on our previous work in GPU-
based acceleration of MR algorithms [1,2], integrating new 
features and improved computational efficiency. 
IMPATIENT MRI is currently equipped to solve optimization 
problems of the form 

2 2
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1ˆ argmin
2ρ

ρ Eρ d WCρβ= − +    (1) 

Where ρ is the vector of image voxel coefficients to be 
reconstructed, E is a matrix that models the linear data acquisition 
physics for MRI, d is the vector of measured data, C is a 
regularization matrix, W is an optional diagonal weighting matrix, 
and β is a regularization parameter. This cost function consists of 
two terms, one imposing data consistency, and the other enforcing 
image regularity. Traditional MRI models data collection using the 
Fourier transform, and collects data on a Cartesian (i.e., rectilinear) 
grid to allow E to be represented using the fast Fourier transform 
(FFT). In contrast, our implementation can more accurately model 
advanced data acquisition strategies and non-ideal data acquisition 
physics. Our implementation includes capabilities for using non-
Cartesian Fourier sampling trajectories (with and without FFT-
based approximations of the non-uniform Fourier transform), B0 
field inhomogeneity compensation [3], and SENSE-based 
modeling for multichannel receivers [4]. Regularization can be 
important for stabilizing reconstructions when data-consistency 
constraints alone do not result in a sufficiently well-posed inverse 
problem. Our implementation allows C to be a general sparse 
matrix, with additional fast implementations available for certain 
commonly-used regularization functions. Use of the W matrix 
enables more advanced reconstructions that incorporate prior 
information (e.g., [5]) or that solve nonlinear problems [6] (e.g., 
the popular l1 and total variation regularization schemes that appear 
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in compressed sensing [7]). In addition, we offer two forms of the 
estimation algorithm: one based on a brute force exact approach 
and one Toeplitz-based reconstruction scheme [8]. The following 
sections describe the implementation of IMPATIENT MRI and 
illustrate its computational capabilities. 

2. METHODS 
2.1 Modeling Data Acquisition  
Parallel imaging is performed by placing an array of receiver coils 
around the object to be imaged, with each receiver coil lending 
spatially distinct reception profiles to the acquired data sets. The 
collection of data with different coil sensitivities enables the 
reconstruction of alias-free reduced encoding data sets. For the  
ith receiver coil, data acquisition can be modeled as FSi, where Si 
is a diagonal matrix containing the spatial sensitivity profile of the 
coil, and F is a matrix that describes the effects of k-space 
encoding and magnetic field inhomogeneity. If the data received 
by each coil is concatenated to make a single data vector d, then 
the net encoding function is given as: E = [FS1; … ; FSL], for an 
acquisition with an L-channel receiver. This parallel imaging is 
implemented in the reconstruction code as a wrapper around the 
single-coil operations for each of the included algorithms. The 
sensitivity maps are stored as a 1D vector to save memory as Si is a 
diagonal matrix. Pre-multiplication by Si for the forward transform 
and post-multiplication by Si

H for the adjoint operator is performed 
by point-wise vector-vector multiplication. 

2.2 Incorporation of a priori information  
As mentioned above, the regularization term is essential for the 
reconstruction of practical MR images. IMPATIENT MRI treats 
the regularization matrix C as a general sparse matrix and also 
incorporates specialized implementations for commonly used 
regularization functions. In this paper, we present the 
implementation for a dual direction finite difference operator 
which can be expressed as C = [DH ; DV], where DH and DV denote 
the finite difference of every pixel pair along the horizontal and 
vertical directions of the image respectively. We have explored the 
following two ways to implement this regularization function: 
1. Form matrices DH, DV explicitly and store them as sparse 
matrices. While it may take extra effort to optimize sparse matrix 
storage and calculation, sparse matrices are widely applicable to 
finite difference calculation along any arbitrary direction and they 
are configurable to accommodate multiple forms of regularization 
terms. 
2. Tailor explicit finite difference calculations according to the 
specific choice of C. This alternative requires no effort in the 
management of sparse matrix, reduces memory access redundancy 
in CUDA kernels and can be easily transformed from C codes into 
CUDA codes.  
In the current implementations, the weighting matrix W is 
predetermined for l2 regularization, and can be automatically 
updated for l1 regularization. In the future, we will also enable 
customized input option to suit the user’s specific requirements.  

2.3 Implementation of Image Reconstruction in the GPU 
The key implementation in the GPU code involves different levels 
of manipulation and optimizations. Based on our previous work 
[2,9], we already adopted the GPU constant memory to avoid 
frequent accessing of the slow global memory. In this work, we 
further optimize the code and extend it to manage larger images 
like 2562 and 5122. Due to limited space, we’ll describe only key 
optimizations and provide explanation about the extension for 
handling large images. Detailed information can be found in [10]. 
Tiled processing [11] has been widely used in CUDA 
programming to deal with large data. Yet due to the complex 
hardware memory hierarchy and the need for algorithm-level 
information, this transformation must be manipulated by 
programmers. Figure 1 depicts the CPU code snippet and resultant 
GPU tiled computation of the adjoint operator of our brute force 
approach. The outer loop of the CPU code is removed after 
parallelization. Each loop iteration of the outer loop is handled by 
one thread. The whole image reconstruction process is conducted 
piece by piece or kernel by kernel such that we can take advantage 
of the constant memory for frequently accessed data. We choose 
the k-space trajectory data for the adjoint operator and the image-
space pixel locations for the forward operator. Since only 64KB is 
available for the constant memory, for single-precision 
computation with 2-D trajectory data, the maximum number for 
tile size would seem to be 8192 which equals to 65536 B / (2 
dimension trajectory variables x 4 bytes for single precision data). 
Unfortunately, the compiler will implicitly use up several to make 
it less than 64KB and to be in favor of regular thread processing, 
the number had better be the multiple of power of two. So 4096 is 
the final tile size in each kernel invocation (or 2048 for double-
precision calculations). 

for (all image-space elements) {
    for (all k-space elements) {

}   }
idata[i] += ...

CPU Snippet of Backward Operator (IFT)

for (k: 0->T) {
    idata[i] += ...
}

Tile 0 Tile 1 Tile 2

for (k: T+1->2T) {
    idata[i] += ...
}

for (k: 2T+1->3T) {
    idata[i] += ...
}

Kernel 0 Kernel 1 Kernel 2

Parallelization

 
Figure 1. Tiled processing on the adjoint operator 

For the adjoint operator, the output image-space data is updated 
based on the input k-space data. Every output pixel is contributed 
to by every input point. A choice can be made on how to approach 
the calculation, either from an input-oriented or output-oriented 
perspective, as shown in Figure 2. Taking an input-oriented 
perspective can cause a big performance loss, due to the sharing of 
outputs among threads. More specifically, when multiple threads 
are accessing the same output point, their requests have to be 
processed in serial in order to avoid erroneous results. For 
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resolving this in GPU programming, atomic operations are widely 
used. Although this is faster in the latest Nvidia Fermi architecture, 
we can still benefit by avoiding this situation. Therefore, we 
choose an output-oriented approach. 

 
Figure 2. Output-oriented vs. input-oriented perspectives [12] 

Table 1 lists the optimization guidelines we propose for 
performance tuning. We start from checking if the kernel is 
compute-bound or memory-bound. More specifically, for compute-
bound kernels the computation operations are the main 
performance limiting factor. Hence we can either reduce the 
instructions through the suggested code transformation or move the 
kernel to a more advanced GPU device. On the other hand, 
memory-bound kernels are limited by the data access latency or 
bandwidth. Memory latency is the time to access data, which can 
be hidden by introducing more instruction mix to achieve 
instruction level parallelism. Memory bandwidth is the throughput 
that the memory can provide, which can be reduced by using faster 
constant or shared memory or fully utilize the given bandwidth by 
regularizing the memory access pattern. 

Table 1. Optimization guidelines for performance tuning 
Compute-bound Memory-bound 

Instruction 
reduction 

Memory latency 
hiding 

Memory bandwidth 
reduction 

Reduce branches 
and loop counting 
(Loop unrolling) 

Automatic 
instruction 
scheduling 

(Loop unrolling) 

Tiled compute 
(Using high-bandwidth 

memory) 

Common 
subexpression 

elimination 
(Using registers) 

Manual instruction 
scheduling 

(Data prefetching, 
Double buffering) 

Memory layout 
transformation 

(Coalescing/Bank 
conflicts/Working size) 

Reuse data 
(Using high-bandwidth 

memory) 
Again taking the adjoint operator of the brute force algorithm as an 
example, which is listed in Figure 1, the kernel is roughly 
compute-bound because of 17 floating-point operations and 3 
global memory accesses. Since the trajectory data are read-only 
and used by all threads, they are stored in the constant memory to 
leverage the on-chip high bandwidth. More registers are used to 
eliminate calculations from common sub-expressions and to avoid 
accesses to global memory. Coalesced memory access is taken into 
account, based on the idea of Structure-of-Array memory layout. 
Loop unrolling is applied for further parallelism in terms of the 
granularities of instructions and loop bodies to hide memory 
latency. After these optimizations, we get another ~25% to ~34% 
speedup compared to our first GPU code snippet in [2]. 

3. RESULTS 
3.1 Description of data sets 
Two different data sets are used to investigate the performance of 
the IMPATIENT MRI code. 
Data Set 1: The first data set is a high-resolution, multi-shot spiral 
functional MRI acquisition acquired on a Siemens 3 T Trio with a 
32-channel head coil. A gradient echo acquisition with 25 ms echo 
time, 2s TR, and 10 slices of coverage was acquired while a 
subject was at rest in accordance with the institutional review 
board. The spirals are designed according to [13] using a maximum 
gradient amplitude of 22 mT/m and a maximum slew rate of 140 
mT/m/ms. The data was acquired at several resolutions with image 
sizes of [256, 512]2 with a 10-shot spiral acquistion. The 32-
channel sensitivity maps and magnetic field inhomogeneity map 
are acquired from low-resolution 24-shot spiral FLASH 
acquisitions with matrix size 1282 and TE’s of 2 and 2.5 ms. 
Data Set 2: For the second dataset, we use the Shepp-Logan 
phantom to simulate an undersampled reconstruction using one 
shot of an 8-shot 2562 spiral trajectory, designed similarly to those 
above. The simulations use an 8-channel array and field 
inhomogeneity map from the ISMRM data recon challenge for an 
abdomen scan (Double Vision data) [14]. A small amount of noise 
is added to the data. 

3.2 Reconstruction results for CPU/GPU implementations 
All the data sets are processed by a machine with Intel Xeon 
E5520 CPU having 8 logical threads and one GTX 480 (Fermi) 
GPGPU having 480 processing cores. 
Data Set 1: Figure 3 gives the reconstruction results for 
IMPATIENT MRI using a 5122 matrix size and a full SENSE 
reconstruction with and without field inhomogeneity correction. 
Notice that the field inhomogeneity correction corrects for the 
blurring induced by magnetic field inhomogeneities, as indicated 
by the arrows. Table 2 gives the GPU reconstruction time results 
from an implementation of the Toeplitz-based method in single-
precision mode with 20 CG iterations. All images are with SENSE 
reconstruction and 32-channel data. We have not included data-
independent precomputations in our timing results. A Hanning 
window was used for the time segmentation interpolator with 15 
time segments used. 

Comparison with fast methods for CPU reconstruction 
To provide a comparison with a common choice that has been used 
to speed up the calculation of the image, we compared our GPU 
reconstruction time to a time-segmented non-uniform FFT 
(NUFFT) reconstruction including SENSE [3]. The SENSE 
NUFFT reconstruction times on a CPU are listed in Table 2.  
Data Set 2: Figure 4 compares the reconstruction results from the 
GPU reconstruction with and without TV. Figure 4a shows the 
sum-of-squares image, which is obtained by reconstructing each of 
the 8 coils individually without using sensitivity maps. Then we 
combine the images from the 8 different channels using a sum-of-
squares and conclude with a square-root. Figure 4b and Figure 4c 
shows the SENSE reconstruction (8 coils) without and with TV, 
respectively.  
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Figure 3. Resultant images for a) SENSE reconstruction without field 

correction, b) SENSE with FM correction. 

Table 2. Execution time between the CPU and GPU implementations. 
Data set CPU  GPU  Speedup 

256x256 2.1 hrs 28.55 sec 265 

512x512 43.3 hrs 145.54 sec 1071 

 
Figure 4. Results with and without TV regularization for data set 2 

4. DISCUSSION 
Clinical MRI has been limited by acquisitions that can be quickly 
reconstructed using standard FFT approaches and Cartesian 
sampling. The IMPATIENT MRI software provides a general 
image reconstruction approach for advanced data acquisitions in 
MRI, including: non-Cartesian sampling schemes, long image 
readouts that suffer from magnetic susceptibility image distortion 
artifacts, and parallel multi-coil acquisitions that can result in 
reduced image acquisition time. With the availability of this 
powerful image reconstruction environment, the use of advanced 
image acquisitions is possible while maintaining reconstruction 
times that allow for review of image quality while the patient is 
still in the imaging suite. 

5. CONCLUSION 

The IMPATIENT MRI software presented in this abstract will 
enable the use of advanced acquisitions in the clinical 
environment. Potential improvements in both image quality and 
acquisition speed will be available through the use of this 
dedicated reconstruction utility that provides flexible and 
optimized implementation of advanced image reconstruction 
features, including: correction of magnetic field susceptibility-
induced image distortions, parallel imaging using SENSE, and 
incorporation of a priori information such as a roughness penalty. 

This powerful image reconstruction utility will enable the use of 
advanced image acquisition and reconstruction approaches in 
clinically feasible reconstruction time. In addition, the open-source 
code will allow engineers to implement additional physics specific 
to their own applications into the code while leveraging the 
advanced reconstruction tools already available. 
Software package web site: http://impact.crhc.illinois.edu/mri.php 
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