
J. H. Moreno
V. Zyuban

U. Shvadron
F. D. Neeser
J. H. Derby
M. S. Ware

K. Kailas
A. Zaks
A. Geva

S. Ben-David
S. W. Asaad

T. W. Fox
D. Littrell

M. Biberstein
D. Naishlos

H. Hunter

An innovative
low-power high-
performance
programmable
signal processor
for digital
communications
We describe an innovative, low-power, high-performance,
programmable signal processor (DSP) for digital
communications. The architecture of this processor
is characterized by its explicit design for low-power
implementations, its innovative ability to jointly exploit
instruction-level parallelism and data-level parallelism to
achieve high performance, its suitability as a target for an
optimizing high-level language compiler, and its explicit
replacement of hardware resources by compile-time practices.
We describe the methodology used in the development of the
processor, highlighting the techniques deployed to enable
application/architecture/compiler/implementation co-
development, and the optimization approach and metric used
for power–performance evaluation and tradeoff analysis. We
summarize the salient features of the architecture, provide a
brief description of the hardware organization, and discuss the
compiler techniques used to exercise these features. We also
summarize the simulation environment and associated software
development tools. Coding examples from two representative
kernels in the digital communications domain are also
provided. The resulting methodology, architecture, and
compiler represent an advance of the state of the art in
the area of low-power, domain-specific microprocessors.

1. Introduction
The demand for high-performance microprocessors
continues to be fulfilled by designs which achieve
increasing performance levels, but do so at increasing
power consumption. This is particularly true for
general-purpose microprocessors, whose computing
capabilities double approximately every 18 months
(following Moore’s law), and whose power requirements
grow at a proportional rate. In contrast, the domain of
digital communications, as represented by mobile devices,
embedded communications, and multichannel applications,
is uniquely characterized by the expectation of achieving

higher performance at a very low increase in power
consumption, if any at all.

To achieve efficient solutions for specific application
domains, digital signal processor (DSP) architectures are
“tuned” to the target domains. In addition to leveraging
the advances in silicon technology, improvements in DSP
performance are being achieved by the exploitation of the
regular (i.e., repetitive) computations on data streams that
are present in signal processing algorithms, which are
different from the control-flow-driven computations that
characterize general-purpose applications. As a result,
contemporary DSPs focus on exploiting the natural

�Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/03/$5.00 © 2003 IBM

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

299

parallelism found in the applications by including features
such as parallel data and instruction memories,
simultaneous execution of multiple instructions (e.g.,
instruction-level parallelism, or ILP), simultaneous
execution of the same instruction on multiple data
elements (e.g., single-instruction multiple-data, or SIMD),
block-repeat operations, and so on [1]. These features are
exploited using mechanisms with much lower complexity
than those found in general-purpose processors, thereby
requiring lower power consumption.

Exploiting the multiplicity of features of a DSP in a
real-time environment, such as those in the digital
communications domain, has traditionally required
programming the DSPs in assembly language. However,
new applications are demanding not only higher signal
processing computing capabilities but also more complex
and diverse algorithms executed on the same processor,
all at the same time. For example, a handheld device is
expected to be able to simultaneously provide complex
communications functions as well as multimedia
applications such as MPEG-4. The rising complexity of the
applications, coupled with the demand for short time-to-
market, no longer tolerates programming only in assembly
language. Instead, DSPs are expected to be programmed
using a high-level language such as C [1, 2], like general-
purpose processors. As a result, the cornerstone of
contemporary digital communications is a new generation
of digital signal processors characterized by their power
efficiency as well as their improved programmability in a
high-level language.

Application space
There are several ways of characterizing the domains of
application for next-generation DSPs. One is to distinguish
between “client-end” applications and “network-end”
applications. Client-end applications include home
gateways, access routers, set-top boxes, wireless handsets,
games, and other handheld devices. Network-end
applications include digital subscriber line access
multiplexers (DSLAMs), voice-over-net (VoNet) gateways,
and wireless base-stations. Certain functions appear in
both of these application categories. For example,

● xDSL transceivers are contained in DSLAMs and also in
some home gateways, access routers, and set-top boxes.

● Wireless digital baseband functions are contained in
wireless base-stations and also in wireless handheld
devices.

● Speech coders are contained in VoNet gateways,
wireless base-stations, and almost all client-end devices.

One major difference between client-end and network-end
applications is the way in which integration of functions
leads to optimized solutions. Network-end applications

tend to be optimized by “horizontal” integration, i.e.,
the integration of many copies of identical or similar
functions. For example, a DSLAM integrates a large
number of similar, if not identical, xDSL transceivers,
while a VoNet gateway integrates a large number of
similar, if not identical, speech coders and echo cancelers.
In contrast, client-end applications tend to be optimized
by “vertical” integration, i.e., the integration of a variety
of different functions. For example, a home gateway may
integrate an xDSL transceiver, a wireless LAN transceiver,
a speech coder for voice-over-DSL, and some network
processing functions, whereas a third-generation (3G)
handset may integrate the wireless digital baseband, a
speech coder, and audio and MPEG-4 functionality.

Domains of application for next-generation DSPs can
also be characterized by factors that are limiting with
respect to their ability to satisfy application requirements.
In particular, applications can be characterized in the
following way:

● Power-bound applications. These are applications in
which the fundamental limiting factor is the power
available to support electronics, but performance
requirements (in terms of millions of instructions
executed per second, or MIPS) are also severe.
Examples include most battery-powered handheld
devices, notably 3G handsets. Note that both active
power and standby power are critical.

● Performance-bound applications. These are applications
in which the fundamental limiting factor is the
performance, i.e., the processing capability, of the DSP
cores. Examples include DSLAMs and 3G wireless base-
stations. Note that power is an important consideration
as well, since in some cases DSLAM and base-station
equipment is housed in small cabinets with limited
ventilation that are mounted outdoors.

● Memory-bound applications. These are applications in
which performance requirements are nontrivial, but the
limiting factor is the amount of memory required. A key
example is the VoNet gateway, where one DSP chip
may have the performance to support speech coders
for a large number of channels but the chip becomes
dominated by memory because the memory required
increases linearly with the number of channels.

● Area-bound applications. These are applications in which
performance requirements are relaxed, but the chip area
occupied by a DSP subsystem must be kept as small as
possible, usually for cost reasons. Examples include
certain client-end solutions that have become
commodities.

The foregoing discussion indicates that many key
applications impose severe power and performance

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

300

requirements on next-generation DSPs. Indeed, it appears
reasonable to define a figure of merit for DSPs that
combines performance and power, as performance per
unit power [e.g., MIPS per mW, multiply–accumulates
(MACs) per second per mW].

A common thread that runs through all of the
applications mentioned above is the ongoing development
of new algorithms. A variety of new speech-compression
techniques are being investigated by ITU-T, 3GPP, and
other standards bodies. New modulation formats, such as
discrete multitone (DMT) and orthogonal frequency-
division multiplexing (OFDM), have been identified and
are being implemented for applications such as xDSL and
wireless LAN. Channel coding methods that lead to near-
Shannon-limit throughput, such as turbo codes and low-
density parity-check (LDPC) codes, have been discovered
(or rediscovered) and are being considered for use in
xDSL and 3G wireless. For implementers of systems to
take advantage of these developments, time-to-market is
critical. Thus, efficient implementations of these and other
algorithms on DSP platforms must be realizable quickly,
which means with an absolute minimum of hand-coding or
hand-optimization performed in assembly language. In
other words, a successful next-generation DSP must be
“compiler-friendly”; ideally, code generated by a compiler
should approach the performance and compactness of
hand-written and optimized assembly code.

DSP architecture space
The characteristics of the applications and environments
described above represent the target of most current
efforts in the design of digital signal processors. In this
context, it is interesting to inspect the architecture
alternatives that are being pursued to fulfill those
requirements. Some of the most distinctive of such
features are listed in Table 1. For example,

● The StarCore SC140 [3] is a multiple-issue, statically
scheduled processor with a centralized heterogeneous
register space composed of data and address registers;
dedicated functional units use the registers of its
corresponding type (data units and address units,
respectively). Parallelism is achieved by a combination
of multiple instructions operating on different registers,
with the ability to allocate multiple data items on a
single register [very-long-instruction words (VLIW)
and SIMD with packed data].

● The Texas Instruments C6x [4] is also a multiple-issue,
statically scheduled processor with a homogeneous
register space partitioned among two clusters, in which
heterogeneous functional units use only the registers
available within the cluster. As in SC140, data
parallelism is also achieved by a combination of multiple
instructions operating on different registers, with the

Table 1 Distinctive features characterizing contemporary DSPs.

Feature Alternatives

Number of instructions issued Single-issue
Multiple-issue

Instruction scheduling Statically scheduled
Dynamically scheduled

Register space Centralized
Partitioned/replicated
Homogeneous
Heterogeneous

Pipeline hazards Interlocked
Non-interlocked

Organization of functional units Global to all registers
Clustered
Homogeneous
Heterogeneous

Data parallelism Single instruction on different registers (SIMD)
Single instruction on subregisters (SIMD with packed data)
Multiple instructions on different registers (VLIW)
Multiple instructions on subregisters (VLIW and SIMD

with packed data)
Multiple instructions on different registers (VLIW), in

conjunction with single instruction on different registers
(SIMD with disjoint data)

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

301

ability to allocate multiple data items on a single
register (VLIW and SIMD with packed data).

● The Analog Devices Sharc** DSP [5] is another
multiple-issue, statically scheduled processor with a
heterogeneous register space composed of data and
address registers, which is further partitioned among
heterogeneous clusters (data clusters and address
clusters). Functional units use only the registers
available within each cluster. Parallelism is achieved in
the same way as in SC140 and C6x, namely through a
combination of VLIW and SIMD with packed data.

Power-aware co-design methodology
The development of a power-efficient microprocessor
that meets performance requirements at minimum power
dissipation requires that power consumption be considered
at early stages in the design, particularly during the
definition of the instruction set architecture (ISA) and
microarchitecture. At these stages, the potential for power
savings is more significant than at lower-level stages, and
the opportunity for making power–performance tradeoffs
is the largest, because even minor modifications may
result in significant changes to the power–performance
characteristics of a design [6 –11]. Drawing a conclusion
about the effectiveness of some architectural feature
requires the evaluation of its effect on the architectural
speed of the processor (instructions per cycle, IPC), its
power, clocking rate, and cost. Certain features that
improve the architectural speed may be very costly in
terms of power dissipation, whereas others may affect
the clocking rate.

Power–performance metrics of the form MIPS�/watt
[6 –11] are difficult to use for evaluating the energy
efficiency of architectural features at early stages of
design, for two reasons:

● Absolute power and performance data are typically
unavailable.

● It is hard to reach an agreement between architects and
circuit designers on the appropriate value of � [11].

Consequently, to be able to perform a consistent power-
efficiency analysis, a new power–performance metric is
needed that combines relative changes in architectural
speed, dynamic instruction count, average energy
dissipated per executed instruction, and maximum clocking
rate of the processor, resulting from design modifications
at the architectural and microarchitectural levels. If an
architectural feature improves such a power–performance
metric, it would be considered energy-efficient according
to the metric; that is, it results in a better design point
in the power–performance optimization space.

Scope of the research
The observations summarized above are the basis for the
eLite DSP project, an ongoing effort within the IBM
Communications Research and Development Center,
which is advancing the state of the art in power-efficient
high-performance programmable DSP architectures as
well as in methodologies for such designs. This effort
grows from the understanding of the importance of an
architecture that provides a balanced optimization
of programmability in high-level language, power
consumption, performance, development cost (hardware
and software), and production cost (chip and system).
To achieve these usually conflicting optimization
goals, the design of the eLite DSP architecture and its
implementations covers aspects ranging from algorithms,
applications, and a high-level language compiler, down to
circuit-level technology. The resulting architecture is a
multiple-issue statically scheduled processor with a
heterogeneous set of register files spread throughout
specialized units. Parallelism is achieved by executing
multiple instructions simultaneously (VLIW), in
conjunction with single instructions operating on different
registers from a large multi-port register file (single-
instruction multiple disjoint data, SIMdD), as well as
single instructions operating on packed data from a
register file with few ports (single-instruction multiple
packed data, SIMpD). A novel indirect register-addressing
mechanism enables the dynamic composition of vectors
with four elements selected from the large multi-port
register file.

In the rest of this paper, we describe how all of the
aspects listed above have influenced the design choices
made in the eLite DSP architecture. In Section 2, we
describe the co-design methodology applied to the
eLite DSP. In Section 3, we provide a description of the
architecture, and Section 4 gives a brief description of the
organization of the processor. In Section 5 we indicate
the salient features of the associated optimizing compiler.
Section 6 presents a summary of the tools and architecture
simulator used for software development and architecture
evaluation, including a description of the features that
enable their automatic generation. Examples of kernels
from representative algorithms coded for this architecture
are illustrated in Section 7. In Section 8 we summarize the
fundamental concepts behind the power–performance
evaluation methodology deployed. Section 9 provides an
example of the power–performance evaluations carried
out to resolve design tradeoffs. Final comments and
conclusions are given in Section 10. The formal derivation
of the power–performance optimization methodology and
metric is given in the Appendix.

Unique research contributions arising from the eLite
DSP include more than just the architecture and the
processor. Other aspects are the power–performance

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

302

optimization methodology at the architecture level
[12, 13]; new circuit techniques for ultralow-power
implementations, as described in [14]; important compiler
optimizations for DSP operations; and system-level design
experience.

2. Application/architecture/compiler/
implementation co-design
The co-design and evaluation methodology used in
the development of eLite has been built around the
interaction among the multiple dimensions of the problem,
as depicted in Figure 1. At the center of the interacting
components [Figure 1(a)] lies a description of the
architecture, represented by the instruction set
architecture (ISA) database, which reflects the current
view of the architecture at a given point in time. This
database drives all of the components of the environment,
which range from code generation and performance
analysis [the integrated development environment, IDE,
in Figure 1(a)], to analysis from logic implementation
and circuit design (the block labeled “Hardware design”
in the same figure).

The processes by which these components are exercised
are illustrated in Figure 1(b). The exploration path is
characterized by a fast turnaround time, wherein the
focus of the evaluation is on instruction-set architecture
performance measures and estimates of power–performance
tradeoffs. The evaluation path is characterized by longer
turnaround time but includes detailed analysis from
hardware design and implementation. As their names
imply, each path has a well-defined objective. The

exploration path is used to evaluate proposed features and
changes by modifying the different components of the
environment as necessary and performing cycle-accurate
simulation, although the simulation does not include
all of the details of the implementation. In contrast,
the evaluation path focuses on providing accurate
performance and power consumption metrics, as
obtained from detailed description of the hardware
elements in an implementation.

A set of benchmarks has been used to optimize the
eLite architecture according to a power–performance
metric. This set was chosen on the basis of the following
criteria:

● Relevance to the target applications, mainly wireless
and line communication, voice applications, and media
applications.

● Moderate-size functions.
● Coverage of the various units as well as system issues

such as interrupts.

The set of benchmarks includes simple and very
common functions such as finite impulse response (FIR)
filters, infinite impulse response (IIR) filters, vector add,
vector max, and control code. The benchmark suite also
includes more complex functions such as fast Fourier
transform (FFT), interpolator and decimator, inverse
discrete cosine transform (2D-IDCT), and Viterbi
decoder, among others. An instruction-set simulator was
used for each version of the architecture to analyze the
performance. Conclusions were made about areas in which

Figure 1

Co-development interactions and design methodology. FPGA = field-programmable gate array.

BenchmarksSystem and

applications

Assembly

code

Assembly tools

Assembler

Assembly code

Binary code

Stats

Stats

Simulator

Performance data

Compiler

Compiler

Architecture

Arch

simulator

Power/

performance

tradeoffs

Arch

specifications

uArch

uArch

specifications

VHDL

VHDL

description

Circuits

Synthesis and

circuit designFPGA

Hardware

design

Specification

ISA database

IDE

Evaluation Exploration

C code

Benchmarks

(a) (b)

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

303

improvements to the architecture were needed. The
decision on which solution should be adopted for a
particular issue was made according to the power–
performance methodology described later. This process
was repeated for each version of the architecture,
leading to significant performance improvement each
time while maintaining a modest increase in power
consumption and chip size.

3. Processor architecture
We now describe the major elements of the eLite DSP
architecture, which is characterized by the following
features:

● Exploitation of instruction-level parallelism through
multiple independent instructions packed as long-
instruction words (LIWs), exploitation of data
parallelism through single-instruction multiple disjoint
data on dynamically composed vectors (SIMdD
operations), and exploitation of data parallelism through
single-instruction multiple data on packed vectors
(SIMpD operations).

● A heterogeneous clustered architecture, with specialized
functional units and register files per cluster tuned to
specific data types and computing requirements, with
vector processing units interconnected in cascaded
manner.

● A large number of internal registers, scalar and vector
type, including a novel indirect register-addressing

mechanism that enables the dynamic composition of
vectors with four elements.

● Amenability as target for an optimizing compiler
through an orthogonal instruction set based on explicit
use of uniform register files, thereby enabling efficient
programming in a high-level language.

● Suitability for low-power implementations through the
replacement of run-time features by practices performed
at code-generation time, in addition to well-known
schemes such as shutting down or blocking the activity
of unused registers/logic/functional units. Examples
include static scheduling of instructions and static
vectorization of operations, the use of predicated
instructions, control of visible latencies (e.g., an
“exposed pipeline” model), limited number of ports in
register files, specialized processing units, constrained
paths to functional units and memories, and other
related features that are visible during code generation.

Because of its intended use as a target for an optimizing
compiler and the reduction of hardware resources for the
detection of hazards, the code executed in an eLite
processor is expected to be generated mostly by an
optimizing compiler. Such a compiler is required to ensure
that the constraints imposed on the code are properly
fulfilled. Code can also be generated and optimized at the
assembly language level, of course, and tools that support
such a level have also been developed. Assembly code can
be mixed with code generated by a compiler.

Figure 2 is a logical representation of an eLite DSP
processor, which consists of the following units:

● Branch unit (BU): Generates the storage address for the
next long instruction to be fetched from memory, either
sequential addressing or branches, and performs logic
operations on eight single-bit condition registers.

● Integer unit (IU): Performs operations on data in 16
integer registers.

● Storage access unit (AU): Interacts with the data storage
to transfer data between internal registers and storage,
and performs operations on data in 16 address registers,
which are used to address storage.

● Vector pointer unit (VPU): Performs operations on 16
vector pointer registers, which are used to access the
contents of vector element registers.

● Vector element unit (VEU): Performs operations on data
stored in vector element registers. The number of these
registers is implementation-dependent, ranging from 64
to 4096.

● Vector accumulator unit (VAU): Performs operations
on data in 16 vector accumulator registers, including
reduction operations on the elements of a vector.

Figure 2

Block diagram of the eLite DSP architecture.

Instruction

storage
B

ra
n
c
h
 u

n
it

In
te

g
e
r

u
n
it

S
to

ra
g
e
 a

c
c
e
ss

u
n
it

V
e
c
to

r
p
o
in

te
r

u
n
it

V
e
c
to

r
e
le

m
e
n
t

u
n
it

V
e
c
to

r

a
c
c
u
m

u
la

to
r

u
n
it

3
2

6
4

Scalar units Vector units

Condition register

logic (8 bits)

Vector mask register

logic (8 � 4 bits)

X-bus (64 bits)

Data storage

4
 �

 N
v
p

Memory data bus (data-in, data-out: 64 bits each)

32

64

64

64 64

6464

32 32

32

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

304

The integer unit and storage access unit correspond to
scalar units, operating on 32-bit integer data. In contrast,
the vector element unit and the vector accumulator unit
operate on four-element vectors in SIMD fashion (16-bit
and 40-bit, respectively), containing fractional or integer
data.

Program execution
A program in the eLite DSP architecture consists of a
sequence of long-instruction words, each containing a
four-bit prefix (PX) and one, two, or three instructions, as
depicted in Figure 3. A long instruction is the minimum
unit of program addressing possible, represented in
memory as a 64-bit entity. Branching into an instruction
other than the first instruction of a LIW is not possible.
A processor fetches LIWs from instruction storage for
execution; the instructions contained in a LIW are
dispatched for either simultaneous or serial execution,
as specified in the LIW prefix.

All instructions, regardless of their length, contain a
fixed-size opcode in bits 0:7 specifying the operation to be
performed. Some instructions specify an expanded opcode
field in bits 18:19. Instructions of 30-bit length specify

additional opcode information in bits 28:29. These formats
are illustrated in Figure 4.

As in RISC processors, no instruction in the eLite
architecture can perform a computational operation
on data in memory, and no instruction other than
store instructions can modify storage. To use a storage
operand in a computation, the contents of storage must
first be loaded into a register, and the operation is
performed on the contents of the register. Similarly, to
use a storage operand in a computation and then modify
the same or another storage location, the contents of
storage must be loaded into a register, modified, and then
stored back to the target location. Direct memory access
(DMA) operations may alter the storage contents
independently.

The preferred programming model (Figure 5) consists
of loading many data elements from storage into the
registers, in particular into the vector element registers
(VERs) and vector accumulator registers (VARs), and
then operating on the contents of the registers with few
intervening accesses to storage. VERs are accessed
indirectly through vector pointer registers (VPRs),
so that vectors are dynamically composed from four

0 4 24 44 54 60 63

PX OP1H (20 bits) OP2H (20 bits) OP1L (10 bits) OP2L (10 bits)

PX OP1 (20 bits) OP2 (20 bits) OP3 (20 bits)

PX OP1 (20 bits) OP2H (20 bits) OP3 (16 bits) OP2L

 (4 bits)

OP1 (60 bits)PX

Figure 3

Long-instruction-word (LIW) formats.

Figure 4

Instruction format.

0 8 12 16 18 20 24 28 29

30-bit format

Opcode

Opcode

Opcode

Opcode

Opcode

Src/Dst

Dst

Dst

Dst

Dst

Src

Src

Src

Src

Src

Src

16-bit format

20-bit format

20-bit format with

 expanded opcode

30-bit format with

 expanded opcode

XO1

XO1

XO2Immed Pred

XO2Pred

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

305

arbitrary VERs (SIMdD operation). Every vector element
instruction specifies one or two VPRs, each of which in
turn specifies four VERs used by the instruction. In
contrast, four sets of VARs, each containing 40-bit
elements, are used as operands to vector accumulator
unit instructions (SIMpD operation). The elements from
VARs, in conjunction with a reduction register, are also
used as operands to a special reduction unit.

Vector units are characterized by a cascaded SIMD
programming model: 16-bit data is loaded from adjacent
memory locations into arbitrary locations in the VER file,
16-bit operations are performed on data from arbitrary
locations within the VER (SIMdD), and the results are
placed in the 4 � 40-bit VAR file, in a packed manner (in
a single register). Also, 32-bit data is loaded directly from
memory, in packed form, into the VAR, operations are
performed on packed data read from VAR (SIMpD), and
the results are placed in the same register file. Packed
data can be transferred from the VAR file into the 16-bit
VER file with arbitrary placement, after a suitable size-
reduction operation, or it can be placed in adjacent

memory locations. Because of the varying size, data is
allocated to units according to the natural data type
(size) throughout the computations.

Instructions are statically scheduled, taking into
consideration their utilization of resources throughout the
pipeline and the data dependencies with their dependent
instructions (e.g., the “exposed pipeline” execution
model). The execution pipelines are presented in Table 2.
Most instructions are processed in five stages, but vector
element instructions use one extra stage to read the VPRs
and the succeeding stage to read the VERs, whereas
memory instructions use dedicated stages for transferring
the address and data from the processor to the memory
subsystem. All instructions that are dispatched in the
same cycle read the contents of the source registers at the
same time, with the exception of VERs, which are read in
the following cycle after reading the associated VPRs. An
instruction completes execution when its results are placed
in the destination registers; instructions complete
execution according to their individual latencies.
Instructions contained wholly within a functional unit
(FU) have the same latency, with the exception of
branches that are resolved earlier; instructions in
different units, or instructions that place the result
on a register in a different unit, may exhibit different
latencies.

Instructions other than vector instructions can be
predicated by specifying a condition that is evaluated
dynamically, at execution time. The predicate is specified
in a condition register. An instruction whose predicate
evaluates to false is not completed; such an instruction is
simply discarded. Vector instructions are not predicated as
a whole; instead, each individual operation within a vector
instruction can be executed conditionally (i.e., predicated)
under control of a mask which is evaluated dynamically.
The mask is specified in a vector mask register (VMR).

Vector units
The most salient computing resources within the eLite
architecture are the three types of vector units, depicted
in Figure 6. All of these units can operate in parallel.

Source operands for 16-bit vector element arithmetic
and logic instructions (16-bit datapath) always originate
from the VER file. The destination of all 16-bit vector

Table 2 Execution pipelines.

1 2 3 4 5 6 7 8

Base IF DEC RD EX WR
Other unit target IF DEC RD EX XFR WR
Vector element

instructions
IF DEC RD_VP RD_VE EX1 EX2 WR

Load instructions IF DEC RD AG XFR1 RD_M XFR2 WR

Figure 5

Vector programming model.

160
160

64

64

160160160

Data storage

Vector

element

registers

Vector

pointer

unit

16-bit units

40-bit units

Vector

accumulator registers

4 � Nvp

4 � 16 4 � 16

Arbitrary elements

Packed elements

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

306

element operations is a VAR (40-bit result). Each slice
within the 16-bit datapath consists of a multiplier and an
ALU that performs arithmetic, logic, shift, and select
operations on the contents of VERs.

Every access to the VER file is performed indirectly
through a VPR. Each VPR contains four elements which
are used as indexes to the VER file, allowing access to
four independent VERs. The VPRs can be automatically
updated when used to access VERs, and can automatically
implement “circular addressing” within a range of the
VER file.

VARs are used as source and destination for 40-bit
vector accumulator arithmetic and logic instructions
(40-bit datapath). VARs are also used as destinations for
16-bit vector operations, as well as source operands in
instructions to convert data from 40-bit to 16-bit whose
result is placed in VERs. Regardless of the instruction
type, VARs are accessed as 40-bit quantities. In the case
of conversion to 16-bit, saturation and rounding rules
can be applied.

Since a LIW may contain up to three instructions,
the architecture supports “3-wide” instruction-level
parallelism. Some of these instructions are compounded
instructions which specify more than one operation.
Moreover, vector instructions specify operations on
vectors with four elements. As a result, the total parallel
computing capability available in a single LIW is a large
number of basic operations. For example,

● A single LIW may contain a load vector with update
instruction, a vector element multiply instruction, and
a vector accumulator add instruction, with each one of
them producing as a result a vector with four elements;
that is, four operations each, for a total of twelve
operations.

● The load vector with update instruction implicitly
specifies the automatic update of the address register
and the elements of the VPR used by the instruction,
including support for circular addressing on both, adding
another five operations to the set performed within the
LIW.

● The vector multiply instruction implicitly specifies the
update of the two VPRs used to access the VERs
containing the operands for the instruction, including
circular addressing within the VER file, adding two sets
of four update operations to the computations specified
in the LIW.

Consequently, such a single LIW specifies transformations
on 25 data items, for a total of 25 basic operations. These
operations comprise one of the most common functions in
signal processing—a convolution.

4. Hardware design
A block diagram of a prototype implementation of eLite
is shown in Figure 7, depicting the scalar functional units
(BU, IU, AU) and vector functional units (VPU, VEU,
VAU). As already stated, each functional unit houses its
corresponding register file. A shared 64-bit bus, called
the X-bus, connects all functional units, allowing data
movement among the various register files.

Figure 6

Vector units.

FU FU FU FUFU FU FU FUFU FU FU

Vector

pointer

register

(16 � 4b)

Vector

element

register

Vector

accumulator

register

(16 � 4 � 40b)

Vector

accumulator

unit

Vector

pointer

unit

Vector

mask register

(8 � 4b)

V
e
c
to

r
e
le

m
e
n
t

re
g
is

te
r

(5
1
2
 �

 1
6
b
)

2

3

4 4

4

2

2

2 2 2 2 2

16-bit

datapath

40-bit

datapath

Figure 7

Block diagram of eLite implementation.

IMEM

IMEM address

DMEM address

DEC

LIW

DMEM

BIU

BU IU AU VPU VEU VAU

40

40

40

40

64

64

64

64

32

4

4

4

R0 RA

R1 RB

R2 W

E
X

T
_
IF

SD

X-bus

ID

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

307

In Figure 7, instructions flow from top to bottom. The
on-chip instruction memory (IMEM) holds the long-
instruction words, each 64 bits wide. A LIW is decoded
every cycle; the prefix (PX) field indicates how to interpret
the LIW. The information in the prefix field includes
parallel versus serialized execution, as well as the number
and length of the individual instructions packed within the
LIW. The decoder interprets and dispatches the individual
instructions to their respective functional units along with
the specified operands. In the following pipeline stages,
each functional unit that received a valid instruction reads
the operands from the register file in the corresponding
unit, performs the required function, and writes the results
to the destination register file.

Access to the data memory (DMEM) is accomplished
through a common 64-bit-wide data bus (SD-bus). All
functional units (except BU) can read data from or write
data to the data memory. Memory addresses for all load-
and-store instructions are generated in the AU. Scalar
functional units connect to only the least significant half
of the SD bus, whereas the vector functional units use
all 64 bits of the bus.

In addition to the common buses, the vector functional
units use several point-to-point connections to communicate
among themselves. In particular, the VPU sends three sets
of four indices to the read and write ports of the vector
element file in the VEU. Furthermore, the VEU sends
its execution results over four connections, each 40 bits
wide, to be placed in the VAR file. Moving data back
from the vector accumulator file to the vector element
file in the VEU takes place on another dedicated
64-bit-wide connection, as shown in Figure 7. The
aforementioned point-to-point connections are used
frequently enough, and have enough of an impact on the
overall performance, to justify adding them as separate
connections.

The bus interface unit (BIU) handles the communications
with the external world, including loading instructions
into the internal memory, transferring data to and from
the data memory, reading various processor state
information, and handling external interrupt requests.
The decoder (DEC) handles the arbitration between
the internal units and the BIU for the data memory
accesses, and the arbitration between its own requests
and the BIU’s requests for accessing the instruction
memory.

5. Optimizing compiler
The eLite DSP compiler has evolved jointly with the eLite
DSP architecture, guided by the performance evaluation
of characteristic benchmarks in the intended application
domain. Our primary goals are

1. To develop a compiler that generates efficient code
for exploiting the data-level and instruction-level
parallelism capabilities in the processor.

2. To make the processor programmable in the C
language without resorting to any architecture-specific
language extensions.

In this section, we describe some of the important issues
that we had to address while designing the optimizing
compiler for the eLite DSP architecture.

DSP compilation: Challenges and solutions
The basic data type in DSPs for digital communications is
a saturating fractional fixed-point representation, whereas
C-language constructs define integer modulo arithmetic.
The traditional approach taken by compilers to deal with
this mismatch between DSP data types and C-language
constructs is based on the use of intrinsics [15, 16]
and/or C-language extensions [17, 18]. Intrinsics allow a
programmer to explicitly specify certain instructions in the
architecture which cannot be easily described in a high-
level language such as C. The use of intrinsics and
C-language extensions suffers from disadvantages such
as nonportable code which cannot be emulated easily
on multiple platforms, the use of saturating data
types, multiple memory spaces, and the need for explicit
specification of data parallelism. While intrinsics can
help in reducing complexity by providing “hints” to the
instruction-selection process performed by a compiler, we
believe that this is a step backward with respect to the use
of portable high-level languages to program DSPs.

DSP applications and architectures are getting larger
and more complex. We believe that DSP applications in
the future will be programmed in standard high-level
languages such as C, akin to writing programs for modern
RISC microprocessors; consequently, DSPs should require
a minimal amount of assembly language programming or
intrinsic libraries. Our approach to this problem is based
on a novel technique we refer to as semantics analysis,
which essentially tries to search for and infer the meaning
of sequences of C-language constructs used for typical
DSP functions such as saturated arithmetic or circular
addressing. The programmer should follow a few basic
guidelines in order to simplify this inference process,
enabling the compiler to generate code using the
specialized DSP primitives available in the architecture.

The compiler also has to recognize code sequences
that can be vectorized in order to efficiently exploit data
parallelism in the vector units. It must generate efficient
code by minimizing the movement of data between
functionally partitioned register files. The compiler
must also address issues such as dealing with 40-bit
accumulators, circular buffers, explicit bypasses,

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

308

exposed pipeline latencies, delayed branches, and
pipeline resource hazards.

Another important issue in a compiler for a DSP is the
size of the resulting code, in view of the relatively small
on-chip memory available in embedded processors. Since
the eLite DSP architecture has a short LIW, there is no
need for speculative code motion to fill instruction slots.
Moreover, its serialization capabilities reduce the need
to pad LIWs with no-op instructions. To increase code
density even further, the compiler leverages architectural
features such as SIMD instructions, and combines
instructions of different widths.

Compiler implementation
The eLite DSP compiler is based on the IBM VLIW
Research Compiler originally designed for tree-VLIW
processors [19, 20]. This compiler uses an enhanced form
of dependence flow graph (DFG) [21] for its internal
representation, and also extensively uses static single
assignment (SSA) [22] and reverse-SSA forms. It has a
repertoire of standard SSA-based optimizations, and
provides a rich collection of functions/macros for compiler
development. Among other features, the compiler provides
an excellent platform for developing and exploring new
compilation techniques. (See [23, 24] for more details
on the IBM VLIW Research Compiler.)

New optimizations and enhancements were introduced
to the compiler in order to generate efficient code for the
eLite DSP architecture. Figure 8 shows the structure of
the compiler. After transforming the dependence-flow
graph through a number of optimizations, a novel
vectorization phase attempts to identify vectorizable code
sequences and updates the DFG with a vectorized version
of loops. Separating vectorization from instruction
scheduling and register allocation has advantages such
as reducing the complexity of the code generator, and
offering flexibility in scheduling and software-pipelining
vectorized code and scalar code. The vectorized code is
scheduled and register-allocated before the final assembly
code is emitted.

The compiler also makes use of predication to collapse
small blocks of conditionally executed code, thus
eliminating branches and their overhead. Among other
optimizations, the compiler does function in-lining,
software-pipelining, synthetic branch-frequency-based
optimizations, and interprocedural analysis.

Instruction selection
The internal representation of the compiler uses primitive
operations similar to those found in RISC processors.
Optimizations prior to scheduling and register allocation
are performed on a DFG with such operations as nodes.
The instruction selector provides a binding between such
RISC operations and instructions in the eLite architecture.

Instruction selection is carried out along with instruction
scheduling based on a number of factors such as data type
and size of operands, automatic update of registers, and
resource requirements.

Vectorization
A vectorization phase has been developed [25] to make
efficient use of the SIMD instructions and the unique
VER file of the eLite DSP. The VER is modeled as a
compiler-controlled memory which can be indirectly
addressed using vector pointer registers. Because all VER
allocations are done by the compiler, complete aliasing
information for VER accesses is available. The compiler
takes advantage of this fact by applying aggressive
memory-related optimizations.

Our high-level vectorization scheme is similar to the
unroll-and-jam technique [26]—the loop is unrolled by a
factor of 4, and scalar operations are replaced with their
SIMD versions. In some cases, the compiler performs
additional optimizations, such as preloading data into the
VER before the loop to eliminate redundant loads. An
important stage of vectorization is setting up the vector
pointers. Flexibility of VER access through vector pointers
allows efficient compilation of computations that involve
nonconsecutive data access patterns. This aggressive
vectorization optimization is based on a set of innovative
analyses, on top of the standard vectorization tests such as
those presented in [27]. The compiler analyzes memory
access patterns in order to effectively vectorize loads
and stores within each iteration. Loop context analysis
eliminates memory loads and stores across iterations and
between different loops. Additional transformations which
expose more parallelism, such as loop transformations
[28, 29], are currently under development.

Figure 8

Block diagram of the eLite DSP compiler.

Memory disambiguation,

vectorization,

predication,

loop-optimizations,

scheduling/software

pipelining, register

allocation, and

peephole optimizations

Front-end optimizations

and inlining

Resource

model

Interprocedure

optimizations

IS
A

 d
a
ta

b
a
se

C program

eLite DSP assembly code

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

309

Functional partitioning of register files
The register name space in the eLite DSP architecture
is functionally partitioned into multiple register files
associated with respective functional units. This results in
a set of register types such as the integer register (IR),
address register (AR), vector element register (VER),
and vector accumulator register (VAR). The compiler
is responsible for assigning each SSA definition (Def)
to a specific register file/type, and for inserting explicit
instructions moving the data between different register
files. Given an SSA Def, the operation defining it, and the
operations using it, the choice of a register file is guided
by the following considerations:

1. Availability of operations in different functional units.
2. Performance issues, such as pipeline latencies of

instructions or possibilities of VER reuse.

The partitioning process based on the above features is
augmented with an efficient min-cut graph-partitioning-
based scheme that minimizes the communication between
the register files in order to reduce the number of move
instructions [30].

Resource modeling
The primary goal of the resource model in a compiler
is one of providing an abstract view of the processor to
the machine-dependent optimization routines. A cycle-
accurate model of the processor has been developed to
model pipeline resources, register file ports, and the
interconnect bus. We have also developed some low-
overhead techniques to model nonuniform port access
delays resulting from microarchitecture techniques that
reduce power and hardware complexity, such as restricted
bypasses. In addition, the resource model provides
internal-to-ISA instruction-mapping information for
the instruction selector, resource conflict checking and
reservation functions required during scheduling, and
register Def/Use timing information required during
register allocation. The entire resource model generation
is automated and table-driven, based on machine-
generated architectural descriptions shared by other
tools, which also helps reduce the turnaround time
for architectural exploration.

Scheduling and register allocation
Generating efficient code for long noninterlocked pipelines
is a considerable challenge in itself. When scheduling
instructions, the compiler must have accurate timing
information about the access to data (read and write)
and to the shared resources used by the instructions.
Conservative bounds are used while compiling certain
regions of code (e.g., across calls) where complete timing
information is not available, which in turn prevent the

compiler from carrying out aggressive scheduling techniques,
such as scheduling instructions in the shadow of other
instructions, in those regions.

The code generator considers reducing the code size as
an objective in addition to minimizing the schedule length.
We use several new techniques for scheduling and cycle-
level register allocation. These techniques include schemes
for scheduling instructions in the branch delay slots and
instruction shadows, for scheduling predicated code, and
for software pipelining. The detailed description of these
optimizations is beyond the scope of this paper.

Interprocedural optimizations
The compiler performs interprocedural analysis for
reducing the calling convention overhead by allowing the
callee to modify the calling conventions according to the
intended usage of the parameters. Other interprocedural
optimizations being developed include schemes for sharing
VER among procedures and for obtaining better bounds
on resource utilization at procedure calls and returns.

We believe that the eLite DSP compiler, with the help
of its powerful optimizations and further tuning, can
generate executable code from source code written in
C, with performance and code size comparable to hand-
optimized assembly code. Preliminary results show that,
for a set of signal-processing kernels, the compiler
generates vectorized code of performance comparable
(well within a factor of 2) to that of carefully hand-coded
assembly.

6. Simulation and performance evaluation
environment
Software development is an important part of developing
any processor. In this section, we describe the software
development tools that have been tailored for the research
on the eLite DSP architecture.

The architecture specification is maintained in the
centralized ISA database. This database contains all
of the information describing the architecture, including
instruction formats, operands for each instruction, and a
machine-readable pseudocode that describes the behavior
of each instruction at each stage of the pipeline. All of the
tools have been built as semigeneric programs, providing a
framework that takes most of its specific details from a set
of configuration files automatically generated from the
ISA database. The contents of the database reflect the
attributes and behavior of the architecture, and the tools
automatically track any changes to the architecture.

Binary code generation
The binary form of an instruction is a sequence of bits
composed of a concatenation of constants and the binary
encoding of the instruction operands (parameters). The
instructions are bundled together to make long-instruction

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

310

words (LIWs). Finally, the sequence of LIWs is the output
program code. The way bits are arranged in an instruction
or LIW is often nontrivial, requiring a mechanism to
insert (when assembling) and extract (when disassembling)
information from the instruction or LIW. Since all of the
details regarding the position of the fields are described in
the ISA database, it is possible to automatically generate
code to handle these insertions and extractions. For this
purpose, the concept of inserters has been developed. An
inserter is an abstract interface that provides the two basic
operations insert and extract. Given a location within the
program (e.g., LIW offset) and a value, the inserter places
the value in the binary code at the given location. This
concept is useful for the basic case of inserting the value
of an operand into an instruction, up to inserting a whole
instruction into the code section of the output program.
Inserters are also useful for late binding of external
symbols at link time.

The instruction syntax inside the tools is based on a
free-form format string containing operand fields and any
delimiting text. This approach permits custom formats to
be set for various instructions without any modification
to the assembler source. For example, an integer add
instruction configuration is as follows: {“iadd”,
“OP�0�10”, “$(RT),$(RA),$(RB)”}. A typical use
of this format would be something like iadd r1,r2,r3.
However, it can easily be changed to iadd r1�r2�r3 by
simply replacing the commas in the format string with the
appropriate symbol, such as “$(RT)�$(RA)�$(RB)”.

Conflict detection
The eLite DSP architecture has an exposed pipeline,
thereby assigning to the compiler/programmer the
responsibility of resolving data dependencies and resource
conflicts in the program. The presence of instruction-level
parallelism, combined with the pipeline latencies, makes
this task quite difficult for the assembly-level programmer.
A special tool was developed to help in this domain; this
tool scans the assembly code, detecting data dependencies
and machine resource conflicts. The tool is integrated into
the development environment user interface, allowing the
assembly-level programmer to visualize the conflicts in the
source code.

Instruction set architecture simulator
Just like the machine code generation tools, the
instruction set architecture (ISA) simulator is closely
connected to the ISA database. Each instruction in the
database contains a formal (machine-readable) definition
of the behavior of the instruction, and the simulator
guarantees that this behavior is kept and simulation
results are consistent with expected results. As in the case
of the operands in the assembler, a preprocessing program
goes over the concise behavior information of the

instructions and produces source code that is compiled
into the simulator.

The instruction behavior description contains a local
state for the instruction and a set of events describing
what the instruction does at the different stages of the
pipeline. The ISA simulator has an additional state for
each instruction instance used for storing local temporary
variables. This allows the instructions to be built in a
modular fashion. There is, of course, a shared state of
the machine, in the form of register files and memory.
This state is accessed indirectly via a set of functions
representing the hardware ports used to access these
resources in the hardware implementation.

The event behavior code of the instruction is source
code (C�� in this case) that operates on the local
variables and the resource functions (ports) to perform
its task. An event can be either a hardware-related event,
such as performing the operations that are associated with
a specific cycle in the execution of the instruction, or a
software event artificially added to the ISA database as
a function to help it perform its duties.

An example of the implementation of a simple
instruction in the simulator is as follows:

[iadd]

Int32 t,a,b;

3: Ira(RA,a);

Irb(RB,b);

4: t�a�b;

5: Iwp(RT,t);

The first line contains the instruction mnemonic in
square brackets. The second line describes the local state
of the instruction as a set of three 32-bit integers. Each
of the numbers followed by a colon indicates that the
following lines of code are associated with the execution
cycle indicated by the number. In this example, both
source operands are read in cycle 3 into local variables,
using the integer register file ports Ira, Irb. The
operands are added in cycle 4, and the result is written
into the register file in cycle 5 through the port Iwp.

During run-time, the simulator loads the binary code
of the application program. It then decodes instructions
according to the ISA specification. The instruction code, as
imported from the database, is then run one cycle at a time,
allowing the instruction to perform its duties. Since the
simulator implements the pipeline stages, there are normally
several instructions in flight, each in its appropriate stage.

Instructions are not the only part of the ISA simulator
that contains automatically generated code. The machine
state, in the form of register files and memory banks, is
also specified in a concise manner in a configuration file;
source code is generated from the file using a preprocessing
program. Read and write ports that access the various
register files are also created in a similar fashion.

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

311

7. Programming examples
We now provide two examples of kernels from representative
applications in the digital communications domain coded
for the eLite DSP architecture.

Block FIR
The block finite impulse response (FIR) filter performs
filtering of speech signals in modern voice coders such as
the ETSI GSM EFR/AMR or ITU G.729 [31–33]. FIR
filters are also used in many other signal processing areas,
such as communications and echo-cancellation applications,
to name just a few.

In the FIR algorithm, the filter coefficients are denoted
h(m), for m � 0, . . . , M � 1, where M denotes the filter
length. Typical values for M are 10 to 16 for voice-coding
applications, and several hundreds or more in echo-
cancellation applications. The input sequence is denoted
x(n), and the output sequence is denoted y(n). The
mathematical relationship among these signals in the
time domain is

y�n� � �
i�0

M�1

h�i� x�n � i�.

Usually the output y(n) is needed for several values of
n, so several outputs may be computed in parallel. The
number of outputs computed together is called “frame
size,” which is denoted by the symbol N. Typical values of
N are 40 to 60 in voice-coding applications, and several
hundreds in echo-cancellation applications.

To exploit the SIMD nature of the eLite architecture,
several outputs are computed in parallel, resulting in the
following expressions:

y�n� � �h�0� x�n� � h�1� x�n � 1� � h�2� x�n � 2� � · · ·

� h�M � 1� x�n � �M � 1���,

y�n � 1� � �h�0� x�n � 1� � h�1� x�n� � h�2� x�n � 1� � · · ·

� h�M � 1� x�n � 1 � �M � 1���,

y�n � 2� � �h�0� x�n � 2� � h�1� x�n � 1� � h�2� x�n� � · · ·

� h�M � 1� x�n � 2 � �M � 1���,

y�n � 3� � �h�0� x�n � 3� � h�1� x�n � 2� � h�2� x�n � 1�

� · · · � h�M � 1� x�n � 3 � �M � 1���,

There are multiple alternatives for writing the code that
computes FIR. Here we describe the case in which data
is preloaded into the VER file (assuming that the file is
large enough to hold the data). That is, we assume that
the coefficients and input samples are loaded into the
VER file prior to their use.

As can be seen from the expressions above, each filter
coefficient is used in the four equations at the same place

in the summation. Therefore, a vector pointer in which all
of the elements point to the same entry in the VER file
and are incremented by 1 after each use is suitable for
addressing the filter coefficients.

For the input data, each sample is used in the four
equations at a different place in the summation.
Therefore, a vector pointer in which all of the elements
point to consecutive entries in the VER file and are
incremented by 1 after each use is suitable for addressing
the samples.

At the end of the inner loop, the VPR used to access
the filter coefficients must be rewound by (M � 1) so that
its elements will again point at h(0) for the next iteration.
Similarly, the VPR used to access the input data must be
rewound by (M � 1 � 4) so that its elements will point
at x(n � 4) through x(n � 7) for the next iteration.

Unrolling is applied to the loop; this alternative achieves
higher performance, albeit with the penalty of larger code
size. The resulting assembly code for one iteration of the
unrolled loop is shown in Figure 9; this implementation
of the block FIR algorithm achieves asymptotically
optimal performance (that is, four multiply/accumulate
operations per cycle).

Vectorized Viterbi butterfly processing
An important application of the Viterbi algorithm [34, 35]
is maximum-likelihood decoding of convolutional codes,
which are employed for data transmission in many
communications standards. We now demonstrate the
efficiency of the eLite architecture for decoding rate 1/n
binary convolutional codes, assuming binary antipodal
signaling and a memoryless additive white Gaussian noise
(AWGN) channel [35].

It is well known that a section of a trellis for a rate
1/n binary convolutional code can be decomposed
into subgraphs called Viterbi butterflies [36]. The
corresponding add– compare–select (ACS) operations
[34 –36] are referred to simply as butterfly operations. A
straightforward implementation of the butterfly operations
requires two memory buffers for holding state-dependent
data, which are used in a ping-pong fashion [37].

By using the VPRs in eLite, a more sophisticated
approach based on rotated metric indexing [36] can be
used, allowing in-place metric updating. Compared to
approaches using ping-pong buffers, M � 2m vector
elements are saved, where M is the number of Viterbi
decoder states. It can be shown that in-place butterfly
operations are easily vectorizable. With our approach, a
512-element VER file is large enough to hold the state
metrics and branch metrics for the M � 256-state 3GPP
Viterbi decoder [38], eliminating power-consuming
transfers of metric data from/to memory.

Figure 10 shows a fragment of C code that processes
four butterflies in parallel using in-place metric updating;

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

312

Figure 9

Sample implementation of FIR filter.

 vemul va0, (vp2),(vp3)
 vemul va11,(vp2),(vp3)
 vemul va12,(vp2),(vp3)
 vemul va13,(vp2),(vp3) || mfictr ct0,r0 # inner loop counter

filter.outer.loop:
filter.inner.loop:
 vemul va14,(vp2),(vp3) || vaadd va0,va0,va11
 vemul va11,(vp2),(vp3) || vaadd va0,va0,va12 || bctnz ct0,filter.inner.loop
 vemul va12,(vp2),(vp3) || vaadd va0,va0,va13
 vemul va13,(vp2),(vp3) || vaadd va0,va0,va14

 vemul va14,(vp2),(vp3) || vaadd va0,va0,va11
 vemul va11,(vp2),(vp3) || vaadd va0,va0,va12
 vemul va12,(vp2),(vp3) || vaadd va0,va0,va13
 vemul.u va13,(vp2),(vp3),2,3 || vaadd va0,va0,va14 # rewind pointers

 vemul va0, (vp2),(vp3) || vaadd va1,va0,va11
 vemul va11,(vp2),(vp3) || vaadd va1,va1,va12 || bct 0, ct1,filter.outer.loop
 vemul va12,(vp2),(vp3) || vaadd va1,va1,va13 || mfictr ct0,r0
 # inner loop counter
 vemul va13,(vp2),(vp3) || stvahu.i va1,8(a2)

Figure 10

Processing four butterflies with in-place metric updating in C.

p = i<<3; /* p = current state = 0, 8, 16, ... , M-8 */
s = i<<2; /* s = next state = 0, 4, 8, ... , M/2-4 */

vi0[0] = p+0; vi0[1] = p+2; vi0[2] = p+4; vi0[3] = p+6;
vi1[0] = p+1; vi1[1] = p+3; vi1[2] = p+5; vi1[3] = p+7;

for (n=0; n<4; n++) vi0[n] = rotlm(vi0[n], a, m); /* a=mod(t,m) */
for (n=0; n<4; n++) vi1[n] = rotlm(vi1[n], a, m);
for (n=0; n<4; n++) vi10[n] = bmi_table[i][n];
for (n=0; n<4; n++) vi11[n] = bmic_table[i][n];

for (n=0; n<4; n++) va0[n] = metric[vi0[n]] + branchMetric[vi10[n]];
for (n=0; n<4; n++) va1[n] = metric[vi1[n]] + branchMetric[vi11[n]];
for (n=0; n<4; n++) va2[n] = metric[vi0[n]] + branchMetric[vi11[n]];
for (n=0; n<4; n++) va3[n] = metric[vi1[n]] + branchMetric[vi10[n]];

for (n=0; n<4; n++) {
 if ((__int16) (va0[n]-va1[n])>=0) { va4[n] = va0[n]; tbr0 <<= 1; }
 else { va4[n] = va1[n]; tbr0 = (tbr0<<1) | 1;}
}
for (n=0; n<4; n++) {
 if ((__int16) (va2[n]-va3[n])>=0) { va5[n] = va2[n]; tbr1 <<= 1; }
 else { va5[n] = va3[n]; tbr1 = (tbr1<<1) | 1;}
}

for (n=0; n<4; n++) = metric[vi0[n]] = (__int16)va4[n];
for (n=0; n<4; n++) = metric[vi1[n]] = (__int16)va5[n];

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

313

this code nicely matches the SIMD features of the eLite
DSP architecture.

After adding the precomputed branch metrics, metric
comparisons are performed to select the survivor metrics
and the corresponding trace-back bits. Four trace-back
bits are shifted into trace-back registers tbr0 and tbr1 for
each group of four butterflies. The trace-back registers
are stored to memory whenever they are filled with valid
trace-back bits (not shown in Figure 10).

The Viterbi decoder kernel in assembly language is
shown in Figure 11. Each color represents a basic Viterbi
decoder kernel, defined as a set of instructions processing
four butterflies in parallel.

The M-element state metric array is allocated in a VER
and aligned on an M-element boundary. The branch metric
array is also allocated in a VER. The vector indices vi0,
vi1, vi10, and vi11 in the C code correspond to vector
pointers vp0, vp1, vp10, and vp11 (in the first basic Viterbi
decoder kernel), which are reused several times after
setup. Each basic Viterbi decoder kernel uses four vector
element instructions (veaddn), two vector accumulator
instructions (vtmax), and a vector mask instruction
(vmshl). The incremented metrics are temporarily
stored in the VAR. Of the four veaddn instructions,
the two instructions targeting VARs va0 and va1
(or va2 and va3) perform the metric additions for eight
branches that are merging in four states. Each vtmax
instruction performs a selection of four survivor metrics,
which are written to the VER for in-place metric
updating, and outputs a four-bit result indicating the
selection to vector mask register vm3 or vm7. The vmshl
instruction shifts the eight vector mask registers to the left
by one register. As a result, vm0 to vm3 and vm4 to vm7
are used to hold the trace-back data in the C variables tbr0
and tbr1, respectively. The rotate amount a � mod(t, m)

has been preloaded into scalar register sr0, which is
used by instruction vtmax for auto-updating the target
vector pointer.

The vector element and vector accumulator units are
used in tandem, with a continuous flow of 16-bit metric
data from the VER to the VAR and back to the VER.
Due to the instruction-level parallelism in the architecture,
software pipelining can be used to start a second basic
kernel while the vtmax instructions of the first basic kernel
are being executed. As shown in Figure 11, tiling of two
threads permits a basic kernel to be started every four
cycles, resulting in a one-cycle-per-butterfly performance.
Note that register usage repeats after each pair of threads.
Figure 11 also shows vector pointer initialization from
tables in memory that are pointing to precomputed branch
metrics in the VER.

8. Methodology for power–performance
tradeoffs
We now describe the methodology and metric developed
for carrying out power–performance tradeoffs in the
design of the eLite DSP architecture [12, 13].

We consider the problem of optimizing the power–
performance characteristics of a processor in a space
of three variables: architectural complexity, hardware
intensity, and power-supply voltage.

To allow a mathematical analysis of the problem,
we introduce an independent discrete variable � that
represents a measure of the architectural complexity of a
processor. The domain of this variable can be defined
by ordering all possible processor configurations and
assigning a numeric value to each of them. Then, any
architectural alternative results in an increment or
decrement in the value of �. Examples of variations in

Figure 11

Software-pipelined version of Viterbi decoder kernel.

...
veaddn va0,(vp0),(vp10) || ...
veaddn va1,(vp1),(vp11)
veaddn va3,(vp1),(vp10) || ldvpu vp10,8 (a8)
veaddn va2,(vp0),(vp11)
veaddn va0,(vp2),(vp12) || vtmax (vp0),va0,va1,vm3 || ldvpu vp11,8(a9)
veaddn va1,(vp3),(vp13)
veaddn va3,(vp3),(vp12) || vtmax (vp1),va2,va3,vm7 || ...
veaddn va2,(vp2),(vp13) || vmshl
veaddn va0,(vp0),(vp10) || vtmax (vp2),va0,va1,vm3
veaddn va1,(vp1),(vp11)
veaddn va3,(vp1),(vp10) || vtmax (vp3),va2,va3,vm7
veaddn va2,(vp0),(vp11) || vmshl
...

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

314

architectural complexity include the addition of instructions
to the architecture, or modifying the definitions of existing
instructions; at the microarchitecture level, these include
changing the pipeline latency, adding or removing
hardware functionality such as bypasses, functional
units, read or write ports to access various structures,
changing the width of the datapath, and so on.

The second independent variable in the optimization
problem is hardware intensity �, introduced in [13] as a
quantitative measure of how aggressively the circuits in
a processor are tuned to meet a target clock frequency.
Hardware intensity shows the energy cost (percentagewise)
required to improve the delay of a circuit by 1% through
restructuring and retuning the circuit. Although the values
of hardware intensity in different pipeline stages are
different, the aggregate hardware intensity— calculated as
an energy-weighted average over all pipeline stages— can
be used to represent the whole processor pipeline under
optimal tuning conditions [13]. In this paper, all references
to hardware intensity imply such an aggregate value.

Power-supply voltage v is the third independent
variable in the optimization process; this is based on
the assumption that, to achieve the desired power and
performance characteristics, the power-supply voltage can
be set to any value within the range for which a technology
is qualified.

Then, the performance and power characteristics of a
processor can be viewed as functions of the independent
variables �, �, and v, where v and � are continuous
and � is a discrete variable, as shown in Table 3. The
average energy per instruction completed is calculated
as E � � iwiEi , where Ei is the average energy dissipated
on the execution of instruction i, and wi is the normalized
dynamic frequency of the corresponding instruction in the
benchmark suite. In fine-grain clock-gated designs, the use
of average energy per instruction (rather than power) as a
metric allows the energy dissipation to be decoupled from
the architectural performance of a processor. Moreover,
average energy per instruction appears as a term in
the expression for average power dissipation, whose

minimization is one of the primary goals in the design
of the eLite DSP architecture.

To a first approximation, N and I depend only on the
architectural complexity � and are independent of the
hardware intensity and supply voltage. In contrast, the
clocking rate f and the average energy per instruction E
depend on �, �, and v.

The processor performance P (which is the inverse of
execution time or of delay, D) on a given benchmark suite
can be expressed as

P��, �, v� �
f��, �, v�I���

N���
.

Power dissipation W(�, �, v) depends upon the
implementation details of a processor. In particular, power
dissipation is determined by the portion of the hardware
covered by clock gating, granularity of clock gating, and
speculative execution capabilities, if any. As described in
Section 3, eLite is an “exposed pipeline” processor, so the
overhead of clock gating is very low because all necessary
control signals are generated at the instruction decode
stage and propagated down the pipeline to achieve the
stage-by-stage clock gating. Then, assuming an ideal clock-
gating model, the only resources that dissipate power are
those accessed by the instructions executed, and all
unused hardware is gated off (using the finest-grain
clock-gating mechanism or some sort of transition barrier
mechanism,1 or a combination of both). In this case, the
average power is directly proportional to the average
number of instructions executed per cycle and the average
energy dissipated per completed instruction,

W��, �, v� � f��, �, v�I��� E��, �, v�,

where E is the average energy per executed instruction,
as defined above.

The energy efficiency metric used in this work (see
the Appendix) has been derived by formally solving

1 Transition barriers are placed before functional units (FUs) to prevent signal
switching when they are unused, without the overhead of duplicating operand
latches.

Table 3 Processor performance and power characteristics.

Dynamic instruction count N � N(�) Total number of dynamic instructions
executed on a given benchmark suite

Architectural speed (IPC) I � I(�) Average number of instructions
completed per clock cycle on the
same benchmark suite

Energy per instruction E � E(�, �, v) Average energy per instruction
completed on the same benchmark
suite

Maximum clocking rate f � f(�, �, v) Clock frequency

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

315

the problem of minimizing W subject to a constant
performance requirement P0 . The resulting formula is

�
�I

I
	

�E

E
� ��iwi

�Di

D
� �1 � � �

�N

N
,

where �I/I, �E/E, and �N/N are relative increments of
the processor characteristics arising from an architecture
modification �� � �1 � �0 , and �Di /Di are increments
in critical path delays through stages i of the pipeline
(can be positive, zero, or negative). The parameter �

is the energy– delay growth ratio that takes into account
technology, power supply, and circuit style (library). The
terms �I/I and �N/N can be measured by running the set
of benchmarks on an architecture simulator. Terms �E/E
and �Di /Di are estimated, assuming that no returning is
done to compensate for a possible variation in frequency
as a result of modifying the architecture.

We now provide an intuitive description of the
power–performance optimization methodology, whose
formal derivation is given in the Appendix. Figure 12
shows a graphical interpretation of the process of refining
the architecture of a processor in the energy– delay space.
Each possible configuration � is represented by a point in
the energy– delay space. Energy, plotted on the y-axis, is
the average energy dissipated on a set of benchmarks,
measured in joules. Delay, plotted on the x-axis, is the
average execution time for the same set of benchmarks,
measured in seconds. Thus, points closer to the coordinate
origin represent more energy-efficient configurations. The
blue curve represents the architecture energy– delay curve

for fixed hardware intensity and power supply, defined
as the optimal envelope of all feasible architecture/
microarchitecture configurations. Each point on this curve
represents a configuration � that delivers the maximum
performance for a given power; alternatively, each
point represents a configuration that achieves a given
performance at the minimum power. The red curves in
Figure 12 correspond to circuit energy– delay curves, each
representing implementations of a given architecture �

with varying power supply and circuit hardware intensity,
such that the condition for the optimal hardware intensity
� � � is observed at each point [13]. As an example, the
base hardware intensity is set to the value � � 2 for each
circuit energy– delay curve in Figure 12. Thus, by fixing
the architecture and microarchitecture, designers can
move the energy– delay point of a processor along one
of the red curves in the vicinity of the base point.

According to our methodology, only one point on the
architecture energy– delay curve represents a design that
achieves the optimal architecture/circuit energy– delay
balance. This is the point at which the tangent to the
architecture energy– delay curve has the same value as
the tangent to the circuit energy– delay curve at the base
hardware intensity and power supply (marked as point A
in Figure 12). At this point, the processor delivers the
required delay (performance) while dissipating the
minimum power among all possible combinations of
architecture configurations, circuit-level implementations,
and power-supply voltages. To graphically demonstrate
this statement, let us assume that the processor pipeline
is designed for hardware intensity � � 2, and the initial
configuration delivering a predefined delay (performance)
D � 1.16D0 is represented by point B1 on the architecture
energy– delay curve. Reducing the architectural complexity
moves the processor energy– delay point along the blue
curve from B1 to A. Then, by raising the power supply
and tuning the circuits for a higher value of hardware
intensity, the design point can accordingly be moved along
the red curve from A to R1, thereby recovering the
performance lost. Since the architecture energy– delay
curve is steeper at point B1 than the circuit energy– delay
curve, R1 is a better design than B1 because it delivers the
same performance at lower power. Notice that point R1

represents the same architecture configuration as point A,
just implemented with different circuits.

Similarly, if an original design point B2 is below the
optimal point A, increasing the architectural complexity
allows the design point to be moved along the blue curve
to point A. If the higher performance at design point A is
not needed, the design point can be moved along the red
curve to point R2 by reducing the power supply and tuning
the circuits accordingly for lower hardware intensity. Since
the circuit energy– delay curve at this point is steeper than
the architecture energy– delay curve, the resulting design

Figure 12

Exploring architectural energy–delay space.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

B
2

A

B
1

R
1

R
2

A
0

A
1

A
2

A
3

A
4

C
1

C
2

D/D
0

 E
/E

0

Architectural energy–delay tradeoff curve for fixed V
dd

 and �

Circuit energy–delay tradeoff curves for fixed �

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

316

point R2 delivers the same performance as B2 but at lower
power.

An advantage of using the derived formula is that
it allows architecture alternatives to be compared without
knowing the shapes of the energy– delay curves, even
without knowing the exact position of the corresponding
points in the energy– delay space.

In the development of a new microprocessor there
is a high probability that an initial design point, marked
as A0 in Figure 12, is located above the architecture
energy– delay curve. Transferring the initial design
into a point on the architecture energy– delay curve is a
challenge on its own, usually requiring several iterations.
The path marked with black lines illustrates the process of
architectural refinement using our methodology. Segments
of red curves at each intermediate point (A0, A1, . . . , A4)
in the optimization process represent circuit energy– delay
curves for each iteration, drawn assuming a baseline hardware
intensity and energy delay growth ratio � � � � 2.
Using the same reasoning as presented above, since A2

is below the circuit energy– delay curve passing through
point A1, it represents a more energy-efficient design than
point A1. Indeed, raising the power supply and tuning the
circuits accordingly in the implementation of configuration
A2 leads to a design that delivers the same performance
as A1 but at lower power consumption. Similarly, every
successive point Ai in Figure 12 represents a better design
than the previous point Ai�1 . On the other hand, since
points C1 and C2 are less energy-efficient than A3, A3 is
the point chosen at the end of the iteration initiated from
point A2.

A limitation of the methodology is that the relative
differences in the characteristics of a processor,
corresponding to alternatives for evaluation, must be
small; a 10% limit can be used for most practical
purposes. Special care would be needed to use the
methodology for evaluating the energy efficiency of
architectural features that result in significant changes in
the characteristics of a processor, such as changing the
issue width.2 The selection of the initial design point is
important for convergence to the optimal solution rather
than to a local extremum. Thus, the methodology does not
replace the experience and intuition of designers; instead,
it provides help in evaluating various architectural
configurations in the power–performance space.

The strength of our methodology is that it allows a
designer to compare the energy efficiency of different
design points without redesigning the implementations for
every configuration in this iterative refinement process.
However, designers’ expertise is required to generate
the various configurations to be evaluated using the
methodology.

9. Example of architecture/power/
implementation tradeoffs
The energy-efficiency metric described in Section 8 and
in the Appendix was consistently used in the process of
refining the eLite DSP architecture. Most architectural
features were carefully evaluated for energy efficiency
before being committed to the architectural specification.
Examples include reducing the number of pipeline stages;
uniform bypasses on vector accumulator, integer, and
address register files; hardware support for context savings
at interrupts; adding ports to various register files; bypasses
on the vector element file; changing functionality of several
vector and accumulator instructions; and many other
proposals. As a demonstration of the power–performance
optimization methodology, we now describe the evaluation
of the energy efficiency of alternative proposals for
bypasses in the VER file.

Because of the number of read and write ports and the
size of the VER file, the hardware complexity of bypasses
is potentially significant, both in terms of power overhead
and impact on the maximum clocking rate of the processor.
On the other hand, the lack of bypasses increases the
latency of the vector pipeline, which affects the architectural
performance of the processor.

Several architectural alternatives for vector element file
bypasses were evaluated using the methodology described
in Section 8. Some of the alternatives considered were the
following:

A. No bypasses.
B. Element-wise bypass. By labeling the read ports

RA0, . . . , RA3, RB0, . . . , RB3, and the write ports
W0, . . . , W3, an address match is determined as
a result of comparing the concatenated indices
(RA0, . . . , RA3) with (W0, . . . , W3). In the case of a
match, Wi is bypassed to RAi, for i � 0, 1, 2, 3; on
the other hand, none of the elements is bypassed when
there is no match.

C. Conventional full bypass.

Figure 13 shows proposed floorplans for these
alternatives. Both read and write latches are physically
placed on top of the corresponding vector datapaths. For
the element-wise bypasses (alternative B), all bypass wires
run vertically from inputs and outputs of the write-back
latch, through the bypass multiplexor, to the inputs of the
read latches. Thus, there are no wires running across the
vector unit. Each bypass multiplexor (one for each read
port) multiplexes data from three directions: the output
of the array, the output of the write-back latch (write-
through bypass) and the input to the write-back latch
(execution bypass). Each read index is compared to two
write indices (one in the write-back stage and one in
the execution stage) of the write port to the same slice,

2 Issue width is the maximum number of instructions that a processor can issue for
execution in a single cycle.

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

317

treating the four indices as a concatenated number.
Then, for a 512-entry register file, there are 2 � 2 � 4
comparators of 9 � 4 � 36 bits each (two comparators
for each read port).

In the case of full bypasses (alternative C), data from any
of the four write ports can be passed to any of the eight
read ports, which requires a crossbar of 2 � 4 � 16 � 128
lines. Each bypass multiplexor receives data from nine
directions. A total of 8 � 4 � 2 � 64 index comparators
with 9 bits each are required to control the multiplexors.

Table 4 shows the major components of the energy
overhead of the bypass implementations, assuming that no
retuning is done to compensate for an increase in access
time over the implementation with no bypass, for one read
access (through four ports) and one write access (through
four write ports). The average number of vector element
file read and write accesses on the set of kernels used
as a benchmark suite was measured to be 0.6 and 0.3,
respectively. Then, assuming no retuning, the average
energy overhead per instruction is 0.48 pJ and 3.6 pJ
for the element-wise and full-bypass implementations,
respectively. The average energy dissipated per instruction

on the same set of kernels is estimated to be 50 pJ. Thus,
assuming no retuning, the relative energy-per-instruction
overhead of the element-wise and full-bypass
implementations are respectively

�E

E �
no retuning

� 1% and
�E

E �
no retuning

� 7.2%.

Since the vector element file is potentially on the
critical path of the processor, adding bypasses might
also affect the clocking rate. In both implementations,
a 2-to-1 multiplexor is added on the critical path, while all
remaining inputs are pre-multiplexed and therefore are off
the critical path. At 0.9 V power supply, a latch with a
built-in multiplexor has a 60-ps-higher setup time than
a latch without a multiplexor. Thus, for a frequency of
250 MHz at 0.9 V, the delay overhead of the register
file access stage, assuming no retuning, is

�DRF

DRF
�

no retuning
� 1.5%.

There is no measurable delay overhead in other stages of
the pipeline,

Figure 13

Alternative implementations of the vector element file bypass.

Vector element file

Read

latches

Read

latches

Read

latches

Read

latches

Write

latches

Write

latches

Write

latches

Write

latches

Datapath

slice 0

Datapath

slice 1

Datapath

slice 2

Datapath

slice 3

Vector element file

Bypass

mux

Bypass

mux

Bypass

mux

Bypass

mux

Read

latches

Read

latches

Read

latches

Read

latches

Write

latches

Write

latches

Write

latches

Write

latches

Datapath

slice 0

Datapath

slice 1

Datapath

slice 2

Datapath

slice 3

Vector element file

Bypass

mux

Bypass

mux

Bypass

mux

Bypass

mux

Read

latches

Read

latches

Read

latches

Read

latches

Write

latches

Write

latches

Write

latches

Write

latches

Datapath

slice 0

Datapath

slice 1

Datapath

slice 2

Datapath

slice 3

Crossbar

A B C

Table 4 Energy overhead of bypasses in the vector element file (no retuning).

Component Element-wise bypass (fJ) Full bypass (fJ)

Read
access

Write
access

Read
access

Write
access

Comparators 268 536 1072 2144
Bypass mux 69 284 69 1112
Crossbar — — — 5226
Height increase 31 31 184 184
Total 368 851 1325 8666

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

318

�Di�no retuning � 0.

Adding bypasses does not affect the dynamic instruction
count; i.e., (�N/N) � 0. Consequently, according to the
criterion, the question about the energy efficiency of
implementing bypasses is reduced to evaluation of the
expression

�
�I

I
	

�E

E �
no retuning

� �RFwRF

�DRF

DRF
�

no retuning
.

The energy and delay growth rates Ev and Dv required
to compute � can be estimated using the graphs in Figure 14
(shown later, in the Appendix). At 0.9 V power supply,
the values are Ev � 2.07 and Dv � 2.0, leading to � � 1.04.
Then, estimating the hardware intensity in the register
file as �RF � 3, and the corresponding energy weight as
wRF � 0.2, we conclude that in order to be energy-efficient,
the element-wise bypass implementation must result in an
increase in the architectural performance (IPC) of at least
1.8%, whereas the full bypass implementation must result
in an architectural performance improvement of at least
7.8%.

10. Concluding remarks
We have described the development of the eLite DSP
architecture, including a design methodology deployed
for these purposes characterized by the thorough
analysis of power–performance tradeoffs at early stages
in the design. We have described how this effort is
advancing the state of the art in power-efficient high-
performance programmable DSP architectures, as well as in
methodologies for such designs. This effort reflects our
understanding of the sound balance among performance,
power consumption, programmability, development cost
(hardware and software), and production cost (chip and
system) that is required for a target field (in our case,
digital communications). The energy-efficiency metric
described in Section 8 and in the Appendix provides a
single easy-to-use objective formula for reaching an
optimized balance.

The design of the eLite DSP architecture and its
implementations covers aspects ranging from algorithms,
applications, and a high-level language compiler, down
to microarchitecture, logic design, and circuit-level
technology. The result is an innovative architecture that
breaks new ground in terms of the power consumed, the
performance achieved, and scalability. Implementations
of this architecture are expected to reduce power
consumption by a factor of 4 to 6 in comparison to
other DSPs offering similar performance and computing
capabilities. The scalability features in the architecture
enable implementations with varying SIMD width, varying
number of registers in the 16-bit datapath, various

organizations of the register files, varying memory
bandwidth, and so on.3

The eLite architecture is characterized as multiple-issue
statically scheduled, with a heterogeneous set of register
files distributed throughout specialized units; parallelism is
achieved by executing multiple instructions operating on
different registers, in conjunction with single instructions
operating on different registers (VLIW and SIMD). These
features make it possible to achieve the performance
requirements expected from next-generation digital
communication applications. Some of the most
salient features of the architecture and its associated
implementations are related to the ability to perform
computations in the SIMD manner, which is common on
contemporary DSPs. However, in contrast to other DSPs,
the eLite architecture is characterized by a large number
of internal registers, reducing the need to access memory,
as well as by the ability to dynamically create four-element
vectors from arbitrary elements in the registers (SIMD
with disjoint data) and operate on four-element vectors
from a single register (SIMD with packed data).

Equally relevant, the eLite architecture has been
designed in conjunction with an optimizing compiler to
ensure the programmability of the processor in high-
level language. To that effect, the architecture offers
a load/store model of computation, with an orthogonal
instruction set. The compiler leverages extensive research
on very-long-instruction-word parallelism, enhanced with
vectorization techniques as well as novel mechanisms to
identify DSP-specific semantics expressed through
standard C language code.

The performance potential of the eLite architecture
has been shown through two examples of important
computational kernels in the target domain. We have
shown that the architecture can achieve asymptotically
optimal performance in vector-oriented algorithms such as
FIR, through the exploitation of its flexible mechanism for
addressing data from the VERs. We have also shown that
the architecture is well suited for contemporary data-
intensive algorithms such as Viterbi decoding, in which the
large VER file and the unique vector indexing capabilities
permit all state metrics to be kept in registers for a frame
or block of data, even for a moderately high number of
states.

The advances resulting from the eLite DSP research
have already led to multiple patent applications and
are opening the area of low-power high-performance
programmable architectures for DSP applications for
further investigation in new directions. Further work
in this field includes 1) the extension of the eLite
architecture with cache memory mechanisms that are

3 Because of space constraints, not all of the scalability features have been
described in this paper.

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

319

suitable for their use in real-time environments, in which
the nondeterministic behavior of cache memories is an
issue; 2) the investigation of mechanisms to further extend
the ability to exploit instruction-level parallelism and data
parallelism without compromising the benefits of design
simplicity, low-power consumption, and programmability;
and 3) additional support for domain-specific applications.
We also believe that concepts developed as part of the
eLite DSP research have applicability in areas other
than digital communications, in which the innovations
in flexible manipulation of data offered by the eLite
SIMdD model of computation, low-power architectural
features, and implementation, as well as the benefits in
programmability, represent major advantages over
existing approaches.

11. Appendix
This section describes the performance–power
optimization methodology in formal terms. For these
purposes, let us consider the problem of minimizing
the average power dissipation given a performance
requirement P � P0 . The designer is allowed to modify
the architecture (both ISA and microarchitecture), and
also to adjust the clocking rate of the processor by
retuning the circuits and changing the power-supply
voltage within certain limits in order to satisfy
the performance requirement at minimum power
dissipation. In mathematical terms, the problem of
power minimization can be reduced to the problem
of minimizing the function W(�, �, v) in the space
of the three design variables �, �, and v, under the
constraint P(�, �, v) � P0 .

Let us introduce a finite difference notation for the
discrete variable �,

�F��, �, v�

��
�

�v
�

F�� � ��, �, v� � F��, �, v�

��
,

where F(�, �, v) is any function of variables �, �, and
v involved in the analysis. Neglecting the second-order
terms, the constraint condition P(�, �, v) � P0 can be
expressed in differential form as

�P

��
�

�v
�� �

P

v
�v �

P

�
�� � 0,

where �� and �v are adjustments in the hardware
intensity and supply voltage needed to compensate for the
performance loss or gain resulting from the architectural
modification ��. In the remainder of the paper, we neglect
second-order terms. Thus, the methodology described
here is applicable only for “small” variations to the
architecture, so that the resulting relative increments
in all involved functions and their derivatives are
small [(�F/F) 		 1, (�F
/F
) 		 1], and relative

changes in the supply voltage v and hardware intensity
� needed to compensate the performance loss or gain
resulting from architectural modifications �� are also
small [(�v/v) 		 1, (��/�) 		 1].

Under these assumptions, the problem of establishing
the energy efficiency of a particular modification to the
architecture �� can be reduced to that of finding a
relation between relative changes in processor
characteristics for which

�W

��
�

P�P0

�
�W

��
�

�v
�

W

�

��

��
�

P�P0

�

W

v

�v

��
�

P�P0

� 0.

Neglecting the second-order terms in the calculation
of the finite differences in the constraint formula, we
arrive at the following expression for the ratio of finite
differences ��, �v, and �� subject to the constraint
P(�, �, v) � P0:

Dv

v

�v

��
�

P�P0

�
1

D

D

�

��

��
�

P�P0

� �
�f

f��
�

�v
�

�I

I��
�

�N

N��
,

where Dv is the delay growth rate, defined as a
dimensionless partial derivative of the critical path
delay D with respect to the supply voltage,

Dv � �
v

D

D

v
.

The value of Dv can be estimated empirically for the
selected technology, supply voltage, and circuit style. To
evaluate it, the designer can simulate the dependence of
the delay through the hardware blocks that are expected
to be on the critical path upon the supply voltage.

The partial derivative
W/
� in the energy-efficiency
formula is calculated as

W

�
� IEf �
E

E
�
�

D

D
�� ,

and the partial derivative
W/
v is calculated as

W

v
�

IEf

v
�Ev � Dv�,

where Ev is the energy growth rate, defined as a
dimensionless partial derivative of the average energy
dissipated per instruction with respect to the supply
voltage,

Ev �
v

E

E

v
.

The value of Ev for CMOS circuits is typically close
to 2, since the energy of the charged capacitance
is proportional to the square of the supply voltage,
E � (Cv 2/ 2). A more accurate estimate for the value
of Ev for a selected technology and circuit style can
be obtained by simulating representative circuits over
a range of supply voltages.

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

320

Assuming that circuits in the pipeline are tuned
according to the optimal balance between the power
supply and the hardware intensity [13], � � Ev /Dv ,
the expressions above can be reduced. Substituting the
calculated terms into the energy-efficiency formula,
and taking advantage of the property of hardware
intensity,

1

E

E

�
� �

�

D

D

�
,

we arrive at the following criterion for energy efficiency,
after grouping terms in front of the partial derivatives:

��
1

f

�f

��
�

�v
� �

1

I

�I

��
�

1

E

�E

��
�

�v
� �1 � � �

1

N

�N

��
� 0,

where � is the energy delay growth ratio, defined as
� � Ev /Dv .

The increments of the architectural complexity ��s can
be omitted from the formula, as long as a fixed hardware
intensity and supply voltage are assumed when calculating
the finite increments �E and �f so that the meaning of
partial derivatives with respect to the architectural
complexity is preserved. Then, a simplified form of the
criterion can be used:

��
�f

f
� �

�I

I
�

�E

E
� �1 � � �

�N

N
� 0.

The increments of all quantities in the expression above
appear in relative form and are thus dimensionless. This
feature makes this formula easy to use as a basis for
negotiation between architects and circuit designers.
For example, if Ev � Dv � 2 (� � 1), and if some
microarchitectural enhancement (say, adding a bypass)
increases the average energy per instruction by 5% and
potentially increases the delay on the critical path by 2%,
without any effect on the dynamic instruction count, then
it will be energy-efficient only if the resulting increase
in the architectural speed I is at least 7%.

The assumption about the optimal tuning of circuits in
every pipeline stage for every architectural alternative
and unchanged hardware intensity, used in deriving the
formula above, imposes special rules on calculating terms
�f/f and �E/E in the energy-efficiency criterion. In
particular, these relative increments must be calculated
assuming that the processor pipeline is re-optimized after
every modification to the microarchitecture, in such a way
that the optimal balance of hardware intensity (� � �) in
the pipeline is preserved [13]. This leads to the following
formula for calculating �E/E:

�E

E
�

�E

E �
no retuning

� ��iwi

�Di

D �
no retuning

� �
�f

f
,

where

�Di

D �
no retuning

and
�E

E �
no retuning

are “naive” increments in delays and energies in pipeline
stages i, calculated assuming that no retuning is done in
any circuits. Circuit designers usually have no difficulty
estimating these quantities. In the above formulas, wi

are the energy weights of the pipeline stages, calculated
taking into account activity factors, and �i are hardware
intensities in the corresponding pipeline stages, which
show how close to the performance limit the circuits are
in those pipeline stages. Then, the higher the energy
weight wi and hardware intensity � i of pipeline stage i, the
higher the weight of the corresponding “naive” increment
in the critical path delay in the weighted average above.
These sensitivities �i can be measured from energy– delay
curves by tuning tools such as the IBM EinsTuner [39].
Notice that all coefficients in the above formulas have to
be measured just once for the baseline pipeline, after
which they can be used for evaluating numerous
architectural alternatives. Combining the two formulas, we
arrive at the form of the energy-efficiency criterion that
does not require estimating term �f/f:

�
�I

I
	

�E

E
� ��iwi

�Di

D
� �1 � � �

�N

N
.

Although the energy-efficiency formula has been
derived for minimizing power for a given performance
requirement, the same formula is also valid for the
reciprocal problem of performance maximization subject
to a constant power constraint, W(�, �, v) � W0. For some
combinations of the values of Ev and Dv , this energy-
efficiency criterion can be viewed as a differential form
of one of the conventional power–performance metrics
[6, 7, 9 –11]. It is easy to show that the “MIPS-to-the-
power-of-�-per-watt” metrics are special cases of our
energy-efficiency criterion, written in the integral form.
For example,

● Ev � 2, Dv � 1 (� � 2) leads to “MIPS3 per watt.”
● Ev � 2, Dv � 2 (� � 1) leads to “MIPS2 per watt.”
● Dv �� Ev (� 		 2) leads to “MIPS per watt.”
● Ev � 2, Dv � 0.5 (� � 4) leads to “MIPS5 per watt.”

In addition to its formal derivation, other advantages
of our new metric are its generality and the ability to
calculate the exponent in the expressions above as � � 1
for every particular case, taking into account technology
and circuit characteristics. It also provides a method for
calculating increments in MIPS and watts in the “MIPS-
to-the-power-of-�-per watt” with no need to retune a
design.

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

321

Effect of circuit and technology characteristics
Although theoretical formulas could be used to determine
the energy and delay growth rates Dv and Ev , a more
practical way to calculate the values of these coefficients
is through the simulation of representative circuits over
a range of power-supply voltages. For the evaluation of
Dv , it is important to select functional blocks that can
potentially be located on the critical path; on the other
hand, the most significant power consumers should be
simulated for the evaluation of Ev . As an illustration, we
describe the case of a representative set of blocks in a
typical microprocessor, such as an inter-unit star-connect
data bus; a synthesized 32-bit integer adder; a full-custom
16-bit multiplier; the critical read path of a 4-read/4-write-
port full-custom register file; and a 2-read/2-write
16-entry semicustom register file built with latches and
multiplexors, all implemented in a 0.13-�m technology.
For the energy analysis, we simulated all blocks with

PowerMill** [40], applying random patterns to the
inputs with a switching factor of 0.3 for 200 to 500
cycles (depending on the size of the circuit). We also
used the PathMill** static timer for delay analysis.

Figure 14(a) shows simulation results for Ev . The curves
on the graph correspond to the blocks described above.
As a reference, a curve corresponding to the E � Cv 2/ 2
dependence is also plotted. Figure 14(a) shows that, for
all of the blocks, the value of Ev is higher than the value
2.0 that corresponds to the E � Cv 2/ 2 dependence. This
super-Vdd

2 dependence of energy on the supply voltage is
partially explained by higher glitching activity at higher
supply voltages. Those blocks that have more significant
glitching factors also demonstrate higher values of Ev ,
especially at high supply voltages. Another reason is the
faster than square growth of the short circuit power
component [41].

Figure 14(b) shows simulation results for Dv . The curves
on the graph correspond to the previously described
blocks. For all blocks, Dv increases rapidly for low
values of Vdd, especially as Vdd approaches the transistor
threshold voltage. For high values of Vdd, Dv drops below
unity because of the velocity saturation effect. For custom-
designed blocks, Dv tends to be smaller than for ASIC-
synthesized blocks, especially at low values of Vdd, because
of the (selective) use of low-threshold devices in custom
circuits, and low-voltage circuit styles (e.g., smaller
transistor stacks). The thick lines on the graphs, marked
with circles, represent the averages over all simulated
blocks, calculated for unity weight factors.

**Trademark or registered trademark of Analog Devices, Inc.
or Synopsys, Inc.

References
1. J. Eyre, “The Digital Signal Processing Derby,” IEEE

Spectrum, 30, No. 6, 62– 68 (2001).
2. J. Glossner, J. H. Moreno, M. Moudgill, J. Derby, E.

Hokenek, D. Meltzer, U. Shvadron, and M. Ware,
“Trends in Compilable DSP Architectures,” Proceedings of
the 2000 IEEE Workshop on Signal Processing Systems
(SiPS), October 2000, pp. 181–199.

3. StarCore, SC140 DSP Core Reference Manual, December
1999; see http://e-www.motorola.com/brdata/PDFDB/docs/
MNSC140CORE.pdf.

4. Texas Instruments, Inc., TMS320C6000 CPU and
Instruction Set Reference Guide, 2000; see http://
www-s.ti.com/sc/psheets/spru189f/spru189f.pdf.

5. J. Tomarakos and C. Duggan, “32-bit SIMD Sharc
Architecture Digital Audio Signal Processing
Applications,” J. Audio Eng Soc. 48, No. 3, 220 (2000).

6. D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta,
and P. Cook, “Power-Aware Microarchitecture: Design
and Modeling Challenges for Next-Generation
Microprocessors,” IEEE Micro 20, No. 6, 26 – 44
(November 2000).

7. T. Burd, “Energy-Efficient Processor System Design,”
Ph.D. Thesis, University of California, Berkeley,
2001.

Figure 14

Simulation results for E and D . Reprinted from [12], with permis-

sion; © 2002 ACM, Inc.

0.6 0.8 1 1.2 1.4 1.6 1.8
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Supply voltage (V)

(a)

Supply voltage (V)

(b)

Data bus

Integer adder

Multiplier (custom)

4r/4w port register file

Average

CV 2 curve

E
 �

E
dE d

D
 �

�
 D

dD d

0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Data bus

Integer adder

Multiplier (custom)

4r/4w port register file

2r/2w port register file

Average

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

322

8. A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-
Power CMOS Digital Design,” IEEE J. Solid-State Circuits
27, No. 4, 473– 484 (April 1992).

9. R. Gonzalez and M. Horowitz, “Energy Dissipation in
General Purpose Microprocessors,” IEEE J. Solid-State
Circuits 31, No. 9, 1277–1283 (September 1996).

10. M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-
Power Digital Design,” Proceedings of the IEEE
Symposium on Low Power Electronics and Design,
October 1994, pp. 8 –11.

11. V. Zyuban and P. Kogge, “Optimization of High-
Performance Superscalar Architectures for Energy
Efficiency,” Proceedings of the IEEE Symposium on
Low Power Electronics and Design, August 2000,
pp. 84 – 89.

12. V. Zyuban, “Unified Architecture Level Energy-Efficiency
Metric,” Proceedings of the Great Lakes Symposium on
VLSI, April 2002, pp. 24 –29.

13. V. Zyuban and P. Strenski, “Unified Methodology for
Resolving Power–Performance Tradeoffs at the
Microarchitectural and Circuit Levels,” Proceedings of the
International Symposium on Low Power Electronics and
Design, July 2002, pp. 166 –171.

14. S. V. Kosonocky, A. J. Bhavnagarwala, K. Chin, G. D.
Gristede, A.-M. Haen, W. Hwang, M. B. Ketchen, S. Kim,
D. R. Knebel, K. W. Warren, and V. Zyuban, “Low-
Power Circuits and Technology for Wireless Digital
Systems,” IBM J. Res. & Dev. 47, No. 2/3, 283–298 (2003,
this issue).

15. R. Stallman, “Using and Porting GNU CC,” Free
Software Foundation, version 2.7.2.1, June 1996; see
http://hal.csd.auth.gr/thelug/fags/gcc.html.

16. D. Batten, S. Jinturkar, J. Glossner, M. Schulte, and P.
D’Arcy, “A New Approach to DSP Intrinsic Functions,”
Proceedings of the Hawaii International Conference on
System Sciences, Hawaii, January 2000, pp. 2892–2901.

17. K. W. Leary and W. Waddington, “DSP/C: A Standard
High-Level Language for DSP and Numeric Processing,”
Proceedings of the International Conference on Acoustics,
Speech and Signal Processing, 1990, pp. 1065–1068.

18. B. Krepp, “DSP-Oriented Extensions to ANSI C,”
Proceedings of the International Conference on Signal
Processing Applications and Technology (ICSPAT), 1997,
pp. 658 – 664.

19. J. H. Moreno, K. Ebcioglu, M. Moudgill, and D. Luick,
“ForestaPC (Scalable VLIW) User Instruction Set
Architecture,” Research Report RC-20733, IBM
Thomas J. Watson Research Center, Yorktown
Heights, NY, 1996.

20. K. Ebcioglu, “Some Design Ideas for a VLIW
Architecture for Sequential-Natured Software,”
Proceedings of the IFIP WG 10.3 Working Conference
on Parallel Processing, 1988, pp. 3–21.

21. K. Pingali, M. Beck, R. Johnson, M. Moudgill, and
P. Stodghill, “Dependence Flow Graphs: An Algebraic
Approach to Program Dependencies,” Proceedings of
the 18th Annual ACM Symposium on Principles of
Programming Languages (POPL), 1991, pp. 67–78.

22. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck, “Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph,”
ACM Trans. Program. Lang. & Syst. 13, No. 4, 451– 490
(October 1991).

23. M. Moudgill, J. H. Moreno, K. Ebcioglu, E. R. Altman,
S.-K. Chen, and A. Polyak, “Compiler/Architecture
Interaction in a Tree-Based VLIW Processor,” IEEE
Technical Committee on Computer Architecture Newsletter,
June 1997, pp. 332–335.

24. J. H. Moreno, M. Moudgill, K. Ebcioglu, E. Altman, C. B.
Hall, R. Miranda, S.-K. Chen, and A. Polyak, “Simulation/
Evaluation Environment for a VLIW Processor

Architecture,” IBM J. Res. & Dev. 41, No. 3, 287–302
(1997).

25. D. Naishlos, M. Biberstein, and A. Zaks, “Compiler
Vectorization Techniques for Disjoint SIMD
Architectures,” Research Report H-0146, Haifa Research
Laboratory, Haifa, Israel, November 2002.

26. S. Carr and K. Kennedy, “Improving the Ratio of Memory
Operations in Floating-Point Operations in Loops,” ACM
Trans. Program. Lang. & Syst. 16, No. 6, 1768 –1810
(November 1994).

27. G. Goff, K. Kennedy, and C.-W. Tseng, “Practical
Dependence Testing,” Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design
and Implementation (PLDI), Toronto, Ontario, June 1991,
pp. 15–29.

28. M. Wolfe, High Performance Compilers for Parallel
Computing, Addison-Wesley Publishing Co., Inc., Reading,
MA, 1996.

29. D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler
Transformation for High-Performance Computing,” ACM
Computing Surv. 26, No. 4, 345– 420 (1994).

30. M. Moudgill and A. Zaks, “Minimizing Inter-File
Transfers in Architectures with Separate Address
Registers,” Research Report RC-21884, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY,
November 2000.

31. ETSI, Digital Cellular Telecommunications System (Phase
2�) (GSM); Enhanced Full Rate (EFR) Speech Processing
Functions. General Description (GSM 06.51 Version 7.0.2),
Sophia Antipolis, France, 1998.

32. ETSI, Digital Cellular Telecommunications System (Phase
2�) (GSM); Adaptive Multi-Rate (AMR) Speech Processing
Functions. General Description (GSM 06.71 Version 7.0.1),
Sophia Antipolis, France, 1998.

33. ITU-T, Recommendation G.729, Coding of Speech at 8 kbit/s
Using Conjugate-Structure Algebraic-Code-Excited Linear-
Prediction (CS-ACELP), Geneva, Switzerland, March 1996.

34. S. Lin and D. J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1983.

35. R. Johannesson and K. Sh. Zigangirov, Fundamentals
of Convolutional Coding, IEEE Press, New York, 1999.

36. M. Biver, H. Kaeslin, and C. Tommasini, “In-Place
Updating of Path Metrics in Viterbi Decoders,” IEEE J.
Solid-State Circuits 24, No. 4, 1158 –1160 (August 1989).

37. Motorola, Inc., and Agere Systems, “How To Implement
a Viterbi Decoder on the StarCore SC140,” Application
Note ANSC140VIT/D, July 18, 2000; see http://
e-www.motorola.com/brdata/PDFD/docs/ANSC140VIT.pdf.

38. 3rd Generation Partnership Project (3GPP), Technical
Specification 3G TS 25.212, Multiplexing and Channel
Coding (FDD), September 2002; see http://www.3gpp.org/
ftp/Specs/latest/Rel-4/25_series/25212-460.zip.

39. A. R. Conn, I. M. Elfadel, W. W. Molzen, Jr., P. R.
O’Brien, P. N. Strenski, C. Visweswariah, and C. B.
Whan, “Gradient-Based Optimization of Custom Circuits
Using a Static-Timing Formulation,” Proceedings of the
Design Automation Conference, June 1999, pp. 452– 459.

40. see http://www.synopsys.com/.
41. J. Veendrick, “Short-Circuit Dissipation of Static CMOS

Circuitry and Its Impact on the Design of Buffer
Circuits,” IEEE J. Solid-State Circuits 19, No. 4,
468 – 473 (August 1984).

Received March 12, 2002; accepted for publication
October 15, 2002

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

323

Jaime H. Moreno IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (jhmoreno@us.ibm.com). Dr. Moreno is a Senior
Manager in the Computer Architecture Department. He
received a degree in electrical engineering from the University
of Concepcion, Chile, in 1979, and M.S. and Ph.D. degrees in
computer science from the University of California at Los
Angeles in 1985 and 1989, respectively. In 1992, Dr. Moreno
joined the IBM Research Division, where he initially
performed research on very-long-instruction word processor
architectures for server systems, later in superscalar
processors, and more recently in embedded systems, including
recent research on digital signal processor architectures.
Before joining IBM, he was a faculty member in the
Department of Electrical Engineering at the University
of Concepcion, Chile, and collaborated as a postdoctoral
researcher at UCLA. Dr. Moreno is coauthor of the books
Introduction to Digital Systems (Wiley, 1999) and Matrix
Computations on Systolic-Type Arrays (Kluwer, 1992). He
holds several patents in processor architecture, and has been
recognized as an IBM Master Inventor. His interests include
processor architectures, instruction-level and data-level
parallelism, and application-specific and domain-specific
architectures.

Victor Zyuban IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (zyuban@us.ibm.com). Dr. Zyuban received his B.S.
and M.S. degrees from the Moscow Institute of Physics
and Technology in 1993 and 1995, respectively, and his
Ph.D. degree in computer science and engineering from the
University of Notre Dame in 2000. From 1995 to 1996, he
worked in the Moscow Center for SPARC Technologies. He
is currently a Research Staff Member at the IBM Thomas J.
Watson Research Center. Dr. Zyuban is working on a low-
power DSP research project in which he has been involved in
ISA definition, microarchitecture, and physical design. He is
currently leading the development of a semicustom eLite core
test chip. His research interests include low-power circuitry,
microarchitecture, and methodologies for low-power design.

Uzi Shvadron IBM Israel Science and Technology, Haifa
Research Laboratory, Haifa 31905, Israel (shvadron@il.ibm.com).
Mr. Shvadron joined IBM in 1983 after receiving B.S. and
M.S. degrees in electrical engineering from the Technion–
Israel Institute of Technology. Since 1984 he has been a
Research Staff Member of the Haifa Research Laboratory.
He has participated in several research projects in the fields
of voice and audio signal processing, VoIP gateway, image
coding, optical inspection, and electron beam lithography
techniques. Mr. Shvadron’s primary experience is in real-time
signal processing using IBM signal processor architectures,
writing sophisticated algorithms for new applications on DSPs.
His main research interests are in the areas of signal and
image processing. He is currently the leader of a software
development team for a new DSP architecture—the eLite
DSP core. The work includes close interaction with other IBM
laboratories in the areas of architecture design, benchmarks,
and tools development.

Fredy D. Neeser IBM Research Division, Zurich Research
Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
(nfd@zurich.ibm.com). Dr. Neeser received Dipl. Ing. and
Ph.D. degrees in electrical engineering from the Swiss Federal
Institute of Technology (ETH) in 1986 and 1993, respectively.

In 1994, he joined the IBM Research Division, where he
designed key digital signal processing (DSP) algorithms for
IBM ThinkPad V.34 and V.90 modem subsystems, for which
he received two IBM Outstanding Technical Achievement
Awards. He holds numerous patents in this field. Since
1999, he has been involved in the design of the IBM eLite
VLIW/SIMD DSP architecture, working on architectural
enhancements for filtering and Viterbi decoding and on a
cycle-accurate simulator for the eLite DSP. Dr. Neeser’s
research interests include equalization, coding and turbo-
receiver techniques, and their applications in wireless LAN
systems.

Jeff H. Derby IBM Microelectronics Division, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(jhderby@us.ibm.com). Dr. Derby received his Ph.D. degree
in electrical engineering from Columbia University in 1975.
In 1982 he joined IBM in Research Triangle Park, North
Carolina, after spending seven years with Bell Laboratories in
Whippany, New Jersey. At IBM, he spent ten years working
on network architectures and switching-system design for
high-speed packet networks including frame relay and
ATM. Dr. Derby received an IBM Outstanding Technical
Achievement Award for this work in 1992. Since 1992, his
work has focused on analog and digital signal processing
subsystems with application to telecommunications. He has
been involved in the definition of digital signal processor
architectures, in the evaluation of DSP architectures for
broadband wired and wireless access applications, and in the
development of system-on-a-chip architectures incorporating
signal processing capabilities. Dr. Derby is an inventor
or co-inventor of 20 U.S. patents. He is a Senior Member
of the IEEE and a member of the IEEE Communications
Society and the IEEE Signal Processing Society. He is also
Adjunct Associate Professor in the Department of Electrical
and Computer Engineering, Duke University, Durham, North
Carolina.

Malcolm S. Ware IBM Microelectronics Division, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(mware@us.ibm.com). Mr. Ware received his B.S. degree in
electrical engineering from Purdue University in 1983 and his
M.S. degree in computer architecture and communications
from North Carolina State University in 1986. He spent his
first ten years with IBM at the Research Triangle Park facility
developing speech and image coding algorithms, music
synthesizers, and low-speed modems for the Mwave DSP. In
1993 he went on international assignment for five years to the
IBM Zurich Research Laboratory in Switzerland, and worked
with IBM Fellow Gottfried Ungerboeck on high-speed
modems including V.34 and V.90 for the Mwave products
shipped in IBM ThinkPads. After returning to Research
Triangle Park for two years to examine broadband and
network processing opportunities, he spent 16 months at the
Zurich Research Laboratory developing prototypes of ADSL,
SHDSL, and VDSL broadband transceivers. For the last year,
Mr. Ware has been studying wireless transmission systems at
the IBM Research Triangle Park site. He holds more than ten
U.S. patents, with another 20 under consideration at the U.S.
Patent Office.

Krishnan Kailas IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (kailas@us.ibm.com). Dr. Kailas received his M.S.
(1998) and Ph.D. (2001) degrees in electrical and computer

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

324

engineering from the University of Maryland, College
Park, and his B.Tech. (Hons) degree in electronics and
communication engineering from the University of Calicut, India.
His doctoral dissertation research was on microarchitectures
and compilation support for clustered ILP processors. While
he was a graduate student, he worked on VLIW processor
architectures for the dynamic binary translation (DAISY)
project at IBM Thomas J. Watson Research Center from
1997 to 1999. He was an R&D engineer from 1988 to 1994 at
Bhabha Atomic Research Center, Bombay, India, where he
designed mission-critical microprocessor-based real-time
systems. Since 2001, he has been a Research Staff Member at
the IBM Thomas J. Watson Research Center, working on
high-performance, low-power DSPs. His current research
interests include microarchitecture and code-generation
techniques for real-time operating systems. Dr. Kailas is a
member of ACM, IEEE, and Sigma Xi.

Ayal Zaks IBM Israel Science and Technology, Haifa
Research Laboratory, Haifa 31905, Israel (zaks@il.ibm.com).
Dr. Zaks received B.Sc., M.Sc., and Ph.D. degrees in
mathematics/operations research from Tel Aviv University. He
joined the IBM Haifa Research Laboratory in 1997, initially
to work on compiler back-end optimizations for the AS/400.
Since 2000, Dr. Zaks has worked on developing an optimizing
compiler for eLite, spending one year at the IBM Thomas J.
Watson Research Center in Yorktown Heights, New York.

Amir Geva IBM Israel Science and Technology, Haifa
Research Laboratory, Haifa 31905, Israel (geva@il.ibm.com).
In 1997 Mr. Geva received a B.Sc. degree in computer
engineering from the Technion–Israel Institute of Technology.
He joined IBM as an intern in 1994 and became a full-time
employee after receiving his degree. Mr. Geva worked for
a year on evaluation benchmarks of the PowerPC SIMD
extensions (VMX), later known as AltiVec. He then
moved to programming DSP code and integration of
host and embedded code for a voice over IP telephony
gateway. Mr. Geva has been working on the eLite DSP
project since mid-2000 and has been involved primarily
in producing development tools.

Shay Ben-David IBM Israel Science and Technology, Haifa
Research Laboratory, Haifa 31905, Israel (bendavid@il.ibm.com).
Mr. Ben-David received B.Sc. and M.Sc. degrees in electrical
engineering from the Technion–Israel Institute of Technology,
Haifa. He joined the Haifa Research Laboratory in 1994,
initially working on DSP application in the Mwave project.
Mr. Ben-David received an IBM Outstanding Technical
Achievement Award for his work on the Java Media
Framework. He holds several pending patents. He currently
works in the Signal Processing Group in the Haifa Research
Laboratory developing DSP applications and architectures.

Sameh W. Asaad IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (asaad@us.ibm.com). Dr. Asaad received his B.S.
degree in communications engineering from Cairo University,
Egypt, in 1989. He received his M.S. and Ph.D. degrees
in electrical and computer engineering from Vanderbilt
University in 1995 and 2000, respectively. He is an Advisory
Engineer at the Thomas J. Watson Research Center, where he

joined IBM in 1996. Dr. Asaad’s current interests include
modeling, design, and implementation of domain-specific
architectures and low-power systems.

Thomas W. Fox IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (foxy@us.ibm.com). Mr. Fox is an Advisory Engineer at
the IBM Thomas J. Watson Research Center, where he has
worked on low-power DSP microarchitectures and designs
since 2001. He received his B.S. and M.E.E. degrees in
electrical engineering from Rensselaer Polytechnic Institute
in 1989 and 1990, respectively. Prior to joining the IBM
Research Division, he was an architect and designer of 3D
geometry graphics chips for the IBM Server Group in Austin,
Texas. Mr. Fox received an IBM Outstanding Technical
Achievement Award in 1999 for design innovations in 3D
geometry lighting, and he represented IBM on the OpenGL
Architecture Review Board. He holds three U.S. patents in
the graphics field, and has seven patents pending evaluation in
the U.S., Germany, and Japan in the graphics and floating-
point domains. His professional interests include processor
architectures, floating-point arithmetic, and 3D graphics.

Daniel Littrell IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (littrell@us.ibm.com). Mr. Littrell received his B.S.
degree in electrical engineering from the University of
California at Santa Cruz; he is currently pursuing his M.S.E.E.
degree at Columbia University. He has worked at the IBM
Thomas J. Watson Research Center since April 2001, during
which time he has focused mainly on low-power DSP
realization. His professional interests include computer
architectures, data visualization, memory structures, and
logic synthesis.

Marina Biberstein IBM Science and Technology, Haifa
Research Laboratory, Haifa 31905, Israel (biberste@il.ibm.com).
Ms. Biberstein received her B.A. degree in mathematics and
her M.Sc. degree in computer science from the Technion–Israel
Institute of Technology in 1995 and 1999, respectively. Since
1999, she has been with the IBM Research Laboratory in Haifa.
Her research interests include code optimization technologies,
program analysis, and error-correcting codes.

Dorit Naishlos IBM Israel Science and Technology, Haifa
Research Laboratory, Haifa 31905, Israel (dorit@il.ibm.com).
Ms. Naishlos received a B.Sc. degree in computer science
from the Technion–Israel Institute of Technology in 1998 and
an M.Sc. degree in computer science from the University of
Maryland in 2000. During her studies she worked at IBM
on post-link optimizations (Haifa Research Laboratory,
1997–1998) and parallel languages for shared and distributed
memory platforms (Thomas J. Watson Research Center,
1999). While at Maryland, she specialized in compiling for an
explicit multi-threaded framework that exploits fine-grained
parallelism on-chip. In 2001 Ms. Naishlos joined IBM,
where she has been working on compiler development
and optimizations, in particular vectorization, in the Code
Optimizations group of the IBM Research Laboratory in
Haifa. Her interests include compilation, code optimization,
and parallel computing.

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 J. H. MORENO ET AL.

325

H. Hunter Computer and System Research Laboratory,
University of Illinois at Urbana–Champaign, Urbana, Illinois
61801. Ms. Hunter received B.S. (1999) and M.S. (2002)
degrees from the University of Illinois and is currently
pursuing a Ph.D. in electrical engineering. She has been a Tau
Beta Pi Fellow and holder of a National Science Foundation
Fellowship, University of Illinois Distinguished Fellowship,
and University of Illinois ECE Department Koehler
Fellowship. During the summer of 2000, she worked in the
IBM S/390 Microprocessor Development group in Boeblingen,
Germany, and held summer intern positions at the IBM
Thomas J. Watson Research Center in 2001 and 2002. Her
research interests are in compiler/architecture co-design for
embedded and DSP processors.

J. H. MORENO ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

326

