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ABSTRACT 
We propose a fast implementation for iterative MR image 
reconstruction using Graphics Processing Units (GPU). In 
MRI, iterative reconstruction with conjugate gradient 
algorithms allows for accurate modeling the physics of the 
imaging system. Specifically, methods have been reported 
to compensate for the magnetic field inhomogeneity 
induced by the susceptibility differences near the air/tissue 
interface in human brain (such as orbitofrontal cortex). Our 
group has previously presented an algorithm for field 
inhomogeneity compensation using magnetic field map and 
its gradients. However, classical iterative reconstruction 
algorithms are computationally costly, and thus significantly 
increase the computation time. To remedy this problem, one 
can utilize the fact that these iterative MR image 
reconstruction algorithms are highly parallelizable. 
Therefore, parallel computational hardware, such as GPU, 
can dramatically improve their performance. In this work, 
we present an implementation of our field inhomogeneity 
compensation technique using NVIDA CUDA(Compute 
Unified Device Architecture)-enabled GPU. We show that 
the proposed implementation significantly reduces the 
computation times around two orders of magnitude 
(compared with non-GPU implementation) while accurately 
compensating for field inhomogeneity.  
Index Terms — MRI, GPU, CUDA, Conjugate Gradient, 
Iterative reconstruction, Field inhomogeneity. 
 

1. INTRODUCTION 
MRI acquisition data are sampled in the spatial frequency 
domain (k-space) and then reconstructed using Fourier 
Transform (FT) to obtain an estimate of the image. For 
Cartesian trajectories, e.g. EPI (echo planar), image 
reconstruction can be performed by Fast Fourier Transform 
(FFT) which can reduce the computational complexity from 
O(N2) to O(N·log(N)) for N acquisition samples. However, 
FFT cannot be directly used for non-Cartesian sampling 
trajectories. Such non-Cartesian trajectories (e.g. spiral 
trajectory) might be preferable since they offer more 
efficient coverage of the k-space while requiring a shorter 
acquisition time [1-2]. Although the gridding method [3] 
allows for interpolation of non-Cartesian sampling to a 
Cartesian grid, this method suffers from inaccuracy 
introduced by interpolation. Additionally, non iterative 
reconstruction cannot easily take into account degrading 

factors in real imaging systems such as signal loss induced 
by the susceptibility gradients. 
Alternatively, iterative image reconstruction can model the 
physics of the MR system more accurately to account for 
the susceptibility artifacts. Air and tissue in human brain 
have very different susceptibility, which leads to varying 
local magnetic field. This induced magnetic field 
inhomogeneity near the interface of air/tissue (e.g. 
orbitofrontal cortex) can cause geometric distortions and 
signal loss in reconstructed images [4-8]. Methods exist for 
compensating these susceptibility artifacts. Non-iterative, 
Fourier-based correction methods (e.g. Conjugate Phase [7], 
etc.) can compensate for geometric distortion, but 
susceptibility-induced signal losses can not be addressed. 
Signal losses result from susceptibility-induced magnetic 
field inhomogeneity gradients, which cause spin dephasing 
within a voxel [9-12]. A natural alternative is to build a 
statistical estimation model and use an iterative algorithm to 
perform reconstruction while modeling the susceptibility 
gradients inside. Our previous work builds a physical model 
that accounts for both within-plane and through-plane field 
inhomogeneity gradients to correct for geometric distortions 
and signal losses [6, 13, 14]. 
However, these iterative reconstruction methods require 
long computation times. For clinical applications, these 
computation times are not tolerable. Therefore, the 
motivation of this work is to implement our advanced 
imaging model with iterative algorithm on GPU and try to 
reduce the overall computation time while compensating for 
magnetic field inhomogeneity. Our group has implemented 
a simple version of the costly part of the algorithms using 
GPU, achieving significant speedup improvements [15-17]. 
In this work, we elaborate on this earlier work by extending 
the imaging model in order to include the field 
inhomogeneity gradients and thus achieve higher image 
quality. 
 

2. MR IMAGE RECONSTRUCTION WITH 
ITERATIVE CG SOLVER  

In this section, we first briefly introduce our MR imaging 
model for susceptibility artifacts compensation, which 
includes the magnetic field inhomogeneity map and its 
gradients. Secondly, we present the image reconstruction 
using an iterative CG solver with our MR imaging model. 
 



2.1. MR Imaging Model 
The 2D MR measurements acquired in MR imaging data are 
noisy samples of the signal as shown in Eq. (1): 
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where y(tm) denotes the noisy measurements at time tm and 
M is the number of k-space samples; ε is the complex white 
Gaussian noise introduced during the data acquisition; and d 
is the complex k-space signal as shown in Eq. (2): 
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In Eq. (2), k(tm) denotes the k-space trajectory at time tm 
which can include the Z-shim imaging gradient as 
previously described in [13, 14]; ρ(r) represents the object 
at location r; ω(r) = ω(x,y,z) is the magnetic field 
inhomogeneity map  including the susceptibility gradients. 
ω(x,y,z) can be parameterized in terms of 3D rectangle basis 
functions as Eq. (3): 
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where N is the number of spatial locations for image voxels; 
ωn is off-resonance frequency for each voxel (in Hz); GX,n, 
GY,n are the within-plane susceptibility gradients and GZ,n is 
the through-plane susceptibility gradient (in Hz/cm); and 
φn(x,y,z) represents the basis function, (xn,yn,zn) denotes the 
location of the voxel center. Therefore, the imaging model 
is discretized as Eq. (4): 
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Φn(k(tm)) represents the Fourier Transform of the basis 
function φn(r) at k-space location km, combined with the 
effects of the field inhomogeneity gradients in x,y,z 
directions and Z-shimming gradients, as in Eq. (5): 
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2.2. Iterative Reconstruction with CG Solver 
For convenience, in the following discussion, we use bold 
fonts to denote the vector representation of a function, such 
that d denotes the column vector representation of d(k(tm)). 
A maximum likelihood image reconstruction can be 
represented as Eq. (6): 
 2

2
ˆ arg min=

ρ
ρ Fρ d− , (6) 

where ρ denotes a length-N vector for reconstructed image 
voxels; d is a length-M vector represent the data sample; F 
is an M×N matrix modeling the MR imaging process, which 
represents sampling with non-Cartesian trajectory in k-
space. In our imaging model, F also includes the magnetic 
field inhomogeneity map and its gradients, which leads to 

computation difficulty and long execution time due to 
dependence of both time and spatial position as well 
subject-orientation. Each element of system matrix F (at m-
th time sample and n-th spatial position) can be written as: 
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This least square problem for imaging reconstruction yields 
a solution as shown in Eq. (8): 
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However, the large matrix size makes direct matrix 
inversion impractical, especially for high resolution 
reconstructions.  
Instead, we use a conjugated gradient (CG) algorithm to 
iteratively find the least-square solution. In our 
reconstruction method with CG solver, the main time-
consuming computations come from calculating the matrix-
vector product Fρ and FHd (denoted as forward operator 
and backward operator in this paper), as defined in Eq. (9): 
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We describe the implementation of this reconstruction 
algorithm using GPU in the next section. 
 

3. IMPLEMENTATION OF CG SOLVER ON GPU  
In this section, we detail the implementation methods of 
iterative CG solver used in this work. 
 
3.1. GPU and CUDA Programming Model 
Recently, graphics processing units (GPU) has led the 
advances in computation for science and engineering 
applications due to highly parallel programming 
performance, such as massive multithreading and high 
memory bandwidth, etc. The MR image reconstruction with 
CG solver is parallelizable and therefore capable to be 
accelerated significantly on GPU. The proposed work is 
implemented on the NVIDIA GeForce GTX 280 GPU. The 
GTX 280 GPU yields 933 GFLOPS of peak theoretical 
performance and 141.7 GB/s memory access bandwidth, 
and also has several on-chip memories so that it can 
efficiently reduce the demands for off-chip memory 
bandwidth [18]. The reconstruction algorithm is based on 
the CUDA (Compute Unified Device Architecture) 3.0 
programming model which newly released by NVIDIA. 
CUDA 3.0 supports the single-program, multiple-data 
(SPMD) parallel execution [18, 19], therefore our proposed 
method can take the advantage of this data-parallel 
programming model. For comparison, the CPU is a quad-
core 2.37 GHz AMD Opterons with 8 GB of memory, and 
the operating system is Fedora 10. 
 
3.2. GPU-based CG Solver Implementation 



A simple version of forward/backward operators (with 
Fourier transform operator only) has been implemented on 
GPU in our previous work [15-17]. Here we extend the 
implementation of the forward/backward operators by 
providing field inhomogeneity compensation as described in 
the imaging model in Section 2.1. Correspondingly, the 
system matrix F becomes to patient-dependent due to 
dependence on magnetic field inhomogeneity map and its 
gradients, and therefore leads to highly computation cost. 
Furthermore, we implement the image reconstruction with 
field inhomogeneity compensation into GPU. Due to 
inclusion of the through-plane susceptibility gradient effects, 
it is difficult to make use of the FFT-based accelerations [8, 
20] that we made use of in our previous work [16]. 
Additionally, in order to avoid the extra memory operating 
time, e.g. consumed by the data transfer between CPU and 
GPU and memory allocation in GPU during iterations, all 
operations of the CG solver are performed on the GPU 
(including forward/backward operators, matrix sum, vector 
dot product, etc.). We use the constant memory caches on 
GPU to store the data during calculation. The GPU 
implementation of MR image reconstruction is especially 
suitable for special functional units (SFU) since the 
algorithm contains heavily use of floating point 
trigonometry functions, e.g. sin and cos operations for 
exponential term in the system model. Although using SFU 
will lower the computation accuracy, this effects is 
negligible as we show in the next section. 
 

4. RESULTS AND DISCUSSION 
 

 

 
 

Fig. 1 Field inhomogeneity map (in Hz) and its gradients (in 
Hz/cm) used in field inhomogeneity compensation. a) Field 
inhomogeneity map; Field inhomogeneity gradients: b) in x-
direction, c) in y-direction, d) in z-direction. 
 
Some of the preliminary results are presented in this section. 
In this paper, we use a matrix size of 64x64 with 4 slices to 
test our implementation. Figure 1 shows one slice of the 
field inhomogeneity map and its gradients used in the image 
reconstruction. One can observe the presence of magnetic 
field inhomogeneity in the orbito-frontal cortex. Figure 2 a, 
c) shows reconstructions obtained without using the field 
map and its gradient; susceptibility artifacts such as 

geometric distortion and signal loss are visible and degrade 
the reconstructed image. Figure 2 b, d) shows the CPU and 
GPU reconstructions obtained using our imaging model 
which compensated for susceptibility artifacts. From figure 
2, we can see that CPU and GPU images are almost 
identical. The error (normalized root-mean-square error) 
between GPU and CPU is 2.94x10-4 without using SFU and 
3.29x10-4 with using SFU. Therefore, we believe the error 
introduced by the SFU on the final result is acceptable. 
 

 

a) CPU: no FM       b) CPU: FM  

c) GPU: no FM       d) GPU: FM   
 

Fig. 2 Image reconstruction comparisons between CPU and 
GPU. a) CPU: without FM compensation, b) CPU: with FM 
compensation, c) GPU: without FM compensation, d) GPU: 
with FM compensation. 
 
The GPU implementation has different performance 
versions by different optimization methods. For example, 
optimization methods include: storing voxel data in 
numerous processor registers to conserve memory 
bandwidth; placing data into constant memory to realize 
cached data access; tiling data based on the constant 
memory size; using hardware trigonometric functions, and 
so on. For simplicity, we provide the performance of two 
groups of optimization in GPU in this paper: with and 
without SFU (the rest optimizations are integrated inside 
both groups and their separate performance can be found in 
[15-17]). The optimization of CPU includes with and 
without paralleling code using multi-thread, etc.  

a) FM 

b) x Gradient       c) y Gradient       d) z Gradient For compassion, the work is also tested in another pair of 
CPU and GPU. Table 1 represents the performance of 
different versions of CPU and GPU implementations with 8 
iterations. So here we refer the tested processors as CPU1 
(AMD Quad Core, 2.37 GHz), CPU2 (Intel Dual Core, 2.4 
GHz) and GPU1 (G80), GPU2 (G280). The results in Table 
1 show that the GPU computational performance up to 284x 
(with SFU) faster than the CPU with non-optimization, and 
81x faster than the CPU with optimization. We believe this 
speedup of reconstruction is attractive to the clinical 
implementation. In addition, the proposed implementation 
of our imaging model on GPU can be easily extended to 
include spatially-varying smoothness constraints or other 
advanced applications to further improve the image quality. 
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We implement an advanced MR image reconstruction 
model on GPU using iterative conjugate gradients algorithm 
with magnetic field inhomogeneity compensation for 
geometric distortion and signal losses. The proposed GPU 
implementation speedups the image reconstruction around 
two orders of magnitude compared with CPU computation. 
And the error between CPU and GPU computation is 
negligible. This image reconstruction model could also be 
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