
Comparing Software and Hardware Schemes

For Reducing the Cost of Branches

Wen-mei W. Hwu Thomas M. Conte

Coordinated Science Laboratory

1101 W. Sprint�eld Ave.
University of Illinois

Urbana, IL 61801

Pohua P. Chang

Abstract

Pipelining has become a common technique to increase

throughput of the instruction fetch, instruction decode,

and instruction execution portions of modern comput-
ers. Branch instructions disrupt the ow of instructions

through the the pipeline, increasing the overall execution

cost of branch instructions. Three schemes to reduce the
cost of branches are presented in the context of a gen-

eral pipeline model. Ten realistic Unix domain programs

are used to directly compare the cost and performance
of the three schemes and the results are in favor of the

software-based scheme. For example, the software-based

scheme has a cost of 1.65 cycles/branch vs. a cost of 1.68
cycles/branch of the best hardware scheme for a highly

pipelined processor (11-stage pipeline). The results are

1.19 (software scheme) vs. 1.23 cycles/branch (best hard-
ware scheme) for a moderately pipelined processor (5-

stage pipeline).

1 Introduction

The pipelining of modern computer designs causes prob-

lems for the execution of branch instructions. Branches
disrupt sequential instruction supply for pipelined proces-

sors and introduce non-productive instructions into the

pipeline. However, approximately one out of every three
to �ve instructions is a branch instruction[1][2]. A sig-

ni�cant increase in the performance of pipelined comput-

ers can be achieved through special treatment of branch
instructions[3][4][1].

There have been several schemes proposed to reduce

the branch performance penalty. These schemes employ

hardware or software techniques to predict the direction of

0

a branch, provide the target address of a branch, and sup-

ply the �rst few target instructions [3][4][1][5][6]. When
the prediction is incorrect, the wrong instructions are in-

troduced into the pipeline. After the branch instruction

�nishes execution and supplies the correct action to the in-
struction fetch unit, the incorrect instructions are ushed,

or squashed from the pipeline [1]. These schemes rely on

the assumption that the accuracy of the branch prediction
scheme is high enough to mask the penalty of squashing.

A small increase in the accuracy of a prediction scheme

has a large e�ect on the performance of conditional branch
instructions if the penalty for squashing an incorrectly

predicted branch is large. Hence, highly accurate predic-

tion schemes are desirable.

There have been many studies that investigate the ef-

fectiveness of solutions to the branch problem. Most
of these studies focus on the accuracy of the branch

prediction scheme employed [3][4][1][6][7]. Some studies

also discuss hardware and software approaches to reduc-
ing the penalty of re�lling the instruction fetch unit's

pipeline [3][1][6].

Some schemes use static code analysis to predict branch

behavior. One such scheme predicts all backward con-

ditional branches as taken and all forward branches as
not-taken. This is based on the assumption that back-

ward branches are usually at the end of loops. In the

study done by J. E. Smith [4], the average accuracy of
this approach was 76.5%. However, in some cases this ap-

proach performed as poorly as only 35% accurate. Since

the benchmarks used in the study were FORTRAN appli-

cations, which tend to be dominated by loop-structured

code, the results may have been biased in favor of scien-

ti�c workloads. Another study reported a 90% average

accuracy for a static scheme, however the speci�c predic-

tion mechanism was not reported nor was any additional

statistical information besides the average [7].

Many architectures predict every conditional branch to

either be all taken or all not-taken. In [1], this scheme is
reported to be only 63% accurate if all branches are pre-

dicted taken. Similarly, [3] reports approximately 65�5%,

[2] reports 67%, and [4] reports 76.7% of all branches are
taken. Another static approach is to associate a predic-

tion with the opcode of the branch instruction. This pre-
diction is derived from performance studies and is stored

in a ROM or with the branch's microcode. The accuracy

of this scheme is reported to be 66.2% on-average in [3]
and 86.7% in [4].

Several dynamic branch history-based prediction
schemes are presented in [3] and [4]. Dynamic approaches

to branch prediction usually include hardware support in
the form of a specialized cache to store the prediction in-

formation. For example, some schemes calculate the au-

tocorrelation of the history vector of a branch instruction
to generate a prediction; however, there is high hardware

overhead for this scheme. Another, less-expensive scheme

uses an up/down counter for prediction. J. E. Smith re-
ports an accuracy of 92.5% for a two-bit version of this

counter scheme. He reports a slightly smaller accuracy for

larger counter sizes, due to the \inertia" caused by large
counter sizes.

Another method of reducing the cost of branches
uses information gathered during pro�ling a program for

compile-time branch prediction. Note that this is di�erent

from static techniques since it uses the observed dynamic
behavior of the branches for prediction. It is also sepa-

rate from the other dynamic approaches because it does

not require a large amount of hardware support. Usually,
the instruction set is modi�ed to include a prediction bit

in the branch instruction format. This bit is used by the

compiler to specify the prediction (i.e., predicted taken or
not-taken) to the hardware. For example, this approach

is used in the MIPS architecture [1].

Some previous schemes provide special support to make

up for inaccurate branch prediction schemes. A common
approach uses condition codes and optional compare in-

structions [8][9]. A case for single-instruction conditional

branches is given in [6]. When a compare instruction must
be added, the two instructions must be placed far-enough

apart to predict the branch's behavior. However, this may

not always be possible. Also, conditional branches now
take two instructions instead of a single instruction. In

order to make up for this increase in the dynamic instruc-

tion count, a hardware mechanism was included in the
CRISP project to dynamically absorb the actual branch

instruction into its preceding instruction and store it in

a partially-decoded form. After all these techniques were
used, the compiler designers for CRISP later suggested

that a compiler-supported prediction mechanism might

be useful to further improve performance [7].

To mask the penalty of ushing the pipeline when the

prediction is incorrect, some schemes provide the �rst

few instructions of the branch's target path. Some hard-

ware bu�er approaches store these instructions along with

the prediction information. Reduced instruction set com-

puter architectures often use a delayed branch to mask

this penalty. For example, delayed branches are used in

the Stanford MIPS [1] and the Berkeley RISC I [10]. In
this approach, the compiler �lls the delay slots follow-

ing the branch instruction with instructions before the

branch. While the fetch of the target instruction is be-
ing performed, the instructions in the delay slots are exe-

cuted. These schemes rely on the compilers ability to �ll
the delay slots. McFarling and Hennessy report that a

single delay slot can be successfully �lled by the compiler

in approximately 70% of the branches. However, a sec-
ond delay slot could be �lled only approximately 25% of

the time [1]. Therefore, it is hard to support moderately

pipelined instruction fetch units using the delayed branch
technique.

The issue of which branch prediction scheme to use for

VLSI-implemented monolithic processors is a topic still

open to debate. The CRISP processor used signi�cant
hardware support for a static compiler technique [7][8].

The MIPS processor used delayed branches with squash-

ing for an architecture with a relatively shallow pipeline
(�ve stages)[1]. Since the silicon real estate is expensive

for such processors, schemes that address the branch prob-

lem for processors implemented in VLSI should use little
or no hardware support and achieve high performance. As

more and more systems of all classes are being designed

with single-chip central processors, new solutions to the
branch problem that match or exceed the performance of

traditional approaches must be developed.

This paper investigates three (two hardware and one

software) schemes to solve the branch problem. These
three schemes are presented and compared in the context

of a very general pipelined microarchitecture. An opti-

mizing, pro�ling compiler assists the evaluation of the
performance of the schemes using a substantial number

of benchmarks taken from the Unix1 domain [11]. The

experiments are controlled to isolate the e�ects of pipelin-
ing the instruction fetch unit from those of pipelining the

instruction decode and instruction execution units.

The remainder of this paper is organized into three sec-

tions. Section two provides a concise description of the
three schemes used to solve the branch problem: a sim-

ple branch target bu�er, a counter-based branch target

bu�er, and a software approach. Section three presents
the experimental results used for evaluating the perfor-

mance of the three schemes. Finally, section four o�ers

concluding remarks and future directions.

2 Background

This section introduces the three architectures that are

used for the investigation. The �rst two of these ar-
chitectures use additional hardware to solve the branch

problem. The third architecture uses a pro�ling-compiler-

driven software approach. All three architectures share a
common model of a pipelined microarchitecture. This mi-

croarchitecture is composed of four smaller pipelines, or

units, connected in series: the instruction fetch unit, the
instruction decode unit, the instruction execution unit,

and the state update unit (see Figure 1).

2.1 Pipeline structure

The instruction fetch unit is divided into k + 1 stages,
one stage to select the next address, and k stages to ac-

cess the address. The next address selection logic takes

1Unix is a trademark of AT&T Bell Laboratories

BTB

Instruction
Decode Unit

Unit
Execution
Instruction

PC's, vectors

select

k-stages

`-stages

m-stages

Instruction
Fetch Unit

State
Update
Unit

Figure 1: The pipelined microarchitecture.

various program counters and various interrupts and ex-

ception vectors to produce the address of the next instruc-
tion to fetch. Each branch instruction speci�es a vector,

or branch target, which is the address of the instruction

to branch to. The subsequent k stages for instruction
memory access take the instruction address generated and

access the instruction memory hierarchy (i.e., instruction-

bu�er, instruction-cache, etc.).

The instruction decode unit is `-stages in length. This
stage decodes the instruction and calculates its actual

operand values by decoding the operand the addressing

modes and possibly accessing the register �le or memory.
Hence, the actual branch target and the branch action

(for unconditional branches) is known at the end of this

stage. This information is supplied through a feedback
path to the selection logic of the instruction fetch unit.

The instruction execution unit is m-stages in length.
The action of conditional branches is known when a

branch reaches the end of the unit's pipeline. This infor-

mation is supplied as a control signal in a feedback path
to the selection logic of the instruction fetch unit. This

pipeline may implement some form of interlocking, such

as scoreboarding or the Tomasulo algorithm [12][13], or
interlocking may be statically performed by the compiler.

The e�ects of these interlocking strategies are parameter-

ized to generalize the results (see below). It is assumed
that comparisons are included in the semantics of the con-

ditional branch instruction, as opposed to condition-code

driven branch instructions. Finally, the state update unit
is assumed to update memory, the register �le, and/or the

data cache with the results of executed instructions.

The issue of which instruction to fetch next is deter-

mined by the next address selection stage of the instruc-
tion fetch unit. In a simple next address selection stage,

no special treatment is given to branches (i.e., branches

are always predicted not-taken). If this prediction is in-
correct, the wrong instructions will be introduced into the

pipeline. These incorrectly-fetched instructions must be

ushed from the pipeline when the actual branch behavior
is determined. The instruction fetch unit's pipeline must

always be ushed, and so must any incorrectly-fetched

instructions in the instruction decode and instruction ex-
ecution units' pipelines. A scheme should be provided

for fast access to the k instructions following the branch

target to hide the cost of ushing the instruction fetch

unit.

Since on some machines the time to decode an instruc-
tion is not �xed but dependent on many factors (e.g., the

complexity of the addressing modes used, the performance

of the memory system, etc.), the penalty for ushing the
pipeline of the instruction decode unit is treated as an

average, �̀, where 0 � �̀� `. Note that �̀ = ` for many

RISC architectures. Due to interlocking, the number of
instructions to ush from the instruction execution unit's

pipeline may be determined by dependencies between in-

structions. Also, since unconditional branches are pre-
dicted with 100% accuracy, some branch instructions do

not require any ush of the instruction execution unit.
Hence, the penalty for ushing this unit's pipeline is also

taken as an average, �m. For compiler-implemented static

interlocking, �m = fcondm, where fcond is the fraction of
branch instructions that are conditional branches. There-

fore, it is assumed that on average, k+ �̀+ �m instructions

must be ushed from the pipeline for each branch. This
observation will be used in Section 2.3 in stating the gen-

eral formula for branch cost.

2.2 Three branch cost-reduction schemes

A Simple Branch Target Bu�er, or SBTB, is used to re-

member as many as possible of the taken branches that
are encountered in the dynamic instruction stream. To

mask the penalty of ushing the instruction fetch unit, the

SBTB stores the �rst k instructions of a taken branch's
target path. For this reason, any branch instruction not

in the SBTB is predicted to be not-taken. If a branch

instruction is predicted taken, but when executed it does
not branch to a new location, the corresponding entry in

the SBTB is deleted. The SBTB may be thought of as

cache that uses the branch instruction's location in mem-
ory as its associative tag. When it is full, a replacement

policy is used to select an entry to replace. The accu-

racy of the SBTB's predictions is expressed as ASBTB, the
probability of the prediction being correct. The SBTB in

this paper is a 256-entry fully-associative SBTB with a

least-recently-used replacement policy.

Like the SBTB, a Counter-based Branch Target Bu�er,

or CBTB, is also a type of cache. It remembers as many as
possible of the branch instructions encountered in the dy-

namic instruction stream. As with the SBTB, the CBTB

also stores the �rst k instructions of the target branch
to mask the instruction fetch penalty. The CBTB imple-

mented for this paper stores a counter used for prediction

along with each branch instruction [4]. For each new en-
try in the CBTB, the n-bit counter, C, is initially set to a

threshold, T , if the branch was taken, or T�1, if it was not

taken. Subsequently if the branch is taken, the counter is
incremented, else it is decremented. When C = 2n� 1, it

remains at this value, and when C = 0, it remains at zero.

A branch is predicted taken when C � T , else the branch
is predicted not-taken. Any branch instruction not al-

ready in the bu�er is predicted not-taken. The accuracy

of the CBTB's predictions is expressed as ACBTB, the
probability of the prediction being correct. The CBTB in

this paper uses a 256-entry fully-associative CBTB with a

least-recently-used replacement policy for its branch pre-

diction hardware. The counters used for prediction are

2-bits long and T = 2.

The SBTB or CBTB are accessed using the address
from the select stage of the instruction fetch unit for ev-

ery instruction retrieved from memory. This access oc-

curs in parallel with the actual memory access performed

in the instruction fetch unit. If the location causes a

SBTB/CBTB hit, it is then known that the instruction

is a branch. If the SBTB/CBTB's predicts the branch as

taken (the SBTB always predicts a hit as a taken branch),

the �rst k instructions following the target are sequen-
tially supplied to the instruction decode unit (see Fig-

ure 1).

The third approach to branch prediction, the Forward

Semantic, uses an optimizing, pro�ling compiler to pre-

dict the direction of all branches in a program. The
SBTB/CBTB hardware shown in Figure 1 is not used in

this scheme. Instead, the program is �rst compiled into an

executable intermediate form with probes inserted at the
entry of each basic block. The program is then run once or

several times for a representative input suit. During the

recompilation, predictions are made for each branch and
stored by setting or clearing a \likely-taken" bit in the

instruction format of each branch instruction [11]. The

accuracy of these predictions is again represented as a
probability that the prediction is correct, AFS. Based on

the pro�ling information, groups of basic blocks that are

virtually always executed together are then bundled into
larger blocks called traces [11][14]. The result is that all

conditional branches that are predicted taken are placed

at the end of these traces. For each branch that is pre-
dicted taken, k + ` locations, or forward slots, following

the branch instruction are reserved. The k + ` instruc-

tions from the target path of the branch are copied into
these slots. During the execution, when the instruction

is determined to be a branch instruction at the end of
the instruction decode unit, the instructions in the for-

ward slots will mask the penalty of incorrectly fetching

the k + ` instructions following the branch. Hence, these
instructions serve the same purpose as the k instructions

stored with each entry in the SBTB or CBTB.

To �ll the forward slots, the traces are sorted by ex-

ecution weight. The following algorithm is then used to

�ll the slots, where there are N traces, trace[i] is the
trace with the ith largest weight, trace[i]->next trace

is the target trace, target addr[trace[i]] is the tar-

get address of the branch instruction at the end of
trace trace[i], and trace[i]->offset into trace is the

branch target address, expressed as an o�set from the be-

ginning of the target trace.

for i N downto 1 step -1 do

next trace trace->next trace;

offset trace->offset into trace;

length size of(next trace) - offset;

if (length � k + `) then

Copy the next k + ` instructions

of trace[i]->next trace to
the end of trace[i];

target addr[trace[i]]

target addr[trace[i]] + k + `;

else

Copy the remaining instructions

of next trace to the
end of trace[i];

Fill the remaining forward slots

with NO-OP's;
target addr[trace[i]]

target addr[trace[i]] + length;

endif;

An example of the algorithm is shown in Figure 2. The

branch instruction originally at location 5 is an unlikely
branch. Therefore, it can be absorbed into the forward

slots of the branch instruction at location 2. Note that the

target for this branch is not altered when it is absorbed
into the forward slots. The instructions in the forward

slots at locations 3 and 4 of the altered program fragment

execute using an alternate program counter register value
which in the example will be set to location 7.

1: I1
2:beq pc+ 3 (likely)

3: I3
4: I4
5:beq pc+ 3 (unlikely)

6: I6
7: I7
8: I8
9: I9

1: I1
2:beq pc+ 5 (likely)
3:beq pc+ 3 (unlikely)

4: I6
5: I3
6: I4
7:beq pc+ 3 (unlikely)

8: I6
9: I7
10: I8
11: I9

Figure 2: An example of the Forward Semantic: origi-

nal program fragment (left), and after application of the
algorithm (right).

Note that the Forward Semantic is di�erent from the

\Delayed-Branch with Squashing" scheme presented in
[1]. In that scheme, no branch instructions could be

absorbed into the delay slots following the branch in-

struction. Also, the most-recently prefetched instruction
and the instructions speci�ed in the delay slots after the

branch instruction were the instructions that would be

squashed if the prediction was incorrect. However, in the
Forward Semantic scheme, although k+�̀+ �m instructions

are ushed from the pipeline, only k+ ` forward slots fol-

lowing the branch are used. Hence, a Forward Semantic
implementation for the architecture presented in [1] would

have used only one forward slot following the branch in-

stead of two, since k = 0; ` = 1;m = 2 for MIPS-X.

2.3 Branch instruction cost

Whenever an incorrect prediction is made, the entire

pipeline may potentially be ushed. This means the cost

for an incorrect prediction for any of the three schemes is
k+�̀+ �m. When the prediction is correct, each of the three

schemes successfully covers the ushing of the pipelines.

Hence, the cost of executing a branch instruction for any
of the three architectures is,

cost = A+ (k + �̀+ �m)(1� A);

where A = ASBTB ; for the SBTB, A = ACBTB; for the
CBTB, and A = AFS for the Forward Semantic. This

equation will be used in the remainder of this paper to

calculate the cost of branches for the three architectures
given the accuracy of the three prediction schemes. As-

suming that time is measured in clock cycles, and each
stage of the pipeline has a latency of one clock cycle,

3 Experimental Results

Table 1 summarizes several important characteristics of
the benchmarks used for the experiments below. The

Lines column shows the static code size of the C bench-

mark programs measured in the number of program lines.
The Runs column gives the number of di�erent inputs

used in the pro�ling process. The Inst. column gives

the dynamic code size of the benchmark programs, mea-
sured in number of compiler intermediate instructions.

The Control column gives the percentage of dynamic con-

ditional and unconditional branches executed during the
pro�ling process. Both Inst. and Control are accumulated

across all of the runs. Finally, the Input description col-

umn describes the nature of the inputs used in the pro�l-
ing process. As reported in many other papers, the num-

ber of dynamic instructions between dynamic branches is

small (about four).

The Conditional column of Table 2 con�rms that on av-

erage 61% of the dynamic branches generated by the com-
piler are not-taken branches. When the SBTB or CBTB

generates a miss for a given branch, the instruction fetch

unit cannot fetch the target instructions in time, which
forces the fetch unit to continue to fetch the next instruc-

tion. This is equivalent to predicting that the branch is

not taken. Since the majority of the dynamic branches are
not taken, the predictions made upon SBTB misses are

actually accurate. Since only taken branches make their

way into the SBTB, the low percentage of taken branches
also reduces the number of entries needed in SBTB to

achieve high prediction accuracy. Therefore, we can ex-

pect the SBTB performance reported below to be better
than equivalent designs reported by the previous papers.

The Known column in Table 2 gives the percentage

of availability of the target address for unconditional
branches. Unconditional branches with known target ad-

dress can be easily handled by all the three schemes as (ex-

tremely biased) likely branches. Branches with unknown
target addresses (i.e., the address is generated as run-time

data) pose a problem for all three schemes. Fortunately,

almost all the unconditional branches for the benchmarks
have known target addresses. Therefore, all the three

schemes work well with the unconditional branches.

The performance of the benchmarks for the three archi-
tectures are presented in Table 3. The miss ratio for the

SBTB, �SBTB , is much larger than the miss ratio for the

CBTB, �SBTB . This is to be expected since only taken
branches are saved in the SBTB, whereas all branches are

eligible to be stored in the CBTB. Note also that the dif-

ferences in prediction accuracy (i.e., A) between the three
schemes increases with the complexity of the prediction

mechanism used. A SBTB uses essentially information

based on the most recent behavior of a branch instruc-
tion in the dynamic instruction stream. Since the counter

used for the CBTB is 2-bits long, the CBTB bases its pre-

dictions on the four most-recent branches in the dynamic
instruction stream. Hence, the CBTB predicts branch be-

havior slightly more accurately than does the SBTB. The

most accurate scheme, the Forward Semantic, uses the

behavior of the branch throughout the entire dynamic in-

struction stream for its predictions.

Observe that the accuracy values for all three archi-

tectures are very similar. However, if context switching
had been simulated, one would expect the performance

of the SBTB and the CBTB to be less impressive [3].

Note though that the prediction accuracy of the Forward
Semantic would not have changed in the presence of con-

text switching. Finally, both the SBTB and the CBTB

are fully associative to provide the highest possible hit ra-
tio. With 256 entries, it may not be feasible to implement

full associativity. Hence, the results are biased slightly in

favor of the two hardware approaches.

The values of k = 1; 2; 4; and 8 and the averages from

Table 3 of A were used for the four graphs of branch
cost versus �̀+ �m in Figures 3 and 4, where SBTB cost

is shown as a solid line, CBTB cost is a dashed line, and

Forward Semantic cost is a dotted line. These �gures show
that as the length of the instruction fetch pipeline grows,

the di�erence between the three architectures increases as

does the overall branch cost. Increasing the length of the
instruction decode and instruction execution pipeline also

increases the di�erence between the three architectures.

Modern microprocessors have relatively shallow pipe-

lines with a two-stage instruction fetch pipeline (e.g., �̀+

�m � 2; k = 1). Pipelining the on-chip cache memory
system is a di�cult task. Future increases in pipelining

may therefore occur in the instruction decode unit. To see

the e�ect of this possible design shift, the results for all
benchmarks for k + �̀= 2 and 3, and �m = 1 is presented

in Table 4.

Note that the three schemes do have a slight increase in

branch cost for the transition from k+ �̀= 2 to k+ �̀= 3

for each benchmark. The average percentage of increase
in branch cost is 7.7%, 6.9%, and 5.3%, for the SBTB, the

CBTB, and the Forward Semantic, respectively. Hence,

the Forward Semantic reacts the best to scaling the degree
of pipelining, the CBTB is next, and the SBTB is the least

scalable.

Although the Forward Semantic has a slightly lower

branch cost, code-size increases occur due to the copy-

ing of instructions into forward slots after each predicted-
taken branch. Table 5 summarizes this e�ect. Because

copying instructions into forward slots increases the spa-

tial locality of the program, the expanded static code size

does not translate linearly into increased miss ratios of

instruction caches. Therefore, considering the saving of

hardware over SBTB and CBTB, the Forward Semantic

is de�nitely a favorable choice according to the bench-

marks.

4 Conclusions

This paper introduced a software approach to reducing

the cost of branches, the Forward Semantic, which is sup-

ported by a pro�ling, optimizing compiler and uncompli-
cated hardware. A model was presented for the cost of

branches which is signi�cantly more general than previous

models. One of the main features of this model is the in-

0 2 4 6
1.0

2.0

�̀+ �m

Cost

k = 1

0 2 4 6
1.0

2.0

�̀+ �m

Cost

k = 2

Figure 3: Branch cost vs. �̀+ �m for k = 1 and k = 2.

0 2 4 6
1.0

2.0

�̀+ �m

Cost

k = 4

0 2 4 6
1.0

2.0

�̀+ �m

Cost

k = 8

Figure 4: Branch cost vs. �̀+ �m for k = 4 and k = 8.

dependent treatment of the instruction prefetch unit and

the instruction execution unit.

The measurements performed for this paper were fair
to all three architectures considered. The exact same

benchmarks with the same inputs were used to derive the
data for all three architectures, even though two archi-

tectures involved hardware schemes and one involved a

software/compiler scheme. This provided a fair compari-
son between the Forward Semantic and the two hardware

approaches.

The results of the performance study are encouraging.

They indicate that the Forward Semantic compares favor-
ably with the two other approaches. If context switching

had been simulated, the Forward Semantic's performance

would have remained the same, whereas the performance
of the other two schemes would have su�ered. The hard-

ware needed for the Forward Semantic is considerably less

complex than required for the other two schemes. Since
the hardware schemes need to be accessed fast by the

instruction prefetch pipeline, these schemes would have

to be implemented on-chip in a microprocessor, using up
valuable area. The Forward Semantic frees this area for

other uses without sacri�cing performance. Use of the

Forward Semantic does cause an increase in code size,
however. This additional code adds to the spatial local-

ity of the program, since executing the instructions in

forward slots often will cause the branch target's instruc-
tions to be in the instruction cache. For deep pipelines

(e.g., k+ ` = 4), the Forward Semantic with its moderate

14.12% code-size increase seems to be more favorable than
the the hardware of the SBTB/CBTB schemes, which in-

crease linearly with k.

Acknowledgements

The authors would like to thank Sadun Anik, Scott
Mahlke, Nancy Warter, and all members of the IMPACT

research group for their support, comments and sugges-

tions. This research has been supported by the National

Science Fundation (NSF) under Grant MIP-8809478, a

donation from NCR, the National Aeronautics and Space

Administration (NASA) under Contract NASA NAG 1-

613 in cooperation with the Illinois Computer laboratory

for Aerospace Systems and Software (ICLASS), the O�ce

of Naval Research under Contract N00014-88-K-0656, and

the University of Illinois Campus Research Board.

References

[1] S. McFarling and J. L. Hennessy, \Reducing the cost

of branches," in Proc. 13th Annu. Symp. on Comput.
Arch., (Tokyo, Japan), pp. 396{403, June 1986.

[2] J. S. Emer and D. W. Clark, \A characterization of
processor performance in the VAX-11/780," in Proc.

11th. Annu. Symp. on Comput. Arch., pp. 301{309,
June 1984.

[3] J. K. F. Lee and A. J. Smith, \Branch prediction

strategies and branch target bu�er design," IEEE
Computer, Jan. 1984.

[4] J. E. Smith, \A study of branch predition strate-

gies," in Proc. 8th Annu. Symp. on Comput. Arch.,
pp. 135{148, June 1981.

[5] D. J. Lilja, \Reducing the branch penalty in

pipelined processors," IEEE Computer, July 1988.

[6] J. A. DeRosa and H. M. Levy, \An evaluation of

branch architectures," in Proc. 15th. Annu. Symp.

on Comput. Arch., pp. 10{16, June 1987.

[7] S. Bandyopadhyay, V. S. Begwani, and R. B. Murray,

\Compiling for the CRISP microprocessor," in Proc.

1987 Spring COMPCON, pp. 86{90, 1987.

[8] D. R. Ditzel and H. R. McLellan, \Branch folding in

the CRISP microprocessor: reducing branch delay to

zero," in Proc. 14th Annu. Symp. on Comput. Arch.,
pp. 2{9, June 1987.

[9] Digital Equipment Corp., VAX11 Architecture Hand-
book, 1979.

[10] D. A. Patterson and C. H. Sequin, \RISC I: a reduced

instruction set VLSI computer," in Proc. 8th Annu.
Symp. on Comput. Arch., pp. 443{457, May 1981.

[11] W. W. Hwu and P. P. Chang, \Trace selection

for compiling large C application programs to mi-
crocode," in Proc. 21st Annu. Workshop on Mi-

croprogramming and Microarchitectures, (San Diego,

CA.), Nov. 1988.

[12] R. M. Tomasulo, \An e�cient algorithm for exploit-

ing multiple arithmetic units," IBM Journal of Re-

search and Development, vol. 11, pp. 25{33, Jan.
1967.

[13] J. E. Thornton, \Parallel operation in the Control

Data 6600," in Proc. AFIPS FJCC, pp. 33{40, 1964.

[14] J. A. Fisher, \Trace scheduling: A technique for

global microcode compaction," IEEE Trans. Com-

put., vol. c-30, no. 7, pp. 478{490, July 1981.

Table 1: Benchmark characteristics

Benchmark Lines Runs Inst. Control Input description

cccp 4660 20 11.7M 19% C progs (100-3000 lines)

cmp 371 16 2.2M 22% similar/disimilar text �les

compress 1941 20 19.6M 16% same as cccp
grep 1302 20 47.1M 36% exercised various options

lex 3251 4 3052.6M 37% lexers (C, Lisp, awk, pic)

make 7043 20 152.6M 21% make�les
tee 1063 18 0.43M 40% text �les (100-3000 lines)

tar 3186 14 11M 14% save/extract �les

wc 345 20 7.8M 28% same input as cccp
yacc 3333 8 313.4M 25% grammar for C, etc.

Table 2: Benchmark branch statistics

Conditional Unconditional

Benchmark Taken Not Known Unknown

cccp 31% 69% 81% 19%
cmp 20% 80% 100% 0%

compress 37% 63% 100% 0%

grep 5% 95% 100% 0%

lex 49% 51% 100% 0%

make 49% 51% 100% 0%

tar 89% 11% 100% 0%

tee 44% 56% 100% 0%

wc 24% 76% 100% 0%

yacc 47% 53% 100% 0%

Average 40% 61% 98% 1.9%

Table 3: Branch prediction performance of the benchmarks.

Branch prediction scheme
Benchmark SBTB CBTB FS

�SBTB ASBTB �CBTB ACBTB AFS

cccp 0.57 90.7% 0.018 91.5% 89.6%

cmp 0.70 97.1% 0.0032 98.0% 98.6%

compress 0.49 87.8% 0.0053 86.1% 89.1%
grep 0.76 93.7% 0.0006 95.9% 96.0%

lex 0.36 98.2% 0.0002 97.7% 98.0%

make 0.42 90.5% 0.012 92.5% 94.4%
tar 0.11 97.9% 0.005 98.4% 98.7%

tee 0.39 84.4% 0.0058 88.7% 92.2%

wc 0.54 85.4% 0.0008 85.7% 90.4%
yacc 0.46 88.9% 0.0012 89.1% 88.3%

Average 0.48 91.5% 0.0053 92.4% 93.5%

Std. dev. 0.18 5.06% 0.0058 4.92% 4.13%

Table 4: Branch cost for k + �̀= 2 and 3, and �m = 1

k + �̀= 2 k+ �̀= 3
Benchmark SBTB CBTB FS SBTB CBTB FS

cccp 1.19 1.17 1.21 1.28 1.26 1.31
cmp 1.06 1.04 1.03 1.09 1.06 1.04

compress 1.24 1.28 1.22 1.37 1.42 1.33

grep 1.13 1.08 1.08 1.19 1.12 1.12
lex 1.04 1.06 1.04 1.06 1.07 1.06

make 1.19 1.15 1.11 1.29 1.23 1.17

tar 1.04 1.03 1.03 1.06 1.05 1.04
tee 1.31 1.23 1.16 1.47 1.34 1.23

wc 1.29 1.29 1.19 1.44 1.43 1.29

yacc 1.22 1.22 1.23 1.33 1.33 1.35

Average 1.17 1.15 1.13 1.26 1.23 1.19

Std. dev. 0.10 0.098 0.083 0.15 0.15 0.12

Table 5: Percentage of code-size increase as a function of k.

Percentage code-size increase

Benchmark k+ ` = 1 k+ ` = 2 k+ ` = 4 k+ ` = 8

cccp 2.79% 5.80% 11.75% 29.57%

cmp 1.87% 3.74% 7.48% 14.96%

compress 2.10% 4.15% 8.82% 20.26%

eqn 3.50% 7.44% 14.87% 44.26%
espresso 4.19% 8.51% 17.82% 39.28%

grep 1.55% 3.36% 6.96% 15.81%

lex 5.68% 11.34% 24.08% 53.73%
make 3.93% 7.96% 16.35% 37.76%

tar 2.82% 5.89% 12.18% 27.17%

tee 1.29% 2.52% 5.34% 10.75%
wc 1.70% 3.41% 8.52% 19.00%

yacc 7.41% 15.43% 35.21% 82.92%

Average 3.24% 6.61% 14.12% 32.96%

Std. dev. 1.84% 3.83% 8.55% 20.52%

