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Abstract

We present CIGAR, a methodology and development platform
that facilitates the use of data-parallel coprocessors. With CIGAR,
application developers use profiling tools to identify parts of the
application for data-parallel execution, determine the application
data structures to be hosted by the coprocessor, prototype copro-
cessor execution of these parts, and debug correctness of parti-
tioned execution of the application using emulation.

The CIGAR methodology is complemented by a CPU/FPGA
prototyping platform that runs a fully functional version of the
Linux operating system and associated development tools and li-
braries. To guide the development of our work and to evaluate its
utility, we have instrumented SPECint2006 applications to utilize
coprocessors emulated by softcore processors embedded in our
prototyping platform. Examples of how a developer would use
CIGAR to partition an application for a heterogeneous CPU/co-
processor environment are demonstrated.

1. Introduction

This paper presents the CUBA Infrastructure for Guided Appli-
cation Remapping (CIGAR) application partitioning methodology
for general-purpose processors that incorporate data-parallel co-
processors. CIGAR is demonstrated using a prototype of
the Champaign-Urbana-Barcelona Architecture (CUBA) CPU/co-
processor architecture, which we are developing. The key feature
of CUBA is that coprocessor-accessible data structures are hosted
by memory local to the coprocessor, but are still accessible by the
general-purpose processor. Together, the techniques we describe
enable a software developer to take a piece of software and map
it to a heterogeneous multicore system. Moreover, CIGAR lays
the groundwork necessary to enable a methodical and automated
approach to application partitioning for CPU/coprocessor systems
with hosted data structures.

The first contribution of this work is the CIGAR methodology
which leverages both developer knowledge of an application and
dynamic application profiling techniques to partition data applica-
tions for CPU/coprocessor systems. The second contribution is an
emulation platform for rapid prototyping of CPU/coprocessor ap-
plications being partitioned with CIGAR. The platform provides
enhanced visibility, control, and speed to the software developer,

with the added capability of emulating CPU/coprocessor systems
that are still under development.

1.1 Background

A variety of approaches have been proposed to extract greater
performance from the increasing number of transistors available
to microprocessor designers. One example is homogeneous multi-
core designs integrating multiple, identical cores on a single die [9,
18]. These designs are adept at exploiting thread-level parallelism,
but are not the most power-efficient computational substrate for
data-parallel codes. Several efforts have explored heterogeneous
systems as a means to gain better performance with greater power
and area efficiency. The Cell processor integrates groups of small-
er, in-order vector units with a high-performance superscalar
core [3]. To avoid the need for a heterogeneous programming
model, other work has investigated the use cores of varying ca-
pabilities from the same instruction set architecture (ISA) on a
die [11]. Furthermore, heterogeneous multicore processors are
shown to provide favorable power/performance benefits to a wide
array of applications [10], but may still be limiting for irregular,
data-parallel codes.

An alternative approach is to use coprocessors that are specif-
ically designed to exploit data parallelism with a high level of
power and area efficiency. Specifications are already underway
to incorporate fine-grained examples of such coprocessors into
commodity microprocessors [14]. The goal of such systems is to
complement high-performance processor cores by incorporating
domain-specific functionality that is implemented as fast, closely-
coupled logic (e.g., [15]). For a study of data parallelism and its
effect on microarchitecture, see [16]. The end result is a hetero-
geneous mix of general-purpose and coprocessor cores that can
exploit the various forms of parallelism present in applications [1].

We define a coprocessor as a programmable set of functional
units, possibly with its own instruction memory, that is under the
control of a general-purpose processor. The functional units of the
coprocessor are chosen to provide high performance for a certain
class of applications, but may be unable to do arbitrary arithmetic
operations. We further restrict the focus of coprocessors in this
work to data-parallel coprocessors that are intended to accelerate
the computation of applications with phases in which there are a
large number of arithmetic operations. These operations could be
executed in parallel, but are unnecessarily serialized due to the re-
stricted number of functional units available in a general-purpose

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.13

317

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.13

317

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.13

317

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.13

317



processor (CPU). Furthermore, in our model coprocessors have
their own physical address space, called coprocessor local memory
(CLM), that can be mapped to both the CPU and the coprocessor.

The design of interconnect between the CPU and the copro-
cessors is critical to the performance achievable by the system.
Commercial examples of coprocessor interconnects include sys-
tem buses (e.g., HyperTransport and PCI Express) and instructions
provided by the ISA (e.g., MIPS Coprocessor Interface). System
bus interfaces provide high-bandwidth, high-latency connections
between system memory, CPU, and coprocessors without impos-
ing upon the ISA. On the other hand, commercially-available ISA
extensions provide a low-latency access mechanism for coproces-
sors, but with register granularity that requires entangling copro-
cessor interfaces with the processor pipeline. Both models pro-
vide pass-by-value semantics whereby the data is explicitly deliv-
ered to the coprocessor and the CPU does not keep a reference to
the data. The CIGAR approach introduced in this paper is based
on a coprocessor architecture that avoids modifying the ISA of
the general-purpose CPU and utilizes a pass-by-reference model
where persistent data is shared between the CPU and coprocessor.

Several research platforms have proposed the integration of
application-specific coprocessors with general-purpose processors.
The GARP project [4] proposes a reconfigurable coprocessor con-
nected to a MIPS general-purpose processor for bit-level compu-
tations as an extension of the ISA. The OneChip [23] prototype
is a similar platform where coprocessors implement fine-grained
controllers and accelerators while accounting for memory consis-
tency between the CPU and coprocessors [6]. The MorphoSys
platform [17] implements coprocessors with word-level compu-
tation accessed via SIMD-like instructions. The main difference
between the CIGAR model and these previous coprocessor inter-
connect designs is the concept of data structure hosting in copro-
cessors as the mechanism for CPU/coprocessor data transfers.

A commercial example of a data-parallel coprocessor and de-
velopment environment is the NVIDIA G80 and its corresponding
CUDA [19] software development environment. CUDA is an envi-
ronment for developing software that will run on the coprocessor;
However, it currently does not provide a means to determine an
appropriate partitioning of applications across the CPU and copro-
cessor as CIGAR achieves. The key difference between the G80
model and CUBA is that the G80 provides only a pass-by-value
model for the CPU to access its local memory, while CUBA pro-
vides both pass-by-value and, as we use extensively in this study,
pass-by-reference semantics.

In order to effectively use the data hosting feature, the applica-
tion and its data must be properly partitioned between the CPU and
coprocessors. Application partitioning has been widely studied in
the field of design automation. The FLAT tool set [20] uses source
code profiling and simulation to identify the compute-intensive
loops of applications. In the field of application-specific instruc-
tion set processors (ASIP), the µP tool set [7] uses fine-grained
assembly-level profiling and simulation to identify instruction ex-
tensions for general-purpose cores. The development environment
for Stretch [2] is an example of using simulation and native ex-
ecution to rapidly prototype and debug CPU/coprocessor designs.
While the Stretch tool flow allows for direct performance measure-
ments, it requires possibly time-consuming synthesis and place-
and-route steps to be performed before evaluating a design. Their
model does not use a prototyping mechanism to reduce the time
spent debugging large-scale coprocessor designs as we aim to do
via emulation.

1.2 Motivation

For heterogeneous CPU/coprocessor systems to become preva-
lent, methodologies such as CIGAR must be developed that allow
software designers, with as little added effort as possible, to take
common applications and partition them across CPUs and copro-
cessors. Such tools should not deviate from accepted development
and debugging practices while also allowing the developed appli-
cations to remain portable. We explore partitioning techniques that
require programmer intervention, but defer time consuming tasks
as much as possible to converge on a correct design more rapidly.

The CUBA architecture and the CIGAR methodology are de-
signed to help software developers achieve three important objec-
tives when utilizing data-parallel coprocessors. First, data sharing
should consume the least possible amount of interconnect band-
width and incur shortest possible latencies. Second, the small-
est possible number of changes should be made to the program-
ming environment and processor architecture so that software can
be easily ported between systems with and without coprocessors.
Third, the software developed using the tools should be easy to de-
bug. The latter two objectives are achieved partly by providing an
emulation platform that eases debugging the communication be-
tween the part of the application running on the general-purpose
core and that executed by the coprocessor. It should be noted that
CIGAR is not meant to evaluate the performance of a partitioned
design, but instead has the orthogonal goal of developing a correct
design.

The CIGAR flow starts with a software application that runs
on the general-purpose processor. The application developer then
uses CIGAR to identify the parts of the application that are
amenable to coprocessor execution and select the data structures
that are accessed frequently by those software components. The
developer can then use our emulation platform to test, debug, and
verify both software and hardware-instrumented versions of the
application therby doing code generation. Our emulation platform
allows for the flow to be completed, after the hosted data mappings
and synchronization mechanisms are in place and debugged.

Case studies are presented to demonstrate the use of CIGAR
and CUBA to enable the efficient use of data-parallel coproces-
sors. We choose three SPEC2006 integer benchmarks to map to
our emulation platform using our analysis and profiling infrastruc-
ture: one to guide the development of CIGAR and two others to
verify its capabilities. We show that a software designer can take
a software application and quickly prototype designs that incor-
porate possibly non-existent coprocessors with high visibility for
debugging purposes.

1.3 Contributions

The five contributions of this work are as follows:

1. An architecture that enables a novel method of coprocessor
memory access that brings data closer to the coprocessor
resource accessing it.

2. A profiling methodology that assists software developers in
mapping software applications and data objects into CPU/co-
processor architectures.

3. A rapid prototyping environment that allows for the debug
and test of CPU/coprocessor designs.

4. An emulation technique that uses softcore processors to avoid
the time consuming process of hand implementation, or high-
level synthesis, of coprocessors during partitioning.

5. A design flow that starts with a purely software application
and results in that application debugged, tested, and parti-
tioned to run on a CPU/coprocessor architecture.
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Figure 1. System Model Overview

The remainder of the paper is organized as follows: Section 2
gives an overview of CUBA. Section 3 presents CIGAR. Section 4
presents a set of case studies using CIGAR and our emulation plat-
form. Section 5 concludes the paper.

2. CPU/Coprocessor Architecture

Software applications mapped into data-parallel coprocessors
can incur high startup overhead when control is transferred from
the CPU to the coprocessor. Furthermore, traditional partitioning
methods require changes be made to the code that isolate the data
transferred to the coprocessor, a technique known as data marshal-
ing. Hosting data structures in memories local to coprocessors,
as is done in CUBA, is a technique that can address both issues.
Moving data to memories close to the coprocessor as that data is
produced can reduce overhead of explicit copies. Marshaling over-
head is reduced by directly mapping application data structures to
coprocessor memories. In this section we give an overview of fea-
tures present in such an architecture including: coprocessor mem-
ories that host application data structures; data flow transfers; syn-
chronization; exception models; concurrent CPU and coprocessor
execution; and memory coherence mechanisms.

2.1 Data structure hosting

We define data structure hosting as the placement of data into a
localized memory, such as a coprocessor-local scratchpad memory
or specially partitioned/tagged region of the processor data cache,
without keeping a coherent copy in a backing store, such as system
memory. When an application data structure is hosted by a copro-
cessor local memory, it is temporarily removed from the memory
coherence domain of the CPU(s). A block diagram of our model is
shown in Figure 1. The hosted data is assumed to be accessed by
the coprocessor with latency comparable to an L1 cache hit and ac-
cessed by the general-purpose processor, via the cache hierarchy,
with a latency comparable to an L2 cache hit. The mechanism is
intended to provide better data locality for coprocessor function
units, but still allow the CPU to access the data in an efficient way.

What follows is a description of the coprocessor calling mech-
anism. At the start of a call, any cached data that is hosted by the
coprocessor local memory (CLM) is explicitly flushed thus ensur-
ing coherence for data passed both by-value and by-reference. The
CPU transfers control to the coprocessor by writing the opcode
specifying which coprocessor function to perform to a memory-
mapped register in the CLM address space. As soon as the write
to the register completes, the coprocessor begins execution. The
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Figure 2. Data Accessed by Accelerator Candidates

CPU can then poll when it needs the result, waiting for a status
register to be set by the coprocessor, signifying that the coproces-
sor has completed execution and the results are available in the
CLM. We do not investigate interrupt-driven mechanisms in this
study. Values are returned either implicitly by-reference, as the
hosted data structures are updated directly by the coprocessor, or
explicitly by-value for non-hosted data as part of the CLM using a
calling convention we define.

In a one-to-one coprocessor+CPU setup, maintaining global
coherence can be avoided for data placed in the CLM. However,
for coprocessors with multiple input sources in a multicore pro-
cessor system, it will be necessary to have a mechanism, such
as a modified write-update policy, applied to cache lines resident
in CLM. In our prototype, coherence is maintained by explicitly
flushing cache lines from the CPU cache prior to use by the co-
processors. An implication of explicit cache coherence prior to
coprocessor computation is the possibility for simplified copro-
cessor logic due to deterministic access times to the CLM since all
data is available prior to use. Other coherence mechanisms are left
to future work.

2.2 Application interface

The application programming interface (API) that the program-
mer sees is that of a calling convention whereby parameters not
hosted by the CLM are passed by-value and those hosted by the
coprocessor are passed by-reference as a pointer into the CLM.
Parameters passed by-value are written into locations defined dur-
ing partitioning that are inside the CLM and are known by both the
CPU and the coprocessor. When the application makes the call to
the coprocessor, the programmer must ensure that:

1. the data being passed to the coprocessor is available, that is,
the computation that produces the value precedes the copro-
cessor call in program order,

2. any pointers in any of the parameters are within the address
space of the CLM, which is a form of marshaling that is
handled via simple macros in the code, and

3. none of the hosted data structures have elements that are
treated as pointers and dereferenced by the coprocessor that
are modified by any other processing element in the system.

One last programming consideration is that the CLM is a lim-
ited resource and must be virtualized to allow for wide-ranging
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data structure sizes and implementation flexibility. However, for
many applications the complexity of virtualization can be elided
by remapping. Figure 2 shows the amount of data produced and
consumed by the most compute-intensive subroutines of selected
SPEC2006 integer benchmarks. The data accessed by each call
correlates with the data that would be passed by-value and by ref-
erence in our model. If these functions were implemented as co-
processors, for many of our benchmarks, the area required to host
the relevant data structures is less than the memory dedicated to
the L2 cache of a single core of a multicore processor today.

2.3 Execution modes

In our model, we define two possible modes of concurrent ex-
ecution during the start-to-poll interval, or the period between
when the CPU starts the coprocessor computation and when the
CPU regains control upon coprocessor completion. The modes in-
clude: 1) Independent ExecutionMode, and 2)Exception Handling
Mode.

In independent execution mode, during start-to-poll interval for
the application the CPU is allowed to execute while the coproces-
sor computation completes. The goal of the independent schedul-
ing mode is to avoid wasted cycles polling. The method provides
as much overlap as there are independent instructions capable of
being placed in the start-to-poll interval of the schedule.

Exception handling mode allows for simplified hardware co-
processors by removing difficult or infrequent control paths in-
side the coprocessor (e.g., exceptions such as divide by zero) and
having the CPU speculatively execute every coprocessor task dur-
ing the start-to-poll interval. We assume that the ability to guard
against undesirable control paths in the kernel of execution is more
efficient than doing the actual computation we avoid implement-
ing. The CPU can continue to check the completion of the copro-
cessor periodically and, if the CPU reaches the end of the compu-
tation ahead of the coprocessor, the CPU squashes the coprocessor
assuming an exception has occurred and commits its own results.
One disadvantage of this mode, however, is that two versions of
the data must be kept should invalid results from the coprocessor
need to be flushed.

An example illustrating where exception handling mode may
be useful is in the quantum_sigma_x() function from 462.libquan-
tum. In this example there is a control path that is never taken
for certain inputs. We leverage the fact that a check at the start
of the function always returns true to reduce the complexity of
the coprocessor logic. If the library were implemented using co-
processors, then the avoided control path can be executed on the
CPU and the coprocessors actions can be squashed when the check
does return false. The model requires copies of modified data to
be maintained, which could be implemented by keeping a separate
copy in the CPU cache similar to hardware transactional memory
models [5, 8], but due to limited space we do not explored that
posibility.

2.4 Summary

An overview of an architecture has been presented for CPU/co-
processor systems that host data structures, accessed by the co-
processor, in coprocessor local memories closely coupled to the
processor core. The required semantics related to transfer of own-
ership have been presented for both synchronization and data flow
between CPUs and coprocessors. We provide possible modes of
execution that increase concurrency and enable simplified copro-
cessors to be built.

Benchmark Total ALU Loop-body Cross-iteration
Instrs. Instrs. DLP Mechanism

libquantum 8 3 3 Loop Unrolling

hmmer 84 22 40 Loop Skewing

h264ref 223 62 90 Streaming

Table 1. Data-level parallelism present in loop bodies and

mechanisms for exploiting the cross-iteration parallelism

3. Design Flow

We present the CIGAR design flow, which aids developers in
partitioning applications on to CPU/coprocessor architectures. We
then describe a prototype emulation platform that supports rapid
prototyping and debugging of alternative partitioning strategies.
The prototyping platform supports a novel emulation technique
that allows us to perform substantial testing and validation of par-
titioning prior to the availability of coprocessor hardware imple-
mentations. We use our prototyping platform to emulate the CUBA
architecture, which is an example of our CPU/coprocessor model.

3.1 Analysis and profiling tools

CIGAR is a methodology that enables a software developer
to identify the subroutines and data structures amenable to co-
processor implementation and data structure hosting, respectively.
The CIGAR approach arose from our experiences partitioning a
SPEC application, 462.libquantum. To demonstrate the developed
methodology, we apply CIGAR to two other benchmarks.

A high-level diagram of the design process appears in Figure 3.
The application (upper left corner) is first fed into a suite of profil-
ing and analysis tools. The developer uses the analysis as a guide
to selecting both functions and data objects, which are then ex-
ecuted and hosted by the coprocessor, respectively. The devel-
oper’s choices are then used to partition the program, producing
three results: stub code for controlling the interaction between the
general-purpose processor and the coprocessor; a data structure
mapping that controls placement of objects into the CLM as well
as the associated allocation management; and an implementation
of the coprocessor functions suitable for emulation by a softcore
processor. The tool flow (the block marked “Profiling/Analysis
Tools” in Figure 3) works as follows: First, subroutine candidates
are found by profiling the application and determining the data
parallelism present. Data to be hosted by CLM is discovered by
correlating the load/store intensity of dynamically allocated data
structures with the execution periods of high computation time
subroutines. We provide a means to vary the resolution of our tools
to enable quicker analysis while searching for interesting regions
of execution and slower, in-depth analysis of those regions found
with coarser resolution. The visualizations produced by CIGAR
provide a guide that enables developers to determine what subrou-
tines are candidates for acceleration and what objects those sub-
routines will access for a given input set. At a more detailed level,
the CIGAR methodology consists of the following steps:

1. Preprocessing to add annotations into the code at compile
time to simplify and accelerate profile analysis done by
CIGAR.

2. Profiling isolates compute-intensive areas of the application
that we call candidate subroutines. We use the gprof pro-
filing tool for our experiments.

3. Data-Level Parallelism (DLP) Discovery evaluates the
amenability to coprocessor implementation of the candidate
subroutine based on the amount of DLP present.

4. Access Intensity determines which program objects are heav-
ily accessed by the candidate subroutines.
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Figure 3. Design Flow Overview

5. Liveness Analysismeasures the persistence of the data struc-
tures and to see whether it is possible for multiple objects to
time-multiplex the CLM without large data transfers.

6. Data Synchronization Granularity maps the access pat-
tern of the hosted data structures to one of the access models
in Figure 4.

Performance profiling of the application is a well-understood
filter for selecting candidate subroutines for coprocessor imple-
mentation. Due to Amdahl’s Law, speedup will be limited by the
time spent executing any sequential code. As such, those subrou-
tines that dominate execution time are chosen with profiling. We
set a threshold of 10% execution time before considering a subrou-
tine for coprocessor implementation. The developer may choose
to evaluate all subroutines; however, setting such a limit reduces
the number of subroutines that must be tracked by CIGAR, reduc-
ing the time required for analysis.

The amount of data-level parallelism available in candidate sub-
routines is how we evaluate the appropriateness of implementing
a candidate subroutine as a coprocessor. We evaluate loop-body
DLP by counting the total number of arithmetic instructions and
dividing it by the height of the dependence tree for the loop body
code. Greater degrees of DLP can be exposed by exploiting cross-
iteration parallelism for all of our benchmarks.

The ability of CUBA to provide demonstrable speedups de-
pends heavily on CIGAR discovering strong correlations between
data structures and code regions that can be accelerated by copro-
cessors. To that end, we have developed dynamic data profilers
that show how much and how often data is accessed from inside
candidate subroutines. We define high access intensity as a large
number of loads and stores to a particular object in a time interval.
High access intensity for a data object during a candidate routine
marks it as an attractive choice for hosting in the CLM. Correlat-
ing the dynamic data profiler results with the subroutine execution
periods allows the software developer to make informed decisions
about what data structures should be hosted while using different
candidate subroutines.

Accurate selection of data structures for inclusion in the CLM
is necessary for successful coprocessor execution. However, the
ability to access hosted data objects with low latency from both the
CPU and coprocessor is exploited to allow for overly eager map-
pings to CLM. The only guarantee that must be made is that all of
the data that the coprocessor accesses be present in its CLM prior
to its execution. Data locality is enforced explicitly at the point

where the processor hands off control to the coprocessor. Oth-
erwise, since the CLM is accessible and cacheable by the CPU,
correct execution will be maintained without performance degra-
dation, even if objects are unnecessarily hosted by the CLM.

For CUBA to remain scalable and general-purpose, the archi-
tecture requires the capability of mapping large coprocessor work-
ing sets into smaller coprocessor local memories, which we will
refer to as virtualization. Determining how much data is accessed
from candidate subroutines allows the developer to gauge the level
of CLM virtualization that must be done. For applications where
the amount of data accessed is small enough, dynamic data pro-
filing will show that the candidate objects will fit into the given
CLM and no virtualization is needed. In cases where the objects
are larger than available memory, software management similar to
the virtualization of system memory can be employed.

As applications progress through different phases of execution,
different coprocessor or data structure hosting arrangements may
be appropriate. CIGAR provides a data object liveness analysis
technique to aid developers in finding opportune periods to make
such runtime changes. An object is said to be dead during the
interval between a load and the first store that starts a period in
which all values in that object are overwritten without an interven-
ing load. Any dead objects can simply be discarded as soon as
the last load prior to the dead interval, since it will be re-created
prior to any future loads accessing its contents. Liveness is also a
measure of an object’s persistence in memory, with long lifetimes
indicating possibly good candidates for data hosting compared to
short-lived values.

Liveness analysis is useful for the situation in which a copro-
cessor must iterate through data structures larger than the available
CLM, or when a single object is equivalent to a sequence of dis-
tinct objects. Furthermore, if the coprocessors are reconfigurable
(e.g., FPGA-like) or are programmable (e.g., SPE in the Cell pro-
cessor), the opportunity exists for various coprocessor functions
to be utilized throughout the execution of the program. In either
case, knowing that objects are dead during periods of execution al-
lows for applications to simply discard the values in the CLM and
start using the CLM to host another object. For objects that will
exist later in the application, but are simply dead for a period of
time, the application must change the address mapping for the ob-
ject. The key feature of liveness profiling is its ability to uncover
periods where objects need not be preserved, thus guiding the de-
veloper to parts of the code where coprocessor reconfiguration and
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data structure remapping can take place efficiently.

The last aspect of analysis that we discuss is the granularity
of data flow in a candidate subroutine. Figure 4 shows four pos-
sible modes. As part of CIGAR, we have developed a technique
to analyze the data flow granularity and access behavior of our
benchmarks. Figure 4(a) shows the situation where all data con-
trol is transferred at the same point. Such a model requires less
architecture support, but unnecessarily limits concurrency. When
the computation of the subsequent block depends on a late write
by the preceding block, we call this a stack access pattern. A stack
access pattern is limiting for coprocessor concurrency and if such a
pattern is found, coprocessors may only be able to execute sequen-
tially. Full streaming, as depicted in Figure 4(b), is the situation
where each element is transferred independently and in an order
that is consistent across control paths. In such a model, it may be
possible to execute multiple coprocessors concurrently and syn-
chronize with a mechanism similar to the presence bits used in
dataflow machines [22]. Figure 4(c) shows block streaming where
the access pattern between blocks is exploited, but within blocks
applications may access data in an arbitrary order. Some appli-
cations have sequential code regions that only access objects in a
read-only fashion, allowing for the concurrent execution shown in
Figure 4(d). As part of CIGAR, we study the access patterns of
applications to give direction to the developer about what compu-
tations may be able to stream data or be coscheduled in order to
increase parallelism.

The tools used as part of CIGAR are developed using perl and
PIN [12]. PIN tools perform the dynamic analysis of our applica-
tions by instrumenting the binaries, providing high-speed access
to dynamic program behavior. We have also made the resolu-
tion of our data collection variable whenever possible to allow for
faster feedback loops for developers. Using the tools provided by
CIGAR, tens of millions of instructions per minute can be profiled
at a fine resolution and, at coarser resolution, hundreds of millions
of instructions per minute.

3.2 Emulation platform

We have developed a prototype emulation platform for CPU/co-
processor-based systems that allows software versions of copro-
cessors to be rapidly prototyped and the corresponding software
to be tested and debugged without requiring developers to adopt
entirely new development methods. Greater visibility is provided
by our emulation platform, resulting in reduced debugging times

compared to other coprocessors that rely on “black box” appro-
aches, which do not expose their interfaces directly to the devel-
oper. By exposing the CLM to the user application, we also enable
standard compiler (e.g. gcc) and debugging tools (e.g. gdb) to be
used, reducing the complexity experienced by developers wishing
to migrate from conventional platforms.

The emulation platform allows a developer to run applications
in any of four modes that we define as: software-only profile, soft-
ware memory debug, coprocessor debug, and coprocessor pro-
filing. Using these four modes of operation, the developer can
take the results of CIGAR and implement an emulated partition-
ing of the application. The emulated coprocessor platform can
then be used to evaluate trade offs in the partitioned application’s
design space and to debug applications with concurrent execution
on general-purpose cores and coprocessors.

The prototyping platform consists of an FPGA-based devel-
opment board with embedded hard and soft processor cores that
runs a fully functioning operating system and development envi-
ronment. The Xilinx Virtex-II Pro FPGA [24], which integrates a
PowerPC (PPC) processor core on-die, is used in this work. The
software for the platform consists of Linux 2.6.18 with a full suite
of GNU development tools, libraries, and utilities. The software
portion of applications to be prototyped are compiled for the Pow-
erPC processor and linked against standard PPC Linux C libraries.
To emulate coprocessors, we use the Xilinx MicroBlaze [25] soft-
core processor running a modified form of the original source code
of the region to be accelerated. The restrictions on that code are
the same as those required of the coprocessors themselves, as de-
scribed in Section 2.1. Furthermore, multiple coprocessors can be
emulated by synthesizing multiple softcore processors, or, if they
do not have overlapping lifetimes, on the same softcore processor.
The hosting of application data structures is done by embedded
SRAM, accessible by both the MicroBlaze and PPC processors,
that is mapped into the application’s address space. The embed-
ded PPC processor, softcore MicroBlaze processors, embedded
memories, and system software represent a platform that allows
developers to prototype applications targeting future CPU/copro-
cessor systems.

We provide two modes on our emulation platform that do not
use coprocessors: the software-only mode and the software mem-
ory debug mode. The software-only mode is the original software
application running on the emulation platform. Applications can
be developed using conventional compilation and debugging tools
under the software-only mode to ensure a stable base prior to par-
titioning into coprocessor and general-purpose software modules.
The software memory debug mode executes all of the code on
the general-purpose processor, however, the data structures to be
hosted by the CLM are allocated to the embedded memories of
the emulation platform. Placing the selected objects into the CLM
allows for initial debugging of the software/coprocessor interface
and an initial analysis of the caching and bus contention behavior
of the final design.

The coprocessor debug and profiling modes are used post-parti-
tioning to debug and evaluate the partitioned designs, respectively.
In the coprocessor debug mode, emulated coprocessors are used
that are functionally identical to the final coprocessor design, how-
ever, they run as a software module on a softcore processor. The
coprocessor debug mode allows the developer to remove bugs in
the synchronization and data partitioning between the CPU and
coprocessor. For applications that have many objects needing to
be hosted and for virtualization of the CLM, ensuring that the ac-
celerator local memory contains the correct set of values is critical
for correct execution. Having the ability to verify the partition-
ing scheme using emulation as opposed to simulation can reduce
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debugging time by two orders of magnitude, as our results show
(see Table 2). Furthermore, our platform provides a high degree
of visibility and control for the developer to alter and examine the
state of the executing application using symbolic debuggers and
external interfaces via JTAG.

The coprocessor profile mode is the final step in the design
flow, removing the emulated coprocessor from the hardware in-
terface and inserting the actual coprocessor. Doing so enables the
developer to evaluate the performance of the accelerated and de-
bugged design. We demonstrate CIGAR as a methodology for
partitioning applications and leave performance analysis to future
work. Using these two modes, the developer can remove bugs and
evaluate performance—in that order—allowing for rapid debug-
ging of the software/hardware interface followed by performance
evaluation.

3.3 Summary

We present an overview of the dynamic profiling methodol-
ogy, rapid prototyping environment, and coprocessor emulation
platform, that together make up the CIGAR design flow, which
were developed to aid in the process of mapping applications on
to CPU/coprocessor architectures.

We presented four modes of operation for our CPU/coproces-
sor emulation platform. The platform enables rapid prototyping of
partitioned designs by using softcore processors and FPGA logic
to emulate otherwise unavailable coprocessors. The goal of these
modes is to defer the most costly steps in the prototyping process
and to accelerate exploration of the design options to convergence
on a correct design faster than is possible through simulation. The
emulation platform described enables this acceleration by enabling
design space exploration prior to the availability of the target co-
processor hardware.

4. Design Examples

We present the application which drove our tool development,
along with the tools themselves, followed by two case studies of
application partitioning using CIGAR. We draw examples from
the SPECint2006 suite in three application domains characterized
by computation amenable to coprocessor acceleration: mathemat-
ical libraries and simulation (462.libquantum), scientific comput-
ing (456.hmmer), and multimedia (464.h264ref). Finally, we de-
monstrate the utility of a rapid prototyping platform that allows
software developers to target future hybrid CPU/coprocessor ar-
chitectures with their applications.

4.1 Design driver: 462.libquantum

The driving application used to develop our partitioning in-
frastructure is the 462.libquantum integer benchmark. The bench-
mark was chosen for its small code size and easily discoverable re-
gions with data-level parallelism (DLP), making it an easy testbed
for our analysis techniques. The benchmark simulates a quantum
computer running Shor’s algorithm for integer factorization rely-
ing heavily upon the libquantum library. On our emulation plat-
form, we migrate two library subroutines and their associated data
into emulated coprocessors. The benchmark spends over 3/4 of
the original uniprocessor runtime in these two functions. We pro-
vide examples of how our profile tools have enabled us to deter-
mine the data structures appropriate for coprocessor local memory
hosting. We then show how such an application is instrumented
to work for our different platform computation modes. We fur-
ther explain how debugging in our model proceeds, resulting in a
semantically correct version of the partitioned application.

After applying CIGAR, the developer has a set of subroutines
amenable to coprocessor implementation, the data objects to be
hosted by those coprocessors, knowledge of the persistence and
periods of liveness of those data objects. The current implementa-
tion of the tools only provides information, leaving all code mod-
ification and final inspection to the developer. Greater automation
of partitioning is desireable, but due to its inherent complications,
we leave automation to future work. We now present the process
that led us to developing CIGAR using 462.libquantum as an il-
lustrative example.

Preprocessing: We have developed a set of scripts that add an-
notations to the source to simplify and expedite the profiling and
analysis process. For example, this step adds tags indicating to the
tools the names of dynamically allocated objects. Static analysis
and correctness checks in this stage could provide feedback and
semantic information for the subsequent steps, but are not investi-
gated here.

Profiling: Application profiling is used to determine candidate
subroutines based on their contribution to the overall computation
time. For 462.libquantum we find that 52% and 26% of the com-
putation time is spent in the subroutines quantum_toffoli() and
quantum_sigma_x(), respectively, making them good targets for
acceleration.

DLP Discovery: Our chosen SPEC benchmarks are tuned for
sequential execution and thus require some code transformations
to expose cross-iteration loop parallelism. Table 1 shows the DLP
our method found within loop bodies. We do not have an explicit
technique for choosing a method for exposing more parallelism,
but after inspection of the DLP regions found during DLP discov-
ery, we found simple transformations could expose more DLP and
are shown in the table. For CIGAR, we calculate the DLP present
in loops of candidate subroutines by comparing the store set of
each iteration with the load set of subsequent iterations. If there is
a cross-iteration loop read-after-write dependence, we declare that
the loop is not data-parallel and therefore not amenable to copro-
cessor implementation.

Access Intensity: CIGAR provides the ability to visualize the
correlation between different data objects and candidate subrou-
tines. Figure 5 shows three candidate subroutines for the libquan-
tum benchmark and two candidate data objects, reg->node and
reg. The width of the data structure line is proportional to the
number of memory accesses performed in a time interval, or the
access intensity. During the interval depicted, as is true for much
of the application, the access intensity of these objects is far greater
than of any other objects, and in fact the three functions shown do
not access any other data objects. The peak access intensity is
one in nine instructions being either a load or a store to the given
object. Furthermore, even in the regions between the execution
of candidate subroutines, where the CPU would be accessing the
data, we find moderate access intensity for candidate data objects.
Our model exploits this access pattern by providing unequal shar-
ing of the structures hosted in the CLM, optimizing for the more
frequent coprocessor data accesses, but allowing cacheable CPU
access while the coprocessor is not executing.

Liveness Analysis: The Access Intensity stage shows there to
be a high correlation between accesses to certain data objects and
the candidate subroutines we have identified. Being able to mea-
sure the lifetime of these objects provides information necessary
for the developer to decide whether a pass-by-reference or a pass-
by-value model is appropriate. Our liveness technique, a script-
able combination of profiling and instrumentation, demonstrates
that for 462.libquantum, the candidate objects are persistent, i.e.,
they stay live for the duration of the application’s execution, and
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Figure 5. Memory access intensity for 462.libquantum. The top three lines indicate which function is executing at each point in

time.

are therefore amenable to hosting throughout the application’s ex-
ecution. Furthermore, since the CLM is limited in size and hosted
data is not backed by system memory, liveness analysis can be
used to identify data that need not be copied back to memory upon
remapping of the CLM.

Data Synchronization Granularity: We have investigated the
required granularity of data synchronization for 462.libquantum.
Having coarse-grained data synchronization allows for a reduced
complexity architecture and programming model where the trans-
fer of data object control between processing elements occurs in
whole-object transactions as shown in Figure 4(a). However sim-
ple, such a coarse-grained model may result in limited concurrency
since one operation must completely relinquish control of an ob-
ject before the next operation can access it. A more fine-grained
approach would result in added concurrency when the results of
one operation are forwarded to the next (Figure 4(b) ), essentially
pipelining multiple operations inside the coprocessor. However,
the added synchronization may result in unjustifiable overhead
compared to a coarse-grained mechanism.

Visual inspection of 462.libquantum found that coprocessor
operations could be overlapped. Our analysis using CIGAR has
shown this to be the often the case with the data produced by
quantum_sigma_x() available to quantum_toffoli() when the
calls are adjacent, allowing for a pipelined implementation. How-
ever, due to limitations of our prototype emulation platform, we
are unable to demonstrate concurrent emulated coprocessors.

Using the approach developed in the design driver we now pre-
sent case studies of benchmarks evaluated using the CIGAR in-
frastructure.

4.2 Case study: 456.hmmer

The 456.hmmer benchmark is a DNA sequencing application
that uses Hidden Markov Models to perform DNA sequence align-
ments. At the thread level, the benchmark can be partitioned such
that independent threads each process independent blocks of data
from an assigned work pool. Within each thread, the benchmark’s
core contains exploitable DLP. We apply CIGAR to uncover the
DLP, map it into CUBA, and prototype it in our emulation plat-
form.

Profiling indicates that 456.hmmer spends between 71% and
97% of its execution time in the P7Viterbi() subroutine. Our
CIGAR analysis indicates that P7Viterbi()’s inner loop accesses
four data objects heavily, all of which are arrays: mx->imx_mem,
mx->mmx_mem, mx->dmx_mem, and mx->xmx_mem. Liveness analy-
sis provided us with Figure 6, demonstrating that these data objects
all become dead early in each invocation of P7Viterbi(), and

some of the objects are occasionally dead between invocations as
well. This information led us to further inspect the code and to no-
tice that data-structure resizing occurs in ResizePlan7Matrix(),
called from P7Viterbi() before executing the compute-intense
code portions. We discovered that a call to the C library func-
tion realloc() is the source of loads from the objects that ex-
tend the liveness intervals beyond P7Viterbi(). Thus, between
invocations to P7Viterbi(), the objects contain no useful state,
indicating that there is no need to transfer the arrays into or out of
the accelerator between invocations. Additionally, the deadness of
the arrays indicates that coprocessor context switching overhead is
minimal between invocations.

We have implemented 456.hmmer on our prototype emulation
platform, hosting the four candidate data objects in the CLM and
the inner loops of the P7Viterbi() emulated on the softcore pro-
cessor. The CIGAR infrastructure has allowed us to arrive at this
partitioning and our emulation platform has allowed us to rapidly
prototype the design without having a physical coprocessor imple-
mented.

4.3 Case study: 464.h264ref

The 464.h264ref benchmark is a multimedia application that
encodes raw video into a compressed form using the H.264 speci-
fication. The benchmark is a streaming application which applies
various transformations to blocks of data as they are read from
the input video and are incorporated into the encoded output. We
isolate one stage in the encoding process using CIGAR and imple-
ment it as an emulated coprocessor.

Profiling indicates that two subroutines, SetupFastFullPel
Search() and one of its children SATD(), account for roughly
45% of 464.h264ref’s execution time. SATD() computes the sum
of absolute differences (SAD) over an array passed to it by Setup-
Fast FullPelSearch(). The input array represents the current
block (SAD_block), composed by pulling pointers from an array
representing the current video frame.

Our DLP tools were able to discover that SATD() invocations
are independent and that the SAD computation has a high level of
instruction-level parallelism. Thus SATD() is amenable to copro-
cessor acceleration. Our liveness analysis showed that SAD_block
is live upon SATD() invocation, but dead when SATD() returns,
indicating that the function returns its computational result only
via its return value. Therefore SATD() does not modify its input,
and the coprocessor need not transfer SAD_block back to the CPU
after execution. Thus, we map the SAD kernel into an emulated
coprocessor, hosting the current SAD_block in the CLM.

The SATD() subroutine has a simple if-then-else structure that
would require added resources or added complexity if implemented
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Figure 6. Liveness results for 456.hmmer with horizontal bars for data indicating dead regions. (Note: Due to the resolution of

the image, function invocations appear to overlap.)

as a coprocessor. Profiling indicated that for our input sets, the
branch is highly biased and we are able to implement a data-parallel
emulated coprocessor excluding the uncommon control path. Ac-
counting for all possible execution paths involves a trade-off be-
tween a more complicated coprocessor and the overhead of the
exception handling mode.

4.4 Emulation platform evaluation

Our coprocessor emulation platform has been developed to en-
able software developers to rapidly prototype applications parti-
tioned using the CIGAR analysis infrastructure. As an example of
its use, we isolated two kernels of code from the 462.libquantum
benchmark that we execute on a softcore processor. The emulated
coprocessor runs independently of the CPU, with synchroniza-
tion performed via memory-mapped registers and explicit cache
flushes. Two of the data structures isolated using CIGAR were
mapped into the CLM of the emulated coprocessor, with that mem-
ory being accessible to both the CPU and the coprocessor. The
only changes that were made to the application were to allocate
the memory used by the mapped objects to the CLM and to per-
form synchronization at the call site of the now accelerated subrou-
tine. Following this same flow, we have additionally implemented
456.hmmer and 464.h264ref on our emulation platform based on
the partitioning found using CIGAR.

A strong motivation for using softcore coprocessor emulation
is that our platform executes the partitioned application much
closer to its original speed than does a software-only system simu-
lator. Table 2 demonstrates the time required to run the SPEC test
input sets for our benchmarks. The first row of Table 2, labeled
‘Native Execution’, is the time required to run on a 3.2 GHz In-
tel Pentium 4, representing a contemporary system. Note that this
result does not include CIGAR instrumentation present and repre-
sents best case performance for the machine. The next row com-
pares the execution time of our platform running the code solely
in software on the embedded hard processor of our platform. The
next two rows provide the results of using emulated coprocessors
with the benchmark mostly running on the embedded hard pro-
cessor and the coprocessor running as software on a softcore pro-
cessor. For each of these, we show emulated coprocessors with
their hosted data structures cached and not cached. The last row
of the table shows the time to simulate the benchmarks using a
cycle-accurate simulator we are developing for CUBA.

CIGAR instrumentation occurs on the native platform, provid-
ing the partitioning information quickly. The emulated coproces-
sor prototype platform provides a means of developing, debug-
ging, and evaluating a partitioned design. Non-cached local store
access simplifies debugging, since it allows the developer to stop
execution and view a coherent global state, including local memo-
ries, system memory, the register state of the general-purpose pro-
cessor, utilizing the pre-existing software tools for the FPGA plat-
form. Having this degree of visibility while suffering less than
a two order of magnitude slowdown in performance allows for
faster, easier development of partitioned applications. To more
realistically evaluate a partitioned design, caching can be enabled.
Once a partitioned design is debugged, performance evaluation of
a correct design can be carried out on a simulator.

While one to two orders of magnitude slower than native exe-
cution, the emulation platform allows for incremental mapping of
applications into a prototype of CUBA, without suffering the three
to four orders of magnitude slowdown experienced when using
cycle-accurate simulation. The speed of the emulation platform
allows developers to partition their applications using CIGAR and
to debug them effectively without suffering the high turnaround
time associated with simulation or full-blown coprocessor gener-
ation. To contrast the design effort of writing a small amount of
code for the emulated coprocessor versus a real-world implemen-
tation, see [13] for HMMer and [21] for motion estimation. When
the flexibility of a simulation platform is needed, the developer
can move his now-debugged design onto the simulator for evalu-
ation. Future research could leverage performance characteristics
tracked using the cycle-accurate simulator to better model CUBA
on the emulation platform, providing the developer with both the
speed of emulation and the accuracy and flexibility of the simula-
tor.

5. Conclusion

CUBA is presented as an prototype architecture for general-
purpose processor systems that incorporate closely-coupled copro-
cessor resources that have local memories that host data structures
of applications. The main contribution of this work is CIGAR, a
methodology for mapping applications into heterogeneous CPU-
/coprocessor architectures such as CUBA. We provide examples
of general-purpose applications that were mapped into a CPU/co-
processor emulation platform. The emulation platform allows for
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462.libquantum 456.hmmer 464.h264ref

Native Execution 1x (0.30s) 1x (0.10s) 1x ( 1m13s)
Emulation Platform w/o Accel 40x (12.1s) 43x (4.33s) 26x (32m11s)
Emulation w/Accel+NoCache 60x (18.1s) 71x (7.10) 30x (36m23s)
Emulation w/Accel+Cache 56x (16.7s) 73x (7.33) 30x (36m26s)
Simulation w/o Accel 2437x (12m11s) 1180x (1m58s) 3151x (3833m50s)

Table 2. Slowdown for alternate execution modes with example applications.

software designers to partition their software applications across
coprocessor and general-purpose processor domains. Using the
presented design flow and tools, developers can rapidly prototype
software that targets heterogeneous systems incorporating gener-
al-purpose processors and application-specific coprocessors.
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