
Improved Superblock Optimization in GCC

Robert Kidd and Wen-mei Hwu
Center for High Performance and Reliable Computing

University of Illinois at Urbana-Champaign
{rkidd,hwu}@crhc.uiuc.edu

Abstract

Superblock scheduling is a common technique
to increase the level of instruction level paral-
lelism (ILP) in generated code. Compared to a
basic block, the Superblock gives an optimizer
or scheduler a longer range over which instruc-
tions can be moved. The bookkeeping neces-
sary to execute that move is less than would be
necessary inside an arbitrary trace region. Ad-
ditionally, the process of forming Superblocks
generates more instructions that are eligible for
movement. These factors combine to produce
a significant increase in the ILP in a section of
code.

By identifying the key feature of Superblock
formation that allows this increase in ILP, we
can generalize the concept to describe a class of
similar optimizations. We refer to techniques in
this class asstructural techniques. Combining
several optimizations in this class with aggres-
sive classical optimization has been shown in
the OpenIMPACT compiler to be particularly
useful in developing ILP when compiling for
the Itanium processor.

As a motivation for our work, we present an
investigation into the value of structural com-
pilation in the OpenIMPACT compiler. In this
domain, structural techniques have been cred-
ited with a 10% to 13% increase in code per-
formance over a compiler that implements only
classical optimizations.

As a first step toward developing structural
compilation techniques in GCC, we imple-
mented Superblock formation at the Tree-SSA
level. By performing structural transformations
early, we give the compiler’s high level opti-
mizers an opportunity to specialize the trans-
formed program, thereby cultivating higher lev-
els of ILP. The early results of this modification
are mixed, with some benchmarks improving
and others slowing. In this paper, we present
details on our implementation and study the ef-
fects of this structural transformation on later
optimizations. Through this, we hope to moti-
vate future work to implement and improve op-
timizations that can take advantage of the trans-
formed control flow.

1 Introduction

As an EPIC (Explicitly Parallel Instruction
Computing) processor, the Intel Itanium Pro-
cessor Family relies heavily on the compiler
to extract performance from a program. The
architecture provides a large number of func-
tional units, but the hardware does not dynam-
ically schedule instructions to discover instruc-
tion level parallelism. Instead, the compiler
must find instructions that can execute in par-
allel during its code generation and scheduling
stage. Within the context of a traditional opti-
mizing compiler, control flow presents barriers

1

that make it difficult to statically generate a par-
allel schedule. Superblock formation [3] is one
technique to overcome the restrictions of con-
trol flow.

Originally, Superblock formation was devel-
oped solely to support instruction scheduling.
In this traditional method, a Superblock is con-
structed using trace formation and tail dupli-
cation. The result of Superblock formation is
a long single-entry, multiple-exit chain of ba-
sic blocks. This Superblock is then passed to
a variant of a list scheduler that is capable of
moving instructions across basic block bound-
aries. Compared to trace scheduling [1], the
lack of side entrances into a Superblock sim-
plifies the task of moving instructions between
basic blocks.

Superblock formation is useful for more than
instruction scheduling. Tail duplication elimi-
nates all but one of the control flow paths into
a basic block. As a result, much tighter bounds
can be drawn on the state of variables at the
block entrance. Optimizations such as constant
propagation can be profitably applied to the du-
plicated tail to specialize the block, counteract-
ing the code expansion inherent in Superblock
formation.

In the OpenIMPACT compiler [6], Superblock
formation is one of a class of structural compi-
lation techniques. Other members of this class
include function inlining and hyperblock for-
mation. These optimizations use profile feed-
back to radically alter the control flow graph
(CFG) to produce straight line sections for the
typical course of execution. Traditional op-
timizations are then applied to this CFG to
specialize blocks and discover ILP. While this
technique does entail a large amount of code
duplication, it packs the useful instructions into
a tight schedule, resulting in little increase in
instruction cache pressure.

Within GCC, we modified the pre-existing RTL
Superblock formation pass to work at the Tree-
SSA level. The overall performance change
due to this modification is minimal. Certain
benchmarks run faster, while others run slower.
However, this patch gives us a starting point
to investigate the possibility of applying struc-
tural optimization techniques within GCC. In
the following sections, we will discuss the ef-
fects, good and bad, of the patch and suggest
a future direction based on our experience with
OpenIMPACT.

The primary goal of our work is to improve the
performance of code compiled by GCC for the
Itanium processor. However, we believe that
the structural compilation model will also work
well on traditional superscalar processors. The
code specialization derived from traditional op-
timizers should apply to any architecture.

2 The Superblock and structural
compilation

Although it has been throughly covered in lit-
erature, it is useful to review here the process
through which a Superblock is constructed.
This process is illustrated in Figure 1. Start-
ing with a control flow graph annotated with
profile weights (part (a)), thetrace formation
pass determines the typical path of execution.
This pass constructs the hot trace by follow-
ing the typical path of execution until execu-
tion frequency falls below some threshold or a
loop back edge is encountered. The resulting
trace is highlighted with a dotted outline in Fig-
ure 1(b). After constructing the trace, thetail
duplicationpass eliminates side entrances. If a
basic block on the trace has more than one pre-
decessor, as is the case for blockz, that block is
copied and the duplicate inserted into the trace.
The sole predecessor of the duplicate will be on
the trace, as seen in part (c). The result of this

2

if x

i++

w
450

y
400

z
450

x
50

(b)(a)

if x

i++

w
450

y
400

z
450

x
50

(c)

i++

if x

x
50

z
50

w
450

i++z'
400

y
400

Figure 1: Superblock formation process

process is a Superblock, a series of basic blocks
that has a single entrance at the top and one or
more side exits. This is indicated by the dashed
line in Figure 1(c).

Structural compilation [5] is a generalization
of Superblock-based optimization. Structural
optimizations share a common attribute in that
they target side entrances (join points) of a fre-
quently executed trace. Inside the join block
and below, program context is blurred as the
compiler must assume that any predecessor
may have executed before the join block. Du-
plicating the join block and its children onto the
hot trace has the effect of extending the con-
text of the trace into the duplicated block. Spe-
cialization of the duplicated code through clas-
sical optimizations reduces the number of in-
structions on the trace, and use of features such
as speculation extend the range over which in-
structions can move. The end result for the typ-
ical path of execution is a shorter schedule with
higher levels of ILP.

In the structural model, code duplication is per-
formed early in the compilation path. Code ex-
pansion limits are raised to allow more code du-

plication. The expansion must be done some-
what speculatively, as it is difficult to predict
the precise effect later optimizations will have,
given a certain level of duplication. Therefore,
a large amount of code duplication is inherent
to the structural model. The code generated
using this model is bigger than that generated
with a traditional model, so one might expect
a degradation in instruction cache efficiency.
However, the expansion is mitigated by two
factors. First, the Itanium processor provides
large caches, which help offset the increase in
code size. The second factor, which applies to
all architectures, is that the code duplicated by
these techniques should appear outside the path
of typical execution. By specializing for the
typical path, we reduce the number of redun-
dant instructions and pack the useful ones more
closely. This reduces the number of cache lines
that need to be fetched and increases the num-
ber of useful instructions per line.

The compilation method used in GCC to this
point more closely resembles what we term the
incrementalapproach. In this method, tradi-
tional global scheduling techniques are evolved
and refined to deliver higher levels of ILP. Con-
trol flow may be altered, but it is done in re-
sponse to the needs of the optimizer or sched-
uler. The overall CFG tends to remain the
same, and can restrict optimization opportuni-
ties. An analogy with simulated annealing is
apt. The incremental model is a well tested and
reliable method to arrive at an optimal point
in the range of possible schedules. However,
in many cases, this optimal schedule is a local
minimum. By applying structural techniques,
we hope to move the optimizer’s starting point
to a place where a more optimal schedule can
be found.

Table 1 presents estimated1 SPECint2000

1These numbers are the result of runs on real hard-
ware, but do not reflect a rigorous SPEC run. We
have followed SPEC’s run rules with respect to train-

3

Benchmark g-no-spec I-CL I-NS I-CS
164.gzip 506 602 677 752
175.vpr 498 607 644 719
181.mcf 257 332 330 341
186.crafty 591 646 677 704
197.parser 494 520 523 541
252.eon 517 364 428 429
254.gap 421 558 573 599
256.bzip2 426 652 658 698
300.twolf 553 724 830 921
geomean 462 540 575 609
geomean2 456 567 596 637

Heading Compiler version options
g-no-spec GCC as of 3/6/2006 -O3, profile feedback enabled, no speculation
I-CL OpenIMPACT classical optimizations only
I-NS OpenIMPACT structural opti, no speculation, pointer analysis and

modulo scheduling disabled for 252.eon
I-CS OpenIMPACT control speculation, otherwise like I-NS
Scores generated on an Itanium 2 1.0 GHz, 1.5M L3 cache

Table 1: Comparison of classical and structural optimizing compilers

scores to illustrate the benefit that a structural
optimization pass can have on code perfor-
mance. In this table, all benchmarks have been
compiled using profile feedback.

The g-no-spec column is our baseline GCC
configuration. This is a recent version of
GCC mainline that lacks speculation support.
This configuration includes the RTL level Su-
perblock formation pass2. I-CL is our baseline
OpenIMPACT configuration. Classical opti-
mizations are run, but structural techniques are
disabled. This configuration is roughly equiv-
alent to g-no-spec. I-NS turns on structural
transformation, and I-CS turns on control spec-
ulation.

The geomean row shows the geometric mean

ing/reference inputs and consistency of optimization set-
tings, but we have been unable to complete a full run of
the suite. We therefore label these results “estimated” as
per SPEC’s rules for research use.

2Results from the Tree-SSA level Superblock forma-
tion pass are presented in Section 3.

for all nine benchmarks. Geomean2 excludes
252.eon from the comparison, as GCC’s score
is inflated relative to OpenIMPACT for the pur-
poses of this paper. OpenIMPACT has a long
history as a C compiler, but C++ support has
only been added recently. Even now, C++ sup-
port is implemented by lowering the incoming
code to C and compiling. This is functional,
but inefficient. As a proper C++ compiler, GCC
has a distinct advantage over OpenIMPACT on
252.eon that is outside the scope of this paper.

A comparison of the I-CL and g-no-spec
columns shows that OpenIMPACT’s classical
optimization path improves performance ap-
proximately 24% over GCC. This can be at-
tributed to better alias analysis in OpenIM-
PACT and more aggressive settings on the clas-
sical optimizers. Comparing I-CL and I-NS,
we see that turning on structural transforms in
OpenIMPACT gives a 5% improvement in per-
formance. We believe 5% to be a reasonable
estimate for the performance benefit possible in

4

GCC with the addition of structural transforma-
tion.

The I-CS column shows the effect of com-
bining control speculation and structural trans-
forms in OpenIMPACT. We see a 12% to 13%
increase in performance over the classical con-
figuration when these two features are com-
bined. Our Superblock work should therefore
fit in nicely with other work in progress to add
speculation support to the compiler.

Although it is not useful as a comparison be-
tween GCC and OpenIMPACT, it is interesting
to note that within OpenIMPACT, the structural
technique is particularly useful for 252.eon. In
this case, indirect call profiling and function
inlining combine to reduce the cost of virtual
method calls. Although OpenIMPACT does
not support static C++ optimizations such as
class hierarchy analysis, it is able to approx-
imate them in some cases through structural
transformation. Even with proper C++ sup-
port, structural transformation will likely still
be beneficial for heavily object-oriented code.

3 Technical details and perfor-
mance results

At the RTL level, GCC has included a Su-
perblock formation pass for some time [2].
This pass prepares Superblocks for the Haifa
interblock scheduler, but runs after most of
GCC’s optimization passes. Structural com-
pilation requires this transformation to happen
early in the compiler; to achieve this, we im-
plemented a Superblock formation pass at the
Tree-SSA level.

Because the CFG manipulation API is shared
between RTL and Tree-SSA, the modifications
necessary to run Superblock formation at the
Tree level were minor. The primary change

(a)

i++

if x

i++

x

z

w

z'

y

(b)

if x

i++

if x

i++

x

z

w

z'

y

w'

Figure 2: Loop header duplication to form a
simple loop from a Superblock

necessary was to add SSA variables generated
in the duplicated tail to theφ -nodes for its suc-
cessor blocks. We also adjusted the trace for-
mation routine so that it generates Superblock
loops that are of a simple form that can be pro-
cessed by the loop optimizers. This is illus-
trated in Figure 2.

Figure 2(a) shows the problem that can oc-
cur when forming a Superblock inside a loop.
By tail duplicating blockz to form z′, we cre-
ated a Superblock for the common case in-
side the loop. However, because tail duplica-
tion stopped when it found the loop backedge,
we were forced to add a second control flow
arc back to the loop header. The loop is no
longer in a simple form that can be processed
by GCC’s loop optimizers. If trace forma-
tion instead follows the backedge one time and
stops after duplicating the loop header, our Su-
perblock forms a simple loop, as in Figure 2(b).
The form of this simple loop increases the ef-
fectiveness of later optimizations, as will be
seen in Section 4.2.

The final change we made was to remove the
Superblock layout pass. We leave code layout
to the basic block reordering stage later in RTL.

The Tree-SSA Superblock formation executes
immediately after SSA form is constructed and
before any optimizers. Because tail duplication
has the potential to create new pointer loads and
stores, it is possible that formation will interfere

5

with alias analysis. We have tested building Su-
perblocks before and after alias analysis, but
neither configuration is noticeably better than
the other.

Our comparison baseline is GCC mainline re-
vision 112576, which supports Superblock for-
mation at the RTL level. Against this baseline,
we compare a build of the ia64-improvements
branch. This branch includes the changes to
mainline through revision 112576, but uses the
Tree-SSA level Superblock formation pass. We
run both versions of GCC with the -O3 flag and
with profile feedback enabled. Both versions
support speculation on Itanium. For the ia64-
improvements branch, we set an aggressive Su-
perblock expansion limit of 300% as opposed
to the 100% limit used with the RTL level pass.
We ran performance numbers on three archi-
tectures: x86, x86_64, and Itanium. Machine
specifications are listed in Table 2.

Tables 3 and 4 show the estimated change
in performance for selected SPEC2000 bench-
marks. For each architecture, we present the
score for GCC mainline (stock), the score for
the ia64-improvements branch (SB), and the
percent difference between the two. We have
not yet fully analysed the cause of the slight
performance degradation on x86_64, but we
believe this processor to be more sensitive
to code scheduling than x86. Forming Su-
perblocks at the Tree-SSA level is beneficial for
x86 and on Itanium for the floating point bench-
marks. Superblock formation tends to produce
simpler, straighter loops that are more palatable
to loop optimizers. This helps explain the per-
formance improvement in loop-intensive float-
ing point code.

For 191.fma3d on x86, Superblock formation
gives a significant performance improvement.
This improvement is due to a drastic reduc-
tion in the time spent executing one function,
platq_stress_integration . The pro-
logue of this function sets up a number of vari-

ables usingMIN and MAXstatements. These
statements are biased, so they become simple
assignments inside the Superblock. Constant
propagation can then simplify the body of the
function.

For integer codes, the results are more mixed.
These control-intensive benchmarks are where
we expect to see a significant performance im-
provement on Itanium, and yet we see a negligi-
ble change. This is not entirely unexpected. As
we have observed in OpenIMPACT, the com-
bined efforts of several structural techniques
are often necessary to get a significant perfor-
mance improvement. These passes must push
the program’s CFG to a critical point where
optimizations can radically specialize the typ-
ical path of execution. It is encouraging to
note that 181.mcf, 186.crafty, and 256.bzip2 do
improve. 186.crafty is an extremely control-
intensive chess simulator, and the improve-
ment here replicates a result from OpenIM-
PACT detailed in [5]. The improvement in
181.mcf, a memory-intensive benchmark, can
be attributed to the combined effect of Su-
perblock formation and data speculation. This
benefit of combining speculation and structural
transformation has also been observed in Open-
IMPACT. These results strongly suggest that
results from OpenIMPACT will apply to GCC
as development progresses. We will expand on
effect of Superblock formation on 256.bzip2 in
Section 4.2.

Finally, Table 5 compares the size of the
benchmark executable across the two com-
piler configurations. Even with an aggressive
Superblock expansion limit, executable size
does not significantly increase. By duplicat-
ing blocks, Superblock formation gives the op-
timizers more opportunity to eliminate instruc-
tions, controlling code expansion and increas-
ing performance.

6

Configuration Processor Operating System
ia64 Itanium 2, 1.6 GHz, 6 MB L3 Linux 2.6.8, LP64
x86_64 Athlon 2800+, 1.8 GHz, 512 KB L2 Linux 2.6.12, LP64
x86 Xeon, 2.4 GHz, 512 KB L2 Linux 2.4.18, LP32

Table 2: Machine configurations

ia64 x86_64 x86
Benchmark stock SB % stock SB % stock SB %
164.gzip 810 810 0.00% 914 850 -7.00% 676 696 2.96%
175.vpr 929 923 -0.65% 771 760 -1.43% 484 472 -2.48%
175.gcc 1032 1033 0.10% 922 947 2.71%
181.mcf 682 706 3.52% 587 587 0.00% 535 544 1.68%
186.crafty 942 983 4.35% 1531 1586 3.59% 460 477 3.70%
197.parser 901 901 0.00% 859 864 0.58% 731 763 4.38%
252.eon 792 785 -0.88% 831 790 -4.93%
254.gap 651 651 0.00% 999 1004 0.50%
255.vortex 1454 1532 5.36%
256.bzip2 798 825 3.38% 897 889 -0.89% 580 585 0.8%
300.twolf 1039 944 -9.14% 792 793 0.13% 606 611 0.83%
geomean 830 830 -0.01% 947 947 0.05% 631 638 1.04%

Table 3: Estimated change in SPECint2000 performance

ia64 x86_64 x86
Benchmark stock SB % stock SB % stock SB %
168.wupwise 605 578 -4.46% 1186 1140 -3.88% 903 918 1.66%
171.swim 773 804 4.01% 1142 1138 -0.35% 634 633 -0.16%
172.mgrid 346 347 0.29% 755 751 -0.53% 479 478 -0.21%
173.applu 519 538 3.66% 900 895 -0.56% 666 665 -0.15%
177.mesa 976 986 1.02% 1394 1383 -0.79% 483 487 0.83%
179.art 2716 2730 0.52% 777 785 -1.03% 272 268 -1.47%
183.equake 511 500 -2.15% 1085 1097 1.11% 960 967 0.73%
187.facerec 583 602 3.26% 791 772 -2.40% 477 479 0.42%
188.ammp 847 868 2.48% 882 884 0.23% 400 391 -2.25%
189.lucas 815 864 6.01% 1220 1200 -1.64% 546 538 -1.47%
191.fma3d 294 294 0.00% 870 874 0.46% 464 525 13.15%
200.sixtrack 371 368 -0.81% 451 449 -0.44% 429 431 0.47%
301.apsi 580 579 -0.17% 839 834 -0.60% 502 497 -1.00%
geomean 638 644 1.01% 912 906 -0.65% 527 531 0.75%

Table 4: Estimated change in SPECfp2000 performance

7

int fp
Benchmark stock SB % Benchmark stock SB %
164.gzip 1069787 1071587 0.17% 168.wupwise 1629360 1633480 0.25%
175.vpr 1310609 1307185 -0.26% 171.swim 1590538 1591482 0.06%
176.gcc 5836321 5749873 -1.48% 172.mgrid 1588244 1488644 0.03%
181.mcf 942326 942566 0.03% 173.applu 1691129 1691929 0.05%
186.crafty 1413018 1505658 -0.52% 177.mesa 2444067 2435987 -0.33%
252.eon 6984346 6986010 0.02% 179.arg 1016630 1020022 0.33%
254.gap 2253387 2247859 -0.25% 183.equake 1020942 1015102 -0.57%
255.vortex 2398115 2366931 -1.30% 187.facerec 1804178 1806962 0.15%
256.bzip2 2398115 2366931 -0.12% 198.ammp 1387201 1388161 0.07%
300.twolf 1519425 1516401 -0.20% 189.lucas 1677890 1680458 0.15%

191.fma3d 4125512 4124912 -0.01%
200.sixtrack 3890478 3887366 -0.08%
301.apsi 1897353 1900977 0.19%

Table 5: Effect of Superblock formation on executable size (in bytes) for ia64

4 Analysis of performance change

On Itanium, 256.bzip2 and 300.twolf showed
a significant change in performance. This sec-
tion delves deeper into these two benchmarks
to determine why performance improved or di-
minished.

We analysed the benchmarks using the
i2prof.pl and q-tools packages. These pack-
ages use HP’s libpfm library and pfmon
utility to retrieve values from the Itanium
performance counters to analyse.

i2prof.pl is a Perl script that wraps the pfmon
utility to record raw counter values for the en-
tire run of a program. Various performance
metrics are determined from these counters, but
they apply to the entire program and cannot be
attributed to individual functions or lines.

Q-tools provides the q-syscollect utility, which
performs statistical sampling using the Itanium
performance monitoring unit. At a specified in-
terval, the program is interrupted and the pro-
gram counter (PC) of the instruction triggering
the event being monitored is recorded. Q-tools

for (node = list; node;
node = node->next) {

a = ...
if (condition)

b = ...
else

b = a
*arg += b ...

}

Figure 3: Kernel fromnew_dbox_a

also includes the qprof program, which gener-
ates a gprof-style per-function report from the
per-PC data.

4.1 300.twolf

300.twolf slowed by 9% when Superblock for-
mation was performed at the Tree-SSA level. A
comparison of execution profiles showed that
much of the extra execution time could be at-
tributed to the functionnew_dbox_a . This
function is called approximately 120 million
times during execution. Figure 3 illustrates the
kernel of this function.

8

(a)

L6

L7

L2

L3 L4

L5
ld arg
arg +=
st arg

L3

L5

L6

L7

L2

L4

L34

ld arg
arg +=
st arg

ld arg
arg +=
st arg

(b)

Figure 4: Structure ofnew_dbox_a before
and after Superblock formation

In this loop,arg is an integer pointer argument
used to return a value from the function. The
integerarg points to is updated, but the value
of arg is not changed inside this function. Be-
cause of this, GCC’s partial redundancy elimi-
nation (PRE) stage is able to move the load and
store ofarg out of the for loop.

Figure 4 shows the control flow graph of this
kernel before and after Superblock formation.
Tail duplication moves a copy of the update of
arg onto both sides of the biasedif state-
ment, shown in Figure 4(b). In this case, the
Superblock formation pass did not duplicate the
loop header as we would expect. The cause of
this is being investigated. If Superblock forma-
tion had duplicated the loop header, we would
expect the PRE pass to move the load out of
the more frequently executed side of this loop.
It is not yet clear whether GCC’s alias analysis
framework is strong enough to completely re-
move the load from the Superblock loop. We
plan to investigate further the interaction be-
tween Superblock formation and alias analysis.

4.2 256.bzip2

Performance of 256.bzip2 increased by approx-
imately 3% with the addition of the Tree-SSA
Superblock pass. The execution profile did not
show a significant difference in the run time of
any one function, so we used i2prof.pl to col-
lect overall performance statistics for the pro-

L6: j = 0;
tmp = yy[j];

L8: while (ll_i != tmp) {
L7: j++;

tmp2 = tmp;
tmp = yy[j];
yy[j] = tmp2;

}
L9: yy[0] = tmp;

if (j == 0)
L10: /* do something */

/* yy is not touched */
else

L11: /* do something else */
/* yy is not touched */
/* L12 and L20 appear here */

L21: ...

Figure 5: The core ofgenerateMTFValues
from 256.bzip2

gram. These statistics showed that the Su-
perblock version experienced fewer L1D cache
misses than the standard version. Sampling
the L1D_READ_MISSES_ALL counter with
q-syscollect, we were able to locate a loop
in generateMTFValues that experienced a
decreased number of cache stalls.

The loop in question is shown in Figure 5. This
loop searches for a specific character in the ar-
ray y , determines the indexj of that character,
rotates elements 0 throughj-1 to positions 1
throughj , and writes the desired character to
element 0. The important feature to note is that
this loop does a number of single byte loads
and stores to the character array. In certain
circumstances, scheduling two stores to nearby
addresses within a couple cycles of one another
can trigger an L1D stall on the Itanium 2.

This stall is due to a quirk in the design of
the L1D cache on the Itanium 2. Although the
processor advertises two store ports, in reality,
the L1D cache is only pseudo-dual ported for

9

(a)

L8 L7

L9

L10 L11

L21

L12

L20

L6

j = 0
tmp = yy[j] j++

tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp
if j == 0

if tmp != ll_i

(b)

L8 L7

L9

L10 L11

L12

L6

j = 0
tmp = yy[j] j++

tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp
if j == 0

if tmp != ll_i

L21

L20

(c)

yy[0]= tmp
if j == 0

L7

L9

L12

L6

L45

j = 0
tmp = yy[0]
if tmp != ll_i j++

tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp
if j == 0

L21

L20

(d)

L7

L9

L12

L6

L45

j++
tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp

j = 0
tmp = yy[0]
if tmp != ll_i

yy[0]= tmp

L21

L20

Figure 6: Interaction of structural techniques and traditional optimizations

stores [4]. Cache lines are split into eight sin-
gle ported banks. Store coalescing hardware
helps mitigate the penalty that would otherwise
be associated with scheduling multiple stores
to sequential addresses. However, if two stores
that cannot be coalesced attempt to access the
same bank, the younger one will be forced to
stall. This appears in the benchmark compiled
by GCC mainline. The store toyy[0] in L9
is scheduled one cycle after the store toyy[j]
inside the loop. When the loop exits, the store
in L9 may stall if yy[0] uses the same bank
as yy[j] . Structural compilation transforms
the CFG enough that the store can be moved
many cycles later in the schedule, eliminating
this stall.

Figure 6 shows the evolution of
generateMTFValues as it is processed
by the optimizers. We have annotated signif-
icant lines of code onto their corresponding
CFG nodes. Figure 6(a) shows the core of
generateMTFValues immediately after
SSA form is constructed. Blocks L7 and L8
form the rotate loop, which cycles zero or more
times. As the loop exits, L7 writes thej th
element of the array. One cycle later, L9 writes
into element 0 of the array and branches based
on the value ofj . If j is 0, L10 falls through to
the rest of the function. Otherwise, L11 leads
into a complex block of code.

Figure 6(b) shows the function after Su-

perblock formation. Tail duplication copied the
header of the L7-L8 loop so that L7 now forms
a single block loop. We now have two flows
into L9. Along the L8-L9 arc,j will always be
0. Along L7-L9, j will be non-zero. The origi-
nal purpose of L9 was to determine whether the
loop iterates, and by duplicating L8, we have
made L9 redundant.

Figure 6(c) shows the kernel after constant-
and value range propagation (VRP). VRP du-
plicates block L9 to make L45. VRP then prop-
agates the value ofj from L6 to L9 and from
L7 to L45. This, in turn, allows for the elimina-
tion of theif statements in L9 and L45. None
of the code in the subgraph headed by L12 uses
the arrayyy , so in part (d), store sinking is able
to move the write toyy[0] to L20. When this
code is finally scheduled, the write toyy[0]
doesn’t occur until at least 12 cycles after the
loop body, eliminating the stall.

5 Future work

Fully implementing the structural compilation
model in GCC will be more a matter of tun-
ing pieces already written than writing new
code. At this point, Tree-SSA optimizers
should generally be capable of moving in-
structions across basic blocks. There are al-
ready several structural-style passes written at

10

the Tree-SSA level, such as the loop unroller.
Study into moving these types of passes for-
ward in the compilation order would be worth-
while.

Parameter and heuristic tuning is a matter that
still needs to be addressed. Many of GCC’s pa-
rameters governing code expansion are set con-
servatively relative to OpenIMPACT. If code
expansion is done early enough, these can be
set quite aggressively without adversely affect-
ing the instruction cache performance of the
generated code. Heuristics in the loop unroller
refuse to unroll loops containing control flow
for fear of increasing the number of branch mis-
predicts. Early unrolling combined with predi-
cation support may make unrolling such loops
profitable, and so heuristics like these should be
revisited.

Other code expanding transforms, such as
branch target expansion, could be easily im-
plemented within GCC. It would also be use-
ful to investigate running multiple rounds of
expansion. A Superblock-unroll-Superblock
sequence could potentially give a very nice
straight code sequence with high levels of ILP.

6 Conclusion
Although it has not yet demonstrated an over-
all performance improvement for Itanium, the
Tree-SSA Superblock formation pass holds
promise. We can already see an improve-
ment in certain benchmarks, such as 186.crafty
and 256.bzip2 due to the structural compilation
model. Implementing additional early struc-
tural transformation passes will give optimiz-
ers more freedom to move and simplify pro-
gram code. At the same time, we must ensure
that the optimization and analysis passes can
accept and use the modified control flow. When
the transformation and optimization stages are
fully compatible, we expect to replicate the
consistent, positive performance results from
the OpenIMPACT compiler.

7 Acknowledgments

We would like to thank the members of the
OpenIMPACT research group the GCC com-
munity for their help in this work. We would
also like to thank the Gelato federation for its
support of this project.

References

[1] J. A. Fisher. Trace scheduling: A
technique for global microcode
compaction.IEEE Transactions on
Computers, C-30(7):478–490, July 1981.

[2] Jan Hubǐcka. Profile driven optimizations
in GCC. GCC Summit, 2005.

[3] W. W. Hwu, S. A. Mahlke, W. Y. Chen,
P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery. The Superblock: An
Effective Technique for VLIW and
Superscalar Compilation.The Journal of
Supercomputing, 7(1):229–248, January
1993.

[4] Intel Corporation.Intel Itanium 2
Processor Reference Manual for Software
Development and Optimization, Document
Number 251110-003, May 2004.

[5] J. W. Sias, S.-Z. Ueng, G. A. Kent, I. M.
Steiner, E. M. Nystrom, and W. W. Hwu.
Field testing IMPACT EPIC research
results in Itanium 2. InProceedings of the
31st Annual International Symposium on
Computer Architecture, pages 26–39, June
2004.

[6] UIUC OpenIMPACT Effort. The
OpenIMPACT IA-64 Compiler.
http://gelato.uiuc.edu/.

11

