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1. INTRODUCTION

Instruction-1evel parallelism (ILP) within basic blocks is extremely limited.

An effective VLIW or superscalar machine must schedule instructions across

basic block boundaries to achieve higher performance. When results of branch

conditions may be determined early, scheduling techniques such as software

pipelining [Aiken and Nicolau 1988; Lam 1988; Rau and Glaeser 1981] are
effective for exposing ILP. Also, predicated instructions can be used in

conjunction with software pipeline loop scheduling [Rau et al. 1989] or

straight-line code scheduling [Hsu and Davidson 1986] to mask out the

effects of unnecessary instructions from alternate paths of control. For appli-

cations in which results of branch conditions may not be determined early,

speculative execution of instructions is an important source of ILP [ Chang

et al. 1991; Smith et al. 1990; Tirumalai et al. 1990].

Speculative execution refers to executing an instruction before knowing

that its execution is required. Such an instruction will be referred to as a

speculative instruction. Speculative execution may either be engineered at

run-time using dynamic scheduling or at compile time, This article focuses on

compile-time-engineered speculative execution, or speculative code motion. A

compiler may utilize speculative code motion to achieve higher performance

in three major ways. First, in regions of the program where insufficient ILP

exists to fully utilize the processor resources, useful instructions may be

executed. Second, instructions starting long dependence chains may be exe-

cuted early to reduce the length of critical paths. Finally, long latency

instructions may be initiated early to overlap their execution with useful

computation.

There are two problems though associated with speculative code motion.

The first problem is that the result value of a speculative instruction that is

not required to execute must not affect the execution of the subsequent

instructions. This may be effectively achieved by compile-time renaming

transformations. A more serious problem with speculative code motion is the

correct handling of exceptions. An exception that occurs for a speculative

instruction which is not supposed to execute must be ignored. On the other

hand, an exception for a speculative instruction that is supposed to execute

must be signaled. Accurate detection and reporting of exceptions are required

to identify program execution errors at the time of occurrence. Also, for

exceptions which do not terminate program execution, exception recovery

must be possible.

In this article, a set of architectural features and compile-time schedul-

ing support, collectively referred to as sentinel scheduling, is described. Sen-

tinel scheduling provides an effective framework for speculative execution,

while also providing a means to efficiently handle exceptions that occur for

speculative instructions.

2. BACKGROUND AND RELATED WORK

Varying degrees of speculative code motion can be supported with different

scheduling models. In this section, three existing scheduling models,
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restricted percolation, instruction boosting, and general percolation, along

with their support for detecting and reporting exceptions, are discussed. An

efficient structure to perform scheduling across basic blocks is a superblock.

All scheduling techniques in this article will be described based on the

superblock structure; however, they can be easily generalized to other struc-

tures. For example, trace scheduling [Fisher 1981], modulo scheduling [Rau

and Glaeser 1981], and enhanced pipelining [Ebcioglu 1987] may effectively

utilize the speculative execution models discussed in this article. Tirumalai

et al. [1990] showed that modulo scheduling of while loops depends on

speculative support to achieve high performance. Without speculative support,

dependence limit the amount of execution overlap between loop iterations.

2.1 Superblock Structure

A superblock is a sequence of consecutive instructions in which flow of control

enters at the beginning but may leave at one or more exit points [Hwu et al.

1993]. Superblocks are formed in two steps. First, sets of basic blocks which

are likely to execute in sequence, traces [Ellis 1985; Fisher 1981], are

identified using execution profile information [Chang and Hwu 1988]. Then,

tail duplication is performed to eliminate all side entrances into the trace. An

example illustrating superblock information is presented in Figure 1. The

number associated with each basic block is its estimated execution frequency.

In Figare la, the most likely execution path through the loop is selected as a

trace, BB2, BB3, BB5. To convert the trace into a superblock, tail duplication

is performed to eliminate the side entrance into the trace (see Figure lb).

After tail duplication, BB4 and BB5’ may also be combined to form another

superblock.

2,2 Superblock Scheduling

Superblock scheduling is an extension of trace scheduling [Fisher 1981]

which reduces some of the bookkeeping complexity [Chang et al. 1991].

Superblock scheduling consists of two steps, dependence graph construction

and list scheduling. The dependence graph represents the control and data

dependence between instructions within a superblock. Control dependence

are used to enforce two major restrictions on speculatively moving or perco-

lating an instruction, J, before a branch, 13R: (1) the destination of J is not

used before it is redefined when BR is taken] and (2) J will not cause an

exception that alters the execution result of the program when BR is taken.

The different code-scheduling models observe varying combinations of the

two restrictions. For all scheduling models, restriction (1) can be overcome by

compile-time renaming transformations. After the appropriate control depen-

dence are eliminated according to the model used, list scheduling using the

dependence graph, instruction latencies, and resource constraints is per-

formed to determine which instructions are scheduled together.

] Note that mstructlons in a superblock are placed sequentially by the compder; therefore

instructions following a conditional branch within a superblock are in the branch’s fall-through

path.
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Fig.1. Example ofsuperblock formation: (a)after trace selection, (b)after tail duplication.

,
2.3 Restricted-Percolation-Scheduling Model

The scheduler enforces both restrictions (1) and (2) when using the restricted-

percolation-scheduling model [Chang et al. 1991]. Thus, only instructions

which the compiler can gnarantee to never cause exceptions are candidates

for speculative code motion. For conventional processors, memory load, mem-

ory store, integer divide, and all floating-point instructions are potentially

excepting instructions. With these constraints, conventional exception detec-

tion does not need to be altered with this scheduling model. The limiting

factor of restricted percolation is the inability to move potentially excepting

instructions with long latency, such as load instructions, above branches.

2.4 Instruction-Boosting-Scheduling Model

The scheduler enforces neither restriction when using the instruction-

boosting-scheduling model [Smith et al. 1990; 1992]. The restrictions are

overcome by providing sufficient hardware storage to buffer results until the
branches that an instruction is moved above are committed. If all branches

are found to be correctly predicted, the machine state is updated by the

boosted instructions’ effects. If one or more of the branches are incorrectly
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predicted, the buffered results are thrown away. Two sets of buffer storage

are required for this scheduling model, shadow register files and shadow

store buffers. The shadow register files hold the results of all boosted instruc-

tions which write into a register, while the shadow store buffers hold the

results of all boosted store instructions.

Exceptions for boosted instructions are handled by marking in the appro-

priate shadow structure whether an exception occurred during execution.

At the excepting instruction’s commit point, the contents of the shadow

structure are examined to determine if an exception condition exists. If an

exception condition exists, all information in the shadow structure is dis-

carded, and a branch is made to a compiler-generated recovery block. The

excepting instruction is identified by sequentially reexecuting all speculative

instructions which are committed by the same branch instruction. The excep-

tion condition is therefore regenerated in a sequential processor state.

Operands of speculative instructions are preserved by ensuring that specula-

tive instructions do not update the architectural register file until they are

committed. Therefore, an uncommitted speculative instruction may always be

reexecuted by retrieving its operands from the architectural register file.

Finally, the exception is handled (either terminating program execution or

recovering from the exception) using traditional exception-handling tech-

niques since the exception is regenerated in a sequential processor state.

2.5 Ignoring ExceptIons with the General-Percolation-Scheduling Model

The scheduler removes restriction (2) using the general-percolation model

[Chang et al. 1991]. Exceptions that may alter program execution are avoided

by converting all speculative instructions which potentially cause exceptions

into nonexcepting or silent versions of those instructions. Memory stores,

though, are not allowed to be speculative instructions. In order to support

this scheduling model, an instruction set must contain a silent version of all

excepting opcodes. When an exception occurs for a silent instruction, the

memory system or function unit simply ignores the exception and writes a

garbage value into the destination register. 2 The consequence of using this

value is unpredictable and is likely to lead to a later exception or an incorrect

execution result.

The inability to always detect exceptions and determine the excepting

instruction limits the application of this scheduling model. Colwell et al.

[ 198’71 detect some exceptions by writing NaN into the destination register of
any nonexcepting instruction which produces an exception. The use of NaN
is then signaled by an excepting instruction, This method, however, has

difficulties determining the original excepting instruction and is not guaran-

teed to signal an exception if the result of a speculative exception-causing

instruction is conditionally used. Also, an equivalent integer NaN must be

provided for this method to work for integer instructions.

z Note, exceptions such as page faults are handled immediately for silent instructions m the

same manner as excepting instructions.
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In summary, instruction boosting provides an effective framework for

speculative code motion of instructions and handling of exceptions that occur

for speculative instructions. However, the hardware overhead is very large,

and the number of branches an instruction can be boosted above is limited to

a small number. General percolation, on the other hand, achieves nearly the

same performance level of instruction boosting with unlimited boosting level

[Chang et al. 1991] at a much lower implementation cost. The problem is that
there is no guarantee of detecting exceptions and determining the cause of an

exception. In the next section, a new scheduling model referred to as sentinel

scheduling is introduced. With a modest amount of architectural support,

sentinel scheduling permits all the scheduling freedom of general percolation,

while allowing exceptions to be always detected and the excepting instruction

accurately identified.

3. THE SENTINEL-SCHEDULING MODEL

In this section, a scheduling model referred to as sentinel scheduling is

introduced. Sentinel scheduling combines a set of architectural features with

sufficient compile-time support to accurately detect and report exceptions for

compiler-scheduled speculative instructions. The basic idea behind this tech-

nique is to provide a sentinel for each potentially excepting instruction (PEI).

The sentinel reports any exceptions that were caused when the PEI is

speculated. The sentinel can either be an existing instruction in the program

or a newly created instruction. In the following sections, the model of execu-

tion, the required architectural support, the algorithm for sentinel schedul-

ing, and several other important issues are described.

3.1 Model of Execution

Conceptually, each instruction, J, can be divided into two parts, the nonex-

cepting part that performs the actual operation and the sentinel part that

flags an exception if necessary. The nonexcepting part of J can be specula-

tively executed, provided the sentinel part of J remains in J’s home block,

The home block of an instruction is the original basic block the instruction

resides in before compile-time scheduling. The sentinel part of J can be

eliminated if there is another instruction, K, in J’s home block which uses

the result of .J. The sentinel part of K will signal any exceptions caused by

both J and K, which makes it a shared sentinel between J and K. Applying

this argument one level further, if an instruction, L, in K’s home block which

uses the result of K can be found, its sentinel part may serve as the shared

sentinel of J, K, and L. In this case, the semantics of K is defined so as to

propagate an incoming exception from J to L’s sentinel.

For each PEI, a recursive search may be applied to identify a tree of

instructions which use its result. The search terminates along a path when

an instruction that has no uses in its home block is encountered.3 Such an

‘ Note that a postdommatmg use IS sufficient to guarantee all exceptmns wdl be detected.

However, a use m the home block is required m our implementation to facihtate earlier reporting

of exceptions, reexecution of fewer mstructlons for recovery, and reducing register lifetimes.
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Table I. Exception Detection with Sentinel Scheduhng

spec src ( J) e~cep t-tag t J cafl,es except dest(.1) ,xrept-tag dest(.1) data ucrpt ~tgnul

o 0 0 0 result of J none

o 0 1 0 yes, except P~ = PC of J

o 1 0 0 ym, except P~ = STC(J) dutu ~

o 1 1 0 yes, except PC = ST([ J) cfutu :

1 0 0 0 resalt of .1 none

1 0 1 1 PC of J non.

1 1 0 1 Srr( 1) dat(cI none

1 1 1 1 ~r[ (J) data ~ none

t umon of all source operand except,on tag. of 1

~ the first source operand of 1 whew exception tag I\ set

instruction is termed an unprotected instruction. If all instructions in a PEI’s

tree of uses are speculatively executed, an explicit instruction must be

created to act as the sentinel of the PEI. The explicit sentinel is restricted to

remain in the PEI’s home block.

Since some instructions may never result in exceptions, e.g., integer add,

the sentinel part is not required for all instructions. An instruction only

requires a sentinel part if it may cause an exception, or it is used to report an

exception for a dependent PEI.

3.2 Architectural Support

In order to support sentinel scheduling, several extensions are required to the

processor architecture. The first extension is an additional bit in the opcode

field of an instruction to represent a speculatively executed instruction. This

additional bit is referred to as the speculative modifier of the instruction. The

compiler sets the speculative modifier for all instructions that are specula-

tively scheduled. A second extension is an exception tag added to each

register in the register file. The exception tag is used to mark an exception

that occurs when a speculative instruction is executed. ~ The exception tag

associated with each register must be preserved along with the data portion

of that register whenever the contents of the register are temporarily stored

to memory during context switch.

A summary of exception detection using the sentinel-scheduling model is

shown in Table I. For each instruction, J, three inputs are examined, the

speculative modifier of J, the exception tag of the source registers of J, and
whether J results in an exception. A single bit is used for the exception tag to

simplify this discussion.

Execution of a Speculative Instruction. When J is a speculative

instruction, exceptions will not be signaled immediately. If all the source

4 Note that the mmlmum exception tag reqmred 1s a single bit. However, m some cases a larger

tag may be useful to mdlcate the type of exception to assist m debugging and exception handhng
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register exception tags of J are reset, conventional execution results when J

does not cause an exception. When J does cause an exception, the exception

tag of the destination register is set, and the program counter (PC) of J is

copied into the data field of the destination register. The PC of J can be

obtained from a PC History Queue which keeps a record of the last m PC

values to enable reporting exceptions with nonuniform latency function units

[Colwell et al. 1987; Rau et al. 1989]. If one or more of the source register

exception tags of J are set, an exception propagation occurs. This is indepen-

dent of whether J causes an exception or not. For this case, the destination

register exception tag is set, and the data of the source register with excep-

tion tag set is copied into the destination register. If more than one of the

source registers of J have their exception tag set, the data field of the first

such source is copied into the destination register. The implications regarding

this issue will be discussed in Section 3.6.

Execution of a Nonspeculative Instruction. If J is not a speculative

instruction, conventional execution results if all source registers have their

exception tags reset. When J causes an exception, the exception is signaled

immediately, and J is reported as the exception-causing instruction. Con-

versely, when one or more of the source register exception tags are set, an

exception has occurred for a speculatively executed instruction for which J

serves as the sentinel. The exception is, therefore, signaled, and the data

contents of the source register with its exception tag set is reported as the PC

of the exception-causing instruction. Again, if more than one source register

has its exception tag set, the data field of the first such source operand is

reported as the PC of the exception-causing instruction.

Additional Sentinel Instruction. The final extension to the processor is an

additional instruction called ckeck( reg ). This instruction is inserted as the

explicit sentinel when no use of a speculative PEI exists in its home block.

This instruction does not perform any computation, but rather is merely used

to check the exception tag of its source register. For most processors, a new

opcode does not need to be created, but rather a move instruction can be used

instead. The destination register of the move is either set to the same as the

source register or to a registered hardwired to O, such as RO in the MIPS

R2000 [Kane 1987].

3.3 Sentinel-Superblock-Scheduling Algorithm

As previously discussed, superblock code scheduling consists of two major

steps, dependence graph construction and list scheduling. The dependence

graph contains dependence arcs to represent all data and control depen-

dence between instructions in the superblock. With the sentinel-scheduling

model, on] y restriction (1) (Section 2.2) is enforced for inserting control

dependence. Therefore, a control dependence arc from a branch instruction,

BR, to another instruction, J, is inserted if the location written to by J is

used before being redefined when BR is taken. This is the same restriction

applied using the general-percolation-scheduling model. As with general

A(’M Transactions on Computer System., Vol 11, No 4 November 1993
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percolation, memory stores are not allowed to be speculative. However, in

Section 5, an extension to remove this constraint will be discussed.
Prior to list scheduling, an additional step is added for sentinel scheduling.

In this step, potential sentinels are identified for each PEI the scheduler is

allowed to speculate. In general, any instruction from a PEI’s home block

which uses the result of the PEI is a potential sentinel. However, a simplify-

ing assumption to recognize potential sentinels only along one path in the

dependence graph is made. This assumption is utilized to reduce the complex-

ity associated with exception recovery (Section 4). The overhead associated

with limiting the number of potential sentinels is that a larger number of

explicit sentinels may be inserted than are required. This overhead is

discussed further in Section 6.

An algorithm to identify potential sentinel instructions for all PEI’s in a

superblock is presented in Figure 2. For each PEI, a leaf node in the

dependence subgraph is identified. Then all instructions along that path are

marked as potential sentinels for the PEI. Instructions with a successor in

the chain are marked as protected. Protected instructions may be freely

speculated since the next instruction in the chain will check all exceptions

propagated or caused by the instruction. The last instruction in the chain is

marked as unprotected. If an unprotected instruction is speculated, an explicit

sentinel must be created by the scheduler to check all exception conditions

propagated through the chain. The last instruction in the chain is also

recorded as the last potential sentinel for the PEI.

A modified form of list scheduling for superblocks to insert the necessary

explicit sentinels is then performed as the final step of sentinel scheduling.

The algorithm used is presented in Figure 3 with the additions to the basic

superblock-scheduling algorithm in bold type. The only modification required

for sentinel scheduling is to insert an explicit sentinel instruction when an

unprotected instruction is speculated. This explicit sentinel is restricted to be

scheduled in the instruction’s home block by adding the appropriate control

dependence. Note that the algorithm contains two function calls for handling

exception recovery. Exception recovery with sentinel scheduling is discussed

in Section 4.

3.4 Sentinel-Scheduling Example

To illustrate sentinel scheduling and exception detection with sentinel

scheduling, consider the assembly code fragment shown in Figare 4a. For

simplicity, it will be assumed in this example that each instruction requires
one cycle to execute, and the processor has no limitations on the number of

instructions that can be issued in the same cycle. Also, it will be assumed

that memory loads and stores are the only instructions that may cause

exceptions. In the example, potentially excepting instructions B and C may

be speculated; therefore, a sentinel instruction must be kept in the home

block of B and C’ to check their exception status if they are speculated.

The potential sentinels for B are identified as D and F. Since F is the last

use in the chain of flow dependence, it is marked as unprotected (Figure 4a).
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identify .potential.sentinels( superblock) {
/* initialization, mark all instructions

for each instruction in superblock, J {

J+protected = 1
J+sentinel = NULL
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as protected */

}
/* identify potential sentinels */

for each instruction in superblock, J {

if (J not allowed to be speculative)

continue

if ((Jis unprotected) OR(J is potentially excepting)) {

use = instruction in home_block(J) such that there is a flow

dependence from J to use

/. use in home block se~ves as the sentinel for J if J is speculated ./

if (use) {

}
/*

J+protected = 1

use-protected = O

J+sentinel = use

/. Do not allow potential sentinel to move to subsequent block ./

add control dependence from use to use-+ post. branch

No use in thehome block soinstruction is marked as unprotected */

else {

J+protected = O

}
}

}
/. Identify last potential sentinel for each PEI which may be speculative ./

foreach instruction in superblock, J {
if (J is potentially excepting) {

last = J

while (last-sentinel)

last = last-+ sentinel

J+last_potential-sentinel = last

)
}

}

Fig.2. Algorithm toidentify potential sentinel instructions.

Similarly, the potential sentinel for C is E, which is unprotected since it is

the last use in this chain. The code segment after scheduling is shown in

Figure 4b. Four instructions (B, C, D, and E) are moved above the branch

(A); therefore their speculative modifiers are set. Instruction E, though, is
unprotected, so an explicit sentinel (G) must be inserted into E’s home block

to check the exception condition of C. In the final schedule, instructions F

and G serve as sentinels for the potentially excepting instructions B and C,

respectively.
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schedule(superblock) {

build. dependence-graph (superblock)

identify ~otentialsentinels (superblock)

clear resource-usage. map

issue-time = O

while (unscheduled set of instructions is not empty) {

issne_time += 1

active.set = set of unscheduled instructions that are ready

sort active set according to instruction priority

for each instruction in active_set, J {

if (not all resources J requires are free)

continue

if ((enable~ecovery) AND (! compatible_with_active_intervals(J)))

continue

/. J is scheduled at issue_time ./

mark required resources of J busy in resource-usage. map

delete J from set of unscheduled instructions

J-issue_time = issue_time

if (J is speculative) {

set speculative modifier of J

/* create an explicit sentinel if speculate an unprotected instruction */

if (J is unprotected) {

create a new instruction, check(dest(J))

J—sentinel = check

add flow dependence J to check

/* Restrict eXPlicit sentinel to remain in J’s home block */
add control dependence from J-iprev_branch to check
add control dependence from check to J+post–branch
insert check into set of unscheduled instructions

}
}
if (enable~ecovery) updateJntervals(J)

/* check for control-flow hazards associated with an downward code mot~on */

for each branch J moved below in superblock, BR {

if (J—dest not live when BR is taken)

continue

insert a copy of J into target superblock of BR

}
}

}

Fig. 3. Sentinel superblock-scheduling algorithm

An execution sequence for the scheduled code segment in which instruction

B causes an exception is shown in Figure 5, For this example, it is assumed

that the branch, instruction A, is not taken. The initial states of all the

registers are further assumed to all have reset exception tags and some

unknown data fields. In the fh-st cycle, instruction B causes an exception.

ACM Trzmsactlons on Computer Systems, Vol 11. No 4, November 1993
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A: if(r2==O) goto Ll * B[l]: 11 = mem(r2+0)

B: rl = mem(r2+0) * C[l]: r3 = mem(r4+O)

C: r3 = mem(r4+O) * D[2]: r4 = rl+l

D: r4 = rl+l * E[2]: r5 = r3x9

t E: r5 =r3x9 A[2]: if (r2==O) goto L1
t F: mem(r2+4) = r4 ~ F[3]: mem(r2+0) = r4

I G[3]: check(r5)

t unprotected instruction speculative instruction

; sentinel
[n] indicates in which cycle the instruction is executed

(a) (b)

Fig. 4. Example of sentinel scheduling (a) original program segment, (b) program segment after

scheduling.
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Fig, 5. Example of exception detection using sentinel scheduling.

since it is a speculative instruction, the exception is not yet

[nstead, the exception tag of the destination register of instruction

B ‘is set, and the PC of inskuction-B is copied into the destination register’s

data field. In the second cycle, instruction D finds the exception tag of its

first source register set. However, since it is also a speculative instruction, it

propagates the exception information to its destination register. Finally, in
cycle 3 instruction F’ detects that the exception tag of its first source register

is set. Since instruction F is not a speculative instruction, an exception is

signaled, and the cause of the exception is reported as the contents of r4.
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Note that in this example, if instruction B again results in an exception

but the branch instruction A is instead taken, the exception is completely

ignored. This result is correct because if the branch is taken, instruction B

should not have been executed, and therefore should not disrupt the program’s

execution.

3.5 Handling Uninitialized Data

The use of an uninitialized register can potentially cause incorrect exceptions

to be reported with the sentinel-scheduling model Registers which are refer-

enced before being defined in a function may have their exception tag set

from the execution of a previous function or program. The use of this register

will therefore lead to an immediate or eventual exception signal. However,

this exception should not be reported. To prevent an exception from occurring

with uninitialized registers, the compiler performs live variable analysis [Aho

et al. 1986] and inserts additional instructions into the beginning of a

function to reset the exception tags of the corresponding registers. There-

fore, spurious errors associated with referencing uninitialized registers or

variables are prevented.

3.6 Reporting Multiple Exceptions

Multiple exceptions in a program are handled efficiently with sentinel

scheduling. The exceptions can either occur within different basic blocks or

within the same basic block. When two exceptions occur in different basic

blocks, the exceptions are guaranteed to be detected in the proper orde~-

because exceptions for all instructions of a basic block are checked before the

basic block is exited. The requirement of a sentinel in the home block of each

speculative instruction enforces this condition.
For multiple exceptions in the same basic block, exceptions are not guaran-

teed to be detected in the proper order according to the original code sequence.

Multiple excepting instructions in the same basic block may either have

different sentinels or share a sentinel. With different sentinels, the first

sentinel executed will signal the first exception. When two excepting instruc-

tions share a sentinel, multiple source registers of the sentinel instruction

will have their exception tags set. In this case, one of the exceptions is

arbitrarily first signaled. If a recovery mechanism is utilized, as discussed

in the next section, the second exception is reported when the sentinel

is reexecuted. The order of reporting two exceptions in the same basic

block is difficult to maintain in many systems. In many cases, instructions
within a basic block are reordered by conventional compiler code optimiza-

tion. Therefore, an order of reporting exceptions in the same basic block is

not maintained with the sentinel-scheduling model.

4. EXCEPTION RECOVERY

For many types of exceptions, it is desirable to recover from the exception

rather than abort program execution, Recovery generally consists of repairing

the excepting instruction and continuing program execution. Recovery with
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speculative instructions is difficult because the exception condition may not

be raised until long after the instruction is executed. Also, other speculative

instructions which use the result of the excepting instruction are likely to

have executed. Therefore, when the exception is detected and repaired, a

chain of dependent speculative instructions requires reexecution to generate

a correct program state. The scheduling model must ensure that the except-

ing instruction and all dependent instructions are reexecutable up to the

point where the exception condition is checked.

4.1 Recovery Model

The compiler support required to ensure recovery is dependent on the recov-

ery model utilized. In this article, the recovery model assumed is as follows. A

sentinel which detects an exception condition sets the processor PC to the

excepting instruction’s PC. The processor then enters an exception-handling

state which terminates when the execution reaches the sentinel again. The

excepting instruction is reexecuted as a nonspeculative instruction to regen-

erate the exception condition. After the exception is repaired, reexecution of

the subsequent instructions proceeds.

Not all instructions between the excepting speculative instruction and the

sentinel require reexecution. Instructions which are not reexecuted are sim-

ply discarded. The minimal set of instructions which must be reexecuted are

those which are flow dependent on the excepting instruction. Flow-dependent

instructions propagate the exception condition for the excepting specula-

tive instruction and therefore must be reexecuted to obtain the correct result.

Any superset of the flow-dependent instructions may be chosen for reexecu-

tion. However, the reexecute set must be known by the compiler to ensure

proper recovery.

Those nonspeculative instructions thus reexecuted are done so as normal

nonspeculative instructions (e.g., if they produce an exception, the exception

is signaled immediately). Those speculative instructions thus reexecuted are

done so as normal speculative instructions (e.g., if they produce an exception,

no exception is signaled, but the exception tag and data field of the excepting

instruction’s destination register are set appropriately) with one modification.

Transparent exceptions must be handled immediately for speculative instruc-

tions in the exception-handling state. Transparent exceptions are exceptions

such as page faults and TLB misses which occur independent of the program

logic. This is necessary to ensure that speculative instructions which did not

except in their original execution, produce the correct result during reexe-

cution. When execution reaches the original sentinel instruction again, the

exception-handling state is exited, and normal execution resumes.

Note that other models of recovery may be utilized in conjunction

with sentinel scheduling. One effective alternative is recovery blocks [Smith

et al. 1992]. In this model, the compiler generates the exact sequence of
instructions that must be reexecuted when an exception is detected by a

particular sentinel. The advantage of this scheme is reduced complexity
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update_intervaJ_ live.set(interval, J) {

if (J is in interval~RE) {

if [srct (J) not in interval~def )

intervaJ~use = interval~use + {src, (J)}
if ((J is a memory load) AND (J not in interval-mem-def))

interval~mem.use = interval~mem.use + {J}

interval+def = interval~def + {dest, (J ) }

if (J is a memory store)

interval~mem-def = interval-+ mem.def + { (J)}

}
}

Fig 6. Algorithm to calculate live information for an instruction interval.

in the exception-handling state. The disadvantage of this scheme is that

static-code size increases due to the recovery blocks.

4.2 Restartable InstructIon Interval

In order to ensure recovery with the recovery model discussed in the previous

section, each PEI which is speculated and its sentinel must delineate the

endpoints of a restartable instruction interval. The interval consists of two

types of instructions based on their execution status during recovery, those

which are reexecuted (RE) and those which are not reexecuted (NRE). An

instruction interval is restartable if all elements of the interval satisfy the

following constraints. First, none of the instructions in the interval may

prevent reexecution of the RE instructions in the interval. These instructions

will be referred to as irreversible instructions. For the purposes of this article,

an irreversible instruction has one of the three following properties: the

instruction destroys the exception tag of a live register; the instruction

modifies an element of the processor state which causes intolerable side

effects; or the instruction cannot be executed more than one time. As a result,

synchronization, 1/0, and subroutine call instructions break restartable
intervals.5 Based on these properties, memory stores are not considered

irreversible instructions.

The second constraint is that the operands of all RE instructions which are

live at the start of the interval are not overwritten by any instruction in the

interval. An operand is live if it is used by an RE instruction before it is

defined by an RE instruction in the interval. The live set of an interval
is calculated using techniques for standard dataflow analysis [Aho et al.

1986]. However, only the RE instructions in the interval are considered in the

process. An algorithm to compute the live information for an instruction

interval is presented in Figure 6. Live information is computed for both

5 Note that If an architecture prov~des a means for the compiler to save/restore exception tags, a

subroutine call alone is not an irreversible Instruction. However, m this discussion It is assumed

that subroutine calls are irreversible,

ACM Transactions on Computer Systems, VO1 11, No 4, November 1993.



Sentinel Scheduling . 391

PEI,RE A: II = mem(r2) PEI,RE A: rl = mem(r2)
NRE B: r3 = r4+l NRE B: r3 = r4+l
RE C: r4 = rlXr5 NRE C: r4 = rlxr5
RE D: 16 = r3+r4 RE D: r6 = r3+r4
RE E: r4 = mem(r3) RE E: r4 = mem(r3)
RE F: r7 = rl-1 RE F: r3 = rl-1

Sentinel G: check(r4) Sentinel G: check(r4)

(a) (b)

Fig. 7. Example of (a) a restartable instruction interval, (b) a nonrestartable instruction

interval.

register and memory operands since both must be maintained to ensure a

restartable interval.

To illustrate the computation of an interval live set, consider the example

in Figure 7a. The register live set consists of r 2, r 3, and r5. Although, r 3 is

computed by B before it is used in the original execution of the interval.

Instruction B is an NRE instruction; therefore r 3 will not be redefined

during reexecution. Consequently, its contents must be preserved all the way

to the end of the interval (during the original execution) and from the

beginning of the interval (during reexecution) to ensure that D may reexe-

cute correctly. Also, note that even though B uses r4 before it is defined, r4

is not included in the live set. This is because B is an NRE instruction.

Therefore, its inputs operands may be modified without affecting the

restartability of the interval.

The instruction interval shown in Figure 7a is thus restartable since none

registers in the live set are modified in the interval. An example interval

which is not restartable is shown in Figure 7b. The register live set consists of

r 2, r 3, and r4. The conditions for restartability are violated by two instruc-

tions in the interval. Instruction E overwrites r4 which prevents D from

properly reexecuting. Similarly, F overwrites r 3 which prevents D and E
from properly reexecuting.

The compiler must maintain a restartable instruction interval for all

PEI\sentinel pairs that are generated to ensure exception recovery may be

performed. From the point of view of individual instructions, the compiler

must satisfy the restartability constraints for all intervals which span an

instruction. In the remainder of this section the required scheduler and

register allocator support to maintain restartable instruction intervals is

presented. Also, a discussion of various recovery models and the recovery

model utilized for the experimental evaluation is presented.

4.3 Scheduler Support

Several additional restrictions must be added to the instruction scheduler

to ensure that all instruction intervals are restartable. The additional

restrictions are as follows.
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(1) A speculative instruction cannot be moved beyond any irreversible

instruction.

(2) Exceptions for speculative instructions are not propagated across

irreversible instructions.

(3) A speculative instruction may not modify any of its own input operands.

(4) All instructions which overwrite an operand in an instruction interval’s
live set may not be scheduled in the interval.

The first two scheduling restrictions are used to prevent an irreversible

instruction from being included in any instruction interval. The first restric-

tion is handIed by inserting additional control dependence during graph

construction. A dependence arc is inserted from each irreversible instruction

to all subsequent instructions in the superblock. The second restriction is

maintained by modifying the defkition of home block to account for irre-

versible instructions. Each irreversible instruction defines an additional

basic-block boundary as far as the scheduler is concerned. In this manner, the

identify –potential–sentinels algorithm (Figure 2) will not search beyond an

irreversible instruction for flow-dependent instructions.

The last two scheduling restrictions are used to ensure that the live

operands of all RE instructions in the interval are not destroyed by any

instruction in the interval. Compile-time renaming is utilized to overcome the

third restriction. The destination of an instruction which may be speculated

and overwrites one of its source operands (self-antidependence) is renamed to

a new register. All uses of the original register are then replaced with the

renamed register. If necessary, a copy instruction is inserted to restore the

proper value of the original register.

The fourth restriction is overcome by modifying the sentinel superblock-

scheduling algorithm. The modifications employ two functions that check and

update the status of instruction intervals. The calls to these functions are

included in the sentinel superblock-scheduling algorithm shown in Figure 3.

The first function is used to determine if scheduling an instruction at the

current time is compatible with all active intervals. An instruction interval is

active at the current time if the start of the interval has been scheduled and

the end of the interval has not been scheduled. An instruction is compatible

with an active interval if the interval remains restartable when the instruc-

tion is added. An NRE instruction is compatible by default since there are no

restrictions on the redefinition of its input operands.

An RE instruction is compatible if all instructions which modify any of its
input operands that are live in the interval may be scheduled after the end

instruction of the interval. Instructions which modify live operands are

identified by traversing the anti, output, memory anti, and memory output

dependence of a candidate RE instruction. If the modifying instruction is

independent of the interval-ending instruction it can be scheduled after the

interval end point without a problem. However, if the instruction which ends

the interval is dependent on the modifying instruction, the restartability of

the interval may be maintained only by breaking the interval. An interval is

broken by selecting an earlier potential sentinel for the end point. The new
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compatible_ with_ active_intervals(J) {

/* Create a temporary interval for J if it is a speculated PEI */

if ((Jis speculative) AND (J is potentially excepting)) {

create a new active interval, temp

temp+start = J

temp+end =last potential sentinel of J

temp~RE = temp+NRE = {}

}
compatible = 1

for each active interval, interval {

if (J in NRE for interval) continue

/. Save the contents of all fields of interval, so they can be later restored */

original = copy all elements of interval

interva14RE = interval+RE + {J}

update_interval_live_ set(interval, J)

/. Determine if any of J’s operands in the use set of the interval are modified by

instructions which cannot be scheduled outside the interval */

for each dependence arc out of J, dep {

if (((dep+type is anti or output) AND (dep-+operand in interval+ rrse)) OR

((dep+type is memory anti or memory output) AND (dep+tminstr in interval-+mem.use))) {

/. An instruction not dependent on the end of the interval may always be moved

after the end of the interval to satisfy the dependence constraint */

if (there is no dependence path from dep+to-instr to interval+end)

continue;

/. Otherwise, the interval can be broken if dep+to-instr can be moved into

the home block of instruction which ends the interval */

else if (there is a dependence path from dep+to-instr to interval+ prev. br) {

compatible = O

break

}

}

}

restore contents of interval with original

if (! compatible) break

}

delete temp

return (compatible)

}

Fig. 8. Algorithm to determine if an instruction is compatible with all active intervals.

interval end point must be independent of the modifying instruction. There-

fore, the modifying instruction must be able to be scheduled in the home

block. If dependence prevent scheduling of the modifying instruction in the

home block, the candidate instruction is not allowed to be scheduled at the

current time. An algorithm to determine if an instruction is compatible with

all active intervals is presented in Figure 8.

The last modification to the sentinel superblock-scheduling algorithm is a

function which updates the contents of all active intervals after each instruc-

tion is scheduled. The algorithm used to update the active intervals is shown

in Figure 9. When a PEI is scheduled speculatively, a new active interval is

created. The interval begins with the PEI, and its end point is set to the last

potential sentinel of the PEI. The last potential sentinel is selected as
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update_intervals(J) {

/. Create a new interval for a speculated PEI ./

lf ((J is speculative) AND (J is potentially excepting)) {

create a new active interval, interval

intervaf-start = J

interval~end = last potential sentinel of J

mterval~RE = interval-NRE = {}

interval-use = interval-clef = interval-mem.use = interval-mem.def = NULL

1

/* De activate all intervals which end with J, note that J must be

non-speculative to end an interval */

for each active interval, interval {

if (interval-end==J ) deactivate interval

}

/. update all act,ve intervals with .f ./

for each active interval, interval {

/. The recovery model utd,zed defines ,f J IS an RE or NRE mstr”ct,on for each interval ./

If (J m NRE for interval) {

]nterval-NRE = interval-NRE + {J}

continue

}

mtcrval-RE = mterval-RE + {J}

update-mterval-live-set( interval, J)

for each dependence arc out of J, dep {

if (((dep~type IS ant] or output) AND (dep~operand in interval-use)) OR

((dep-type is memory anti or memory output) AND (dep-to-mstr m mterval-menl.use ))) {

if (there is a path in the dependence graph from dep-to.mstr to interval-end) {

/. break np the interval to sat,sfy the dependence constraint ./

S = farthest mstructlon m the flow dependence chain of potential sentinels for

interval-start that is not dependent on dep-to.mstr

If (S IS not speculated) {

mark S as unprotected

mterva]- end = S

}

else {

/* Create an exphc,t sentinel since all potential sentinels for the broken

interval have been speculated */

create a new instruction, check(dest(S))

add a flow dependence from S to check

add a control dependence from Ssprev. branrh to check

add a control dependence from check to S-post_ branch

interval-end = check

add check into set of unscheduled mstructlons

}
}
insert

}

}
1

)

a dependence of type dep-type between interval+ end and dep-to.rnstr

Fig. 9. Algorithm to update all active intervals
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A: jsr A[l]: jsr

B: r5 = mem(r3+O) * D[2]: rl = mem(r6+O)

C: if (r5==O) goto L1 B[2]: r5 = mem(r3+O)

* D: rl = mem(r6+O) * E’[2]: r10 = r2+l

t E: r2 = r2+l C[3]: if (r5==O) goto L]

F: mem(r4i-0) = r7 o G[4]: r8 = rl+l

$ G: r8 = rl-1-l F[5]: mem(r4+O) = r7

H: r6 = mem(r2+O) H’[5]: r6 = mem(rlO+O)

1[5]: r2 = r10

t instruction considered for speculative execution

$ last potential sentinel for D

* speculative instruction

o sentinel for D

[n] indicates in which cycle the instruction is executed

(a) (b)

Fig, 10. Example of sentinel scheduling to ensure recovery: (a) original program segment, (b)

program segment after scheduling.

the end point of the interval to ensure the interval is restartable for

whichever potential sentinel is selected as the actual sentinel of the PEI.

Since the last sentinel is the instruction which ends the chain of flow-

dependent potential sentinels, enforcing all scheduling restrictions to the last

potential sentinel is sufficient to guarantee restartability.

The update algorithm also prevents instructions from overwriting the

operands live in the interval by inserting additional dependence arcs. Similar

to the previous algorithm, instructions which modify live source operands are

identified by traversing the anti, output, memory anti, and memory output

dependence for a new instruction added to an interval. A dependence arc is

added from the interval end point to the modifying instruction to restrict the

modifying instruction from entering the interval. If the end of the interval is

dependent on the modifying instruction, the interval must be broken up. This

is necessary to prevent a circular dependence condition between the modify-

ing instruction and the end of the interval. The potential sentinel farthest

down in the chain of flow dependence that is not dependent on the modifying

instruction is selected as the new end point. If no such instruction exists, an

explicit sentinel is created to serve as the end point of the interval.

An example to illustrate the handling of the scheduling restrictions is

presented in Figure 10. For this example assume (1) each instruction requires

1 cycle to execute, (2) the processor has unlimited resources, and (3) only

memory load and store instructions may cause exceptions. It is further

assumed that all instructions in an interval are RE instructions. The first

restriction is for A. Instruction A is an irreversible instruction; therefore no

speculative code motion is allowed across it. Instruction D may be specu-
lated, provided several constraints are observed. First, H overwrites a source

operand of D. Therefore, H must be scheduled after the end point of the
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interval started by D, namely, G. Similarly, if the compiler cannot determine

that instructions D and F access different memory locations, F must be

scheduled after G (due to memory antidependence).

Instruction E may also be speculated in the example. Instruction E is

self-antidependent; therefore, the destination of E must be renamed to a new

register (r 10 in the example). All uses of the original register r 2 are also

renamed to r 10, and a copy instruction, 1, is inserted assuming r 2 is live

outside the code segment. Let E‘ be the instruction derived from E by

renaming r 2 to r 10. Since the copy instruction I is antidependent on E‘, the

copy is restricted to be scheduled after the end point of all intervals which

contain E‘. Thus, 1 is scheduled after G. The final schedule with all restric-

tions observed is shown in Figure 10b. Notice that if speculative instruction

D causes an exception, the exception is detected by its sentinel G. Instruc-

tions D, B, E‘, and C are then reexecuted during exception-handling mode.

All instructions reexecute correctly since their source operands have not been

destroyed.

Additional compile-time renaming is also effective to minimize the number

of antidependences that must be enforced during scheduling due to the fourth

restriction. In our current implementation, anti and output dependence-

removing transformations are applied to superblocks prior to scheduling

[Hwu et al. 1993].

4.4 Register Allocator Support

The register allocator must also be modified to ensure that all PEI\sentinel

intervals are restartable. The following additional restrictions must be uti-

lized by the register allocator to ensure that exception recovery is possible.

(1) The contents of a register in the live set of an interval may not be
overwritten in the interval.

(2) A destination register of an RE instruction may not be spilled in an
interval.

The first restriction is handled by adding all instructions in an interval to

the live range of each register in the interval’s live set. By extending the live

range of a register across all intervals in which it is live, the register contents

are preserved across the necessary instructions to ensure restartability of all

intervals. The algorithm to construct live ranges of each virtual register

is augmented to add the contents of the intervals over which the register is

live. Traditional graph coloring may then be applied to achieve the desired

allocation.
In the example shown in Figure 10b, assuming all instructions are reexe-

cuted during exception recovery, the live set of the interval from D to G

consists of r 2, r 3, and r 6. All instructions in the interval are thus added to

the live ranges of these registers. As a result, even though D maybe the last

use of r 6, the register allocator may not reuse the physical register mapped

to r6 until after G.

The first restriction also implies that register source operands of specula-

tive PEIs may not be spilled to memory by the register allocator. This is
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necessary with the recovery model used in this article because during excep-

tion handling the processor does not know to reexecute spill load instructions

to restore appropriate spilled source register operand values. In the current

implementation, the register allocator enforces this restriction by despeculat-

ing a speculative instruction whose source operands are spilled. Despecula-

tion or downward code movement back to the PEI’s home block is performed

incrementally until either the live range becomes allocatable or until the

instruction’s home block is reached. At the point when the home block is

reached, the instruction is no longer speculative, and the register allocator

is free to spill its source operands.

The second restriction is necessary to ensure that improper exceptions are

not signaled when a speculative instruction’s destination is spilled to mem-

ory. In order to spill the register, a store instruction will read the contents of

the speculative instruction’s destination register. If that register contains an

exception condition, an exception will be signaled. However, execution may

not reach the home block of the speculative instruction. Therefore, an

improper exception signal may occur. Preserving destination registers of

speculative instructions may be achieved using the same despeculation pro-

cess. Speculative instructions whose destination live range cannot be allo-

cated are incrementally moved downward until either the live range becomes

allocatable or until the speculative instruction’s home block is reached. Again,

once the home block is reached, the instruction is no longer speculative, and

the register allocator is free to spill its destination operand.

Note that if the architecture provides a special set of spill instructions, the

second restriction for register allocation may be eliminated. The spill instruc-

tions must save/restore the exception tag along with the data contents of

the register. Furthermore, the spill instruction which saves the contents of a

register must ignore the exception status of the register to prevent signaling

improper exceptions. Finally, the spill instructions must be included in the

RE sets of all intervals which span them to ensure updated values are placed

on the stack during reexecution.

The current implementation of the scheduler does not utilize any informa-

tion regarding register usage to guide the schedule. Therefore, in superblocks

with a large amount of register pressure, the register allocator will be

required to despeculate many speculative instructions to satisfy the restric-

tions for exception recovery. More advanced scheduling techniques which

integrate parts of register allocation and scheduling may be used to achieve a

more efficient schedule [Freudenberger and Ruttenberg 1991; Goodman and

Hsu 1988]. Currently, these techniques are being studied to improve the

performance of sentinel scheduling in regions with large register pressure.

To summarize, by enforcing constraints for scheduling and register allo-

cation, one can guarantee that all speculative PEI/sentinel pairs form a

restartable instruction interval. Therefore, an exception for a speculative

instruction may be repaired, and all RE instructions in the interval started

by the PEI may be reexecuted to achieve a correct program state. The

overhead associated with enforcing these constraints is reduced scheduling

freedom caused by additional dependence constraints and speculation limits
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imposed by the register allocator. Also, additional instructions to accomplish

renaming are typically necessary. The overhead of ensuring exception recov-

ery with sentinel scheduling will be evaluated in Section 6.

5. ALLOWING SPECULATIVE STORES

A limitation of sentinel scheduling up to this point of discussion is that it

does not allow speculative store instructions. In this section, an extension to

sentinel scheduling is described which allows store instructions to move

above branch instructions. In the following sections, the additional architec-

tural and compiler support required for speculative stores is presented.

5.1 Additional Architectural Support

In order to support speculatively executed store instructions, the operation of

the data memory subsystem must be modified. In this discussion, it will be

assumed that an N entry store buffer exists between the CPU and the data

cache [Johnson 1991].

Operation of a Conventional Store Buffer. A store buffer has three pri-

mary functions. First, it creates a new entry for each store instruction

executed by the CPU. Each store buffer entry consists of the store address,

store data, and several status bits. Address translation is performed during

insertion to determine if an exception (access violation or page fault) has

occurred. If an exception occurs, it is handled immediately. The store buffer

also supplies data to the CPU whenever a load with a matching address to a

valid store buffer entry is executed. Finally, the store buffer releases entries

to update the data cache. The store buffer operates as a first-in-first-out

circular queue. When the data cache is available and the buffer is not empty,

the entry at the head of the queue is transferred to the data cache.

Operation of Store Buffer Supporting Speculative Stores. Speculative store

instructions can be utilized if the store buffer is modified to allow probation-

ary entries. Probationary entries are for speculative stores which may or may

not require execution. Probationary entries are later coni+med by specific

instructions if the predicted path of control is followed or invalidated when a

branch direction is mispredicted. To support probationary entries, each store

buffer entry requires three additional fields, a confirmation bit, an exception

tag, and an exception PC. Also, an additional instruction to confirm store

instructions in the store buffer, confim-store( index), is needed. Finally, a

mechanism to invalidate all probationary store buffer entries whenever

a branch prediction miss occurs is required.

Each function of the store buffer requires some modifications to handle
probationary entries, The insertion of a store into the store buffer is summa-

rized in Table II. Note that nonspeculative stores enter the buffer as con-

firmed entries, while speculative stores enter as probationary entries. Also,

when the buffer is full, the processor is stalled to wait for an entry to become

available. When a load instruction is executed, both confirmed and uncon-

firmed entries are searched for a matching address. However, a probationary
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Table II. Insertion of Store into Store Buffer

9prc we(I).e~cvpt_taq + I cau9es except ~ desc rzpt~o,t
11 0 0 insert a non-speculative store As a confirmed rntry
rl (1 I force all confirmed entries at head of buffer to update cache, .a\e cuntent+

of store buffer 0, process exception

0 1 0 signal exception, report PC = src(l) data

o 1 I s]gnal exception, report PC = src(l). data

1 0 0 insert speculative store as a pending entry

1 0 I ln?ert speculative store as a pending entry, set t-xceptwn t~g, <et exrep

tlon PC to P(” of I

1 1 0 ln\ert .peculatlve tore a. a p~ndmg entrj, set e~cf-ptlon tag 5et excel>-

tlon PC to .wc(l) data

1 1 1 m5ert speculative store aa a pending entry ~et ~x~cptlolt tag, wt rYrrp

t]on PC to src(l) data

t ktructlon pmdumng sourc? oprrand of btore contains cxceptlun con[iltlon, m .tor? nlubt J1l.t plopdg’it. the

exception

~The.tore instruction results man ?xception

0’3a\mg thecontents of thestorebufferordy n.ce..arv when speculative store. areallowcd

entry with its exception tag set will not participate in the search.G This

exclusion from the search is to enable reexecution of the load instruction

independent from reexecution of a matching excepting store in the store

buffer. The releasing function of the store buffer is changed so that probation-

ary stores are not allowed to update the data cache, This is accomplished by

preventing any releases from the store buffer when the entry at the head of

the buffer is probationary.

Two additional functions are required for the store buffer, confirming and

canceling probationary entries. A probationary store in the store buffer is

confirmed by a confirm –store( index) instruction. The index signifies which

entry is confirmed counting from the tail entry. If the exception tag of

the entry being confirmed is set, an exception must be reported. The excep-

tion is handled in the same manner as when an exception occurs during

insertion of a nonspeculative store instruction. However, the PC of the

excepting instruction is provided in the exception PC field of the particular

store buffer entry. All probationary stores are canceled when a mispredicted

branch is detected. Cancellation of a probationary store is accomplished by

resetting the valid bit of the corresponding store buffer entry.

5.2 Scheduling Support for Store Movement

An instruction scheduler can be extended to move store instructions above

branch instructions in a straightforward manner. Stores are permitted to

move above branches by removing control dependence between a store

instruction and all preceding branch instructions in a superblock during

6 Note that an exception reflected in the exception tag of a probationary store buffer entry will be

subsequently detected by the corresponding conj%-m _store instruction of the speculative store.
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dependence graph construction. All store instructions are marked unpro-

tected by the identify –potential–sentinels algorithm (Figure 2) since store

instructions have no destination register. Finally, list scheduling is modified

to insert confirm-stores rather than checks as explicit sentinels for stores.

Also, the scheduler must set the index field of the confirm_ store when a store

is speculated. The value of the index is the number of stores (regular and

speculative) between a speculative store and its corresponding confirm.

Exception detection is not impaired by the movement of stores. A store

instruction will only be confirmed when the branches it moved across have all

been predicted correctly at compile-time. If any of the branches are incor-

rectly predicted, the store is canceled. An exception for a speculative store

is reported only at the time of confirmation; therefore only exceptions for

those stores that are supposed to be executed will be reported. Also, the

confirm-store instruction is restricted to remain in the home block of

the store; thus, exceptions occurring in different basic blocks will be reported

in the proper order. Again, if multiple exceptions occur in the same basic

block, the exceptions will be signaled; however, they are not guaranteed in

the order of the original code sequence.

Exception recovery is also possible with speculative stores. The only modifi-

cation required is to allow reexecuted speculative stores to replace their

corresponding probationary entry in the store buffer. This is necessary for

two reasons. First, multiple store buffer entries are not allowed for a specula-

tive store which is reexecuted several times. Second, the order stores inserted

into the buffer must not be altered from the order the compiler calculated

during scheduling to ensure proper confirmation.

A possible deadlock situation can occur when attempting to insert a store

into the buffer if the store buffer is full and the entry at the head of the

store buffer is unconfirmed. This situation can be prevented during schedul-

ing by allowing a speculative store to be separated from its confirm by at

most N – 1 (for an N entry store buffer) stores. All probationary stores,

therefore, must either be confirmed or canceled within N stores of itself. The

size of the store buffer, though, is now an architectural parameter that must

be available to the scheduler.

6. EXPERIMENTAL EVALUATION

In this section, the effectiveness of sentinel scheduling is analyzed for a set of

nonnumeric benchmarks. The performance of the sentinel-scheduling model

is compared with the restricted- and general-percolation-scheduling models.

6.1 Methodology

Sentinel superblock-scheduling has been incorporated in the instruction

scheduler of IMPACT-I compiler. The IMPACT-I compiler is a prototype

optimizing compiler designed to generate efficient code for VLIW and super-

scalar processors [Chang et al. 1991]. A superblock is the basic scope for the
instruction scheduler.

The instruction scheduler takes as an input a machine description file that

characterizes the instruction set, the microarchitecture (including the num-
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Table III. Instruction Latencies

Function Latency Function Latency

Int ALU 1 FP ALU 2

memory load 2 FP multiply 2

memory store 1 FP divide(SGL) 8

branch 1 / 1 slot FP divide(DBL) 15

Table IV. Benchmarks

BENCHMARK NAME BENCHMARK DESCRIPTION

Cccp GNU C preprocessor

cmp compare files

compress compress files

eqn format math formulas for troff

eqntott boolean equation minimization

espresso truth table minimization

grep string search
lex lexical analyzer generator

li lisp interpreter

qsort quick sort

tbl format tables for troff

Sc spreadsheet

Wc word count

yacc parser generator

ber of instructions that can be fetchedlissued in a cycle and the instruction

latencies), and the code-scheduling model. The underlying microarchitecture

is assumed to have in-order execution with register interlocking similar to

the CRAY-1 [Russell 1978]. The instruction set is a superset of the HP

PA-RISC instruction set with extensions to support sentinel scheduling

[Hewlett-Packard 1990]. Instruction latencies of the HP PA-RISC 7100 (see

Table III) are assumed. The basic processor has 64 integer registers, 64

single-precision floating-point registers which can accommodate 32 double-

precision values, and an 8-entry store buffer. The basic processor is assumed

to trap on exceptions for memory load, memory store, integer divide, and all

floating-point instructions.

For each machine configuration, the program execution time, assuming a

100% cache hit rate, is derived from execution-driven simulation. The bench-

marks used in this study are the 14 nonnumeric programs shown in Table IV.

The benchmarks consist of 5 programs from the SPECint92 suite and 9 other

commonly used nonnumeric programs.
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Fig. 11. Performance comparison of sentinel scheduling (S) and restricted percolation (R) with

64 integer and 64 floating-point registers.

6.2 Results

In this section the performance of the varying scheduling models is compared

for VLIW\superscalar processors with issue rates 2, 4, and 8. The issue rate

is the maximum number of instructions the processor can fetch and issue per

cycle. No limitation has been placed on the combination of instructions that

can be issued in the same cycle. With sentinel scheduling, a variation of the

recovery model discussed in Section 4.1 is utilized. In this variation, the RE

set of each instruction interval consists of all speculative instructions in the

interval. Therefore, during recovery only speculative instructions are reexe -

cuted, The performance evaluation of alternative recovery models is beyond

the scope of this article.

Comparison of Sentinel Scheduling and Restricted Percolation. The per-

formance of the sentinel-scheduling model and the restricted-percolation-

scheduling model is compared in Figure 11. The base configuration for
speedup calculations in this graph is an issue-1 processor with restricted-

percolation code scheduling. Note that the results for sentinel scheduling

include the scheduling and register allocation constraints to ensure that

exception recovery is possible.

In general, sentinel scheduling provides large performance improvements

over restricted percolation for 4-issue and 8-issue processors. The largest

speedups are achieved for cmp, grep, and lex. The ability to speculatively

execute PEIs allows the scheduler to exploit higher levels of ILP, Without
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sentinel-scheduling support, the scheduler is most restricted by not being

able to schedule load instructions speculatively. Load instructions are often

the first instruction in a long chain of dependent instructions. Thus, the

ability to speculatively schedule load instructions is extremely important for

VLIW and superscalar processors. The importance of speculating PEIs also

grows for higher-issue rate processors. Higher-issue rate processors require

larger amounts of ILP to fully utilize the available resources. Therefore, the

additional freedom to speculate PEIs enables the compiler to more effectively

utilize the available processor resources.
Performance loss with sentinel scheduling on all processor configurations is

observed for two benchmarks, eqntott and qsort. The major reason for the

performance loss is the overhead associated with extra instructions inserted

to remove anti-dependences. For example, in the current implementation, all

self-antidependent instructions are split into 2 instructions to enable spe-

culative execution. Another reason is the additional constraints placed

on speculative code motion with sentinel scheduling. In order to ensure

that exception recovery is possible, restrictions are placed on both poten-

tially excepting instructions and nonexcepting instructions. These additional

restrictions limit the scheduling freedom of nonexcepting instructions with

sentinel scheduling.

Evaluation of the Overhead for Exception Detection. To evaluate the over-

head of exception detection alone for sentinel scheduling, the performance

of sentinel scheduling without recovery constraints is compared with the

general-percolation-scheduling model. Since general percolation provides no

support for exception handling, general percolation provides an upper limit

on the performance of sentinel scheduling. For all benchmarks and issue

rates, the sentinel scheduling incurs a maximal performance overhead of 296

with 64 integer and 64 floating-point registers with 64 integer and 64

floating-point registers. The same overhead was also observed for 32- and

48-register configurations. The small overhead indicates that few explicit

sentinels must be inserted to allow PEIs to execute speculatively. This is

confirmed with Table V which shows the static number of checks inserted

compared to the total number of static instructions in the program.

The results indicate that a nonspeculative potential sentinel can almost

always be found for a speculated PEI. Therefore, the use of a simpli-

fied algorithm to identify potential sentinels (Section 3.3) does not restrict

performance significantly.

Evaluation of the Overhead of Exception Recovery. To evaluate the over-

head of exception recovery, the performance of sentinel scheduling with

recovery constraints and the general percolation-scheduling model is com-

pared with 64 integer and 64 floating-point registers in Figure 12. The same

performance comparison is shown in Figures 13 and 14 with 48 integer
and 48 floating-point registers and 32 integer and 32 floating-point regis-

ters, respectively. The graphs report the performance ratio achieved by a par-

ticular processor configuration for sentinel scheduling compared to general
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Table V. Maximum Number of Explicit Sentinels Required with

64 Integer and 64 Floating-Point Registers

I ASSEMBLY CHECK

I BENCHMARK I INSTRUCTIONS I INSTRUCTIONS \

,
eqntott 11363 87

espresso 601.53 242

grep 4470 2

lex 18089 70

li 19061 93

qsort 998 7

Sc 29348 177

tbl 22696 140

Wc 599 0

I yacc I 26758 I 104 I

mmpress ‘a’q. eq”tottespresso grep

r

ii
& Issue 2 ❑ Issue4 ❑ Issue 8 ‘:

I
qmrt ,. tbl wc ~acc

Fig. 12. Performance comparison of sentinel scheduling and general percolation with 64 integer

and 64 floating-point registers
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Fig. 13. Pefiormance comparison ofsentinel scheduling andgeneral percolation with 48 integer

and floating-point registers.

1

09

08

0
507

06

05

04

CCcp CW compress eq. eq”tott espresso ww le. h qso’t s. tbl wc Y=.

Fig. 14. Performance comparison ofsentinel scheduling andgeneral percolation tith32 integer

and 32 floating-point registers.
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percolation. Again, since general percolation provides no support for excep-

tion handling, general percolation provides an upper limit on the perfor-

mance of sentinel scheduling.

For the 64-register configuration (Figure 12), the performance of sentinel

scheduling is extremely close to general percolation. The performance of

sentinel scheduling is greater than 90’% for all issue rates for 10 of the 14

benchmarks studied. This indicates that added register pressure incurred by

sentinel scheduling is tolerated with 64 integer and 64 floating-point regis-

ters. The remaining performance difference between sentinel scheduling and

general percolation is due to additional instructions inserted for sentinel

scheduling to ensure proper exception handling. These include explicit sen-

tinels (checks) and instructions to remove self-antidependences.
For the 32-register configuration (Figure 14), the performance overhead of

sentinel scheduling is much larger. The largest performance losses occur for

compress and grep. In both of these benchmarks, the excessive register

pressure forces the register allocator to despeculate many instructions.

Therefore, a much more serial schedule results which leads to performance

loss. For the other benchmarks, however, only a moderate performance loss is

observed when the register file is reduced from 64 to 32 registers. For seven

of the remaining 12 benchmarks, sentinel scheduling achieves more than

85% of the performance of general percolation.

For the 48-register configuration (Figure 13), the performance more closely

follows that of the 64-register configuration. Therefore, the additional register

pressure incurred by sentinel scheduling is tolerated for most benchmarks

with 48 integer and 48 floating-point registers. However, the performance

loss for compress and grep remains relatively large.

Effectiveness of Allowing Speculative Stores. The performance of sentinel

scheduling with support for speculative stores is evaluated in Mahlke et al.

[19921. In general, small to moderate performance gains were observed. h
average of 7.470 improvement was observed with speculative stores for non-

numeric benchmarks. The major reason for this improvement is that there

are store instructions which limit the speculation of subsequent load instruc-

tions due to unresolvable memory dependence. However, by speculating the

store instructions, the subsequent loads may also be further speculated,

thereby reducing the dependence length.

7. CONCLUSIONS

In this article, a set of architectural and compiler support, referred to as

sentinel scheduling, is introduced. Sentinel scheduling provides an effective

framework for compiler-controled speculative execution that accurately

detects and reports all exceptions. Whenever a potential excepting instruction

is speculatively executed, the scheduler ensures that a nonspeculative sen-

tinel instruction remains in the home block of the instruction to check if an

exception occurred. Exception recovery may also be utilized with sentinel

scheduling by providing additional scheduling and register allocation sup-
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port. The extra support ensures that all speculative instructions between a

speculated potential excepting instruction form a restartable instruction

interval and therefore may be reexecuted.

Sentinel scheduling is shown to provide substantial performance improve-

ments over restricted percolation for a set of nonnumeric programs. Also for

processors with latencies similar to those used in this article, the perfor-

mance of sentinel scheduling is shown to closely match the performance of

generaI percolation with 64 integer and 64 floating-point registers. General

percolation provides an upper limit on the performance of sentinel scheduling

since no constraints associated with exception handling are utilized. The

overhead associated with recovery becomes more evident with 32 integer and

32 floating-point registers. However, in most cases, only a moderate overhead

is observed.
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