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Abstract. CUDA is a data parallel programming model that supports
several key abstractions - thread blocks, hierarchical memory and bar-
rier synchronization - for writing applications. This model has proven
effective in programming GPUs. In this paper we describe a framework
called MCUDA, which allows CUDA programs to be executed efficiently
on shared memory, multi-core CPUs. Our framework consists of a set
of source-level compiler transformations and a runtime system for par-
allel execution. Preserving program semantics, the compiler transforms
threaded SPMD functions into explicit loops, performs fission to elimi-
nate barrier synchronizations, and converts scalar references to thread-
local data to replicated vector references. We describe an implementa-
tion of this framework and demonstrate performance approaching that
achievable from manually parallelized and optimized C code. With these
results, we argue that CUDA can be an effective data-parallel program-
ming model for more than just GPU architectures.

1 Introduction

In February of 2007, NVIDIA released the CUDA programming model for use
with their GPUs to make them available for general purpose application pro-
gramming [1]. However, the adoption of the CUDA programming model has been
limited to those programmers willing to write specialized code that only executes
on certain GPU devices. This is undesirable, as programmers who have invested
the effort to write a general-purpose application in a data-parallel programming
language for a GPU should not have to make an entirely separate programming
effort to effectively parallelize the application across multiple CPU cores.

One might argue that CUDA’s exposure of specialized GPU features limits
the efficient execution of CUDA kernels to GPUs. For example, in a typical
usage case of the CUDA programming model, programmers specify hundreds
to thousands of small, simultaneously active threads to achieve full utilization
of GPU execution resources. However, a current CPU architecture currently
supports only up to tens of active thread contexts. On the other hand, some
language features in the CUDA model can be beneficial to performance on a
CPU, because these features encourage the programmer to use more disciplined
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control flow and expose data locality. Section 2 describes in more detail the key
CUDA language features and a deeper assessment of why we expect many CUDA
features to map well to a CPU architecture for execution. We propose that if an
effective mapping of the CUDA programming model to a CPU architecture is
feasible, it would entail translations applied to a CUDA program such that the
limiting features of the programming model are removed or mitigated, while the
beneficial features remain exposed when possible.

Section 3 describes how the MCUDA system translates a CUDA program into
an efficient parallel C program. Groups of individual CUDA threads are collected
into a single CPU thread while still obeying the scheduling restrictions of bar-
rier synchronization points within the CUDA program. The data locality and
regular control encouraged by the CUDA programming model are maintained
through the translation, making the resulting C program well suited for a CPU
architecture.

The implementation and experimental evaluation of the MCUDA system is
presented in Section 4. Our experiments show that optimized CUDA kernels
utilizing MCUDA achieve near-perfect scaling with the number of CPU cores,
and performance comparable to hand-optimized multithreaded C programs. We
conclude this paper with a discussion of related work in Section 5 and some
closing observations in Section 6.

2 Programming Model Background

On the surface, most features included in the CUDA programming model seem
relevant only to a specific GPU architecture. The primary parallel construct is a
data-parallel, SPMD kernel function. A kernel function invocation explicitly cre-
ates many CUDA threads (hereafter referred to as logical threads.) The threads
are organized into multidimensional arrays that can synchronize and quickly
share data, called thread blocks. These thread blocks are further grouped into
another multidimensional array called a grid. Logical threads within a block are
distinguished by an implicitly defined variable threadIdx, while blocks within a
grid are similarly distinguished by the implicit variable blockIdx. At a kernel in-
vocation, the programmer uses language extensions to specify runtime values for
each dimension of threads in a thread block and each dimension of thread blocks
in the grid, accessible within the kernel function through the variables blockDim
and gridDim respectively. In the GPU architecture, these independent thread
blocks are dynamically assigned to parallel processing units, where the logical
threads are instantiated by hardware threading mechanisms and executed.

Logical threads within CUDA thread blocks may have fine-grained execution
ordering constraints imposed by the programmer through barrier synchroniza-
tion intrinsics. Frequent fine-grained synchronization and data sharing between
potentially hundreds of threads is a pattern in which CPU architectures typically
do not achieve good performance. However, the CUDA programming model does
restrict barrier synchronization to within thread blocks, while different thread
blocks can be executed in parallel without ordering constraints.



18 J.A. Stratton, S.S. Stone, and W.-m.W. Hwu

The CUDA model also includes explicitly differentiated memory spaces to take
advantage of specialized hardware memory resources, a significant departure
from the unified memory space of CPUs. The constant memory space uses a
small cache of a few kilobytes optimized for high temporal locality and accesses
by large numbers of threads across multiple thread blocks. The shared memory
space maps to the scratchpad memory of the GPU, and is shared among threads
in a thread block. The texture memory space uses the GPU’s texture caching and
filtering capabilities, and is best utilized with data access patterns exhibiting 2-
D locality. More detailed information about GPU architecture and how features
of the CUDA model affect application performance is presented in [2].

In the CUDA model, logical threads within a thread block can have indepen-
dent control flow through the program. However, the NVIDIA G80 GPU archi-
tecture executes logical threads in SIMD bundles called warps, while allowing
for divergence of thread execution using a stack-based reconvergence algorithm
with masked execution [3]. Therefore, logical threads with highly irregular con-
trol flow execute with greatly reduced efficiency compared to a warp of logical
threads with identical control flow. CUDA programmers are strongly encouraged
to adopt algorithms that force logical threads within a thread block to have very
similar, if not exactly equivalent, execution traces to effectively use the implic-
itly SIMD hardware effectively. In addition, the CUDA model encourages data
locality and reuse for good performance on the GPU. Accesses to the global
memory space incur uniformly high latency, encouraging the programmer to use
regular, localized accesses through the scratchpad shared memory or the cached
constant and texture memory spaces.

A closer viewing of the CUDA programming model suggests that there could
also be an efficient mapping of the execution specified onto a current multi-
core CPU architecture. At the largest granularity of parallelism within a kernel,
blocks can execute completely independently. Thus, if all logical threads within a
block occupy the same CPU core, there is no need for inter-core synchronization
during the execution of blocks. Thread blocks often have very regular control
flow patterns among constituent logical threads, making them amenable to the
SIMD instructions common in current x86 processors [4,5]. In addition, thread
blocks often have the most frequently referenced data specifically stored in a
set of thread-local or block-shared memory locations, which are sized such that
they approximately fit within a CPU core’s L1 data cache. Shared data for the
entire kernel is often placed in constant memory with a size limit appropriate
for an L2 cache, which is frequently shared among cores in CPU architectures.
If a translation can be designed such that these attributes are maintained, it
should be possible to generate effective multithreaded CPU code from the CUDA
specification of a program.

3 Kernel Translation

While the features of the model seem promising, the mapping of the computation
is not straightforward. The conceptually easiest implementation is to spawn an
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OS thread for every GPU thread specified in the programming model. However,
allowing logical threads within a block to execute on any available CPU core
mitigates the locality benefits noted in the previous section, and incurs a large
amount of scheduling overhead. Therefore, we propose a method of translating
the CUDA program such that the mapping of programming constructs maintains
the locality expressed in the programming model with existing operating system
and hardware features.

There are several challenging goals in effectively translating CUDA applica-
tions. First, each thread block should be scheduled to a single core for locality,
yet maintain the ordering semantics imposed by potential barrier synchroniza-
tion points. Without modifying the operating system or architecture, this means
the compiler must somehow manage the execution of logical threads in the code
explicitly. Second, the SIMD-like nature of the logical threads in many applica-
tions should be clearly exposed to the compiler. However, this goal is in conflict
with supporting arbitrary control flow among logical threads. Finally, in a typi-
cal load-store architecture, private storage space for every thread requires extra
instructions to move data in and out of the register file. Reducing this overhead
requires identifying storage that can be safely reused for each thread.

The translation component of MCUDA which addresses these goals is com-
posed of three transformation stages: iterative wrapping, synchronization en-
forcement, and data buffering. For purposes of clarity, we consider only the case
of a single kernel function with no function calls to other procedures, possibly
through exhaustive inlining. It is possible to extend the framework to handle
function calls with an interprocedural analysis, but this is left for future work.
In addition, without loss of generality, we assume that the code does not contain
goto or switch statements, possibly through prior transformation [6]. All trans-
formations presented in this paper are performed on the program’s abstract
syntax tree (AST).

3.1 Transforming a Thread Block into a Serial Function

The first step in the transformation changes the nature of the kernel function
from a per-thread code specification to a per-block code specification, temporar-
ily ignoring any potential synchronization between threads. Figure 1 shows an
example kernel function before and after this transformation. Execution of logical
threads is serialized using nested loops around the body of the kernel function
to execute each thread in turn. The loops enumerate the values of the previ-
ously implicit threadIdx variable and perform a logical thread’s execution of
the enclosed statements on each iteration. For the remainder of the paper, we
will consider this introduced iterative structure a thread loop. Local variables
are reused on each iteration, since only a single logical thread is active at any
time. Shared variables still exist and persist across loop iterations, visible to all
logical threads. The other implicit variables must be provided to the function at
runtime, and are therefore added to the parameter list of the function.

By introducing a thread loop around a set of statements, we are making
several explicit assumptions about that set of statements. The first is that the
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Fig. 1. Introducing a thread loop to serialize logical threads in Coulombic Potential

program allows each logical thread to execute those statements without any
synchronization between threads. The second is that there can be no side entries
into or side exits out of the thread loop body. If the programmer has not specified
any synchronization point and the function contains no explicit return statement,
no further transformation is required, as a function cannot have side entry points,
and full inlining has removed all side-exits. In the more general case, where using
a single thread loop is insufficient for maintaining program semantics, we must
partition the function into sets of statements which do satisfy these properties.

3.2 Enforcing Synchronization with Deep Fission

A thread loop implicitly introduces a barrier synchronization among logical
threads at its boundaries. Each logical thread executes to the end of the thread
loop, and then “suspends” until every other logical thread (iteration) completes
the same set of statements. Therefore, a loop fission operation essentially parti-
tions the statements of a thread loop into two sets of statements with an implicit
barrier synchronization between them. A synchronization point found in the im-
mediate scope of a thread loop can be thus enforced by applying a loop fission
operation at the point of synchronization.

Although a loop fission operation applied to the thread loop enforces a barrier
synchronization at that point, this operation can only be applied at the scope
of the thread loop. As mentioned before, the general case requires a transfor-
mation that partitions statements into thread loops such that each thread loop
contains no synchronization point, and each thread loop boundary is a valid
synchronization point. For example, consider the case of Figure 2. There are
at minimum four groups of statements required to satisfy the requirements for
thread loops: one leading up to the for loop (including the loop initialization
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Fig. 2. Applying deep fission in Matrix Multiplication to enforce synchronization

statement), one for the part of the loop before the synchronization point, one
after the synchronization point within the loop (including the loop update), and
finally the trailing statements after the loop.

In this new set of thread loops, the logical threads will implicitly synchronize
every time the loop conditional is evaluated, in addition to the programmer-
specified synchronization point. This is a valid transformation because of the
CUDA programming model’s requirement that control flow affecting a synchro-
nization point must be thread-independent. This means that if the execution of
a synchronization point is control-dependent on a condition, that condition must
be thread-invariant. Therefore, if any thread arrives at the conditional evalua-
tion, all threads must reach that evaluation, and furthermore must evaluate the
conditional in the same way. Such a conditional can be evaluated outside of a
thread loop once as a representative for all logical threads. In addition, it is valid
to force all threads to synchronize at the point of evaluation, and thus safe to
have thread loops bordering and comprising the body of the control structure.

In describing our algorithm for enforcing synchronization points, we first as-
sume that all control structures have no side effects in their declarations. We
enforce that for loops must be transformed into while loops in the AST, re-
moving the initialization and update expressions. In addition, all conditional
evaluations with side effects must be removed from the control structure’s dec-
laration, and assigned to a temporary variable, which then replaces the original
condition in the control structure. Then, for each synchronization statement S,
we apply Algorithm 1 to the AST with S as the input parameter.

After this algorithm has been applied with each of the programmer-specified
synchronization points as input, the code may still have some control flow for
which the algorithm has not properly accounted. Recall that thread loops assume
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Algorithm 1. Deep Fission around a Synchronization Statement S
loop

if Immediate scope containing S is not a thread loop then
Partition all statements within the scope containing S into thread loops. State-
ments before and after S form two thread loops. In the case of an if-else con-
struct, this also means all statements within the side of the construct not con-
taining S are formed into an additional thread loop. {See Figure 2(c)}

else
Apply a loop fission operation to the thread loop around S and return {(See
Figure 2(d).)}

end if
S ← Construct immediately containing S {Parent of S in the AST}

end loop

that there are no side entries or side exits within the thread loop body. Control
flow statements such as continue, break, or return may not be handled correctly
when the target of the control flow is not also within the thread loop. Figure 3(b)
shows a case where irregular control flow would result in incorrect execution. In
some iterations of the outer loop, all logical threads may avoid the break and
synchronize correctly. In another iteration, all logical threads may take the break,
avoiding synchronization. However, in the second case, control flow would leave
the first thread loop before all logical threads had finished the first thread loop,
inconsistent with the program’s specification. Again, we note that since the syn-
chronization point is control-dependent on the execution of the break statement,
the break statement itself can be a valid synchronization point according to the
programming model.

Therefore, the compiler must pass through the AST at least once more to
identify these violating control flow statements. At the identification of a control
flow statement S whose target is outside its containing thread loop, Algorithm 1
is once again applied, treating S as a synchronization statement. For the ex-
ample of Figure 3, this results in the code shown in Figure 3(c). Since these

thread_loop{
  while() {

    ...
    if()
      break;
    ...

    syncthreads();

    ...

  }
}

while() {
  thread_loop{
    ...
    if()
      break;
    ...
  }
  \\syncthreads();
  thread_loop{
    ...
  }
}

while() {
  thread_loop{
    ...
  }
  if()
    break;
  thread_loop{
    ...
  }
  \\syncthreads();
  thread_loop{
    ...
  }
}

(a) Initial Code with 
Serialized Logical Threads

(b) Synchronized at 
Barrier Function

(c) Synchronized at 
Control Flow Point

Fig. 3. Addressing unstructured control flow. The break statement is treated as an
additional synchronization statement for correctness.
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transformations more finely divide thread loops, they could reveal additional
control flow structures that violate the thread loop properties. Therefore, this
irregular control flow identification and synchronization step is applied itera-
tively until no additional violating control flow is identified.

The key insight is that we are not supporting arbitrary control flow among
logical threads within a block, but leveraging the restrictions in the CUDA lan-
guage to define a single-threaded ordering of the instructions of multiple threads
which satisfies the partial ordering enforced by the synchronization points. This
“over-synchronizing” allows us to completely implement a “threaded” control
flow using only iterative constructs within the code itself. The explicit synchro-
nization primitives may now be removed from the code, as they are guaranteed
to be bounded by thread loops on either side, and contain no other computation.
Because only barrier synchronization primitives are provided in the CUDA pro-
gramming model, no further control-flow transformations to the kernel function
are needed to ensure proper ordering of logical threads. Figure 4(a) shows the
matrix multiplication kernel after this hierarchical synchronization procedure
has been applied.

3.3 Replicating Thread-Local Data

Once the control flow has been restructured, the final task remaining is to buffer
the declared variables as needed. Shared variables are declared once for the
entire block, so their declarations simply need the shared keyword removed.
However, each logical thread has a local store for variables, independent of all
other logical threads. Because these logical threads no longer exist independently,
the translated program must emulate private storage for logical threads within
the block. The simplest implementation creates private storage for each thread’s
instance of the variable, analogous to scalar expansion [7]. This technique, which
we call universal replication, fully emulates the local store of each logical thread
by creating an array of values for each local variable, as shown in Figure 4(b).
Statements within thread loops access these arrays by thread index to emulate
the logical thread’s local store.

However, universal replication is often unnecessary and inefficient. In functions
with no synchronization, thread loops can completely serialize the execution of
logical threads, reusing the same memory locations for local variables. Even
in the presence of synchronization, some local variables may have live ranges
completely contained within a thread loop. In this case, logical threads can still
reuse the storage locations of those variables because a value of that variable is
never referenced outside the thread loop in which it is defined. For example, in
the case of Figure 4(b), the local variable k can be safely reused, because it is
never live outside the third thread loop.

Therefore, to use less memory space, the MCUDA framework should only
create arrays for local variables when necessary. A live-variable analysis deter-
mines which variables have a live value at the end of a thread loop, and creates
arrays for those values only. This technique, called selective replication, results
in the code shown in Figure 4(c), which allows all logical threads to use the same
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Fig. 4. Data replication in Matrix Multiplication

memory location for the local variable k. However, a and b are defined and used
across thread loop boundaries, and must be stored into arrays.

References to a variable outside of the context of a thread loop can only exist
in the conditional evaluations of control flow structures. Control structures must
affect synchronization points to be outside a thread loop, and therefore must be
uniform across the logical threads in the block. Since all logical threads should
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have the same logical value for conditional evaluation, we simply reference element
zero as a representative, as exemplified by the while loop in Figure 4 (b-c).

It is useful to note that although CUDA defines separate memory spaces
for the GPU architecture, all data resides in the same shared memory system
in the MCUDA framework, including local variables. The primary purpose of
the different memory spaces on the GPU is to specify access to the different
caching mechanisms and the scratchpad memory. A typical CPU system provides
a single, cached memory space, thus we map all CUDA memory types to this
memory space.

3.4 Work Distribution and Runtime Framework

At this point in the translation process the kernels are now defined as block-level
functions, and all that remains is, on kernel invocation, to iterate through the
block indexes specified and call the transformed function once for every specified
block index. For a CPU that gains no benefits from multithreading, this is an
efficient way of executing the kernel computation. However, CPU architectures
that do gain performance benefits from multithreading will likely not achieve
full efficiency with this method. Since these blocks can execute independently
according to the programming model, the set of block indexes may be partitioned
arbitrarily among concurrently executing OS threads. This allows the kernels to
exploit the full block-level parallelism expressed in the programming model.

4 Implementation and Performance Analysis

We have implemented the MCUDA automatic kernel translation framework un-
der the Cetus source-to-source compilation framework [8], with slight modifica-
tions to the IR and preprocessor to accept ANSI C with the language extensions
of CUDA version 0.8. MCUDA implements the algorithms presented in the previ-
ous section for kernel transformations and applies them to the AST intermediate
representation of Cetus. The live variable analysis required for robust selective
replication described in Section 3.3 is incomplete, but the current implemen-
tation achieves the same liveness results for all the applications presented in
this section. For compatibility with the Intel C Compiler (ICC), we replace the
CUDA runtime library with a layer interfacing to standard libc functions for
memory management. We chose to implement the runtime assignment of blocks
to OS threads with OpenMP, using a single “parallel for” pragma to express the
parallelism. A large existing body of work explores scheduling policies of such
loops in OpenMP and other frameworks [9,10,11,12], For our experiments, we
use the default compiler implementation.

Figure 5 shows the kernel speedup of three applications: matrix multiplica-
tion of two 4kx4k element matrices (MM4K), Coulombic Potential (CP), and
MRI-FHD, a computationally intensive part of high-resolution MRI image re-
construction. These applications have previously shown to have very efficient
CUDA implementations on a GPU architecture [13]. The CPU baselines that
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CP MM4K MRI-FHD
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Fig. 5. Performance (inverse runtime) of MCUDA kernels relative to optimized CPU
code. MCUDA results vary by the number of worker threads (1-4). CPU Opti imple-
mentations are parallelized across 4 threads.

we are measuring against are the most heavily optimized CPU implementations
available to us, and are threaded by hand to make use of multiple CPU cores.
All performance data was obtained on an Intel Core 2 Quad processor clocked at
2.66 GHz (CPU model Q6700). All benchmarks were compiled with ICC (version
10.1). Additionally, the CPU optimized matrix multiplication application uses
the Intel MKL.

We can see that the performance scaling of this implementation is very good,
with practically ideal linear scaling for a small number of processor cores. For each
application, the performance of the CUDA code translated through the MCUDA
framework is within 30% of the most optimized CPU implementation available.
This suggests that the data tiling and locality expressed in effective CUDA kernels
also gain significant performance benefits on CPUs, often replicating the results
of hand-optimization for the CPU architecture. The regularly structured iterative
loops of the algorithms were also preserved through the translation. The compiler
vectorized the innermost loops of each application automatically, whether those
were thread loops or loops already expressed in the algorithm.

Tuning CUDA kernels entails methodically varying a set of manual optimiza-
tions applied to a kernel. Parameters varied in this tuning process may include
the number of logical threads in a block, unrolling factors for loops within the
kernel, and tiling factors for data assigned to the scratchpad memory [14]. The
performance numbers shown are the best results found by tuning each applica-
tion. In the tuning process, we found that not all optimizations that benefit a
GPU architecture are effective for compiling and executing on the CPU. In these
applications, manual unrolling in the CUDA source code almost always reduced
the effectiveness of the backend compiler, resulting in poorer performance. Opti-
mizations that spill local variables to shared memory were also not particularly
effective, since the shared memory and local variables reside in the same memory
space on the CPU.
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In general, the best optimization point for each application may be different
depending on whether the kernel will execute on a GPU or CPU. The archi-
tectures have different memory systems, different ISAs, and different threading
mechanisms, which make it very unlikely that performance tuning would arrive
at the similar code configuration for these two architectures. For all the appli-
cations we have explored so far, this has always been the case. For example, the
best performing matrix multiplication code uses per-block resources that are ex-
pressible in CUDA, but well over the hardware limits of current GPUs. The best
CUDA code for the CPU uses 20KB of shared memory and 1024 logical threads
per block, both over the hardware limits of current GPUs. Similarly, the best
CP code uses an amount of constant memory larger than what a current GPU
supports. Developing a system for tuning CUDA kernels to CPU architectures
is a very interesting area of future work, both for programming practice and
toolchain features.

For the benchmarks where the MCUDA performance is significantly below the
best hand-tuned performance, we think that this is primarily because of algo-
rithmic differences in the implementations. Projects like ATLAS have explored
extensive code configuration searches far broader than we have considered in
these experiments, and some of that work may be relevant here as well. People
have achieved large speedups on GPU hardware with “unconventional” CUDA
programming [15], and it is possible that more variations of CUDA code config-
urations may eventually bridge the current performance gap. The hand-tuned
MRI-FHD implementation uses hand-vectorized SSE instructions across logical
threads, whereas ICC vectorizes the innermost loop of the algorithm, seemingly
with a minor reduction in efficiency. Future work should consider specifically
targeting the thread loops for vectorization, and test the efficiency of such a
transformation.

5 Related Work

With the initial release of the CUDA programming model, NVIDIA also released
a toolset for GPU emulation [1]. However, the emulation framework was designed
for debugging rather than for performance. In the emulation framework, each
logical thread within a block is executed by a separate CPU thread. In contrast,
MCUDA localizes all logical threads in a block to a single CPU thread for better
performance. However, the MCUDA framework is less suitable for debugging the
parallel CUDA application for two primary reasons. The first is that MCUDA
modifies the source code before passing it to the compiler, so the debugger can
not correlate the executable with the original CUDA source code. The second
is that MCUDA enforces a specific scheduling of logical threads within a block,
which would not reveal errors that could occur with other valid orderings of the
execution of logical threads.

The issue of mapping small-granularity logical threads to CPU cores has been
addressed in other contexts, such as parallel simulation frameworks [16]. There
are also performance benefits to executing multiple logical threads within a single
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CPU thread in that area. For example, in the Scalable Simulation Framework
programming model, a CPU thread executes each of its assigned logical threads,
jumping to the code specified by each in turn. Logical threads that specify
suspension points must be instrumented to save local state and return execu-
tion to the point at which the logical thread was suspended. Taking advantage
of CUDA’s SPMD programming model and control-flow restrictions, MCUDA
uses a less complex execution framework based on iteration within the origi-
nally threaded code itself. The technique used by MCUDA for executing logical
threads can increase the compiler’s ability to optimize and vectorize the code
effectively. However, our technique is limited to SPMD programming models
where each static barrier-wait instrinsic in the source code waits on a different
thread barrier.

A large number of other frameworks and programming models have been pro-
posed for data-parallel applications for multi-core architectures. Some examples
include OpenMP [17], Thread Building Blocks [18], and HPF [19]. However,
these models are intended to broaden a serial programming language to a paral-
lel execution environment. MCUDA is distinct from these in that it is intended
to broaden the applicability of a previously accelerator-specific programming
model to a CPU architecture.

Liao et al. designed a compiler system for efficiently mapping the stream pro-
gramming model to a multi-core architecture [20]. CUDA, while not strictly a
stream programming model, shares many features with stream kernels. MCUDA’s
primary departure from mapping a stream programming model to multi-core ar-
chitectures is the explicit use of data tiling and cooperative threading, which al-
lows threads to synchronize and share data. With MCUDA, the programmer can
exert more control over the kernels with application knowledge, rather than re-
lying on the toolset to discover and apply them with kernel merging and tiling
optimizations. It is also unclear whether the range of optimizations available in
the CUDA programming model can be discovered and applied by an automated
framework.

6 Conclusions

We have described techniques for efficiently implementing the CUDA program-
ming model on a conventional multi-core CPU architecture. We have also imple-
mented an automated framework that applies these techniques, and tested it on
some kernels known to have high performance when executing on GPUs. We have
found that for executing these translated kernels on the CPU, the expression of
data locality and computational regularity in the CUDA programming model
achieves much of the performance benefit of tuning code for the architecture by
hand. These initial results suggest that the CUDA programming model could be
a very effective way of specifying data-parallel computation in a programming
model that is portable across a variety of parallel architectures.

As the mapping of the CUDA language to a CPU architecture matures, we
expect that the performance disparity between optimized C code and optimized
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CUDA code for the CPU will continue to close. As with any other level of soft-
ware abstraction, there are more opportunities for optimization at lower levels
of abstraction. However, if expressing computation in the CUDA language al-
lows an application to be more portable across a variety of architectures, many
programmers may find a slightly less than optimal performance on a specific
architecture acceptable.
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