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Abstract
Media- and telecommunications-focusedprocessors,

increasingly designed as deeply pipelined, statically-
scheduledVLIWs,relyonloopbuffersfor low-overheadex-
ecutionof simpleloops. Key loopscontainingcontrol flow
posea substantialproblem—fullpredicationhasa highen-
codingoverhead,andpartial predicationtechniquesdonot
supportif-conversion,thetransformationofgeneral acyclic
control flow into predicatedblocks. Using a set of sig-
nificant mediaprocessingbenchmarks,drawn from Medi-
aBench and contemporary telecommunicationsstandards,
we explore a compromiseapproach. We demonstrate a
compiler using if-conversion and specializedloop trans-
formationsto arrange for 70-99% of fetched operations
to comefroma simple, staticallymanaged256-instruction
loop buffer, savinginstruction fetch power and eliminat-
ing branch penalties. To complementthis we introducea
“nic he” form of predicationspecializedto permit general
if-conversionwith only a singlebit in theencodingof each
operationandto eliminatemuch of thehardwareoverhead
of a predicateregister-basedapproach.

1. Introduction
Mostmodernhigh-performanceDSPandmediaproces-

sor implementations(e.g., theTI ’C6x, LucentDSP16000,
TriMedia, and StarCore140) are basedon a VLIW de-
signparadigm,with goodreason:VLIW offerswide issue
(todayup to eightoperationspercycle) with relatively lit-
tle instructionissueoverhead,clusteringis naturalandof-
fersenhancedscalability[1], andcompilertechniquessuch
assoftwarepipelining [2] effectively employ the VLIW’ s
many processingunitsin a widevarietyof loop kernels.

In the embeddedmarket, where power margins dic-
tateuseof the lowestpossibleclock frequency to achieve
a given processingrate, cycles cannot be wastedwait-
ing for branch resolution and instruction fetch. Tradi-
tional solutions such as branch predictors and instruc-
tion cachesare usually consideredtoo costly and unde-
pendablefor inclusion in such processors. Thus, the
statically-scheduledprocessorhas difficulty dealing ef-
ficiently with control flow. Both elementsare often

“replaced” with a dedicatedloop buffer—effectively a
software-controlled,straight-line-codecachewith knowl-
edgeof countedloops—allowing efficient looping fetch.
Buffering offers benefits including accurate loop-back
branchprediction,reducedpower consumptiondueto lo-
calization of fetch, elimination of taken-branchbubbles,
and, if dataand instructionfetch sharethe samememory
bus, reducedbus contentionin key loop kernels[3]. Pro-
viding a usefulbuffer modelandutilizing it effectively are
thusimportantdesignandcompilationgoals.

A varietyof techniques[4, 5] haveaddressedloopscon-
taininginternalcontrolflow, aspecialproblemfor VLIWs,
but embeddedimplementationconstraintsdiscountseveral
options. In general,loop buffers accommodateonly sim-
ple loops—straight-lineblocks of codewith a loop-back
branchat theend—orin somerestrictedcases,loop nests.
In general-purpose,VLIW-styledarchitecturessuchasIn-
tel’s Itanium, on the otherhand,full predicatedexecution
support(a predicateregisterfile, predicatedefiningoper-
ations,anda guardpredicateoperandon eachoperation)
allows the compiler to implementgeneralcontrol without
branches[6]. Suchan approach,however, is considered
impracticalin embeddedprocessorsbecauseof theencod-
ing costof the guardoperands(operationson Itanium are
41 bits in length). Mediaandtelecommunicationsproces-
sorsthereforetypically incorporatea form of partial pred-
ication, the additionof a conditionalmove operationor a
few simpleconditioncodescapableof guardingtheexecu-
tion of a handfulof opcodes.As theseapproachesdo not
supportif-conversion[7], thetraditional,generalalgorithm
for generatingpredicatedcode,compilershave difficulty
takingbestadvantageof theseoperations.Handassembly
codingor tuning is todayoften requiredto take advantage
of thebuffers.

In thispaper, wecombinespecializedcompilermethods
anda new predicationimplementationto addressbuffering
of loopscontainingcontrolflow. Ourcompilertransformsa
setof mediaprocessingbenchmarks(notkernels)suchthat
89.0% of operationsfetchedcomefrom a 256-operation
loop buffer (comparedto 38.7% without the transforma-



tions),while achieving a 37.6%reductionin executioncy-
cles.1 To complementthesetechniques,wepresentamodel
of predicationthatis generallyusefulfor executionof loop
kernels,thatconsumesonly a singlebit in eachoperation,
andthat doesnot significantly increasethe complexity of
bypasslogic. Weproposethatthis form of predicationis as
applicable,within the benchmarksetandarchitecturalas-
sumptions,asfull predication,with its predicateregisterfile
andguardoperands.In thesedemonstrationswe assumea
simple, addressable-memorystyle loop buffer which can
beimplementedin avarietyof microarchitecturalstyles.In
theendaninterestingparadoxemerges:carefullyapplying
codeexpandingtransformationswith thegoalof increasing
fetchregularity allows improvedutilization of simpleloop
buffering,significantlyreducinginstructionfetchoverhead
andpowerconsumption.

2. Architecture and application background

Developmentof imageand signal processingin third-
generation(3G) cellularandotherhand-heldproductshas
broughtaboutsignificantchangesin thedesignof DSPand
embeddedprocessors.Along with a shift from a Harvard
memoryarchitecture,with dedicateddataand instruction
memories,to a more general-purposevon Neumannar-
chitecture,specially-tailoredcomplex instructionsetsare
beingreplacedwith deeplypipelined,statically-scheduled
LIW andVLIW designs,allowing greaterthroughputand
generalitywith lowerhardwareoverhead.Giventheimpact
of proportionallylong (generally3 to 5 cycle [8]) branch
penaltieson theperformanceof tight DSPloops,architects
have alsobegunto includeformsof conditionalexecution
andloop supportinto their instructionsets.Consensuson
thebestimplementationhasnot yetbeenreached.

TexasInstruments’’C6x line, oneof thefirst DSPfami-
lies to adoptaVLIW styleanda 32-bitdatapath,architects
eightissueslotsandprovidesfor operationexecutionto be
guardedby conditioncodes[8]. Four bits of eachopcode
indicatewhichof fiveconditionregistersguardstheinstruc-
tion andwhethera zeroor a non-zerovaluecausesthe in-
structionto benullified. The’C6x line exposesfivebranch
delayslotsratherthanincorporatinga specialmechanism
for zero-overheadlooping, the ability to executecounted
loopswithout incurringa loop-backbranchpenalty

The StarCoreSC140 processorincludesboth a loop
buffer andpredicationsupportin a 16-bit instructionset.
Four setsof loop registersallow for four levels of nested
countedloop execution.Using this feature,however, does
notguaranteeeliminationof branch-backoverhead,andre-
quiresthat a hostof restrictionsbe observed [3]. Sucha
featureis likely useful in hand-codedkernels. SC140has
a singleconditionregisterwhich canbeusedto guardthe
odd,theeven,none,or all of theoperationsin eachbundle.

1excludingmpeg2encandjpegencfrom MediaBench.

Table 1: Benchmarks

Benchmark Description and input
adpcm� enc� dec� ADPCM codec.Input: clinton.pcm
g724� enc� dec� ETSI GSM 06.60speechtranscoding[10] Input:

363frames,speechandambientnoise
jpeg� enc� dec� (Mediabench) IndependentJPEG Group photo

codec.Input: testimg.jpg
mpeg2� enc� dec� (Mediabench)Videocodec.Input: mei16v2.m2v
mpg123 MPEG-2Layer3 audiodecoder. Input: short.mp3
pgp� enc� dec� PrettyGoodPrivacy codec.Input: pgptest.plain

One of the most flexible hardware loop supportsys-
tems commercially available is found on the ST120
DSP/Microcontrollercore, a scoreboarded4-issueLIW
with 32-bit instructions[9]. TheST120provideshardware
supportfor up to threeloops,which may be nested,over-
lapped,or independentof oneanother. Instructionselec-
tion is limited within theloop bodies.Like the’C6x, most
opcodescanbeguardedby conditioncodes;someinstruc-
tions,however, have accessto only oneconditionregister,
while othersmaychoosefrom amongup to 16.

Many real systemstoday incorporateboth one of the
above DSPcoresanda controlleror hostprocessor. This
fact, combinedwith the proprietarynatureof many com-
mercialalgorithmicimplementations,limits thesetof com-
pletemediaandtelecommunicationsapplicationsavailable
for study in C sourcecode. Thus, we are currently lim-
itedto MediaBench [11], whichfocusesonmediaandcom-
municationstasks,andothercommonlyavailable“compo-
nent” applications,still a significantadvanceover kernel-
only studies. Table 1 lists the benchmarksusedin this
study. We replacedMediaBench’s g721benchmarkwith
a moreup-to-dateandmorecomplex codec,which we call
g724 [10]. The goal of this setof benchmarksis to rep-
resentthe algorithmssupportedby near-future hand-held
wirelessdevices,or by basestationsaccommodatingcom-
municationswith suchdevices, both of which are highly
power- andperformance-sensitiveapplications.Both jpeg-
enc and mpeg2encpush this envelope, and are included
only for comparison.Thebenchmarkswerecompiledand
simulatedin theIMPACT ResearchEnvironment,in which
intrinsic emulationsupportimplementsoperationssuchas
saturatingarithmeticwhich would be providedon a DSP-
orientedprocessor.

3. Compilation techniques

In a VLIW context, theoppositionof branchesto paral-
lelism mustbeovercomeby thecompiler. Thetechniques
wedescribearenot“optimizations”in thetraditionalsense,
as they canand do result in the executionof more oper-
ations ratherthan fewer. On the contrary, however, they
improve overall execution efficiency by using otherwise
idle resourcesto mitigatebranchpenalties,suchasmispre-
diction latency, hard-to-fill delayslots,and control-based
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Figure 1: Nested loop transformations

dependenceheight. This placesthe following transforma-
tions,implementedin thecontext of theIMPACT compiler
framework [12], in the generalrealm of instruction-level
parallel(ILP) transformations.

As previously stated,the useof a loop buffering tech-
niquerequiresremoval of all internalcontrolflow from the
loop to bebuffered. If-conversion[7] convertsany acyclic
region of control flow into an equivalent single-entry,
straight-linesegmentof code,calleda hyperblock [13]. If
the entirebody of a loop canbe if-converted,it can then
bebuffered(providedthebuffer is of sufficient size). This
alonesufficesfor loopswith acyclic internalcontrolflow.

For nestedloops,however, othertechniquesmustbeap-
plied. Buffering theouterloop,asopposedto just theinner
loop, is beneficialwhenthe instructionandtrip countsof
theinnerlooparesmall—asituationthataboundsin media
andtelecommunicationsapplications.Ratherthanpropos-
ing a more complicatedloop buffer, which could handle
somelimited casesof multiply-nestedloops, we present
two compiler techniquesthat transformnestedloops into
simpleones. Figure1 illustratesthesetechniques.In (a),
the loop with header“A” containsan inner loop which
is known to have four iterations. Provided that the inner
loopcontainsareasonablenumberof instructions,it canbe
eliminatedby peelingit completely. We heuristicallypeel
any countedloopof lessthansix iterations,solongaspeel-
ing wouldcreatelessthan36 instructions.

When, however, block “B” contains a substantial
amountof codeor is of unknown duration, loop peeling
is lessattractivebecauseof thecodeexpansioncost.When
the numberof instructionsin the outer loop is small rela-
tive to the inner loop, andwhen the numberof iterations
of the inner loop in any giveniterationof theouterloop is
not excessive, thereexistsanotheralternative. Figure1(b)
shows theeffectof predicatedloopcollapsing, whichpulls
codefrom an outer iteration into an inner iteration body.
Loop collapsingis a documentedtechniquefor converting
a nestedloop iteratingover a matrix into singleloopsop-
eratinglinearly (in this casethe outer loop is trivially re-

ducible). The form presentedhereallows any outer loop
to be pulled in by predicatingthe outer loop codeso that
it executesno more frequently than it originally did. If
the impactof absorbingthe instructionsof the outer loop
(thosein blocks “A” and “F” in (b)) is smaller than the
overheadof enteringandleaving theloopbuffer andtaking
theouterloop-backbranch,this resultsin increasedperfor-
manceandincreasedloopbufferefficiency. Giventypically
long branchresolutionlatenciesandthe fact that thereare
almostalwaysatleastafew NOPsin eventheoptimalmod-
ulo scheduleof the inner loop, predicatedloop collapsing
is oftenbeneficial.

Caremust be exercisedin choosingloops for collaps-
ing,however, becauseincorporatinginstructionsfrom outer
loops into the inner loop canengenderboth resourceand
dependencepenalties.Figure2 showsadoubly-nestedloop
from the MediaBench benchmarkmpeg2dec. The source
code, shown in (a), and the loop’s initial machine-level
representation,shown in (b), indicatea low trip count in-
ner loop with a small amountof codein its parentloop.
(Note that (b) shows the loop after traditional loop opti-
mizationshave beenapplied, including the promotionof
*bp to a register for the durationof the loop.) Although
small enoughto have beenpeeled,this instancealsopro-
videsa convenientexampleof the applicationandbenefit
of collapsing. Here, as in general,collapsingavoids the
staticcodeexpansionassociatedwith peeling.In collapsing
andif-convertingthis loop,thefirst andthird blocksshown
in (b) arepulled into the inner loop bodyandguardedun-
der a predicatethat causesthemto executeonly on each
eighthiterationof theresultingsimpleloop,resultingin the
bufferableform shown in Figure2(c). Thisis accomplished
asshown in Figure1(b), by replicatingtheseblocksinto a
new hammock(aswasdonewith blocks“A” and“F” in the
previousexample)prior to if-conversion.Finally, (d) shows
the codeafter further transformationsandinstallationof a
specialcountedloop branchset to 64 iterations,the total
numberof iterationsof the inner loop. (In (c) and(d), the
new looppreheader, correspondingto thefirst block in (b),



rfp++;
*rfp = Clip[*bp++ + 128]

for (j=0; i<8; j++)
{

}
rfp+=incr;

for (i=0; i<8; i++)
{

}

mov r2 = 0
add r1 = r1, 1

add r4, r4, r6
br lt r1,8 OUTER

(p1) mov r2 = 0
(p1) r4 = r4 + r6

cmp p1_ut = (r2 == 8)

jump OUTER
(p1) br ge r1,8 DONE
(p1) add r1 = r1, 1

st [r4], r5
add r4 = r4, 1
add r3 = r3, 1
add r2 = r2, 1

ld r5 = [r3]

OUTER:

(p1) mov r2 = 0
(p1) r4 = r4 + r6

(p2) add r2 = r2, 1
st [r4++], r5

cmp p1_ut, p2_uf = (r2 == 7)
ld r5 = [r3++]

br.cloop 64  OUTER

OUTER:

(a) Source code

INNER:

OUTER:

add r3 = r3, 1
add r4 = r4, 1

add r2 = r2, 1
br lt r2,8 INNER

st [r4] = r5
ld r5 = [r3]

DONE:

(c) After loop collapsing (d) After additional transformations(b) Original generation

= instruction from outer loop

Figure 2: Loop collapsing code example from mpeg2decAdd Block()

is not shown.)

It is importantthat this transformationnot severely im-
pacttheresourceor recurrenceconstraintsof theloop,since
these are important to subsequent,performance-critical
transformationssuchas modulo scheduling. While it is
possiblethattheneedto eliminatetheinefficienciesof non-
bufferedexecutionoutweighsa possibleresourceor recur-
rencedegradation,this balancemight vary from architec-
ture to architecture.Height-reducingtransformationssuch
asthosereflectedin (d) help to ensurea benefit. Here,in
particular, we seeexpressionreassociation(allowing the
upward motion of the predicatedefine)andpartial dead-
coderemoval (thestoreof 0 to r2 cannow executein paral-
lel with theincrementof r2, sincethey executeonmutually
exclusive predicates).In addition,the loop-backbranchis
transformedto aspecialcountedloopform, eliminatingthe
inductor, anddirecting instructionfetch to fall out of the
loop buffer on the last iteration. In this case,suchopti-
mizationsareableto maintaintherecurrenceconstraintof
theinnerloopevenwhentheouterloop is collapsedinto it.
Providedthattheinnerloopschedulecanaccommodatethe
two extra instructions,theouterloopcanbepulledinto the
inner loop with no adverseperformanceimpact.Thuscol-
lapsing,like peeling,is able to improve performanceand
efficiency by keepingexecutionwithin the loop buffer for
longerperiodsof executiontime. Predicatedloop collaps-
ingwasappliedto52doubly-nestedloopsin thebenchmark
set,makingthemcandidatesfor buffering.

Hyperblockside exits also presenta problemfor loop
buffer execution, since the machine’s branch resources
are, appropriately, very limited. Application execution
profiles reveal that, in many cases,hyperblockside exit
branchesare numerousbut very infrequently taken. In
theseinstances,a techniqueknown as branch combining
transformsseveralbranchesinto a singlepredicatedjump,
guardedby a “summarypredicate.” The summarypredi-
cate,computedusingparallelor comparetypes,is setto 1
whenany exit from the loop is required;whenany oneof

thesebrancheswould have taken,a summaryjump directs
executionto a “decodeblock” wheretheoriginally-desired
controlflow directionis discerned.

The IMPACT compiler’s VLIW compilation support,
predication, control speculation,alias analysis, profile-
guided inlining, profile-directed compilation, modulo
scheduling,andother traditionaland ILP transformations
wereall appliedto producehigh-qualitycodeasabasisfor
theseexperiments.Executionprofiling is critical,asit helps
to distinguishimportantpathsfrom thoselessfrequently
executed,a necessityfor many ILP techniques,including
hyperblockformation. Profiling also directs function in-
lining, which is performedto enhanceformation of loop
regions,sinceloop regionsin our implementationmaynot
containcallsto subroutines.In theexperimentsthatfollow,
profile-guidedinlining wasperformedup to an estimated
limit of 50%staticcodeexpansion.Pointeranalysisis im-
portantfor disambiguatingpointer-basedloadsandstores
in C code,and is importantto both optimizationand in-
structionscheduling.Finally, it is necessaryfor the com-
piler to be able to understandthe relationsamongpredi-
catesto performeffectiveoptimizationonandaroundpred-
ication. Thesetechniquesform the foundationof a useful
predicatedILP compiler, andwereall appliedin theexper-
imentsthatfollow.

4. Predication model
Mostmodernimplementationsof full predicationarede-

scendedfrom the HP Labs HPL-PD design[14], a gen-
eralizationof the model developedfor the CydromeCy-
dra5 [15]. TheIMPACT model[16], onederivative,speci-
fiesthepredicatedefine:���	��
��	�� �������	�� ����������� �!�#"%$'&)(*��� �+��
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aresharedby the operation’s two predicatecomputations,
which potentiallywrite to predicateregisters
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Table 2 shows the functionsimplementedby the various
predicatedefinetypes,indicatinghow eachdestination

� 



Table 2: Predicate definition truth table.13254 ut uf ot of at af ct cf

0 0 0 0 - - - - - -
0 1 0 0 - - - - - -
1 0 0 1 - 1 0 - 0 1
1 1 1 0 1 - - 0 1 0

is updatedbasedonthecomputationtype
�
, guardpredicate� �

and condition 6 . In the table, a ’-’ indicatesthat no
updateoccurs. The two typesrequiredfor if-conversion
arethe unconditional(ut/uf) type,which computessimple
conditions, and the or (ot/of) type, which is used to
computecompoundconditions (i.e. (x<0)||(x>3)).
Eachoperationpossessesa guardpredicateoperand(

� �
).

Lacking the or-type predicateand the ability to predicate
all operations,mostpartial implementationsof predication
arelimited to eliminatingsimplecontrol flow graphham-
mocks and diamonds,but cannothandlegeneralcontrol
flow.

Full predicationis typically basedon a register-storage
model,making it easyto representandmanipulatein the
compiler. Implementedin hardware, it involvesthe addi-
tion of a new registerfile, theadditionof new bypasslogic
for predicatevalues,the modificationof existing bypass
logic to allow squashingof nullified operations,and,per-
hapsmostcostly, theadditionto eachoperationof a guard
predicateoperand.The IMPACT model, like the Itanium
model [6], consumes41 bits per operation—todayunac-
ceptablein anembeddeddomain.Bits in embeddedopera-
tion encodingsareatapremium,asmemorysizeis limited
andILP techniquescritical to performancein mediaappli-
cationsneedmany registersto expressenoughparallelism
for wide-issuecores.Adding a field for a guardpredicate
reducesaddressablegeneralregisterspace—providingonly
eightpredicateregisterstakesthreebits peroperation,cut-
ting the addressablegeneralregisterspacein half (assum-
ing a three-operandopcodeformat). Thus,while we use
the flexible IMPACT predicationschemeduring most of
the compilationprocess,a similarly general(i.e. allowing
if-conversion)but lesscostlyschememustbeimplemented
in hardware.

In the context of a VLIW, the compilerhasthe benefit
of knowing to which executionunitsoperationswill issue,
andin what order. Several clusteredarchitecturesalready
take advantageof this by requiring the compiler to parti-
tion operationsinto connectedsubgraphsfor executionin
separateclustersof a sparsely-connectedmachine[1, 17];
othershaveappliedthisprincipleto avoid writing deadval-
uesbackinto theregisterfile afterforwardinghasoccurred
in thepipeline,asa power optimization[18]. Takingthese
ideasa step further, it is possibleto conceive of a gen-
eral predicationsystemwhereinpredicatesare explicitly
“source-routed”from predicatedefiningoperationsdirectly
to theunitsand,indeed,theveryoperationsthey areto con-

trol. This concentrateschangesto theinstructionsetin the
predicatedefinesthemselves,ratherthanin theconsumers
(as,for example,a register-basedsystemdoesnot). Addi-
tionally, thehardwarerequiredto implementsuchasystem
wouldbeeasierto incorporateinto anexistingpipelinethan
wouldbeapredicatebypassingnetwork. Suchanapproach,
however, is only practicalwhenthe numberof consumers
per predicateis small, or whenseveral consumerscanbe
groupedtogetherin an easilyaddressedunit; otherwise,a
stifling numberof predicatedefinesarerequired.

4.1. Benchmark predication characteristics

Examiningthe predicationsupportrequiredin the se-
lectedbenchmarksguidesselectionof an appropriaterep-
resentation.Loop kernels,and in particular, straight-line
modulo pipelined kernels,are of primary concernsince
thesearethecoderegionstargetedfor inclusionin theloop
buffer andthereforetheregionsin which effectivepredica-
tion supportis critical. Having compiledthe benchmarks
for an implementationof the IMPACT model with eight
predicateregisters,usingaggressivetraditionalandILP op-
timizations, control speculation,modulo scheduling,and
the techniquesdescribedin the previous section,we ex-
aminehow extensively the benchmarksusedthe freedom
of full predicationand how that model could be reduced
(within this applicationdomain)to anequallyeffectivebut
lesscostlyform.

The studiedapplicationscontain564modulopipelined
candidateloops, of which 122 usepredication. Figure 3
showsthreemetricsof thepredicationappliedin thebench-
marks; “static” metricsrefer to physicalinstancesof op-
erations,while “dynamic” metricsrefer to the numberof
times the machineencountersan operationwhile running
thebenchmarkinput. Figure3(a)showsthecumulativedis-
tribution of the numberof consumersper predicatedefine
(i.e. 97%of predicatesgeneratedguardthreeor fewer op-
erations). More than8% of predicatedefinesissuedhave
multiple consumers;about2% of predicatedefinesissued
have morethanfour, andsomehave asmany as16. Fig-
ure3(b) illustratesanotherproblem:over 3% of predicate
live rangeslastmorethan8 cycles,indicatingthatregener-
ating nullificationsat a later time for multiple consumers
may increasegeneralregister pressureas well as opera-
tion count(sincecomparisonsourceoperandswould need
to be preserved). Examiningthe direct-controlsystemin
this light, it appearsthat, while in the commoncaseper-
formancecouldbereasonable,degradationin themultiple-
consumercaseiscatastrophic.Clearly, aone-to-oneorone-
to-two operationnullificationschemeis impracticalin most
cases,and encodingmore than that in a 32-bit operation
formatwould bea significantchallenge.Likewise,nullify-
ing all operationsin a slot for a givennumberof cycles,a
simpleaddressingscheme,doesnot make bestuseof the
machine.
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(c) Predicate live range overlap (by loop)

Figure 3: Media application predication (cumulative distributions)

A compromiseapproachplacesa singlebit in eachop-
erationthat indicateswhetheror not it is “sensitive” to its
guardpredicate.Predicatedefinesthenseta singlepred-
icatefor eachslot which hasthe power to nullify all sub-
sequentsensitive operationsin that slot. This schemeis
efficientaslongasthenumberof simultaneouslylivepred-
icatesis lessthanthe numberof slotsavailablein the ma-
chine, and as long as the schedulerhasenoughfreedom
to orderdependentusesof thesamepredicateinto oneor a
few slots.To testthishypothesis,thecodewasprepass-and
modulo-scheduledgiveninfinite virtual predicateregisters,
andthencoloredto eightphysicalpredicates(nospilling of
predicateswasrequired).Thus,givena general(uniform)
issuemachine,eightpredicatedslotsaresufficientto imple-
mentall the program’s predication.As figure 3(c) shows,
only four predicatesaresufficient to implement99%of the
dynamiciterationsof the122predicatedloops. Wherein-
sufficient slotsexist to maintainthe live predicates,either
extrapredicatedefinesmustbeinsertedto regeneratepredi-
catevaluesin split liveranges,or schedulingandoptimiza-
tion aggressivenessmustbereduced.Sincesuchinterven-
tion appearslargely unnecessaryin thesebenchmarks,this
modeleffectively balancesimplementationcostandgener-
ality.

4.2. Slot-based predication

Figure4 showsonepossible32-bitencodingof thepred-
icatedefiningoperations.Commonlyusedpairsof destina-
tion typesareselectedasunits,muchasin Itanium. With
anothertwo bits (perhapsusingmoreof theopcodespace)
it is possibleto encodeall thedestinationtypepairs,but the
extra combinationsareonly infrequentlyused. The pred-
icate definescan be relatively complex becausethe des-
tination encodingsize is small, given that thereare only
eightslotsin themachine.It is likely thata VLIW beyond
this size would have clusters,eachof eight slots or less,
so this schemegeneralizeseasilyin thatdirection. In that
case,a predicatedefinewould controlonly slotsin its own
cluster. Sincethereis no constant-valuepredicate(usually�}|

) in which to “disposeof” unwantedresults,a single-
destinationpredicatedefinespecifiesthe sameslot twice.

In sucha case,the seconddefinition is definedto have no
effect. Thepredicatedefine,asidefrom writing to slotsas
opposedto standardpredicateregisters,is fairly ordinary.
UnderHPL-PD/ IMPACT predicatedefinesemantics(Ta-
ble 2), updatevaluesareindependentof thepreviousvalue
of thedestinationpredicate;thus,defineevaluationdoesnot
requirethepreviousdestinationvalue.

Themorenovelpartof thisschemeis whathappenswith
thepredicatevaluesthemselves. Ratherthanbeingplaced
in apredicatebypassnetwork andbeingwritteninto apred-
icateregisterfile, asin a traditionalimplementation,predi-
cateupdatesherearesentdirectly to theslotsthey control.
Sincethe machineis explicitly scheduledandthe compu-
tationof thepredicatevalueis of known duration(presum-
ably onecycle),predicateupdatesaresimply sentfrom the
generatingunit to the consumingslot, wherethey modify
the predicatevisible to subsequentissuingoperations.An
update,sentonly whentheappropriateentryof Table2 is
zeroor one,specifiesthe new valueto be written andim-
plies thata write shouldtake place.It is allowablefor two
definesto write simultaneouslyto thesameslot aslong as
they write the samevalue, as can occur with or-type de-
fines.Thecompilerpreventstwo defineswhichcouldwrite
0 and 1 to the sameslot from being scheduledtogether.
Underthis scheme,eachslot hasone“standingpredicate”
which remainsthe sameuntil resetby a predicatedefine;
operationsin thatslot with their “predicatesensitivity bit”
setareguardedon their slot’s standingpredicate.Sincethe
statically-definedorderingof bundlesenforcedby VLIW
issuemaintainsthedependencesbetweenpredicatedefines
andpredicateconsumers,registernamesandscoreboarding
of predicatesareunnecessary.

Figure4 shows a conceptualdiagramof the pipeline’s
predication“harness.” The figure depictsthe predication-
relatedfeaturesof threeof themachine’s eightslots: here,
slots0 and1 bothgenerateandconsumepredicates,andslot
7 consumesthem.At thetopof thediagramaredecodedin-
structionfieldswhich control thepredicationfeatures.The
p bit indicateswhetheror not an operationis sensitive to
nullification by its guardpredicate. An operationis nul-
lified (or the guardpredicateis consideredto be 0, in the
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caseof thepredicatedefiningoperations)only whenthep
bit is 1 and the computedpredicate,storedin the guard
latch is 0. Predicatesaredistributedon a16-bit bus,which
containsa value line anda write line for eachslot. The
bit on the value line is latchedwhenthe write line is ac-
tive. Both theselinesaredrivenby tri-statedriversin each
predicate-generatingunit; during an update,the predicate
defineunit activatesthe target slot’s write line anddrives
thetargetslot’s value line to thedesiredvalue.

4.3. Code generation

In thisapproach,aslot’spredicateremainssetto agiven
valueuntil it is reassigned,but nullifies only sensitive op-
erations;thecompileris thusfreeto interspersepredicated
andnon-predicatedoperationsin a givenslot,but only one
predicateis availablein eachslot at any giventime. Pred-
icate definesand predicateconsumersmustbe scheduled
suchthat live ranges,now tied to the issueslot of thecon-
sumer, do not interfere. This differs little from allocating
the predicatesto eight registers;however, two new con-
straintsappear. First, eachphysicalpredicate,associated
with oneslot,canguardonly oneoperationpercycle. Sec-
ond, and more seriously, in a non-uniform machine,in
which differentslotsperformdifferentoperations,it may
benecessaryto replicatealogicalpredicatetomultipleslots
if it hasdifferenttypesof consumers.To assistin provid-
ing thenecessarycontrol,mostpredicatedefinescansupply
two slot predicates,asindicatedin Figure4. As indicated
in theempiricalstudiesabove,thesenew constraintsdonot
appearto beseriouslimitationsfor thestudiedapplications
andarchitecture.The complexity of assigningpredicated
instructionsto slots andof providing the necessarypred-
icatedefining instructionsincreasessignificantlywith the
asymmetryof the machineand, in the compiler, requires
tightercouplingof operationschedulingto mechanismstra-
ditionally partof theregisterallocator.

As is usualwith registers,it is beneficialto keeppred-
icate lifetimes asshortaspossibleto enablebestreuseof
resources.Onetechniquethat helpsto do this in the case
of thesepredicatesis predicatepromotion, theremoval of a
guardfrom anoperationthatmaysafelybeexecutedwhen
thepredicateis false(althoughtheresultis unneeded)[13].
By removing the predicatesfrom all but thosethat abso-

Table 3: Buffer management operations

Operation Functionality

rec cloop
buf addr, num,
count

Buffer numsubsequentoperationsat addressbuf addr,
if notalreadyin buffer, andcommencecountiterations.
Fall throughto operationafterbr cloop.

rec wloop
buf addr, num

Buffer numsubsequentoperationsat addressbuf addr,
if not alreadyin buffer, and iterate until br wloop
fails. Fall throughto operationafterbr wloop.

exec cloop
buf addr, count

Executetheloop bufferedat buf addr counttimes. On
exit, continueafterexec cloop operation.

exec wloop
buf addr, count

Execute the loop buffered at buf addr until its
br wloop falls through. On exit, continue after
exec wloop operation.

lutely requireguards,thecompilerreducesthestressonthis
critical resource. Given theseefforts, 21.5%of dynamic
operationsin predicatedloops are sensitive to predicates
(9.9%in all bufferableloops). Compilerandarchitectural
supportfor generalspeculationanda generoussupplyof
functionalunitsarecritical componentsof this promotion-
basedmodel.

5. Loop buffers

A variety of loop buffer implementationsexist in the
DSPmarket. We chooseto implementthe loop buffer as
acompiler-managedcache,mappedarchitecturallyinto the
instructionaddressspace,but residingon-chipin a physi-
cally different location. The compilermanagesthe buffer
asa resource,schedulingloop bodiesinto segmentsof the
buffer as required. As alluded to in Section6, the goal
of schedulingloops into the buffer is to minimize the to-
tal numberof bundlesfetchedfrom theglobalmemory.

The compiler controlsbuffering by meansof the four
operationsshown in Table3. To buffer a countedloop, for
example,the compilerprefacesthe loop with the (branch
unit) operationrec cloop buf addr, num,count. This in-
structsthe instructionfetch unit to startbuffering the sub-
sequentnum-operationloop at the buffer offset buf addr,
andto executethat loop counttimes. During thefirst loop
iteration,the loop is bothbeingexecutedandbeingstored
into the buffer; subsequentiterationsareexecuteddirectly
from the loop buffer. Whenthe loop is finishedexecuting
in the buffer, control mustbe returnedto the global fetch
mechanism.Sincethe size of the loop body and the ad-
dressof the initial rec cloop operationareknown, this



addressis easily computed—thefollowing bundlescould
evenbeprefetchedby theinstructionfetchlogic if desired.
Therec wloop operationfunctionssimilarly for loopsof
unknown duration,but doesnot preparethe loop buffer to
correctlypredictloopexit like thecloop version.

The exec [cw]loop operations execute a loop
known alreadyto be storedin the buffer, returningto the
operationafter the exec [cw]loop on exit. Theseen-
ableabufferedloopto bereusedfrom differentlocationsin
thecode,almostlike a procedurecall, asa codesizeopti-
mization.

With asmallamountof additionalhardware,a tablecan
becreatedwhich mapsbuffer offsetsof active loopsto the
addressof their rec operations,achieving additionalsav-
ings.Consider, for example,anouterloopcontainingacol-
lectionof bufferedloops,all smallenoughto cohabitatein
theloopbuffer. Whenoneof theinner-looprec operations
is encounteredfor the secondtime, the tablewill indicate
that theloop bufferedfrom thataddressis known to be in-
tact in the buffer, so re-recordingof the loop’s operations
will not occur, but the loop exit will still fall throughto a
location num operationslater, after the end of the loop’s
imagein global memory. It is importantto note that the
loopbuffer hereis notoperatingasahardwarecache,asthe
compiler is responsiblefor explicitly controlling its pop-
ulation; the hardware is simply given a small memoryto
avoid uselesswork. An exampleof the operationof the
loopbufferingsystemis givenin thenext section.

6. Code example

To demonstrateloopbuffering,weexaminethefunction
PostFilter() from theGlobalSystemfor MobileCommuni-
cations(GSM) EnhancedFull-Rate(EFR)speechdecoder
g724dec[10]. After inlining andtransformations,thisfunc-
tion accountsfor 49%of g724dec’sexecutioncyclesonthe
target machine—overall buffer performancethusdepends
heavily on this function (seeSection7 for machinede-
scription). Figure5(a) shows a control-flow graphof the
function’s 13 loopsafter the transformationsof Section3.
Backedgesarelabeledwith their traversalweights,per it-
erationof the outerloop, which hasfour iterations. After
if-conversionof “C” and“J,” bothof whichcontaininternal
controlflow, thetwelve innerloopsaremoduloscheduled.

To the right of the function’s control-flow graph are
demonstrationsof buffer schedulingfor three different
buffer sizes:16, 32, and64 operations.Figure5(b) shows
an“executiontrace”of thefour outerloop iterations,indi-
catingthe timesat which recordingandreplay take place
(time runsvertically througheachiteration). To the right
of this traceis a “buffer trace” indicatingwhat loop is ac-
tive andwhich loopsresidein the buffer at a given time.
Any horizontalsliceyieldsthecontentsof thebuffer at that
time. Both tracesarealignedwith thecontrolflow graphat
theleft; columnsto theright of thebuffer show thenumber

of eachloop’s iterationsthecompilerwasableto schedule
for buffer issue. The compilermustchooselocationsfor
eachbufferedloop,suchthatneededloopswill notconflict
with eachother.

The16-operationbuffer’s successis limited becauseits
sizeis inadequatefor all but threeloops,andthesedisplace
eachotherover theexecutionof theouterloop. Eachtime
the rec cloop prefacing a bufferable loop is encoun-
tered,recordingof theloopis performedwhile thefirst iter-
ationexecutesthroughglobalfetch.As calculatedfrom the
“buffered iterations” column, the 1056 operationsissued
from theloopbuffer representonly 1.23%of PostFilter()’s
85869loop andnon-loopoperations.For the32-operation
case(c), several more loopsfit within the buffer, but be-
causethe sumof the smallestoperation-countloop (“E”)
andmany otherloopsis greaterthan32,by thetime “E” is
reachedagainin thecontrolflow graph,its instructionsare
no longerintactin thebuffer (i.e. thecompilerhasdictated
its replacementby “H”).

The benefits of targeted hyperblock formation are
clearlyseenin (d), whereapproximately99%of loop exe-
cution (or 98.2%of PostFilter()’s total instructionissue)
occurs from the 64-operationbuffer. Without the tech-
niquesdescribedin Section3 , theperformanceof thisfunc-
tion wouldbesignificantlydegradedbecausethetwo high-
est iterationcountregionswould no longerbe loopssuit-
able for buffering, and would thus not only incur branch
penalties,but alsocausegreaterpower consumption.The
power benefitof this mechanismwill be further explored
in Section7.2. In (d), both loops “E” and “F” were de-
tectedby the compiler to be compatiblein size with the
49-operationloops“C” and“J.” “F” wasselectedfor res-
idence over the entire period of function execution be-
causeits recordingoverhead(14operations)is greaterthan
that of “E” (12 operations). “F” is still prefacedwith
a rec cloop operationso it is recordedinto the buffer
whentheouterloopfirst executes.In subsequentouterloop
iterations,the hardwaretablewill indicatethat “F” is still
in the buffer, andissueof therec cloop operationwill
causeloop executionto begin from the buffer without re-
recording.

7. Experiments

Our experimentalmachineis an 8-wide unified VLIW
with resourcesloosely modeledafter the TI ’C6x series
microprocessors.It is assumedthat operationbundlesare
storedin memory in a compressedformat [19] in which
NOPsconsumeno space(asin TI ’C6x), andeachopera-
tion is assumedto be 32 bits in length. Theprocessorhas
eight integerALUs, two of which canissueintegermulti-
plies; threememoryunits; onebranchunit; two floating-
point units; andfour units capableof generatingpredicate
values.Figure6 shows the fixedassignmentof functional
unitsto slots.Arithmeticoperationshavea latency of 1 cy-
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Figure 6: VLIW issue slots for modeled architecture

cle; multiplies,2 cycles;divides,8 cycles;loads,3 cycles;
andfloatingpoint arithmetic,2 cycles. Sixty-four (64) in-
teger registersare provided. Generalcontrol speculation
is supportedby providing all potentiallyexceptinginstruc-
tions except for storeswith a speculative form. The ar-
chitectureimplementsthepredicationschemeof Section4
with its four predicate-generatingunits;all slotsarecapable
of receiving predicates.

7.1. Effectiveness of transformations
The direct measurementof branchoverheadreduction

and power savings dependson microarchitecturaldetails
below the level we chooseto model. Loop buffers today
are a ubiquitousfeaturein DSP, existing in many imple-
mentationsfrom hardwarebufferscapableof holdingafew
instructionsin a single loop, to complex buffers holding
multiply-nestedloops,to what is effectively a setof point-
ersinto asoftware-managedinstructioncachewhichimple-
mentsbuffering for very largeloops.Likewise,DSPshave
awidevarietyof pipelinelengthsandbranchingimplemen-
tations,oftenincludingdelayslots.In general,though,one
thing constitutesan improvementacrossall architectures,
regardlessof thesevariations:gettingmoreof theprogram
into aloopbuffer. This,thereforeis themetricwechooseto
measurethe effectivenessof our compilertransformations
in fitting loops into the simplebuffer modeldescribedin
Section5.

Two compilationswereperformedfor eachbenchmark:
oneappliedonly traditionalcompileroptimizations(i.e. no
predicationand no loop collapsing),and the secondag-

gressively appliedcontroltransformations(hyperblockfor-
mation,unrolling, peeling,andcollapsing)intendedto en-
hanceopportunitiesfor instructionbuffering. In bothcases,
profile-guidedselective inlining was performedwith up
to 50% codeexpansion,modulo schedulingwith modulo
variableexpansionwasperformed,and loop bodieswere
scheduledinto theloopbuffer by thecompiler, givenacon-
trol flow profile. Figure7(a)shows, for eachof thebench-
marks, the fraction of instructionaccessesthat are satis-
fied by theloop buffer whenonly traditionaloptimizations
areapplied.Althoughthebenchmarkscontainsomesmall
loopswith no internalcontrolflow, thebenefitclearlysat-
uratesat a small buffer size. Figure7(b) shows the same
metric for benchmarksafter aggressive transformation,in
which a muchgreaterproportionof executionis captured.
Theadpcmbenchmarksresolvefor themostpartto asingle
predicatedloopwhich,oncescheduledinto theloopbuffer,
accountsfor over99%of instructionissue.After aggressive
control transformation,even much more complex bench-
markssuchastheg724codecissuebetween94and96%of
instructionsfrom theloopbuffer.

In light of the code example given in Section 6, it
is of interestthat a majority of g724dec’s executionoc-
cursin the loop buffer from the64-operationsizeonward,
which clearly confirmsthat the successof PostFilter() in
the buffering mechanismhasa greatimpact on the over-
all benchmark’soutcome.An additionalincreaseof about
20%in loopbuffer issueis realizedfor g724decat the128-
operationbuffer sizebecauseimportantloopsin functions
otherthanPostFilter() arethenbuffered.

Of thebenchmarksfor which lessthanthree-quartersof
instructionissueis capturedby the loop buffer, mpeg2enc
is the most problematic. The MPEG-2 encodercontains
many large,highly nestedloop structureswhich only iter-
ateseveral times. Thoughloop collapsingsimplifiesloop
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Figure 7: Percentage instruction issue from loop buffer

structuresin many applications,mpeg2enc’s nestedloops
do not meetour criteriafor smallouterloop sizeandmod-
erateinner loop iteration count. Hyperblocktransforma-
tionsdo, however, almostdoublethefractionof mpeg2enc
instructionsissuedfrom thebuffer, but becauseloopbuffer-
ing is mosteffective for high-iterationcountor small,high
instancecountloops,mpeg2encis unlikely to achieve 80-
90%loopbuffer issuerates,regardlessof thecodetransfor-
mationsapplied.

Similarly, predication and loop transformationtech-
niquesrealizea twofold buffer issueincreasefor the jpe-
gencbenchmark,but this final valuesaturatesat 63%. The
JPEGencoderwas found to have significantnumbersof
inner-nestloops for which the iteration countswere gen-
erally small, but variedacrossdifferent loop invocations.
Peelingtheseloops into an outer hyperblockcould sig-
nificantly increasedependenceheights,but if buffer eli-
gibility were to be given priority over dependenceheight
andfunctioncodesizeexpansion,a muchmoresignificant
proportionof jpegenc’s instructionscould be mergedinto
single-hyperblockloopswhich issuefrom the loop buffer.
Likewise,collapsingcouldbeapplied,but sincetheseouter
loopbodiescontainedmorecodethantheir innerloops,this
would be detrimentalto performance.Althoughbuffering
resultsaremoderaterelativeto otherbenchmarks,thecom-
piler heuristicsbehaved correctly in leaving the loopsun-
modified.

The buffer performanceof our MPEG-2Layer 3 audio
decoder, mpg123, strugglesexcept for very large (2048-
operation)buffer sizesprimarily becauseits executiontime
is concentratedin functionswith small trip count loops,
which,for optimalperformance,mustall remainin theloop
buffer simultaneously. Additionally, this benchmarkcon-
tainsa numberof large loopswhich werevery effectively
moduloscheduled,but which requirefour modulovariable
expansions,thus increasingtheir codesize. When mod-

ulo scheduledwith a rotating register algorithm, the size
of theseloopswasdecreased,indicatingthatbuffer perfor-
mancecould likely be further improvedthroughuseof ar-
chitectedrotatingregisters.

7.2. Effects of Loop Buffering

While the loop buffering resultsare encouraging,it is
importantto considerothereffectsof theenablingtransfor-
mations.Figure8(a)draws comparisonsbetweentheILP-
transformedcode and traditionally optimized programs.
Clearly ILP transformationstradecodesizefor improved
performance. An averageprogram speedupof 1.81 is
achievedwith our techniques,but asshown by thesecond
grouping,staticcodesizeincreasessignificantlyrelative to
traditionallyoptimizedforms.Additionally, while thenum-
berof instructionbundlesissueddoesnot increase,theto-
tal numberof operationsfetched(“total fetch” in Figure8)
does.

Finally, we examine the net effects of buffering and
transformationon the benchmarkset. Figure 8(a) shows
that for all but one benchmark(mpeg2enc), the transfor-
mationsapplied for loop buffering significantly decrease
theamountof codewhich is fetchedfrom standardinstruc-
tion memory. Cacti2.0 [20] powersimulationmechanisms
wereusedto quantify the impactof this shift in fetch lo-
cation on processorpower consumption. While DSP ar-
chitecturestraditionally had separateinstructionanddata
memories,wider, moregeneralarchitecturesusea single,
large, unified on-chip storagespace[3]. While memory
poweris obviouslyhighly dependentupondesignstyle,it is
not uncommonto seea linear increasein power consump-
tion with size.Cactiresultsfor 0.13� mtechnologyindicate
thatfetchinganoperationfrom asingle-port,256-operation
buffer (assuming32-bit operations)consumes41.8 times
lesspower thana fetch from a 512KB, 2 read/writeport,
non-cachememory. This result provides a meansof as-
sessingthepower implicationsof theproposedtechniques.



��� �

��� �

� � !

" # $

%�& '

(�) *

+�, -

.�/ 0

1�2 3

4 57698;:�< = >@? A;B C DFE;G7HJILK M N7O P Q R S9TU V;W X Y

Z [�\;]^ _ `;a;b c�d e f9gFh7i@j k l;m n

o pq
rst uv
wx
y z
{ |}
~�� �
�

�;���;�7�F�J�7� �;���;�7�L���;�
� � �9�7�J�7� �9�7�9�9�� ;¡
¢ £ ¤ ¥7¦�§7¨ © ª7« ¬99®;¯
°²±7³9´7µ7¶J·7¸ ¹²º7»9¼7½9¾�¿;À
Á7Â�Ã;Ä�Å Æ Ç È9É Ê9Ë7Ì
Í²Î7Ï�Ð�Ñ Ò

Ó7Ô�Õ9Ö × Ø ÙJÚ9Û Ü Ý;Þ ß à9á9â ã7ä å7æ

(a) Performance, code size, and fetch count

çè é
êë ì
íî ï
ðñ ò
óô õ
ö ÷ ø
ù ú û
ü ý þ
ÿ � �
� � �
��� �

	
 �
�
� ��

�� �
��
���

���
�� �
�

 !"
# $%&

' ()*
+ ,-

. /01
234

5678
9: ;
<

=>?@
A BCD EFG

H IJ
KLMN
OP

QRS
TU
V

WYX[Z]\Y^ _ `ba cbd[eYf gbhjilknmYo[prqYs t uwvlx y zw{ |

} ~
��� �
�� �
�� �
�� �
��
�� ��
� ��
� �
� ���
�� �
� �¡ £¢¥¤§¦ ¨ ©«ª¬§®«¯ ° ±]² ³µ´

¶¡· ¸§¹«º¼» ½r¾ ¿ÁÀµÂ
Ã¡Ä Å§Æ«Ç¼È ÉrÊ ËÁÌµÍÏÎ§Ð«Ñ Ò Ó]Ô ÕµÖ

(b) Estimated instruction fetch power (normalized)

Figure 8: Hyperblock and loop-transformed code vs. traditional optimizations

Sinceuseof a 256-operationbuffer allows incorporation
of large op-count,high iteration loops, many loops will
consumeenoughcycles to reasonablyassumethat clock
gating could be effective on elementsof the global in-
structionfetch hardwarewhile the loop buffer was being
accessed. Figure 8(b) shows the estimatedpower con-
sumptionof instructionfetch,normalizedto buffer-lessis-
sue of traditionally-optimizedcode. While a 256-entry
loop buffer operatingon non-transformedcode reduces
instruction fetch power by an averageof 34.6% (“Base-
line buffered”), the proposedtransformationsreduceit by
72.3% (“Transformedbuffer”) relative to the samenon-
buffered,non-transformedbaseline.

7.3. Limitations and future work
While experimentalresults,someof whichweretoode-

tailed to includein this format,demonstratedthatbinding
predicatesto particularslotsdid notsignificantlyaffectper-
formanceor codesizein thisbenchmarkset,theimplemen-
tationof compilertechniquesto bestmanagetheseintrica-
cies in the more complex benchmarkssuchas mpeg2enc
andjpegencis continuing.

As the architectural description indicated, the low-
overheadpredicationschemeaddsa 1-cycle critical path
from theoutputof thepredicate-generatorto thepredicate-
squashinput of thecontrolledfunctionalunit, aswell asa
systemof global bussesfor communicatingpredicateup-
dates.Thesearenot likely to causea designconstraintun-
lesstheprocessoris alreadyclustered.Shouldit becomea
problem,thepredicateharnesscoulditself beclustered,ei-
ther to thesamedegreeastheVLIW, or to anevengreater
degree.While thisfurthercomplicatesthecompiler’sjob, it
seemsconsistentwith otherexistingwork in clustering[1].

Finally, the source-routingof predicatesby the simple
schemepresentedcouldbeextendedin morecomplex and

elegantdirections–possiblyto performmorecomplex op-
erations,suchasqueuinga predicateto becomeactive at
somefuture time (easingthe livenessconstraint),or pos-
sibly to includesomelimited-lifetime valuestraditionally
storedin generalpurposeregisters. The currentscheme,
while demonstrablysufficient for the benchmarksillus-
trated, may require greaterthan the optimal numberof
predicatedefinesto guardgeneralpredicatedcomputation.

8. Previous work

Alternative loop buffering mechanismsweredescribed
in Section2. Thesehardware featuresarewidely imple-
mentedin the DSP community, but their implementation
andoptimalapplicationhavenotbeenexploredextensively
in academicpublications. [21] studiedthe 31-instruction
loop buffers in the LucentDSP16000usinga setof small
DSPkernelsanddemonstrateda 24.8%decreasein execu-
tion cycleswithout compilertransformationsanda 32.7%
decreasein execution cycles with compiler transforma-
tions. Among thesetransformationswere function inlin-
ing andtheuseof theconditionalexecutionsupportof the
DSP16000to includeloopswith simplecontroldiamonds.

Varioustechniqueshave beenstudiedfor incorporating
predicationinto anarchitecturewithout increasingtheper-
instructionencodingsize,at leastfor non-predicatedoper-
ations. Probablythe mostprevalentof theseis the condi-
tional move [22], a single “predicated”instructionwhich
operateson the Booleanvaluestoredin a general-purpose
register, to selectfrom amongspeculatively-generatedre-
sults. Unfortunately, operationswhich may not be specu-
latedmustreceivespecialconditionalmovehandlingwhich
requiresmorethanasingleinstruction.[22] showeda44%
dynamiccodesizeincreasefor thistechniquerelativeto full
predication,which makes it questionablefor inclusion in



an embeddedprocessor. Otherpapers[23] have proposed
addingguardpredicatesasinstructionprefixes,but this is
not in generalapplicableto the fixed-operation-encoding-
size VLIW model typical of the latest DSPs. PA-RISC
provides instruction nullification to allow an instruction
to conditionallynullify onesubsequentoperation,but this
techniquelacksthe generalitynecessaryfor if-conversion,
andconsumesencodingspacein many operations.

9. Conclusions

Elimination of control flow overheadis a key compo-
nent of high-performancecompilation on processorsin-
tendedfor themediaandtelecommunicationssegment.We
demonstratedtechniquessupportingtheeliminationof gen-
eral internalcontrol flow usingfull predication,andtech-
niqueswhich improvetheutilization of a simple,one-level
loop buffer by transformingcontrol flow into a morereg-
ular form. The implicit structureof the VLIW was then
usedto developamechanismwhichprovidesthebenefitsof
full predicationwithout a predicateregisterfile or a predi-
catebypassnetwork. Resultsachievedfor an8-wideVLIW
in a high-performancecompilationenvironmentindicatea
137.5%increasein thepercentageof instructionsissuedout
of the loop buffer, relative to traditionalcompilationtech-
niques,togetherwith anaveragespeedupof 1.81. Finally,
thetransformationsappliedwereshown to morethandou-
ble theinstructionfetchpowerbenefitof loopbuffering,al-
lowing loop buffering to reduceinstructionfetchpower by
72.3%in the modeledmachine. Theseresultsencourage
further exploration into modelsof communicationwithin
theVLIW pipeline,whichmayhavethepotentialto reduce
registerpressure,savepower, andsimplify hardware.
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[1] J. Sánchezand A. Gonźalez, “Modulo schedulingfor a fully-

distributed clusteredVLIW architecture,” in Proc. 33rd Int’l Sym-
posiumonMicroarchitecture, pp.124–133,Dec.2000.

[2] B. R. Rau,“Iterative moduloscheduling:An algorithmfor software
pipelining loops,” in Proc. 27th Int’l Symposiumon Microarchitec-
ture, pp.63–74,Dec.1994.

[3] StarCoreDSP Technology, SC140DSP Core ReferenceManual,
June2000.

[4] K. Ebcioglu, “A compilationtechniquefor software pipelining of
loopswith conditionaljumps,” in Proc.20thInt’l SymposiumonMi-
croarchitecture, pp.69–79,1987.

[5] M. Lam,“Softwarepipelining:aneffective schedulingtechniquefor
VLIW machines,” in Proc. Conferenceon ProgrammingLanguage
DesignandImplementation, pp.318–328,1988.

[6] Intel Corporation,IA-64ArchitectureSoftwareDeveloper’s Manual,
revision1.1, July2000.

[7] J. C. Park andM. S. Schlansker, “On predicatedexecution,” Tech.
Rep.HPL-91-58,Hewlett PackardLaboratories,May 1991.

[8] TexasInstrumentsIncorporated,TMS320C6000CPU and Instruc-
tion SetReferenceGuide, Mar. 1999.

[9] STMicroelectronics,ST120DSP-MCUProgrammingManual, Dec.
2000.

[10] ETSITC-SMG,“Digital cellularcommunicationssystem;enhanced
full rate(EFR) speechtranscoding(GSM 06.60),” Tech.Rep.ETS
300726,EuropeanTelecomm.StandardsInstitute,Mar. 1997.

[11] C. Lee, M. Potkonjak, andW. H. Mangione-Smith,“MediaBench:
A tool for evaluatingandsynthesizingmultimediaandcommunica-
tionssystems,” in Proc.30thInt’l SymposiumonMicroarchitecture,
pp.330–335,Dec.1997.

[12] W. W. Hwu, R. E. Hank,D. M. Gallagher, etal., “Compiler technol-
ogy for future microprocessors,” Proceedingsof the IEEE, vol. 83,
pp.1625–1995,Dec.1995.

[13] S. A. Mahlke, D. C. Lin, W. Y. Chen,et al., “Effective compiler
supportfor predicatedexecutionusingthehyperblock,” in Proc.25th
Int’l SymposiumonMicroarchitecture, pp.45–54,Dec.1992.

[14] V. Kathail, M. S.Schlansker, andB. R. Rau,“HPL-PD architecture
specification:Version1.1,” Tech.Rep.HPL-93-80(R.1), Hewlett-
PackardLaboratories,Feb. 2001.

[15] J. C. DehnertandR. A. Towle, “Compiling for the Cydra5,” The
Journal of Supercomputing, vol. 7, pp.181–227,Jan.1993.

[16] D. I. August,D. A. Connors,S.A. Mahlke,etal., “Integratedpredi-
catedandspeculative executionin theIMPACT EPICarchitecture,”
in Proc. 25th Int’l Symposiumon ComputerArchitecture, pp. 227–
237,June1998.

[17] P. Faraboschi,G. Desoli,andJ. Fisher, “Clusteredinstruction-level
parallelprocessors,” Tech.Rep.HPL-98-204,Hewlett-PackardLab-
oratories,Dec.1998.

[18] M. Sami,D. Sciuto,C. Silvano,et al., “Exploiting dataforwarding
to reducethepowerbudgetof VLIW embeddedprocessors,” in Proc.
Design,AutomationandTestin Europe, pp.252–257,2001.

[19] T. Conte,S.Banerjia,S.Larin, etal., “Instructionfetchmechanisms
for VLIW architectureswith compressedencodings,” in Proc. 29th
Int’l SymposiumonMicroarchitecture, pp.201–211,Dec.1996.

[20] G. ReinmanandN. Jouppi,“An integratedcachetiming andpower
model.” SummerInternshipReport, COMPAQ WesternResearch
Lab,Palo Alto, 1999.

[21] G.-H. Uh, Y. Wang,D. Whalley, et al., “Efficient exploitation of a
zerooverheadloop buffer,” in Proc.WorkshoponLanguages,Com-
pilers,andToolsfor EmbeddedSystems, pp.10–19,May 1999.

[22] S. A. Mahlke, R. E. Hank,J. McCormick,et al., “A comparisonof
full andpartialpredicatedexecutionsupportfor ILP processors,” in
Proc.22ndInt’l SymposiumonComputerArchitecture, pp.138–150,
June1995.

[23] D. Connors,J. Puiatti, D. August, et al., “An architectureframe-
work for introducingpredicationinto embeddedmicroprocessors,”
in Proc.5th Int’l Euro-Par Conference, Aug. 1999.


