To appeaiat
The34th Annuallinternational Symposiunon Microarchitectuie, Decembe2001.

Enhancing loop buffering of media and telecommunications
applications using low-over head predication

JohnW. Sias

Hillery C. Hunter

Wen-meiW. Hwu

Centerfor ReliableandHigh-Performanc€omputing
Departmenbf ElectricalandComputerEngineering
University of lllinois at Urbana-Champaign

{si as, hhunter,

Abstract

Media- and telecommunications-focusegdrocessas,
increasingly designed as deeply pipelined, statically-
scheduledvLIWs,rely onloop buffersfor low-overheadsx-
ecutionof simpleloops. Key loopscontainingcontrol flow
posea substantiaproblem—fullpredicationhasa highen-
codingoverheadandpartial predicationtechniquesdo not
supportif-cornversion,thetransformatiorof genewrl acyclic
contmol flow into predicatedblocks. Using a set of sig-
nificant mediaprocessingpbendcimarks,drawn from Medi-
aBend and contempoary telecommunicationstandads,
we explore a compomiseapproach. We demonstate a
compiler using if-corversion and specializedloop trans-
formationsto arrange for 70-99% of fetched operations
to comefroma simple statically managed 256-instruction
loop buffer, savinginstruction fetch power and eliminat-
ing branch penalties. To complementhis we introducea
“nic he” form of predicationspecializedo permitgenesal
if-cornversionwith only a singlebit in the encodingof eath
opefmtionandto eliminatemud of the hardware overhead
of a predicateregisterbasedapproad.

1. Introduction

Most modernhigh-performanc®SPandmediaproces-
sorimplementationge.g., the Tl 'C6x, LucentDSP16000,
TriMedia, and StarCore140) are basedon a VLIW de-
signparadigmwith goodreason:VLIW offerswide issue
(todayup to eightoperationger cycle) with relatively lit-
tle instructionissueoverheadclusteringis naturaland of-
fersenhancedcalability[1], andcompilertechniquesuch
assoftware pipelining [2] effectively employ the VLIW' s
mary processinginitsin awide variety of loop kernels.

In the embeddedmarket, where power mamgins dic-
tate useof the lowestpossibleclock frequeny to achieve
a given processingrate, cycles cannot be wastedwait-
ing for branchresolution and instruction fetch. Tradi-
tional solutions such as branch predictors and instruc-
tion cachesare usually consideredtoo costly and unde-
pendablefor inclusion in such processors. Thus, the
statically-scheduledorocessorhas difficulty dealing ef-
ficiently with control flow. Both elementsare often

hwu}@r hc. ui uc. edu

“replaced” with a dedicatedloop buffe—effectively a
software-controlled straight-line-codecachewith knowl-

edgeof countedloops—allaving efficient looping fetch.
Buffering offers benefits including accurate loop-back
branchprediction,reducedpower consumptiondueto lo-

calization of fetch, elimination of taken-branchbubbles,
and, if dataandinstructionfetch sharethe samememory
bus, reducedbus contentionin key loop kernels[3]. Pro-
viding a usefulbuffer modelandutilizing it effectively are
thusimportantdesignandcompilationgoals.

A varietyof technique$4, 5] have addressetbopscon-
taininginternalcontrolflow, a specialproblemfor VLIWSs,
but embeddedmplementatiorconstraintsdiscountseveral
options. In general,loop buffers accommodat®nly sim-
ple loops—straight-lineblocks of codewith a loop-back
branchat the end—orin somerestrictedcases|oop nests.
In general-purpose/LIW -styledarchitecturesuchas|In-
tel's Itanium, on the otherhand,full predicatedexecution
support(a predicateregisterfile, predicatedefining oper
ations,and a guard predicateoperandon eachoperation)
allows the compilerto implementgeneralcontrol without
branched6]. Suchan approachhowever, is considered
impracticalin embeddegrocessorbecausef the encod-
ing costof the guardoperandgoperationson Itanium are
41 bitsin length). Mediaandtelecommunicationproces-
sorsthereforetypically incorporatea form of partial pred-
ication, the addition of a conditionalmove operationor a
few simpleconditioncodescapableof guardingthe execu-
tion of a handfulof opcodes.As theseapproacheslo not
supportif-cornversion[7], thetraditional,generaklgorithm
for generatingpredicatedcode, compilershave difficulty
taking bestadvantageof theseoperations.Handassembly
codingor tuningis today often requiredto take advantage
of the buffers.

In this paperwe combinespecializeccompilermethods
anda new predicationmplementatiorto address$uffering
of loopscontainingcontrolflow. Ourcompilertransformsa
setof mediaprocessindenchmarkgnot kernels)suchthat
89.0% of operationsfetchedcome from a 256-operation
loop buffer (comparedto 38.7% without the transforma-

tions), while achierzing a 37.6%reductionin executioncy-

cles! Tocomplementheseechniqueswe presenamodel
of predicationthatis generallyusefulfor executionof loop

kernels,thatconsume®nly a singlebit in eachoperation,
andthat doesnot significantly increasethe complexity of

bypasdogic. We proposehatthis form of predicationis as
applicable within the benchmarksetand architecturalas-
sumptionsasfull predicationwith its predicateegisterfile

andguardoperandsln thesedemonstrationsve assumea
simple, addressable-memorstyle loop buffer which can
beimplementedn avariety of microarchitecturastyles.In

theendaninterestingparadoxemepges:carefullyapplying
codeexpandingtransformationsvith thegoalof increasing
fetchregularity allows improved utilization of simpleloop

buffering, significantlyreducinginstructionfetch overhead
andpower consumption.

2. Architecture and application background

Developmentof image and signal processingn third-
generation3G) cellular and otherhand-heldproductshas
broughtaboutsignificantchangesn thedesignof DSPand
embeddedgrocessors Along with a shift from a Harvard
memoryarchitecture with dedicateddataand instruction
memories,to a more general-purpose&on Neumannar-
chitecture,specially-tailoredcomplex instructionsetsare
beingreplacedwith deeplypipelined,statically-scheduled
LIW andVLIW designs.allowing greaterthroughputand
generalitywith lower hardwareoverhead Giventheimpact
of proportionallylong (generally3 to 5 cycle [8]) branch
penaltieson the performancef tight DSPloops,architects
have alsobegunto includeforms of conditionalexecution
andloop supportinto their instructionsets. Consensusn
the bestimplementatiorhasnot yet beenreached.

TexaslInstruments’C6x line, oneof thefirst DSPfami-
liesto adoptaVLIW styleanda 32-bitdatapatharchitects
eightissueslotsandprovidesfor operationexecutionto be
guardedby conditioncodes[8]. Four bits of eachopcode
indicatewhich of five conditionregistersguardsheinstruc-
tion andwhethera zeroor a non-zerovalue causeghe in-
structionto be nullified. The’C6x line exposedive branch
delayslotsratherthanincorporatinga specialmechanism
for zeo-overheadlooping, the ability to executecounted
loopswithoutincurringaloop-backbranchpenalty

The StarCoreSC140 processorincludes both a loop
buffer and predicationsupportin a 16-bit instructionset.
Four setsof loop registersallow for four levels of nested
countedoop execution. Using this feature however, does
notguaranteeliminationof branch-bacloverheadandre-
quiresthat a hostof restrictionsbe obsered[3]. Sucha
featureis likely usefulin hand-codedernels. SC140has
a single conditionregisterwhich canbe usedto guardthe
odd,theeven,none,or all of theoperationgn eachbundle.

lexcludingmpey2encandjpegencfrom MediaBenb.

Table 1: Benchmarks

Benchmark Description and input

adpcn{enddec; | ADPCM codec.Input: clinton.pcm

g724enddec ETSI GSM 06.60 speechtranscoding[10] Input:
363frames speeclandambientnoise

jpeg{enddect (Mediabench) IndependentJPEG Group photo
codec.Input: testimg.jpg

mpg2{enddeg | (Mediabench)ideocodec.Input: meil6v2.m2v

mpgl123 MPEG-2Layer3 audiodecoderinput: short.mp3

pgp{enddec PrettyGoodPrivagy codec.Input: pgptest.plain

One of the most flexible hardware loop supportsys-
tems commercially available is found on the ST120
DSP/Microcontrollercore, a scoreboardedi-issue LIW
with 32-bitinstructiong[9]. The ST120provideshardware
supportfor up to threeloops,which may be nested over
lapped,or independenbf one another Instructionselec-
tion is limited within theloop bodies.Lik e the’C6x, most
opcodesanbe guardedby conditioncodes;someinstruc-
tions, however, have accesgo only oneconditionregister
while othersmay choosdrom amongupto 16.

Many real systemstoday incorporateboth one of the
above DSP coresanda controlleror hostprocessar This
fact, combinedwith the proprietarynatureof many com-
mercialalgorithmicimplementationdjmits the setof com-
pletemediaandtelecommunicationapplicationsavailable
for studyin C sourcecode. Thus,we are currently lim-
itedto MediaBent [11], whichfocuseson mediaandcom-
municationgasks,andothercommonlyavailable“compo-
nent” applicationsstill a significantadvanceover kernel-
only studies. Table 1 lists the benchmarksusedin this
study We replacedMediaBenchs g721 benchmarkwith
amoreup-to-dateandmorecomplex codec,which we call
g724[10]. The goal of this setof benchmarkss to rep-
resentthe algorithmssupportedby nearfuture hand-held
wirelessdevices,or by basestationsaccommodatingom-
municationswith suchdevices, both of which are highly
power- andperformance-sensite applications.Both jpeg-
enc and mpey2encpushthis envelope, and are included
only for comparison.The benchmarksverecompiledand
simulatedn theIMPACT Researchenvironment,in which
intrinsic emulationsupportimplementsoperationsuchas
saturatingarithmeticwhich would be provided on a DSP-
orientedprocessar

3. Compilation techniques

In aVLIW contet, the oppositionof branchedo paral-
lelism mustbe overcomeby the compiler Thetechniques
we describearenot “optimizations”in thetraditionalsense,
asthey cananddo resultin the executionof more oper
ationsratherthanfewer. On the contrary however, they
improve overall execution efficiency by using otherwise
idle resourceso mitigatebranchpenaltiessuchasmispre-
diction lateng, hard-to-fill delay slots, and control-based

! Hyperblock / buffer region
(O Code added to inner loop

(a) Loop peeling

(b) Loop collapsing

Figure 1: Nested loop transformations

dependencéeight. This placesthe following transforma-
tions,implementedn the context of theIMPACT compiler
framawork [12], in the generalrealm of instruction-level

parallel(ILP) transformations.

As previously stated,the useof a loop buffering tech-
niguerequiresremoval of all internalcontrolflow from the
loop to be buffered. If-conversion[7] corvertsary acyclic
region of control flow into an equialent single-entry
straight-lineseggmentof code,calleda hyperblod [13]. If
the entire body of a loop canbe if-converted,it canthen
be buffered(providedthe buffer is of sufficient size). This
alonesufficesfor loopswith agyclic internalcontrol flow.

For nestedoops,however, othertechniquesnustbeap-
plied. Bufferingthe outerloop, asopposedo justtheinner
loop, is beneficialwhenthe instructionandtrip countsof
theinnerloop aresmall—asituationthataboundsn media
andtelecommunicationapplications.Ratherthanpropos-
ing a more complicatedloop buffer, which could handle
somelimited casesof multiply-nestedioops, we present
two compiler techniqueghat transformnestedloops into
simpleones. Figure 1 illustratesthesetechniques.In (a),
the loop with header“A” containsan inner loop which
is known to have four iterations. Provided that the inner
loop containsareasonabl@umberof instructionsjt canbe
eliminatedby peelingit completely We heuristicallypeel
ary countedoop of lessthansix iterations solong aspeel-
ing would creatdessthan36 instructions.

When, however, block “B” contains a substantial
amountof codeor is of unknavn duration,loop peeling
is lessattractive becaus®f the codeexpansioncost. When
the numberof instructionsin the outerloop is small rela-
tive to the inner loop, and when the numberof iterations
of theinnerloop in any giveniterationof the outerloop is
not excessie, thereexists anotheralternative. Figure 1(b)
shavstheeffectof predicatedoop collapsing which pulls
codefrom an outeriterationinto an inner iteration body:.
Loop collapsingis a documentedechniquefor corverting
a nestedoop iteratingover a matrix into singleloopsop-
eratinglinearly (in this casethe outerloop is trivially re-

ducible). The form presentechereallows any outerloop
to be pulled in by predicatingthe outerloop codeso that
it executesno more frequentlythanit originally did. If

the impactof absorbingthe instructionsof the outerloop
(thosein blocks “A” and“F” in (b)) is smallerthan the
overheadf enteringandleaving theloop buffer andtaking
theouterloop-backbranch this resultsin increasegerfor

manceandincreasedoop buffer efficiency. Giventypically
long branchresolutionlatenciesandthe factthatthereare
almostalwaysatleastafew NOPsin eventheoptimalmod-
ulo scheduleof the innerloop, predicatedoop collapsing
is oftenbeneficial.

Caremustbe exercisedin choosingloopsfor collaps-
ing, hawever, becauséncorporatingnstructiondrom outer
loopsinto the inner loop canengendeboth resourceand
dependencpenalties Figure2 shavsadoubly-nestedbop
from the MediaBenb benchmarkmpey2dec The source
code, shavn in (@), and the loop’s initial machine-lgel
representationshawvn in (b), indicatea low trip countin-
ner loop with a small amountof codein its parentloop.
(Note that (b) shows the loop after traditional loop opti-
mizationshave beenapplied, including the promotion of
*bp to a registerfor the durationof the loop.) Although
small enoughto have beenpeeled,this instancealso pro-
vides a corvenientexampleof the applicationand benefit
of collapsing. Here, asin general,collapsingavoids the
staticcodeexpansiorassociateavith peeling.In collapsing
andif-convertingthis loop, thefirst andthird blocksshovn
in (b) arepulledinto the innerloop body andguardedun-
der a predicatethat causeshemto executeonly on each
eighthiterationof theresultingsimpleloop, resultingin the
bufferableform shavnin Figure2(c). Thisis accomplished
asshawn in Figure1(b), by replicatingtheseblocksinto a
new hammock(aswasdonewith blocks“A” and“F” in the
previousexample)prior to if-conversion.Finally, (d) shavs
the codeafter further transformationgndinstallationof a
specialcountedloop branchsetto 64 iterations,the total
numberof iterationsof the innerloop. (In (c) and(d), the
new loop preheadercorrespondingo thefirst blockin (b),

OUTER: |

addrl=rl, 1 Id 15 = [r3]
for (i=0; i<8; i++) INNER: st [r4], 15 OUTER:
{ NN Id r5 =[r3] addrd=r4,1 cmp pl_ut, p2_uf=(r2 ==7)
for (j=0; i<8; j++) st[r4] = 15 addr3=1r3, 1 Id 15 = [1344]
) addr4 =r4, 1 addr2=r2,1 st [r4++], 15
*rfp = Clip[*bp++ + 128] addr3=r3, 1 cmp pl_ut = (r2 == 8) (p2) add r2 =12, 1
rfp++; addr2=r2, 1 > (P1) ITIO:I r2=0 (pl) movr2=0
b br It r2,8 INNER P (p1)r4 =14 + 16 (p1) r4 =14 + 16
rfp+=incr; > (p1) add rl =r1, 1 br.cloop 64 OUTER
} » (p1) br ge r1,8 DONE
jump OUTER

add r4, r4, r6
brltrl,8 OUTER
DONE:

(a) Source code (b) Original generation

(c) After loop collapsing

P>= instruction from outer loop

(d) After additional transformations

Figure 2: Loop collapsing code example from mpey2decAdd_Block()

is notshown.)

It is importantthatthis transformatiomot severelyim-
pacttheresourcer recurrenceonstraint®f theloop, since
these are important to subsequentperformance-critical
transformationssuch as modulo scheduling. While it is
possiblethattheneedto eliminatetheinefficienciesof non-
bufferedexecutionoutweighsa possibleresourceor recur
rencedegradation this balancemight vary from architec-
tureto architecture Height-reducingransformationsuch
asthosereflectedin (d) helpto ensurea benefit. Here,in
particular we seeexpressionreassociation(allowing the
upward motion of the predicatedefine)and partial dead-
coderemoval (thestoreof 0 to r2 cannow executein paral-
lel with theincremenf r2, sincethey executeon mutually
exclusive predicates)In addition,the loop-backbranchis
transformedo a specialcountedoop form, eliminatingthe
inductor, and directing instructionfetch to fall out of the
loop buffer on the last iteration. In this case,such opti-
mizationsareableto maintainthe recurrenceconstraintof
theinnerloop evenwhentheouterloopis collapsednto it.
Providedthattheinnerloop schedul&eanaccommodatéhe
two extrainstructionstheouterloop canbe pulledinto the
innerloop with no adwerseperformancempact. Thuscol-
lapsing,like peeling,is ableto improve performanceand
efficiency by keepingexecutionwithin the loop buffer for
longerperiodsof executiontime. Predicatedoop collaps-
ing wasappliedto 52 doubly-nestetbopsin thebenchmark
set,makingthemcandidategor buffering.

Hyperblockside exits also presenta problemfor loop
buffer execution, since the machines branch resources
are, appropriately very limited. Application execution
profiles reveal that, in mary cases,hyperblockside exit
branchesare numerousbut very infrequently taken. In
theseinstancesa techniqueknown as branch combining
transformsseveral branchesnto a single predicateqump,
guardedby a “summarypredicate. The summarypredi-
cate,computedusingparallelor comparetypes,is setto 1
whenary exit from the loop is required;whenary one of

thesebranchesvould have taken,a summaryjump directs
executionto a “decodeblock” wherethe originally-desired
controlflow directionis discerned.

The IMPACT compiler’s VLIW compilation support,
predication, control speculation,alias analysis, profile-
guided inlining, profile-directed compilation, modulo
scheduling,and other traditionaland ILP transformations
wereall appliedto producehigh-qualitycodeasa basisfor
theseexperiments Executionprofiling is critical, asit helps
to distinguishimportantpathsfrom thoselessfrequently
executed,a necessityfor mary ILP techniquesjncluding
hyperblockformation. Profiling also directsfunction in-
lining, which is performedto enhanceformation of loop
regions,sinceloop regionsin our implementatiormay not
containcallsto subroutinesin theexperimentshatfollow,
profile-guidedinlining was performedup to an estimated
limit of 50% staticcodeexpansion.Pointeranalysisis im-
portantfor disambiguatingpointerbasedoadsand stores
in C code,andis importantto both optimizationandin-
structionscheduling.Finally, it is necessaryor the com-
piler to be able to understandhe relationsamongpredi-
categto performeffective optimizationon andaroundpred-
ication. Thesetechniquedorm the foundationof a useful
predicatedLP compiler andwereall appliedin theexper
imentsthatfollow.

4. Predication model

Mostmodernmplementationsf full predicatiorarede-
scendedrom the HP Labs HPL-PD design[14], a gen-
eralizationof the model developedfor the CydromeCy-
dra5 [15]. TheIMPACT model[16], onederivative, speci-
fiesthe predicatedefine:

(Pg) Pdo-to, Pa1-t1 = (srco cond sreyq)

Here the guard predicate (p,) and comparison
(srcg cond srei, where cond canbe =, #, >, etc.)
are sharedby the operations two predicatecomputations,
which potentiallywrite to predicateregistersp,g andpy;.
Table 2 shaws the functionsimplementedby the various
predicatedefinetypes,indicatinghow eachdestinationp,

Table 2: Predicate definition truth table.

[ps CJut uf ot of at af ct cf]
0 0

-1 0 - 0 1

0
1
0
1 1 - - 010

(el NeoNe)

0 0
1 0
1 1

is updateasednthecomputatiortypet, guardpredicate
py andconditionC. In thetable,a’-’ indicatesthat no

updateoccurs. The two typesrequiredfor if-conversion
arethe unconditional(ut/uf) type, which computessimple
conditions, and the or (ot/of) type, which is used to

computecompoundconditions (i.e. (x<0) || (x>3)).

Eachoperationpossessea guardpredicateoperand(p,).

Lacking the or-type predicateand the ability to predicate
all operationsmostpartialimplementation®f predication
arelimited to eliminating simple control flow graphham-
mocks and diamonds,but cannothandle generalcontrol
flow.

Full predicationis typically basedon a registerstorage
model, makingit easyto represenand manipulatein the
compiler Implementedn hardware, it involvesthe addi-
tion of anew registerfile, the additionof new bypasdogic
for predicatevalues, the modification of existing bypass
logic to allow squashingf nullified operationsand, per
hapsmostcostly, the additionto eachoperationof a guard
predicateoperand. The IMPACT model, like the Itanium
model [6], consumest1 bits per operation—todayunac-
ceptablan anembeddediomain.Bits in embeddedpera-
tion encodingsareata premium,asmemorysizeis limited
andILP techniquegritical to performancen mediaappli-
cationsneedmary registersto expressenoughparallelism
for wide-issuecores. Adding a field for a guardpredicate
reducesaddressablgeneralegisterspace—pruaiding only
eightpredicateregisterstakesthreebits per operation cut-
ting the addressablgeneralregisterspacein half (assum-
ing a three-operan@pcodeformat). Thus, while we use
the flexible IMPACT predicationschemeduring most of
the compilationprocessa similarly general(i.e. allowing
if-conversion)but lesscostlyschemenustbeimplemented
in hardware.

In the context of a VLIW, the compiler hasthe benefit
of knowing to which executionunits operationswill issue,
andin whatorder Sereral clusteredarchitectureslready
take advantageof this by requiringthe compilerto parti-
tion operationsnto connectedsubgraphdgor executionin
separateclustersof a sparsely-connectethachine[1, 17];
othershave appliedthis principleto avoid writing deadval-
uesbackinto theregisterfile afterforwardinghasoccurred
in the pipeline,asa power optimization[18]. Takingthese
ideasa step further, it is possibleto conceve of a gen-
eral predicationsystemwherein predicatesare explicitly
“source-routedfrom predicatedefiningoperationglirectly
totheunitsand,indeedthevery operationghey areto con-

trol. This concentrateshangego theinstructionsetin the
predicatedefinesthemseles,ratherthanin the consumers
(as,for example,a registerbasedsystemdoesnot). Addi-
tionally, the hardwarerequiredto implementsucha system
would beeasietto incorporaténto anexisting pipelinethan
wouldbeapredicatébypassinguetwork. Suchanapproach,
however, is only practicalwhenthe numberof consumers
per predicateis small, or when several consumerganbe
groupedtogetherin an easilyaddressedinit; otherwise,a
stifling numberof predicatedefinesarerequired.

4.1. Benchmark predication characteristics

Examiningthe predicationsupportrequiredin the se-
lectedbenchmarkguidesselectionof an appropriaterep-
resentation.Loop kernels,andin particular straight-line
modulo pipelined kernels, are of primary concernsince
thesearethecoderegionstargetedfor inclusionin theloop
buffer andthereforethe regionsin which effective predica-
tion supportis critical. Having compiledthe benchmarks
for an implementationof the IMPACT model with eight
predicataegistersusingaggressietraditionalandILP op-
timizations, control speculationmodulo scheduling,and
the techniquesdescribedin the previous section,we ex-
aminehow extensively the benchmarkaisedthe freedom
of full predicationand how that model could be reduced
(within this applicationdomain)to anequallyeffective but
lesscostlyform.

The studiedapplicationscontain564 modulo pipelined
candidateloops, of which 122 use predication. Figure 3
shavsthreemetricsof the predicatiorappliedin thebench-
marks; “static” metricsrefer to physicalinstancesof op-
erations,while “dynamic” metricsrefer to the numberof
times the machineencountersan operationwhile running
thebenchmarknput. Figure3(a)shavsthecumulatvedis-
tribution of the numberof consumerger predicatedefine
(i.e. 97% of predicategieneratedjuardthreeor fewer op-
erations). More than 8% of predicatedefinesissuedhave
multiple consumersabout2% of predicatedefinesissued
have morethanfour, andsomehave asmary as16. Fig-
ure 3(b) illustratesanothemroblem: over 3% of predicate
live rangedastmorethan8 cycles,indicatingthatregener
ating nullifications at a later time for multiple consumers
may increasegeneralregister pressureas well as opera-
tion count(sincecomparisorsourceoperandsvould need
to be presered). Examiningthe direct-controlsystemin
this light, it appearghat, while in the commoncaseper
formancecouldbereasonablejegradationin the multiple-
consumecaseis catastrophicClearly, aone-to-oner one-
to-two operatiomullification schemas impracticalin most
cases,and encodingmore thanthatin a 32-bit operation
formatwould be a significantchallenge Lik ewise, nullify-
ing all operationsn a slot for a given numberof cycles,a
simple addressingschemedoesnot make bestuseof the
machine.

100% 100%

90%

80%

100%
90%
80%
70%
60%

80% 70% /
60%

50%
40%

Percentage of defines (%)
Percentage of defines (%)

. - Dynamic °
0% 17/ ~+ Static
50%

30% rf Dynamic
20% —+ Static

10%

—o-Dynamic
—+Static

Pet. of predicated 100p bodies (%)

60% ——— T 40%

. Number of consumers
(a) Predicate consumers (by define)

0%

2R 48N8 s 1 2 3 4 5 6 7 8
Live range duration
(b) Predicate live range duration (by define)

i s_imu Iltaneously-live predicates
(c) Predicate live range overlap (by loop)

Figure 3: Media application predication (cumulative distributions)

A compromiseapproactplacesa singlebit in eachop-
erationthatindicateswhetheror not it is “sensitve” to its
guardpredicate. Predicatedefinesthen seta single pred-
icatefor eachslot which hasthe power to nullify all sub-
sequentsensitve operationsin that slot. This schemeis
efficientaslong asthe numberof simultaneouslyive pred-
icatesis lessthanthe numberof slotsavailablein the ma-
chine, and as long as the schedulethas enoughfreedom
to orderdependentisesof the samepredicatento oneor a
few slots. To testthishypothesisthe codewasprepassand
modulo-schedulediveninfinite virtual predicateregisters,
andthencoloredto eightphysicalpredicategno spilling of
predicatesvasrequired). Thus, givena general(uniform)
issuemachinegightpredicateslotsaresufficienttoimple-
mentall the programs predication. As figure 3(c) shaws,
only four predicatesresufiicientto implement99% of the
dynamiciterationsof the 122 predicatedoops. Wherein-
sufficient slotsexist to maintainthe live predicatesegither
extrapredicatedefinesmustbeinsertedo regeneratgredi-
catevaluesin splitliverangespr schedulingandoptimiza-
tion aggressienesgnustbe reduced.Sincesuchinterven-
tion appeardargely unnecessarin thesebenchmarksthis
modeleffectively balancesmplementatiorcostandgener
ality.

4.2. Slot-based predication

Figure4 shavs onepossible32-bitencodingof thepred-
icatedefiningoperationsCommonlyusedpairsof destina-
tion typesare selectedasunits, muchasin Itanium. With
anothentwo bits (perhapaisingmoreof the opcodespace)
it is possibleto encodeall thedestinatiortype pairs,but the
extra combinationsare only infrequentlyused. The pred-
icate definescan be relatively complex becausethe des-
tination encodingsize is small, given that there are only
eightslotsin themachine.lt is likely thata VLIW beyond
this size would have clusters,eachof eight slots or less,
sothis schemegeneralizegasilyin thatdirection. In that
casea predicatedefinewould controlonly slotsin its own
cluster Sincethereis no constant-aluepredicate(usually
p0) in which to “disposeof” unwantedresults,a single-
destinationpredicatedefine specifiesthe sameslot twice.

In sucha case the seconddefinitionis definedto have no
effect. The predicatedefine,asidefrom writing to slotsas
opposedo standardpredicateregisters,is fairly ordinary
UnderHPL-PD/ IMPACT predicatedefinesemanticgTa-
ble 2), updatevaluesareindependentf the previousvalue
of thedestinatiorpredicatethus,defineevaluationdoesnot
requirethe previousdestinatiornvalue.

Themorenovel partof this schemes whathappensvith
the predicatevaluesthemseles. Ratherthanbeingplaced
in apredicatebypassietwork andbeingwritteninto apred-
icateregisterfile, asin atraditionalimplementationpredi-
cateupdatesherearesentdirectly to the slotsthey control.
Sincethe machineis explicitly scheduledandthe compu-
tation of the predicatevalueis of known duration(presum-
ably onecycle), predicateupdatesaresimply sentfrom the
generatingunit to the consumingslot, wherethey modify
the predicatevisible to subsequenissuingoperations.An
update,sentonly whenthe appropriateentry of Table2 is
zeroor one, specifiesthe new valueto be written andim-
pliesthatawrite shouldtake place.t is allowablefor two
definesto write simultaneouslyo the sameslot aslong as
they write the samevalue, as can occurwith or-type de-
fines. Thecompilerpreventstwo defineswvhich couldwrite
0 and 1 to the sameslot from being scheduledogether
Underthis schemegachslot hasone“standingpredicate”
which remainsthe sameuntil resetby a predicatedefine;
operationsn thatslot with their “predicatesensitvity bit”
setareguardedn their slot’s standingpredicate Sincethe
statically-definedordering of bundlesenforcedby VLIW
issuemaintainsthe dependencesetweemredicatedefines
andpredicateconsumersiegisternamesandscoreboarding
of predicatesreunnecessary

Figure 4 shavs a conceptuadiagramof the pipeline's
predication*harness. The figure depictsthe predication-
relatedfeaturesof threeof the machines eightslots: here,
slots0 and1 bothgenerat@ndconsumepredicatesandslot
7 consumeshem. At thetop of thediagramaredecodedn-
structionfieldswhich controlthe predicationfeatures.The
p bit indicateswhetheror not an operationis sensitve to
nullification by its guardpredicate. An operationis nul-
lified (or the guardpredicateis consideredo be 0, in the

[cmp Jrest [oype[siop] srco Jsor[st]
P[_cmei, | [test Jope]sio0] seo [jmmo]

OT/OT AF/OT
AT/AT OF/AT
CT/CT CFI/CT
UT/UT UF/UT

eq It
lteq ltu

operation fields

Slot0 type test srcO

sl slot1® | p slot0 type test sicO sl slotl| | p

Figure 4: Predicate defines and predication support features

caseof the predicatedefiningoperationspnly whenthe p

bit is 1 and the computedpredicate,storedin the guard

latch is 0. Predicatesredistributedon a 16-bit bus,which

containsa value line anda write line for eachslot. The
bit on the value line is latchedwhenthe write line is ac-
tive. Both theselinesaredrivenby tri-statedriversin each
predicate-generatingnit; during an update,the predicate
defineunit activatesthe target slot’s write line anddrives
thetamgetslot’'s value line to the desiredvalue.

4.3. Codegeneration

In thisapproachaslot’s predicateemainssetto agiven
valueuntil it is reassignedbut nullifies only sensitve op-
erationsithe compileris thusfreeto intersperseredicated
andnon-predicatedperationsn a givenslot, but only one
predicateis availablein eachslot at ary giventime. Pred-
icate definesand predicateconsumersnust be scheduled
suchthatlive rangesnow tied to theissueslot of the con-
sumer do not interfere. This differslittle from allocating
the predicatesto eight registers; however, two new con-
straintsappear First, eachphysicalpredicate,associated
with oneslot, canguardonly oneoperationpercycle. Sec-
ond, and more seriously in a non-uniform machine,in
which different slots perform differentoperationsjt may
benecessarto replicatealogical predicateo multiple slots
if it hasdifferenttypesof consumers.To assistin provid-
ing thenecessargontrol,mostpredicatedefinescansupply
two slot predicatesasindicatedin Figure4. As indicated
in theempiricalstudiesabove,thesenew constraintsio not
appeato be serioudimitationsfor the studiedapplications
andarchitecture. The compleity of assigningpredicated
instructionsto slots and of providing the necessarypred-
icate defining instructionsincreasesignificantly with the
asymmetryof the machineand, in the compiler, requires
tightercouplingof operatiorschedulingo mechanismsra-
ditionally partof theregisterallocator

As is usualwith registers,it is beneficialto keeppred-
icatelifetimes asshortas possibleto enablebestreuseof
resources.Onetechniquethat helpsto do this in the case
of thesepredicatess predicatepromotion theremoval of a
guardfrom anoperationthatmay safelybe executedwvhen
thepredicatds false(althoughtheresultis unneeded)13].
By removing the predicatesrom all but thosethat abso-

Table 3: Buffer management operations

[Operation [Functionality |

rec_cl oop Buffer numsubsequentperationsat addres$uf_addr,
buf_addr, num if notalreadyin buffer, andcommenceountiterations.
count Fall throughto operationafterbr _cl oop.

rec_w oop Buffer numsubsequentperationsat addres$uf_addr,
bufaddr, num if not alreadyin buffer, and iterate until br .wl oop

fails. Fall throughto operationafterbr Wl oop.

exec_cl oop Executethe loop bufferedat buf_addr counttimes. On
buf_addr, count exit, continueafterexec_cl oop operation.
exec_w oop Execute the loop buffered at bufaddr until its

buf_addr, count br .wl oop falls through. On exit, continue after

exec_w oop operation.

lutely requireguardsthecompilerreduceghestresonthis
critical resource. Given theseefforts, 21.5% of dynamic
operationsin predicatedloops are sensitve to predicates
(9.9%in all bufferableloops). Compilerandarchitectural
supportfor generalspeculationand a generoussupply of
functionalunits arecritical component®f this promotion-
basednodel.

5. Loop buffers

A variety of loop buffer implementationsexist in the
DSP market. We chooseto implementthe loop buffer as
acompilermanageaache mappedarchitecturallyinto the
instructionaddressspace but residingon-chipin a physi-
cally differentlocation. The compilermanageshe buffer
asaresourceschedulingoop bodiesinto segmentsof the
buffer asrequired. As alludedto in Section6, the goal
of schedulingloopsinto the buffer is to minimize the to-
tal numberof bundlesfetchedfrom the globalmemory

The compiler controls buffering by meansof the four
operationsshavn in Table3. To buffer a countedoop, for
example,the compiler prefacesthe loop with the (branch
unit) operatiorr ec _cl oop buf_addr, num,count Thisin-
structsthe instructionfetch unit to startbuffering the sub-
sequentnumoperationloop at the buffer offset buf_addr,
andto executethatloop counttimes. During thefirst loop
iteration,the loop is both beingexecutedandbeingstored
into the buffer; subsequenterationsare executeddirectly
from the loop buffer. Whenthe loop is finishedexecuting
in the buffer, control mustbe returnedto the global fetch
mechanism. Sincethe size of the loop body and the ad-
dressof theinitial r ec_cl oop operationare known, this

addresss easily computed—thédollowing bundlescould
evenbe prefetchedy theinstructionfetchlogic if desired.
Ther ec_wW oop operatiorfunctionssimilarly for loopsof
unknown duration,but doesnot preparethe loop buffer to
correctlypredictloop exit likethecl oop version.

The exec_[cw] | oop operations execute a loop
known alreadyto be storedin the buffer, returningto the
operationafter the exec_[cw] | oop on exit. Theseen-
ableabufferedloopto bereusedrom differentlocationsin
the code,almostlike a procedurecall, asa codesizeopti-
mization.

With asmallamountof additionalhardware,a tablecan
be createdwhich mapsbuffer offsetsof active loopsto the
addresf theirr ec operationsachieving additionalsav-
ings. Considerfor example,anouterloop containingacol-
lection of bufferedloops,all smallenoughto cohabitatan
theloopbuffer. Whenoneof theinnerloopr ec operations
is encounteredor the secondtiime, the tablewill indicate
thattheloop bufferedfrom thataddresss known to bein-
tactin the buffer, sore-recordingof the loop’s operations
will not occur, but the loop exit will still fall throughto a
location num operationdater, after the end of the loop’s
imagein global memory It is importantto notethat the
loop buffer hereis notoperatingasahardwarecacheasthe
compileris responsiblefor explicitly controlling its pop-
ulation; the hardwareis simply given a small memoryto
avoid uselesswork. An example of the operationof the
loop buffering systemis givenin thenext section.

6. Codeexample

To demonstratéoop buffering, we examinethefunction
PostFilter() from the Global Systenfor Mobile Communi-
cations(GSM) Enhanced-ull-Rate(EFR) speechdecoder
g724ded10]. Afterinlining andtransformationsthisfunc-
tion accountdor 49%of g724dets executioncyclesonthe
target machine—eerall buffer performancehus depends
heavily on this function (see Section7 for machinede-
scription). Figure5(a) shawvs a control-flov graphof the
function’s 13 loopsafter the transformation®f Section3.
Backedgesarelabeledwith their traversalweights, per it-
erationof the outerloop, which hasfour iterations. After
if-conversionof “C” and“J,” bothof which containinternal
controlflow, thetwelve innerloopsaremoduloscheduled.

To the right of the function’s control-flov graph are
demonstrationsof buffer schedulingfor three different
buffer sizes: 16, 32, and64 operations Figure5(b) shavs
an“executiontrace” of thefour outerloop iterations,indi-
catingthe timesat which recordingandreplay take place
(time runsvertically througheachiteration). To the right
of this traceis a “buffer trace” indicatingwhatloop is ac-
tive andwhich loopsresidein the buffer at a giventime.
Any horizontalsliceyieldsthe contentsof the buffer atthat
time. Both tracesarealignedwith the controlflow graphat
theleft; columnsto theright of the buffer shaw thenumber

of eachloop’siterationsthe compilerwasableto schedule
for buffer issue. The compiler must chooselocationsfor

eachbufferedloop, suchthatneededoopswill notconflict

with eachother

The 16-operatiorbuffer’s successs limited becausets
sizeis inadequatdor all but threeloops,andthesedisplace
eachotherover the executionof the outerloop. Eachtime
the r ec_cl oop prefacing a bufferable loop is encoun-
teredrecordingof theloopis performedwhile thefirstiter-
ationexecuteghroughglobalfetch. As calculatedrom the
“buffered iterations” column, the 1056 operationsissued
from theloop buffer represenbnly 1.23%of PostFilter()'s
85869loop andnon-loopoperations.For the 32-operation
case(c), several more loopsfit within the buffer, but be-
causethe sum of the smallestoperation-countoop (“E”)
andmary otherloopsis greatethan32, by thetime “E” is
reachedhgainin the controlflow graphiits instructionsare
no longerintactin the buffer (i.e. the compilerhasdictated
its replacemenby “H”).

The benefits of targeted hyperblock formation are
clearly seenin (d), whereapproximately99% of loop exe-
cution (or 98.2% of PostFilter()’s total instructionissue)
occursfrom the 64-operationbuffer. Without the tech-
niguesdescribedn Section3, theperformancef thisfunc-
tion would be significantlydegradedbecausehetwo high-
estiteration countregionswould no longerbe loops suit-
able for buffering, and would thus not only incur branch
penalties but alsocausegreaterpower consumption.The
power benefitof this mechanisnwill be further explored
in Section7.2. In (d), both loops“E” and“F” were de-
tectedby the compilerto be compatiblein size with the
49-operatiorioops“C” and“J.” “F" wasselectedor res-
idence over the entire period of function execution be-
causdts recordingoverhead14 operations)s greaterthan
that of “E” (12 operations). “F” is still prefacedwith
arec_cl oop operationso it is recordedinto the buffer
whentheouterloopfirst executesln subsequerduterloop
iterations,the hardwaretablewill indicatethat“F” is still
in the buffer, andissueof ther ec_cl oop operationwill
causeloop executionto begin from the buffer without re-
recording.

7. Experiments

Our experimentalmachineis an 8-wide unified VLIW
with resourcedoosely modeledafter the Tl 'C6x series
microprocessorslt is assumedhat operationbundlesare
storedin memoryin a compressedormat [19] in which
NOPsconsumeno space(asin Tl 'C6x), andeachopera-
tion is assumedo be 32 bits in length. The processohas
eightinteger ALUs, two of which canissueinteger multi-
plies; threememoryunits; one branchunit; two floating-
point units; andfour units capableof generatingoredicate
values. Figure 6 shows the fixed assignmenbf functional
unitsto slots. Arithmetic operationave alateng of 1 cy-

iterations

Trace o018
Legend

< 0/16
Execution

loop
recording

0/800

D 0116
buffered =
execution E 20/24
Buffer LI F | 40raa
D 0140
active
loop
D 0/80
stored e ———

loop CEEE ! 16/20

Post_Filter()
85869
instructions

issued 0156

0/800

016

1.23% buffer issue

(a) control flow graph (b) 16 operation loop buffer

iteration loop iteration
1234 buffer Duffered 5534

loop
buffer buffered 1 53 buffer buffered

iterations 777 iterations

0116 A 12116

0/16 B 12116

0/800 Cc 796/800

12/16 D 12116

LE 20/24

G 36/40

20/24

36/40

76/80 H 76/80

16/20 16/20

0/800 796/800

52/56 K 52/56

12/16 L 12/16

6.32% buffer issue

(c) 32 operation loop buffer

98.22% buffer issue

(d) 64 operation loop buffer

Figure 5: g724dec Post_Filter() loop control flow graph and buffer content traces

0 1 2 3 4 5 6 7

Imul/F| Imul/F| lalu lalu lalu lalu lalu lalu
Pred | Pred | Pred | Pred | Mem | Mem | Mem Br

Figure 6: VLIW issue slots for modeled architecture

cle; multiplies, 2 cycles;divides,8 cycles;loads,3 cycles;
andfloating point arithmetic,2 cycles. Sixty-four (64) in-
teger registersare provided. Generalcontrol speculation
is supportedoy providing all potentiallyexceptinginstruc-
tions except for storeswith a speculatie form. The ar
chitectureimplementgshe predicationschemeof Section4
with its four predicate-generatingnits; all slotsarecapable
of receving predicates.

7.1. Effectiveness of transfor mations

The direct measurementf branchoverheadreduction
and power savings dependson microarchitecturadetails
below the level we chooseto model. Loop buffers today
are a ubiquitousfeaturein DSR existing in mary imple-
mentationgrom hardwarebufferscapableof holdingafew
instructionsin a single loop, to complex buffers holding
multiply-nestedoops,to whatis effectively a setof point-
ersinto asoftware-managethstructioncachewhichimple-
mentsbuffering for very largeloops. Likewise, DSPshave
awide varietyof pipelinelengthsandbranchingmplemen-
tations,oftenincludingdelayslots.In generalthough,one
thing constitutesan improvementacrossall architectures,
regardlesof thesevariations:gettingmoreof the program
into aloopbuffer. This,therefords themetricwe chooseo
measurdhe effectivenesof our compilertransformations
in fitting loopsinto the simple buffer model describedn
Sectionb.

Two compilationswereperformedfor eachbenchmark:
oneappliedonly traditionalcompileroptimizationg(i.e. no
predicationand no loop collapsing),and the secondag-

gressvely appliedcontroltransformationghyperblockfor-
mation,unrolling, peeling,andcollapsing)intendedto en-
hanceopportunitiesor instructionbuffering. In bothcases,
profile-guidedselectve inlining was performedwith up
to 50% code expansion,modulo schedulingwith modulo
variable expansionwas performed,and loop bodieswere
schedulednto theloop buffer by the compiler, givenacon-
trol flow profile. Figure7(a) shavs, for eachof the bench-
marks, the fraction of instructionaccesseshat are satis-
fied by theloop buffer whenonly traditionaloptimizations
areapplied. Althoughthe benchmarkgontainsomesmall
loopswith no internal control flow, the benefitclearly sat-
uratesat a small buffer size. Figure 7(b) shows the same
metric for benchmarksafter aggressie transformationjn
which a muchgreatemproportionof executionis captured.
Theadpcmbenchmarksesohe for themostpartto asingle
predicatedoop which, onceschedulednto theloop buffer,
accountgor over99%of instructionissue After aggressie
control transformation,even much more complex bench-
markssuchastheg724codecssuebetweerf4 and96% of
instructionsfrom theloop buffer.

In light of the code example given in Section 6, it
is of interestthat a majority of g724dets executionoc-
cursin theloop buffer from the 64-operatiorsize onward,
which clearly confirmsthat the succes®f PostFilter() in
the buffering mechanismhasa greatimpacton the over
all benchmarks outcome.An additionalincreaseof about
20%in loop buffer issueis realizedfor g724deatthe 128-
operationbuffer size becausemportantloopsin functions
otherthanPostFilter() arethenbuffered.

Of thebenchmarkgor which lessthanthree-quartersf
instructionissueis capturedby the loop buffer, mpey2enc
is the most problematic. The MPEG-2 encodercontains
mary large, highly nestedoop structureswhich only iter-
ate severaltimes. Thoughloop collapsingsimplifiesloop

buffer issue / total issue

094

0.8 4

0.7

0.6 q

0.5+

0.4+

0.3

—&—adpemdec - - -A-- adpcmenc —oO— g724dec
—O— mpeg2dec -- 3- - mpeg2enc —O— pgpdec

--O-- g724enc —X—jpegdec
--O-- pgpenc —+—mpg123

--X-- jpegenc

P Qreneeenes O G eeeeeees B O eeeennees G ennnnnnes o

. 0

0.2

buffer issue / total issue

—O—g724dec
—X— jpegdec

—O— pgpdec

43

--<%-- g724enc

—O—mpeg2dec - -

X- - jpegenc
-- mpeg2enc

[n]

--O-- pgpenc

—+—mpg123

0.1

0.0 7 — m—" — — — 2 — T 2

128 256 512 1024 2048
buffer size (number of operations)

(a) Traditional code optimization only

256 512 1024
buffer size (number of operations)

(b) With hyperblock transformations

2048 4096

Figure 7: Percentage instruction issue from loop buffer

structuresn mary applicationsmpay2encs nestedioops
do not meetour criteriafor smallouterloop sizeandmod-

erateinner loop iteration count. Hyperblocktransforma-
tionsdo, however, almostdoublethe fraction of mpey2enc
instructiongssuedrom the buffer, but becauséoop buffer-

ing is mosteffective for high-iterationcountor small, high

instancecountloops, mpey2encis unlikely to achieve 80-

90%Iloop bufferissuerates regardlesof thecodetransfor

mationsapplied.

Similarly, predicationand loop transformationtech-
niguesrealizea twofold buffer issueincreasefor the jpe-
gencbenchmarkbut this final valuesaturatest 63%. The
JPEGencoderwas found to have significantnumbersof
innernestloops for which the iteration countswere gen-
erally small, but varied acrossdifferentloop invocations.
Peelingtheseloops into an outer hyperblockcould sig-
nificantly increasedependencdeights, but if buffer eli-
gibility wereto be given priority over dependencéeight
andfunction codesizeexpansiona muchmoresignificant
proportionof jpegencs instructionscould be memgedinto
single-hyperblockoopswhich issuefrom the loop buffer.
Lik ewise,collapsingcouldbeapplied,but sincetheseouter
loopbodiescontainednorecodethantheirinnerloops,this
would be detrimentalto performance.Although buffering
resultsaremoderateelative to otherbenchmarksthecom-
piler heuristicsbehaved correctlyin leaving the loopsun-
modified.

The buffer performanceof our MPEG-2 Layer 3 audio
decoder mpg123 strugglesexcept for very large (2048-
operation)uffer sizesprimarily becauséts executiontime
is concentratedn functionswith small trip countloops,
which, for optimalperformancemustall remainin theloop
buffer simultaneously Additionally, this benchmarkcon-
tainsa numberof large loopswhich werevery effectively
moduloscheduledbut which requirefour modulovariable
expansions thus increasingtheir code size. When mod-

ulo scheduledwith a rotating register algorithm, the size
of theseloopswasdecreasedndicatingthatbuffer perfor
mancecould likely be furtherimprovedthroughuseof ar
chitectedrotatingregisters.

7.2. Effectsof Loop Buffering

While the loop buffering resultsare encouragingit is
importantto considemthereffectsof the enablingtransfor
mations.Figure8(a) draws comparisondbetweerthe ILP-
transformedcode and traditionally optimized programs.
Clearly ILP transformationdrade codesize for improved
performance. An averageprogram speedupof 1.81 is
achievedwith our techniqueshut asshown by the second
grouping,staticcodesizeincreasesignificantlyrelative to
traditionallyoptimizedforms. Additionally, while thenum-
ber of instructionbundlesissueddoesnot increasethe to-
tal numberof opemationsfetched(“total fetch” in Figure8)
does.

Finally, we examine the net effects of buffering and
transformationon the benchmarkset. Figure 8(a) shovs
that for all but one benchmark(mpe2eng, the transfor
mationsappliedfor loop buffering significantly decrease
theamountof codewhich is fetchedfrom standardnstruc-
tion memory Cacti2.0[20] power simulationmechanisms
were usedto quantify the impactof this shift in fetch lo-
cation on processompower consumption. While DSP ar-
chitecturestraditionally had separaténstructionand data
memorieswider, more generalarchitecturesisea single,
large, unified on-chip storagespace[3]. While memory
poweris obviously highly dependentipondesignstyle, it is
not uncommorto seealinearincreasan power consump-
tion with size.Cactiresultsfor 0.13umtechnologyindicate
thatfetchinganoperatiorfrom asingle-port256-operation
buffer (assuming32-bit operations)consumest1.8 times
lesspower than a fetch from a 512KB, 2 read/writeport,
non-cachememory This result provides a meansof as-
sessinghe powerimplicationsof the proposedechniques.

4.0

3.5 adpcmdec
B g724dec
B jpegdec

M mpeg2dec
¥ pgpdec
Bmpg123

P adpcmenc
Hg724enc
N jpegenc
Mmpeg2enc
pgpenc

3.0 q

2.5

2.0 1

transformed / baseline

speedup static code size total fetch

0.5

0.0

(256-operation buffer)

(a) Performance, code size, and fetch count

Power consumption relative to baseline

o
o

18 A © Baseline buffered —
A Transformed
;
y © Transformed buffered
14
A A A
1.2 A A A
A A A
1.0 —0—O ©
o) o o
08
o
06 oO—
o
0.4
02 ° °
8 o o
0.0
Q Q o o (o] o o (&) (&) o [e2]
[0} < @ c @ =4 Q c [0} c o
k) [°© [he] () k) [} el [—
£ £ <5 < > > o [\ o} Q o
53 53 [\ [0]) o) =) D D Q
Q o P~ N~ o a o) [} a a €
S S o o = = Q Q
® @ € €

power(global) = 42 power(buffer)

(b) Estimated instruction fetch power (normalized)

Figure 8: Hyperblock and loop-transformed code vs. traditional optimizations

Sinceuseof a 256-operatiorbuffer allows incorporation
of large op-count, high iteration loops, mary loops will
consumeenoughcycles to reasonablyassumethat clock
gating could be effective on elementsof the global in-
structionfetch hardware while the loop buffer was being
accessed. Figure 8(b) shavs the estimatedpower con-
sumptionof instructionfetch, normalizedto buffer-lessis-
sue of traditionally-optimizedcode. While a 256-entry
loop buffer operatingon non-transformedcode reduces
instruction fetch power by an averageof 34.6% (“Base-
line buffered”), the proposedransformationseduceit by
72.3% (“Transformedbuffer”) relative to the samenon-
buffered,non-transformedbaseline.

7.3. Limitationsand futurework

While experimentakesults,someof which weretoo de-
tailedto includein this format, demonstratedhat binding
predicateso particularslotsdid notsignificantlyaffect per
formanceor codesizein thisbenchmarlset,theimplemen-
tation of compilertechniquedo bestmanageheseintrica-
ciesin the more complex benchmarksuchas mpey2enc
andjpegencis continuing.

As the architectural description indicated, the low-
overheadpredicationschemeaddsa 1-cycle critical path
from the outputof the predicate-generatao the predicate-
squashnput of the controlledfunctionalunit, aswell asa
systemof global bussesfor communicatingpredicateup-
dates.Thesearenotlikely to causea designconstraintun-
lessthe processors alreadyclustered.Shouldit becomea
problem thepredicateharnesgoulditself beclusteredei-
therto the samedegreeasthe VLIW, or to anevengreater
degree.While thisfurthercomplicateshecompilersjob, it
seemgonsistentvith otherexistingwork in clustering[1].

Finally, the source-routingpf predicatesby the simple
schemepresentedould be extendedin morecomplex and

eleggantdirections—possiblyo perform more complex op-
erations,suchas queuinga predicateto becomeactive at
somefuture time (easingthe livenessconstraint),or pos-
sibly to include somelimited-lifetime valuestraditionally
storedin generalpurposeregisters. The currentscheme,
while demonstrablysufficient for the benchmarksillus-
trated, may require greaterthan the optimal number of
predicatedefinesto guardgeneralpredicateccomputation.

8. Previouswork

Alternative loop buffering mechanismsvere described
in Section2. Thesehardware featuresare widely imple-
mentedin the DSP community but their implementation
andoptimalapplicationhave not beenexploredextensiely
in academicpublications. [21] studiedthe 31-instruction
loop buffersin the LucentDSP16000usinga setof small
DSPkernelsanddemonstrated 24.8%decreasén execu-
tion cycleswithout compilertransformationsanda 32.7%
decreasein execution cycles with compiler transforma-
tions. Among thesetransformationsvere function inlin-
ing andthe useof the conditionalexecutionsupportof the
DSP1600a0 includeloopswith simplecontroldiamonds.

Varioustechniquesave beenstudiedfor incorporating
predicationinto anarchitecturevithoutincreasinghe per
instructionencodingsize,at leastfor non-predicatedper
ations. Probablythe mostprevalentof theseis the condi-
tional move [22], a single “predicated”instructionwhich
operaten the Booleanvaluestoredin a general-purpose
register to selectfrom amongspeculatiely-generatede-
sults. Unfortunately operationswvhich may not be specu-
latedmustreceve speciakconditionalmove handlingwhich
requiresmorethanasingleinstruction.[22] shaveda44%
dynamiccodesizeincreasdor thistechniqueelativeto full
predication,which makesit questionabldor inclusionin

an embeddegrocessar Otherpaperg23] have proposed
addingguardpredicatesasinstructionprefixes, but this is
not in generalapplicableto the fixed-operation-encoding
size VLIW model typical of the latestDSPs. PA-RISC
provides instruction nullification to allow an instruction
to conditionally nullify one subsequentperation,but this
techniquéacksthe generalitynecessaryor if-conversion,
andconsumegncodingspacdan mary operations.

9. Conclusions

Elimination of control flow overheadis a key compo-
nent of high-performancecompilation on processorsn-
tendedor themediaandtelecommunicationsggment.We
demonstratetechniquesupportingheeliminationof gen-
eralinternal control flow usingfull predication,andtech-
nigueswhich improvethe utilization of a simple,one-lesel
loop buffer by transformingcontrol flow into a morereg-
ular form. Theimplicit structureof the VLIW wasthen
usedo developamechanismwhich providesthebenefitsof
full predicationwithout a predicateregisterfile or a predi-
catebypassetwork. Resultsachievedfor an8-wideVLIW
in a high-performance&ompilationervironmentindicatea
137.5%increasen thepercentagef instructiongssuedout
of the loop buffer, relative to traditional compilationtech-
nigues,togethermwith anaveragespeedumf 1.81. Finally,
thetransformationgppliedwereshavn to morethandou-
ble theinstructionfetchpower benefitof loop buffering, al-
lowing loop buffering to reduceinstructionfetch power by
72.3%in the modeledmachine. Theseresultsencourage
further explorationinto modelsof communicationwithin
theVLIW pipeline,which mayhave the potentialto reduce
registerpressuresave power, andsimplify hardware.

Acknowledgments

This work was supportedby the SemiconductorRe-
search Corporation under the grant “Memory Efficient
EPIC/VLIW Architecture(ID 785)” and by a grantfrom
StarCore.JohnSiasandHillery Hunterweresupportedy
fellowshipsfrom the IBM Centrefor AdvancedStudyand
the National ScienceFoundation,respectiely. We thank
the IMPACT contributorsfor their work on the compiler,
particularlyMatthev Merten,who recentlyenhanceanod-
ulo schedulingandtheanorymousreviewersfor theircom-
ments.

References

[1] J. Sanchezand A. Gonalez, “Modulo schedulingfor a fully-
distributed clusteredVLIW architecturé, in Proc. 33rd Int'l Sym-
posiumon Microarchitectue, pp.124-133Dec.2000.

[2] B.R.Rau,“Iterative moduloscheduling:An algorithmfor software
pipeliningloops; in Proc. 27th Int'l Symposiunon Microarchitec-
ture, pp.63-74,Dec.1994.

[3] StarCoreDSP Technology SC140DSP Core Refeence Manual
June2000.

[4]

(5]

(6]
(71
(8]
9]

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

K. Ebcioglu, “A compilationtechniquefor software pipelining of
loopswith conditionaljumps; in Proc.20thInt'l Symposiunon Mi-
croarchitectue, pp.69-79,1987.

M. Lam, “Softwarepipelining: aneffective schedulingechniquefor
VLIW machine$, in Proc. Confeenceon ProgrammingLanguae
DesignandImplementationpp. 318—-328,1988.

Intel Corporation)A-64 Architectue Softwae Developers Manual,
revision1.1, July 2000.

J.C. ParkandM. S. Schlanskr, “On predicated=xecution; Tech.
Rep.HPL-91-58,Hewlett PackardLaboratoriesMay 1991.

Texas Instrumentdncorporated,TMS320C600@PU and Instruc-
tion SetRefeenceGuide Mar. 1999.

STMicroelectronicsST120DSP-MCUProgrammingManual Dec.
2000.

ETSITC-SMG,"Digital cellularcommunicationsystemgenhanced
full rate (EFR) speechranscodinglGSM 06.60); Tech.Rep.ETS
300726, EuropeariTelecomm Standardsnstitute,Mar. 1997.

C. Lee, M. Potlonjak, andW. H. Mangione-Smith,'MediaBench:
A tool for evaluatingandsynthesizingnultimediaandcommunica-
tionssystems, in Proc. 30thInt'l Symposiunon Microarchitectuse,
pp.330-335Dec.1997.

W. W. Hwu, R. E. Hank,D. M. Gallagheretal., “Compiler technol-
ogy for future microprocessors Proceedingf the IEEE, vol. 83,
pp.1625-1995Pec.1995.

S. A. Mahlke, D. C. Lin, W. Y. Chen, et al., “Effective compiler
supportor predicateaxecutionusingthehyperblockK, in Proc.25th
Int'l Symposiunon Microarchitectue, pp.45-54,Dec.1992.

V. Kathail, M. S. Schlanskr, andB. R. Rau,“HPL-PD architecture
specification:Version1.1; Tech.Rep.HPL-93-80(R.1), Hewlett-
PackardLaboratoriesFeb 2001.

J. C. DehnertandR. A. Towle, “Compiling for the Cydra5,” The
Journal of Supecomputingvol. 7, pp.181-227 Jan.1993.

D. . August,D. A. ConnorsS.A. Mahlke, etal., “Integratedpredi-
catedandspeculatie executionin theIMPACT EPIC architecturé,
in Proc. 25th Int'l Symposiunon ComputerArchitectue, pp. 227—
237,Junel998.

P. FaraboschiG. Desoli,andJ. Fisher “Clusteredinstruction-leel
parallelprocessors, Tech.Rep.HPL-98-204 Hewlett-PackardLab-
oratoriesPec.1998.

M. Sami,D. Sciuto,C. Silvano,et al., “Exploiting dataforwarding
toreducethepowerbudgetof VLIW embeddegrocessors,in Proc.
Design,Automationand Testin Europe pp.252—-2572001.

T. Conte,S.Banerjia,S. Larin, etal., “Instructionfetchmechanisms
for VLIW architecturesvith compresseéncodings, in Proc. 29th
Int'l Symposiunen Microarchitectue, pp.201-211Dec.1996.

G. ReinmanandN. Jouppi,“An integratedcachetiming and power
model! SummerlnternshipReport, COMPAQ WesternResearch
Lab, Palo Alto, 1999.

G.-H. Uh, Y. Wang,D. Whallgy, et al., “Efficient exploitation of a
zerooverheadoop buffer,” in Proc. Workshopon Languages,Com-
pilers, and Toolsfor Embeddedystemspp. 10-19,May 1999.

S. A. Mahlke, R. E. Hank, J. McCormick, et al., “A comparisorof
full andpartial predicatedexecutionsupportfor ILP processors,in
Proc.22ndInt’| Symposiunon ComputerArchitectue, pp.138-150,
Junel995.

D. Connors,J. Puiatti, D. August, et al., “An architectureframe-
work for introducingpredicationinto embeddednicroprocessors,
in Proc.5th Int’'l Euro-Par Confeence Aug. 1999.

