
Modulo ScheduleBuffers

Matthew C. MertenandWen-meiW. Hwu
Centerfor ReliableandHigh-PerformanceComputing

Universityof Illinois, Urbana,IL 61801�
merten,hwu� @crhc.uiuc.edu

Abstract

AsVLIW/EPICprocessorsare increasinglyusedin real-
time, signal-processing, andembeddedapplications,theim-
portanceof minimizing code size and reducingpower is
growing. This paperdescribesa new architectural mech-
anism,called the Modulo ScheduleBuffers, that provides
an elegant interfacefor theexecutionof moduloscheduled
loops. While the performanceis similar to that of kernel-
only moduloscheduling, this mechanismhasa numberof
advantages, including minimal code expansion. Rather
than generating fully-scheduledkernels,the compilergen-
eratesa sequentialformof themoduloscheduledloopbody.
Using thesequentialform, thehardware internally synthe-
sizestheprologue, kernel,andepilogue. In addition,while
loopscanbescheduledwith fewerconstraintsandfewerex-
plicit prologues/epiloguesthan with existing mechanisms.
Becausethe hardware controls loop execution,the burden
of moduloscheduleloop control is lifted fromthepredicate
registerfile, allowing for a lessrigorouspredicationimple-
mentation.Finally, hardwarecontrol limits theinterrupt la-
tencywhenusingtheEQ explicit latencymodelto theexe-
cution latencyof oneiteration, rather than the wholeloop
invocation.

1. Intr oduction

Horizontal computerarchitectures,such as very long
instruction word (VLIW), superscalar, and explicitly par-
allel instruction computing (EPIC) architectures,enable
rapid executionof applicationsby exploiting instruction-
level parallelism (ILP). Software pipelining is a class
of techniques for optimizing loop execution through-
put by exploiting the ILP present across loop itera-
tions [1], [2], [3], [4], [5]. Techniquesin this classallow
instructionsfrom successive iterationsto executein paral-
lel with thoseof previousiterations,effectively overlapping
loop iteration execution. Unlike loop unrolling-basedop-
timization, softwarepipelining techniquesmaintainthe it-
erationoverlapthroughoutthe executionof the loop. Fur-
thermore,by utilizing hardwarerotatingregisters,codeex-
pansioncanbeheld to moderatelevelsascomparedto un-
rolling, which is an importantconsiderationfor embedded
applications.Modulo scheduling[6] is a form of software

II

iter 0

iter 1

Prologue

Kernel

Epilogue

Steady
State

Pipeline

Drain
Pipeline

Fill

iter n−2

iter n−1

Code LayoutRegion Execution
Flow

Action

Stage B

Stage C

Stage D

Stage A

Stage B

Stage C

Stage D

Stage A

Stage A

Stage D

Stage B

Stage C

Stage D

Stage A

Stage B

Stage C

Figure 1. Generaliz ed execution of modulo
scheduled loops with 4 overlapped iterations.

pipelining that initiates loop iterationsat a constantrate,
calledthe initiation interval (II).

Figure1 depictsthegeneralstructureof amodulosched-
uled loop. Eachloop iterationis divided into stagesof ex-
ecutionof II cycles each,four stagesin the example,ef-
fectively pipelining theexecutionof eachiteration. There-
fore, a new loop iterationcanbe begin executionevery II
cycles. At maximumutilization, a steady-statecondition,
calledthekernel, is reachedwhereall loop stagesarecon-
currentlyexecutingonbehalfof successive iterations.Once
the steady-stateconditionis reached,re-executingthe ker-
nel advanceseachactive loop iterationby onestage,end-
ing oneiterationandbeginninganother. The codeprior to
the kernel, called the prologue, ramps-upthe pipeline by
executingselective stages.Likewise, the epilogue ramps-
down thepipelinefrom thekernel,finishingthein-flight it-
erations.

Traditional implementationsof modulo schedulingre-
quirethattheprologue,kernel,andepilogueregionsbefully
specifiedin the code. Note that in the worst case,each
instructionin the loop body is replicatedn times(exclud-
ing any necessaryversioning),wheren is the numberof
concurrentlyexecutingiterationsof the loop. Suchrepli-
cationcontributesto overallcodegrowth, a seriousconcern
due to tight constraintson instructionmemoryand cache
resources,especiallyin embeddedapplications. In order
to overlaploop iterations,anti-dependencesmustoften be
broken. Modulo variable expansion(MVE) [5] is a tech-

niquewhich canbeappliedthatcreatesseveralversionsof
thekernelusingdifferentregisters.This, too, candramati-
cally increasecodesize.Kernel-onlymoduloscheduling[7]
reducesthe specificationof the loop to just the kernelby
utilizing predicationto enableexecutionof selectkernelin-
structionsduringtheprologueandepiloguephases,andro-
tating registersto eliminatetheneedfor kernelversioning.
However, with all of thesetechniques,a numberof diffi-
cult issuesremainto beaddressed.First, kernel-onlymod-
ulo schedulingrequiresextensive instructionset architec-
ture (ISA) supportfor full predication,a featurethatmany
architectsareunwilling to implementbecauseof the addi-
tionaldesigncomplexity.

Second,kernel-onlymodulo schedulingof while loops
is more complicatedthan for countedloops. While loops
generallyconsistof severalspeculative pipelinestagesthat
arecontrolledby predicates.However, without supportfor
block alterationof thepredicatesthatcontrolprologueand
epiloguestages,a variety of extra schedulingconstraints
must be observed, complicating the schedulingprocess.
Modulo schedulingon theItaniumArchitecture[8], for ex-
ample,constrainswhat typesof codeconstructscanbeex-
ecutedin the prologue. This problemwill be further dis-
cussedin Subsection2.4.

Third, somearchitecturesutilize theequals(EQ) latency
modelfor registerresultwrite back. Underthis model,the
resultsof operationsarenot written to theirdestinationreg-
istersuntil their exact architectedlatency hasexpired, and
never sooner. By exploiting this feature,a single regis-
ter mayhold several in-flight valuessimultaneously, which
mayreducetheneedfor kernelversioning.A sideeffectof
exploiting theEQmodelin thisway is thatexecutionof the
loop cannotbe interruptedwithout storingeachof the in-
flight registervaluesandtheir associatedwrite-backtimes
at thepointof interruption.

Fourth, repeatedfetching of a loop body from the in-
structioncacheor memoryunnecessarilywastesenergy. By
storinga moduloscheduledloop in a dedicated,compiler-
controlled buffer close to the functional units, the fetch
mechanismcan be temporarily disabled,thus saving en-
ergy. Currently, Zero-OverheadLoop Buffers (ZOLB) [9]
areusedto reduceenergy for countedloops,but anextended
techniquecould be employed for both modulo scheduled
andwhile loops.

In order to overcomethesedeficiencies,our proposed
solution,calledtheModuloScheduleBuffers (MSBs) [10],
employsahardware-controlled,moduloscheduleexecution
mechanismandanalternatemethodfor expressingtheloop
body to the hardware. Our mechanismreadsa sequential
versionof the loop body (insteadof a kernelversion)and
internally generatesand issuesprologue,kernel, and epi-
logueinstructionsto the functionalunits. Full predication
for loopcontrolbecomesunnecessaryin thismodelbecause
the active statusof loop body instructionsis maintainedin
the hardwarethrougha seriesof statusregisters. Because
the hardware managesloop execution, it is free to ramp

the First
Stages for

Stage 0

Stage 1

Stage 2

Stage 3 Kernel

Kernel

Loop Iteration

Prologue

Epilogue

Intra−Stage
0 321

Cycle

Functional Unit

Cycle

4

5

9

13

12

11

10

6

3

2

0

1

8

7

Actual Executed Code

1

0

(a) (c)(b)

Figure 2. Modulo scheduled loop with II of 2.

down the pipelinepart way throughthe loop executionto
serviceaninterrupt,andthenrampup executionafterward.
Thislimits theinterruptlatency onEQlatency hardwareto a
mereloopiterationinsteadof theremainderof theloop,and
freestheprogrammerof interruptlatency concerns.Further-
more,by generatingtheloop componentsinternally, thein-
structionscanbelocatedin dedicatedbuffers,thusavoiding
repeatedaccessto the entire instructionfetch mechanism.
While the compiler must still generatea correct modulo
schedule,it is free from generatingthe prologueandepi-
logue.Thus,it achievesa significantreductionin codesize
comparedto explicitly generatedcode,and is comparable
to kernel-onlycodesize. This hardwareenhancedscheme
achievesthe sameperformanceasthe fully-specifiedstan-
dardmethod.

1.1. Modulo Schedulingand Kernel-Only Code

Often times an II of 1 cycle is not achievable due to
schedulingor resourceconstraints.Figure2(a) depictsan
exampleloop that hasan II of 2, hencea new iterationof
theloop is startedonceevery two cycles.Thestagesfor the
first iterationare labeled,andresourceusagesfor eachof
the stagesareshaded(black for the first stage).While ex-
ecutingstage2 of iteration1, stage1 of iteration2 is also
executing. Furthermore,it is not a requirementthat only
1 instructionbeexecutedin eachcycle for a given loop it-
eration. For example,two instructionsareexecutedin the
secondcycle of the first stage,both on behalfof the same
iteration.Likewise,no instructionsareexecutedin thesec-
ond cycle of the secondstage. Note that even thoughno
resourcesareusedfor this cycle in this stage,thesamecy-
cle in otherstagesmay be executinginstructionsfor other
iterations.Figure2(b) depictsthetotal resourceusagedur-
ing thevariousregionsof loop execution.

Kernel-onlymoduloscheduling[7] utilizesasetof stage
predicatesto control the execution of the various loop
stages.This techniquerelieson thestagepredicatesto dy-
namically activate the necessaryinstructionsto comprise

Control

Memory
or

L1 Icache

(a) Fetch stage loop buffer

(b) Decode stage loop buffers

Memory
or

L1 Icache

Execute Stage

Stage
Decode

Loop
Buffers

Execute Stage

Stage
Fetch

...

Loop

Control
Buffer

n

Decode Stage
Registers

Loop Buffer
n

Stage
Fetch

n

...

Loop Buffer

Figure 3. Loop buff er arrang ement.

theprologueandepiloguefrom the kernel,eliminatingthe
needfor anexplicit prologueorepilogue.Forexample,each
of the similarly shadedblocks in figure will be predicated
on the samestagepredicate,so that only the kernel (Fig-
ure 2(c)) needbe expressedin the code. To perform this
taskefficiently, extensive useof predicationand therefore
a fully predicated(ISA) is required.Currently, only a few
processorssupportthe level of predicationrequired,while
many supporta smallsubset.Sometimes,with someclever
datalayout and instructionscheduling(specificallyof the
loop backbranchinstruction),portionsof theprologueand
epiloguemay be simply eliminated,but this is not always
possible[11].

2. Ar chitecture

In order to overcomethe challengesmentionedin Sec-
tion 1, our proposedmechanismintegratesprologueand
epiloguecreationand loop iteration managementinto the
architectureitself. This is accomplishedby extendingand
enhancingthe conceptof a loop buffer presentin many
DSPs,shown in Figure3(a). In this traditionalconfigura-
tion, the loop buffer, part of the fetch pipelinestage,acts
primarily like a compiler-controlledcacheof the instruc-
tion stream. This featurereducespower consumptionby
preventingfrequentredundantaccessesto thecacheandby
disablingportionsof the fetchmechanismwhenexecuting
from the buffer. For example,the Lucent DSP16000uti-
lizes a 31-instructionbuffer [9]. However, in an alternate

Issued to FUs from
buffersand issued to FUs

Read from instruction
stream, stored in buffers

iter n−2

iter n−3

Steady State
Buffer Issued

Fill Pipeline

Drain Pipeline

iter 1

iter 0

iter n−1

Stage C

Stage D

Stage B

Stage A

Stage C

Stage D

Stage A

Stage B

Stage C

Stage D

Stage B

Stage A

Stage C

Stage D

Stage B

Stage A

Stage C

Stage D

Stage B

Stage A

Figure 4. Process of filling and executing from
the Modulo Schedule Buff ers.

configuration,thedispatchedinstructionscouldbebuffered
in the decodestageof the pipeline, Figure 3(b). In this
configuration,instructionswould be bufferedin a location
associatedwith their functional unit and with their cycle
within the loop, asopposedto their locationin the instruc-
tion stream.Thisconfigurationenablesefficientsupportfor
moduloscheduledcode,andmay further reducepower by
allowingdecodersto bedisabled,if decodedinstructionsare
storedin thebuffers.

Without loss of generality, we will use Texas Instru-
ments’ TMS320C6000architectureas a baseto illustrate
the operationof our mechanism.In the original TI ’C6x
architecture,the dispatchstageof the pipelineconsistsof
a network that routesthe instructionsin the fetch packet (8
alignedinstructions)to their correctfunctional units [12].
Thisnetwork links eachinstructiondispatchregisterto each
instructiondecoderegister, which is the beginning of the
pathto theassociatedfunctionalunit. It is theresponsibility
of thecodegeneratorto insurethatthereis only asinglein-
structionin eachexecutepacket (subsetof the instructions
in the fetch packet that can be issuedin parallel) for any
functionalunit. In otherwords,within an executepacket,
thereis no hardwarecontentionfor theroutingwiresor the
functional units. To keepthe fetch logic simple, execute
packetsmaynot crossfetchpacketboundaries.

Ratherthanspecify the prologue,kernel, andepilogue
in the instructionstream,we proposeto includea sequen-
tial copy of the loop in the codeandusespecializedloop
bufferstocollecttheinstructions,formingtheprologue,ker-
nel, andepilogueat runtime. Figure4 depictsthis process.
Theshadedregionrepresentsthesequentialview of theloop
iteration,asstoredin the instructionstream. As it is read
from the stream,it is issuedto the functionalunits on be-
half of the first iteration. Meanwhile, it is also storedin
the buffers, from wheresubsequentloop iterationswill be
issued.For example,while StageB is readandissuedfor
Iteration0, StageA is issuedfrom thebufferson behalfof
Iteration1. The compilermustunderstandthat the execu-
tion of the loop iterationswill overlapandmust properly
moduloscheduletheloop body.

Modulo

Control

Schedule

Buffer

Buffer

Schedule
Modulo

...... D
is

pa
tc

h
S

ta
ge

...

Decode Stage RegistersTo FU0

...

Dispatch Stage Instruction Registers

To FU7

...

A
cc

es
s

Lo
gi

c

A
cc

es
sBuffer Buffer

Lo
gi

c

Figure 5. TI ‘C6x dispatc h pipeline stage with
the addition of the Modulo Schedule Buff ers
and related contr ol logic.

2.1. ActiveStageIssue

Figure 5 depicts a high-level view of the dispatch
pipeline stagewith the addition of the Modulo Schedule
Buffers. Thesystemconsistsof a MSB for eachfunctional
unit pipelineanda singlecontrolunit. Eachbuffer consists
of asmalltableindexedby thecurrentcycleof theexecuting
stages,asshown in centerboxof Figure6. Eachtableentry
consistsof a stagebit tag and an instruction. In steady-
state,the buffers containthe kernelof the modulo sched-
uled loop. Eachinstructionis storedin a buffer associated
with its functionalunit atanentrycorrespondingto its cycle
within thekernel.For EPICandVLIW machines,themod-
ulo schedulingalgorithmensuredtherewasno contention
for functional units and resources,and thereforethere is
no contentionfor MSB entriessincethereis a one-to-one
correspondencebetweenschedulelocation and buffer en-
try. During steady-state,executionprogressesthroughthe
bufferscycle-by-cycle,just like it wouldprogresscycle-by-
cycle througha software-specifiedkernel. The cycle de-
coderselectsthe currentcycle, and is driven by a counter
thatcountsfrom 0 to (II-1).

In orderto producea prologueandanepilogue,a mech-
anism is provided to selectively issue instructionsfrom
within the buffers. Referringbackto Figure2(b), the epi-
loguebeginsimmediatelyfollowing thekernel.Noticethat
in thebeginningof theepilogue,only Stages1 to 3 execute,
but not Stage0. In this way, previously initiated iterations
areallowedto complete,but nonew iterationsarebegun.In
orderto generatetheepiloguefrom within thehardware,se-
lect instructionsmustbedeactivated.This is accomplished
by taggingtheindividual instructionswith theirappropriate
stageand by maintaininga set of the active stagesin the
Active StagesBit Vector. At the endof a stage,all of the

bits in thevectorareshiftedto thenext sequentialbit to in-
dicatethat all of the active iterationshave moved to their
next stages.If the instructionstagetagstoredin thebuffer
is alsostoredasa bit vector, thena simple logic function
canbeusedto determineif theinstructionshouldbeissued.
If noneof thebits in theActiveStagesBit Vectormatchthe
bits in theentry’stag,thenaNOPis issuedto thefunctional
unit becausethatentryis not active in thatstage.Thevalue
filled into the first bit of the Active StagesBit Vectorafter
the shift dependson type andstateof the loop, which be
discussedin subsequentsections.

2.2. Buffer Initialization

Prior to loop execution, all of the StageBit Tags are
clearedto zero,indicatingthatnovalid instructionsareheld
in the entries.As the first iterationof the loop progresses,
its instructionsareinsertedfrom theinstructionstreaminto
the their appropriateentriesandare taggedwith their ap-
propriatestage.Theseinstructionsarealsoissueddirectly
to functionalunit pipelines.As otheriterationsareinitiated,
instructionsfor thoseiterationsareall issuedfrom theMod-
ulo ScheduleBuffers, even as instructionsfor later stages
of thefirst iterationareissuedandbeinginsertedinto other
entries.Thecontrolmechanismthatdirectstheloadingand
issuingprocessis shown in Figure7. Four values,shaded
grayat left, arerequiredto properlyinitialize theloophard-
ware. Thesevaluesarecommunicatedto the hardwareby
writing into control registers,similar to the setupfor tra-
ditional countedloop support. First, the initiation interval
(II) is requiredto limit the CurrentCycleCounter’s range,
which in turncyclesthroughtheentriesin thebuffers.

Second,the total numberof stagesin the loop body is
requiredto control the loading of the buffers. Using this
counterand the II, the controller fetchesexecutepackets
from theinstructionstreamandstorestheminto themodulo
schedulebuffersuntil theentireloop is read(II*NumStages
cycles). NOP instructionsthatserve asfiller in the instruc-
tion streamarenotassociatedwith any particularfunctional
unit andarenotwrittento any of thebuffers.TheBuffer Ac-
cessLogic, detailedin Figure6, enablesthewrite of non-
NOP first iterationinstructionsinto thebuffer. CurrentCy-
cle Counteris usedto selectthecorrectentry in thebuffer,
while theCurrent1st IterationStageCounteris usedto tag
eachinstructionwith its stage.Whenall loopexecutepack-
etsareread,the first iterationof the loop is complete. In
fact, the next executepacket waiting in the instructionde-
coderegisterscontainsthe first instructionsalongthe fall-
throughpath of the loop back branch. At this point, the
fetchunit maybedisabled,saving power, until all iterations
(which arecompletelydispatchedfrom theModuleSched-
uleBuffers)arecomplete.

The numberof epiloguestages(NumEpilogueStages)
servestwo purposes.First,whenaloopexit conditionis de-
tected(loop backbranchconditionis falseor sideexit con-
dition is true) previous loop iterationsmay not have com-

Stage
NOP

n

n

Inactive

OR of
n all bits

Current
Cycle Counter

Stage
Bit Tag

2

To FU

stage
1

stage
0

stage

......

0 1 0 ... 0

...

0 1 1 ... 0 bitwise AND

Active in Stage 1

Read Instruction
from Table

from Stream
into Table

of Non−nop
Enable Write

Current
Instruction

FT

Instruction
Current

Instruction
Current

Access
Logic

Buffer

Iter Stage
Current 1st Num

Stages

T

Iter Stage
Current 1st

Valid 1st
Iteration

Instruction

Buffer
is Non−nop?

F

Active Stages
Bit Vector

Instruction

<

Figure 6. The Modulo Schedule Buff er and the Buff er Access Logic.

counted loops

Dispatch Stage Instr. Registers

Dispatch

Stage

...

Buffer

Iterations
NumLoop

Modulo Schedule Buffer (1 per functional unit)

shift right on end of stage

Active Stages Bit Vector

1 1 0 0 ...

X 1 1 0 ...
0 for epilogue

1 for new iter

0 1 2 3 ...stage

stage

NumStages

II Buffer

Access

Logic

Enable

Read

To FU

Curr cycle

End of

write

inst

End of
stage

Iteration
Counter

NumEpilogueStages

upon loop
Apply mask

exit condition
to bit vector

Exit Active Stages Mask

0 0 1 1 ...

Iteration Stage
Current 1st

Current Cycle
Counter
0 to II−1

Active Stage
Comparison

Modulo Schedule Buffer Control

Figure 7. Detailed view of Modulo Schedule Buff er Contr ol unit.

pletedexecution.This registercontainsa countof thenum-
berof furtherkerneliterationsthatmustbecompletedto fin-
ish theprior iterations.Second,this valueenablesthepro-
ductionof an Exit Active StagesMask requiredto support
while loops.Whileloopoperationwill bediscussedin more
detail in Subsection2.4. This parametercouldbepassedin
by the compiler, or it could bedetectedat run time. Since
moduloschedulingschemarequirethat all branchesoccur
in thesamepipelinestage,thehardwarecouldmonitor the
buffer fill processfor any branchinstruction. The number
of epiloguestagescanbethenbedeterminedby subtracting
thebranch’sstagenumberfrom NumStages.

Last, the total numberof loop iterations(NumLoopIter-
ations)canbeusedto supportefficient countedloops.This
valueis storedin a counterthat is decrementedeachtime a
loop iterationis initiated. Theiterationis initiatedby shift-
ing a 1 bit into theActiveStagesBit Vector. Whentheloop
iterationcounterreacheszero,no more iterationsneedbe
initiated. This is accomplishedby shifting a 0 bit into the
Active StagesBit Vector for stage0. However, previous
iterationsmay have yet to complete(representedby 1 bits
remainingin thevector). NumEpilogueStageskernelitera-
tionswill beexecutedto completeprior iterations(shifting
in 0 bits at theendof eachstage)beforeexecutionwill fall

throughto post-loopcode.For countedloops,no loop back
branchis requiredsincethe iteration length and iteration
countarepredeterminedvalues.

In somecases,control will leave a modulo scheduled
loop, executeothercode,andthenreturnto the loop. This
is commonwhen the modulo scheduledloop is nestedin
an outer loop. In thesesituations,it is possibleto reini-
tialize the loop control registerswhile usingthepreviously
bufferedloop, thusavoiding the repeatedfill process.Sev-
eralalternativesexist, includingcompilerdeterminedreuse
andrun-timedetectedreuse.

2.3. Operational Example

Figure8 depictsthecountedloop operationof theMod-
ulo ScheduleBuffer system. In this example,threeitera-
tions of the loop areexecutedon a 4-issuemachine. The
loop body, asillustratedat theupperright cornerof thefig-
ure, consistsof two loads,onemultiply, oneadd,andone
shift instruction. The loop is moduloscheduledinto three
stages. Thus, eachiteration requires6 cycles to execute,
with a throughputof oneiterationper two cycles. Thefig-
uredepictsthecontentsof eachfunctionalunit’s MSBsfor
the tencyclesof the loop execution. Shadedbuffer entries
indicatetheactivestagesthatareissuedto theFUsfrom the
buffers,while theoutlinedandshadedentriesindicatethose
that arefilled into the buffers andissuedto the functional
unitsfrom theinstructionstream.Actionsduringselectcy-
clesaredescribedbelow:
Initialization: Initialize NumStagesto 3, NumLoopItera-
tions to 3, II to 2, NumEpilogueStagesto 2, and Current
CycleCounterto 0. As in TI’s ’C6x architecture,theinitial-
izationinstructionsmayneedto bescheduledseveralcycles
prior to theloopbodyin orderto overcomeinitialization la-
tency. Assignmentto the II or NumStagesregisterscould
beusedto triggerfilling of thebuffer sincethesefieldsare
requiredfor bothcountedandwhile loops.
Cycle 0: Loop executionbegins by shifting a 1 bit into
the stage0 locationof the Active StagesBit Vector. This
initiates a new iteration and thus the Iteration Counteris
decrementedto 2. Thefirst executepacket containsa load
instruction. Sincethe Current1st Iteration Stagecounter
is lessthanNumStages,a valid first iterationinstructionis
presentin the executepacket. It is filled into the memory
unit’s buffer for cycle 0 andmarked with stage0, and is-
suedto thememoryfunctionalunit.
Cycle 1: The CurrentCycle Counteris incrementedto 1.
Thesecondinstructionis alsoa valid first iterationinstruc-
tion. It is a load andis placedinto cycle 1 of the memory
unit’sbuffer andmarkedwith stage0.
Cycle 2: The CurrentCycle Counterequalsthe II, so it is
resetto 0, andthe End of Stageconditionis raised. Since
theIterationCounteris non-zero,anew iterationis initiated
by shifting a 1 into theActive StagesBit Vector, activating
stages0 and1. The IterationCounteris decrementedto 1.
From the instructionstream,a nop is read,which is not a

useful instructionand is not written into any buffer. The
nopis simplyaplaceholderto containthecyclestopbit for
this emptycycle dueto the two-cycle latency betweenthe
load in cycle 1 andthe multiply in cycle 3. However, the
instructionin cycle 0 of thememoryunit is issuedbecause
its stagematchesanactivestage.
Cycle 5: Two instructionsin the executepacket arefilled
into thebuffersfor theALU andshifterunitsatcycle1.
Cycle 6: The CurrentCycle Counteris resetto 0. How-
ever, theIterationCounteris alreadyat zero,indicatingthat
no new iterationsshouldbe initiated. Thereforea 0 bit is
shiftedin, leaving only stages1 and2 active. TheNumEpi-
logueStagescounteris decrementedsinceexecutionis only
completingpreviously initiated iterations. Coincidentally,
the Current1st IterationStagehasalsoexceededthe loop
body length. The next executepacket containspost-loop
code. Therefore,no new instructionswill be accumulated
into thebuffers.
Cycle 10: The CurrentCycle Counteris resetto 0. Nu-
mEpilogueStagesis alsozero, indicatingall epiloguesare
complete.Loopexecutionhasended.

2.4. Active StageManagement

In orderto supportwhile loops,iterationsmustbe initi-
atedspeculatively, which requiresthat1 bits beshiftedinto
theActive StagesBit Vectorto enablethosestagesprior to
any loop backdecision.However, whena while loop exits,
all speculativeiterationsmustbesquashedfrom themodulo
schedulepipeline so their speculative resultsdo not com-
mit. Considertheloop in Figure9(b)whichconsistsof four
stages,with a sideexit anda loop backbranchin stage1.
Note that iteration1 mustbe speculatively initiated before
the loop backdecisionin iteration0 is reached.Now sup-
posethat the loop backconditionin iteration1 fails. This
indicatesthat thecurrentiteration(1) andall previous iter-
ations(0) shouldcomplete,but all future iterations(2 and
3) shouldbe squashed.Oncethe loop backbranchfails, a
0 will be shifted into the Active StagesBit Vectorso that
iteration3 is not initiated, andthe 1 bit (circled) for itera-
tion 2 mustbecleared.In generalizedloopexecution,1 bits
mustbe shiftedin during the prologueandkernelregions,
speculative stagebits mustbeclearedon anexit condition,
and0 bits mustbeshiftedin duringtheepilogueregion.

Other architecturemechanismshave beenproposedto
supportkernel-onlyschedulingof while loopsthroughthe
useof a rotatingpredicateregisterfile andspecialbranch-
ing instructions[11]. In thesearchitectures,the rotating
predicatesserve thesamefunctionastheActive StagesBit
Vector, however thereis no supportfor selectively squash-
ing thepredicatesof speculative iterationson anexit. Two
primary optionsexist to alleviate this problem. First, ex-
plicit epiloguescanbegeneratedthatissuethecorrectnon-
speculative stageson an exit, while the rotatingpredicates
areusedto issuethe prologuefrom the kernel. However,
thismayrequireextraepiloguecodeateachloopexit point.

100 ld

ld100

shl

001

001add001

Note: epilogue started, so stage 0 instruction no longer active

001 add shl

shl001add001mul010

mul010

001 001add shl

100 ld

010 mul

ld100

100 ld 010 mul

100 ld

001add shl

100 010 mul 001ld

100 ld 010 mul

first iteration
instructions

nop
addshl

mul

5
4
3
2 nop
1
0

ld
ld100

110

110

111

001

001

011

111

011

100

100 ld

ld100

mul010

ld100

ld100

Stages
Epi

Num

Cycle
ALU Shifter UnitMultiplier UnitMem Unit

000

stage

2

1

0

100 ld

0

4

3

2

1

6

5 100 ld

100 ld7

8

9 100 ld

100 ld

100 ld

100 ld

Cycle

000

000

Stage

000000

000

000

000 000

000 000

000 000

000

000

000000

000000

000

000

000

000

000

000

000

000 000

000

000

000

000 000

000 000

000

000 000 000

000000000

000

000

Active
Stages

0

1

0

1

0

1

0

1

0

1

Stage
1st Iter

Curr

2

0

1

1

2

0

0

0

0

0

Cntr
Iter

0

X

2

X

X

X

2

1

1

0
init

2

2

2

2

2

2

1

1

0

0

Instruction issued from

filled from instruction stream

Buffers Buffers Buffers Buffers

Inactive buffer entry

Instruction issued and

1
0
1
0
1

0

cycle

Modulo Schedule Buffers

post−loop

(all fully pipelined)

1

1

2

2

shift

add

mul

load

LatencyOperation

Figure 8. Example loop execution using the Module Schedule Buff ers.

Second,therotatingpredicatesmaybeusedto issuetheepi-
loguefrom thekernelwhile anexplicit prologueisprovided.
In this scheme,0 bits areinsteadshiftedinto the predicate
registersto disableunneededstagesin theepilogueregion.
Similar to thisscheme,theItaniumArchitecture[8] utilizes
the predicatesfor the epilogue,but suggeststhat specula-
tive stagesbe generatedso that they canalwayssafelyex-
ecute,ratherthan specify an explicit prologue. However,
thisplacesanumberof restrictionsonscheduling.Consider
oneexamplefrom theshadedloop iterationin Figure10(a).
Normally, the predicatep5 could only be set when stage
1 is actually active, as controlledby stagepredicates1,
andclearedotherwise(unconditional-typepredicatedefine
of p5). Therefore,predicatep5 actuallycontainsthe log-
ical AND of the definingcondition (cond) and the stage
predicate.This predicatecanthenbe usedin placeof the
stagepredicateonthebranchin stage3. However, asshown
in Figure10(b),thespeculativestagesno longerhave stage
predicatesandexecuteunguardedin the Itanium Architec-
ture. In thefirst cycle,stage1 erroneouslyexecutes,poten-
tially settingpredicatep5’ (p5’ is differentthanp5 due
to versioning,asdescribedin thenext section).Sincep5’
maynow besetto truein cycle0, thebranchin cycle2 may
erroneouslyexecute. Therefore,predicatedefinitionsthat
controlnon-speculativeinstructionscannotbespeculatively
generated,thus limiting the stagethey may be scheduled
in. To prevent this and other similar situations,a signifi-

cantnumberof extra dependencesmustbe obeyed during
scheduling.

In our approach,we utilize an Exit Active StageMask
to disablespeculative iterationson an exit, allowing us to
usethe Active StageBit Vectorfor bothprologueandepi-
logue code. In the example in Figure 9(b), the mask is
appliedto disablestage1 of speculative iteration2. Each
stageof the loop is classifiedasspeculative, exit, or non-
speculative. After executionof the loop backbranch,only
the non-speculative iterationsmust completetheir execu-
tion. Therefore,the maskconsistsof bits representingthe
non-speculativestages.This maskis constructedasshown
in Figure9(a).Figure9(c) depictsthesameloop,only with
atakenearlysideexit. In thiscase,theremainderof thecur-
rent iterationshouldnot completeits execution.Therefore,
thesamemaskthatenablesonly thenon-speculativestages
canbeapplied.Whenasideexit is detected,executioncon-
tinuesin thekernelto completepreviousiterationswhile the
fetchunit beginsfetchingfrom theexit’s target. Thetarget
instructionsarebufferedin dispatchregistersuntil theloop
hascompleted.

Lastly, aswith countedloops,a loop backbranchis not
necessaryfor while loops sincethe hardwarecontrolsthe
iterationsof the kernel. However, an instructionthat com-
municatesto the hardwarethe resultof the loop backcon-
dition is required. Similarly, sideexit branchesdo not ac-
tually alter control flow, but rathernotify the hardwareof

only stage 0 is
speculative

2

3

1

0 0

0

1

1

Speculative

Non−speculative

Non−speculative

Exits

Stage Type Mask

(b) While loop with failed loop back branch (c) While loop with taken early exit

is in stage 1)
(the loop back branch

Exit Active Stages Mask

Iter 0

Iter 1

Iter 3

Iter 2

Because theta=1

0

(a) Contruction of the

01 1

1 11 0

1

1

00

00 0

0

000 0

000 0

000 0

3210

1 0 0 0

Apply
mask

taken
exit
Side

Iter 0

Iter 1

Iter 2

Iter 3

3210

1 0 0 0

001 1

1 11 0

10 0

000 0

000 0

00 0

1

1

Bit Vector
Active Stages

Side exit

Loop back branch

at end of stage

Apply mask

Loop back fails

Shift Active Stages
Bit Vector

Active Stages
Bit Vector

0

1

2

3

br
0

1

2

3

br

0

1

2

3

br
0

1

2

3

br

br

br

br

br

0

1

2

3

br
0

1

2

3

br

0

1

2

br
0

1

2

3

br

3

br

br

br

br

Figure 9. Four stage while loop with loop back branc h in stage 1.

Iter 0 Iter −3Iter −3 Iter −2 Iter −1 Iter 0Iter −1Iter −2

1
if(s1&cond)

else
0

p5

p5

1
if(cond)

else
0

p5

p5
Undesired stages of execution

Desired stages of execution

0

0

0

(b) Kernel−only loop utilizing no prologue stage predicates

1

1 0 0 0

1

1 0

0

1

00

0 0 0

00

cycle

0

1

2

3

0 2 31

Actual executed instructions

(p5’’’)br

3

(s3)br

(s3)br

2

3

(s3)br
(p5’’)br

(p5)br

2

3

(p5’)br

1
if(s1&cond)

else
0

p5’

p5’

(s3)br

1 1

2

3

(s3)br
(p5’)br

1
if(cond)

else
0

p5’

p5’

2

3

(s3)br
(p5’’)br

3

(s3)br
(p5)br

3

2

0

1

(p5’’’)br

3

(s3)br

2

0

1

Non−Existent Iterations Non−Existent Iterationsstage preds
s: s: 3

stage pred

(a) Kernel−only loop utilizing prologue stage predicates

Figure 10. Four stage while loop with unpredicated speculative stages.

thesideexit conditionandreportthetargetaddress.A con-
dition failure or any taken side exit branchwill causethe
maskto beapplied.Thehardwarewill automaticallyiterate
throughthe kernel for NumEpilogueStages,decrementing
thecounterat thetakensideexit condition(becausethecur-
rentstageis now consideredanepiloguestagefor previous
iterations)andat theendof eachII.

2.5. RegisterVersioning

Many loop bodiescontain valuesthat have long life-
times.Whenavariable’slifetime is greaterthanII cycles,its
lifetime will overlapwith the lifetime of the samevariable
in thenext iteration.In orderto keepthevaluesfor eachiter-
ationseparate,registerversioning(renaming)is employed.
In software, this techniqueis called Modulo Variable Ex-
pansion(MVE) [5], [11], [13]. MVE unrolls theloop body
andassignsa differentregisterfor eachiteration. The loop
kernel then consistsof copy of eachversionof the loop
body, and iteratesthroughthe differentversions. Special-

ized epiloguesarerequired,onefor eachexit of eachver-
sion. However, thesetechniquescandramaticallyincrease
codesizeandcanbetricky to generate.

A rotating register file [14] canalsobe usedto support
versioning. This featuresprovidesa mechanismsuchthat
usesof aparticulararchitecturalregisterin successive itera-
tionsactuallyutilize differentphysicalregisters.Thephys-
ical registernumberis the sumof a rotating register base
with specifiedarchitectureregisternumber, modulothesize
of theregisterfile. At theendof eachII, therotatingregis-
terbaseis decrementedsuchthatthenew iterationutilizesa
new physicalregister. Notethattheregistermappingsin the
secondstageof thefirst iterationhavealsobeenaffectedby
theupdateto the rotatingregisterbase.Therefore,register
namesin subsequentloop stagesmustbe compensatedto
counteractthis effect. This techniqueis proposedto handle
renamingwith theModulo ScheduleBuffers.

(a) (c)(b)

lat3

lat3r2++

r1

st [r2],r1 r2++

r1

st [r2],r1

1

st [r2], r1 ;st 9

;st 5

EQ model w/ interrupt
after cycle 2

EQ model

r1 <− 1

RTLcycle

0

r1 <− r1 * 5

r1 <− r1 + 8

st [r3], r14

3

2

1

st [r2], r1 ;st 5 or 9

;st 5 or 9

r1 <− 1

RTLcycle

0

r1 <− r1 * 5

r1 <− r1 + 8

st [r3], r14

3

2

Figure 11. Data deliver y graph for code utiliz-
ing multipleassignmenton the result of a 3-cycle
multipl y instruction.

2.6. Interrupt Handling

Two primary schedulingmodelsexist for non-unit as-
sumedlatency (NUAL) architectures.The TI ‘C6x is an
exampleof the equalsmodel (EQ), whereeachoperation
executesfor exactly its specifiedlatency, andwrites back
the resultexactly after that latency hasexpired. Consider
the examplein Figure11(a). In cycle 0, registerr1 is ini-
tialized to a valueof 1. In cycle 1, the multiply operation
beginsusingthevalueof 1 for r1. Becausethe latency of
themultiply is 3 cycles,theresultof themultiply will notbe
written backto r1 until theendof cycle 4. Meanwhile,in
cycle 2, thevalueof r1 is guaranteedto still be1, andthe
addcompleteswriting a valueof 9 to r1. Thestoreof r1
in cycle 3 is alsoguaranteedto beunaffectedby themulti-
ply andwill correctlywrite to memorya valueof 9. As can
beseenin this example,registerscaneffectively bereused
duringlong latency operations,oftenresultingin fewer reg-
istersneededfor acomputation.TI callsthisparticulartype
of reusemultiple assignment. Similarly in Figure11(c), a
singleregistercanbeusedto supportversioningif theresult
is usedby theconsumershortly it is available.Becausethe
latency of r1 is threecycles,ther1 for theseconditeration
will not prematurelyoverwrite the valuefor the first itera-
tion. Useof multiple assignmentcanoften reducethe re-
lianceon explicit versioning,but rarelyeliminatestheneed
for it.

The othermodel is calledthe lessthan or equalmodel
(LE). Under this model, the result latency is specifiedas
the maximumtime that a particularoperationmay take to
completeandwrite backits result.In otherwords,theresult
maybewritten backat any time up until andincludingthe
cycle at which its latency expires. Coding for this model
disallows the register reuseallowed in the EQ model. TI
callsthis typeof registerallocationsingleassignment.

Clearly, whenschedulingandregisterallocatingfor an
LE machine,a single assignmentmethodologymust be
used.If aninstructionfinishesearlyandoverwritesa regis-
ter, anotherusageof that registermight readthenew value
rather than the old value. However, for an EQ machine,
eithersingleassignmentor multiple assignmentscheduling

andallocationmaybeused.If theinstructionis guaranteed
to take a certainnumberof cycles,assumingthatit canfin-
ishedearlyis a safe,conservativeassumption.

Thoughregisterscannotbe reusedduring long latency
operations,interrupthandlingin codescheduledfor theLE
model is muchsimpler. Preciseinterruptsaremaintained
by completingexecutionof codealreadyin the functional
unitsandsquashingcodein the fetch or decodeunits. Af-
ter processingthe interrupt,executioncancontinuefrom a
singleprogramcountervalue, the instructionimmediately
following the last oneexecuted. Likewise, correctlyhan-
dling interruptsin theEQmodelundersingleassignmentis
simple,asall instructionsprior to the interruptcanbe al-
lowedto finish. Sincethescheduleassumedthat they may
finish early, the computationwill be correct. However, in-
terrupthandlingin theEQmodelundermultipleassignment
is moredifficult. Considerthesituationwhenaninterruptis
taken immediatelyafter instruction2 in the exampleFig-
ure11(b).A preciseinterruptcannotbetakenbecausethere
is no single programcountervalue whereall instructions
prior to the PC have beenexecutedandall after have not.
The multiply wasissuedprior to the interruptandhasnot
yet completed.Furthermore,if that instructionis allowed
to completebeforethe interruptis actually taken, thenthe
valueof r1 would be prematurelyoverwrittenwith the re-
sultof themultiply. Hardwaretechniques,suchassnapshot
buffers [15] andreplaybuffers [16], have beenproposedto
save theresultandits relative write-backtime upona con-
text switch. Thesefeaturesareoften costly to implement
andarenot presentin theTI architecture.Therefore,in the
TI processors,interruptsmustbepostponedduringany por-
tion of thecodethatusesmultiple assignment.

However, by usingthe Modulo ScheduleBuffers, inter-
ruptswill only haveto wait until theendof thecurrentloop
iterationbeforethey canbeprocessed.This is a benefitof
having the control logic actually issuing iterationsof the
loop. Whenaninterruptoccurs,new iterationswill stopbe-
ing issuedfrom theMSBs,likewhenthelastiterationof the
loop hasbeenissued.After theepiloguesof previousitera-
tionshave completed,the interruptcanbetaken. Note that
the IterationCounterregistercontainsthenumberof itera-
tionsthatremainin theloopandwill needto besavedacross
context switches.Similarly, the instructionstreamaddress
of the beginningof the initialization codealsoneedsto be
savedin casethebuffersneedto bereloadeduponreturning.

At the end of eachiteration of the loop body, a set of
registersandmemorylocationsexist thatcommunicatestate
to thenext iteration. Figure12(a)depictsanexampleloop
bodywith sucha cross-iterationregisterlifetime r1. This
lifetime is liveinto theloop,but is notliveoutalongthefall-
throughpathof the loop backbranch. Sincethe example
lifetime is not liveout, it maybeallocatedinto two rotating
registersr3 andr4. However, by delayingiteration2 by
two stagesdueto theinterrupt(to allow iterations0 and1 to
complete),two additionalrotationshavebeenperformedas
shown in Figure12(b). This valuenow appearslive out the

r3

r4

r4

before
resumption

Iter 0

Iter 1

r1

r1

r3

r1

r1
r1

Iter 0

Iter 1

Iter 2

Cross−iter flow

r1

Iter 2

r3

r4
r3

base by
(II−1)

register
rotating
Rewind

(a) Virtual register version of

rotate

no rotaterotate

rotate

rotate

rotate

rotate

loop with its flow dependences

11

cycle

10

9

(b) Rotating register version
of the loop, with an interupt
between iterations 1 and 2

8

7
6

5

3

r5

r4

4

2

1
r3

r3

0

Figure 12. Register allocation for interrupt tol-
erance of a sample loop bod y.

bottomof theloop in iteration1 asr5 andlive into thetop
of iteration2 asr3. In orderto maintaincorrectness,cross
iterationlifetimes mustbe allocatedasif they werelive in
andlive out of the loop, anduponrestartingthe loop, the
rotatingregisterbasemustbe rewoundby (II-1) stagesto
movetheliveout valuesto their live in locations.

2.7 DesignComplexity

The proposedModulo ScheduleBuffer mechanismhas
beendesignedasa setof componentsin order to manage
complexity. Eachcomponentconsistsprimarily of a single
counteror register(or tableof registers)with someattached
control logic. While the interconnectmay seemcomplex,
there is clear flow of control information that originates
at the CurrentCycle Counterandflows to the Buffer Ac-
cessLogic, with minimal feedback. Becausethe Current
Cycle Countersimply countsfrom 0 to II-1, its behavior,
andthereforethebehavior of its dependentcomponents,is
highly cyclic. This featurewould allow thecontrol logic to
berunslightly aheadof thebuffersthemselvesif cycle time
becamealimiting factor. Theonly significantfeedbackloop
in thesystemconcernsthedetectionof exit conditionsand
thusapplicationof theExit ActiveStagesMask.By thetime
anexit conditionis detectedby a functionalunit at theend
of theexecutehardwarepipelinestage,theMSB systemhas
alreadypreparedthe next setof instructionsfor execution.
Theseinstructionswereissuedbasedon what is effectively
a speculativeActive StagesBit Vector, sincethe feedback
from thepreviously issuedinstructionshasnot yetbeenap-
plied. It maybepossibleto nullify selectinstructionsbased
ontheupdatedbit vector, but morelikely, theexecutepacket
mustbeflushedandreissued.

In termsof cycle time, minimal logic hasbeenaddedto
thedispatchpipelinestagein orderto write to or fetchfrom
theMSBswhenappropriate.A multiplexor hasbeenadded
to the stageto selectandinstructionfrom eithertheMSBs
from the fetchunit. Theselectorlogic for this multiplexor

mustcheckfor anincomingNOPfrom thefetchstage,and
mustcheckfor a valid first iterationinstruction(which can
run ahead,aspreviously mentioned).Essentially, the crit-
ical paththroughthe dispatchstageis only increasedby a
few gates.

The size of the buffers is directly relatedto the maxi-
mumsupportedII, maximumnumberof stages,andnumber
of functionalunits. For example,anaggressive implemen-
tation could supporta maximumII of 32 anda maximum
stagecountof 16, with 8 functionalunits. Therefore,each
entrywould containa 32-bit instructionanda 16-bit stage
tag. Eachbuffer would contain32 entriesfor a total of 192
bytes.Therefore,thetotal systemcouldrequire1536bytes
of storageplusa handfulof registersfor thecontrolunit.

3. Experimental Results

In order to explore the effectivenessof our system,the
IMPACT Compiler[17] wasenhancedto generatecodefor
kernel-onlymoduloschedulingandfor theModulo Sched-
ule BuffersusingIterative Modulo Scheduling[6]. Twelve
MediaBench[18] programs,a MP3 player, and a GSM
codec[19] wereemulatedto verify the correctnessof our
systemwhile examiningloop characteristics.Thesebench-
markswerecompiledusingtheIMPACT compilerto gener-
ateaggressively-optimizedsuperblockandhyperblockcode
for the IMPACT EPICarchitecture[20]. Functioninlining
(to anestimated50%staticcodesizeincrease)wasalsoem-
ployedalongwith useof compilerintrinsicsto supporttyp-
ical DSPoperationsto broadenthescopeof availableloops
for pipelining.

The baseprocessormodel is an 8-issue,single clus-
ter, EPIC architecturewith a functional unit mix and in-
structionlatenciessimilar to that of the TexasInstruments
TMS320C6700line of processors[12]. Table 1 lists the
machinespecifications.Largeregisterfiles werechosento
emulatethe effectsof multiple assignmentand to provide
ampleresourcefor aggressive modulo scheduling. These
experimentsaredesignedto provide insight into theoppor-
tunity availablefor utilizing moduloschedulingin DSPap-
plications.

For theseexperiments,we limited themaximumII to 48
cycles. Very few moduloschedulableloopswereobserved
thatwould exceedthis II, evenwith moreaggressivepredi-
cation.Observationsof many of theselargeloopsalsoindi-
cateminimaloverlapof theiterations,mitigatingthepoten-
tial benefitsof moduloscheduling.Thecostsof increasing
the size of the Modulo ScheduleBuffers to include these
largerloopsalsooftenout-weighsthepotentialbenefits.

Table2 showsthenumberof issuedcyclesin eachof the
applicationsstudied(first datacolumn),alongwith theper-
centageof thosecycles spentin modulo scheduledloops
(secondcolumn), and the percentspentexecuting solely
from the buffers (third column). The applicationsaverage
72%of their executionin moduloscheduledloops,indicat-
ing thatsignificantbenefitscanbeachievedby maintaining

BenchmarksDescription:Input Number % Modulo % MSB-only Kernel-Only MSB Kernel-Only MSB
Cycles Sched Issued StaticOps StaticOps StaticOps StaticOps

Cycles Cycles (ind. nops) (ind. nops) (Multi-nop) (Multi-nop)

adpcmdec Adaptive diff. pulsecodemod.[18]: 1.33M 99.9 99.6 456 464 432 432
adpcmenc clinton.pcm 2.96M 99.9 99.7 480 504 464 464
epicdec Experimentalimagecodec[18]: 3.83M 64.4 51.7 7768 7880 7080 7080
epicenc test image 32.37M 40.6 29.3 10096 10272 9392 9400
g721dec CCITT G.721voicecodec[18]: 86.19M 37.8 26.7 2872 2896 2776 2768
g721enc clinton.pcm 98.87M 35.4 24.2 3008 3032 2936 2928
jpegdec IJPEGGroupimagecodec[18]: 1.23M 84.0 71.4 49368 49408 45488 45464
jpegenc testimg.jpg 5.08M 46.1 34.9 51952 52056 48208 48192
mpeg2dec MPEG2videocodec[18]: 62.65M 84.9 65.5 17048 17328 16144 16176
mpeg2enc mei16v2.m2v 390.35M 90.2 68.8 29256 29512 27592 27560
pgpdec PrettyGoodPrivacy codec[18]: 22.14M 82.1 72.5 99968 100192 96736 96720
pgpenc pgptest.plain 28.42M 80.3 69.4 105296 105552 101920 101848
g724dec ETSI GSM06.60speechtranscoding[19]: 16.85M 82.7 65.4 6440 6640 6192 6184
g724enc 363framesof speechandnoise 107.57M 85.8 71.3 11600 12080 11320 11288
mpg123 MPEG-2Layer3 audiodec:short.mp3 34.72M 73.2 54.8 29696 29936 27272 27288

average N/A 72.4% 60.4% N/A (norm)+1.5% N/A (norm)-0.1%

Table 2. Benc hmark results for Modulo Schedule Buff er utilization.

Name Functionality NumUnits

L Logic/Int ALU/Fp ALU/Fp Convert 2
S Branch/Shifter/Logic/IntALU/Fp ALU 2
M Multiplier 2
D Memory/BasicInt ALU 2

InstType Latency InstType Latency

Int ALU 1 Fp ALU 3
Int Multiply 2 Fp Multiply 4
Int Divide 10 Fp Divide 15
Int Logic 1 Fp Reciprocal/Sqrt 2
Int Shift 1 Fp Conversion 4
Int Load 4 Branch 1

Reg Type NumAvailable Max SubsetRotating

Integer 128 64
Double/Float 64 32
Predicate 128 128

Table 1. Emulated machine characteristics.

continuousoverlapof loop iterations.Of greaterinterestis
thattheapplicationsissueanaverageof 60%of theircycles
solelyoutof thebuffers.Thispercentagedirectlycorrelates
to a reductionin the numberof executepacketsthat must
beservedby the instructioncacheandfetchunit. By issu-
ing from thebuffersinstead,theseportionsof theprocessor
canbe disabledthroughclock gatingor othermeans,thus
saving energy. Furthermore,by reusinga loop when it is
alreadystoredin theMSBs, thepercentageof MSB cycles
will likely grow towardthepercentageof moduloscheduled
cycles(its maximum).

Columnsfour andfive of Table2 show theeffectsof the
sequentialrepresentationof themoduloscheduledloopson
codesize. TheMSB scheduledcodesizesarecomparedto
ideal kernel-onlycodewithout prologuesor epilogues.To
taketheMSB codesizemeasurement,weappliedagreedy-
stylebundlerto theentireprogram,packingexecutepackets
into the 8-slot fetch packets. The resultsindicatean aver-
agecodesizepercentageincreaseof 1.5%dueto theextra
nops for cycle stopbits thatmustbe insertedto represent

emptycyclesin the sequentialrepresentationof the loops.
Becausethe loop body instructionsarespreadover theen-
tire heightof aniteration,many morenopcyclesarepresent
thanwhenspreadover II cyclesin a kernel-onlyrepresen-
tation. The problemwasmostnoticeablein floating-point
codedueto the long latency instructions.However, by us-
ing aspecialmulti nop instructioncapableof represent-
ing several emptycycleswith oneinstruction,thecodesize
increasebecomesnegligible (columnssix and seven). In
fact,for pgpenc(andseveralotherbenchmarks)thesequen-
tial representationwas actually smaller. By representing
the codesequentially, the loop body consistsof more but
smallerexecutepackets, thusmaking themeasierto pack
into 8-slotfetchpacketswith lesswaste.

In orderto examinethedesirednumberof entriesfor the
MSBs,thefractionof eachbenchmarkexecutedin modulo
scheduledloopsof eachII wascalculated.Figure13depicts
thefractionof issuedmoduloschedulecyclesfor a givenII
for severalrepresentative benchmarks.Thenormalizedav-
erageof all thebenchmarksrevealsthatanimplementation
that supportedan II of 16 cyclescouldachieve about70%
of thepotentiallymoduloschedulablecycles.Clearly, asthe
II is increasedbeyond32, thebenefitsarelesslikely to out-
weightheextra costsof largerModulo ScheduleBuffers.

4. Conclusionand Future Work

The mechanismpresentedin this paperhas beende-
signedto provideanelegantinterfacefor executingmodulo
scheduledcode. While it achieves the sameperformance
as fully-specifiedand kernel-onlymethods,it hasa num-
ber of advantages.The mechanismprovidesthe ability to
limit interruptlatency to a singleloop iterationratherthan
the remainderof the loop, and moves the burdenof loop
control to the dedicatedhardware,thusallowing for a less
costly predicationschemes.It handlesall possiblepossi-
ble loop trip countscleanly, unlike fully-specifiedmethods
whichrequireahandfulof differentepilogues,andmostim-

�
�����
��	

���
��� �
��� �
��� �
��� �
��� �
��� �

! " # $ % & ' () *+ , - . / 01 23 45 67 89 :; <=
>@?BADC EGFIHKJ L

M NO P
Q RST U
VW XYZ
[\]^
_`a b
c de f

g hi j
k lm n
op q
rs tu

vxw y{zD|~}��������~����I���~�����B�
�����������~���
���~���B���
 �¡�¢�£�¤~¥�¦
§©¨�ª�«�¬B�®
¯�°�±³²µ´�¶

Figure 13. Cumulative percenta ge of the modulo scheduled cycles for a given II.

portantly, handlesall formsof while loopswithout any pro-
logueor epilogue.Futurework includesdevelopmentof an
integratedregisterversioningmechanismthat doesnot re-
quiretheexplicit useof rotatingregisters.

5. Acknowledgments

Special thanks to Chris Shannon,John Sias, Hillery
Hunter, and the rest of the IMPACT ResearchGroup for
their commentsandassistance.This researchwaspursued
while theauthorswerewith IMPACT Technologies,Incor-
porated.

References
[1] B. R. RauandC. D. Glaeser, “Someschedulingtechniquesandan

easilyschedulablehorizontalarchitecturefor high performancesci-
entific computing,” in Proc.of the20thAnnualWorkshopon Micro-
programmingandMicroarchitecture, pp.183–198,October1981.

[2] K. EbciogluandT. Nakatani,“A new compilationtechniquefor par-
allelizing loops with unpredictablebrancheson a VLIW architec-
ture,” in Proc.of theSecondWorkshoponLanguagesandCompilers
for Parallel Computing, pp.213–229,1989.

[3] A. Aiken and A. Nicolau, “A realistic resource-constrainedsoft-
warepipeliningalgorithm,” in Advancesin LanguagesandCompil-
ers for Parallel Processing(A. Nicolau,D. Galernter, T. Gross,and
D. Padua,eds.),pp.274–290,London:Pitman/TheMIT Press,1991.

[4] M. RajagopalanandV. H. Allan, “Efficient schedulingof fine grain
parallelismin loops,” in Proc. of the 26th InternationalSymposium
onMicroarchitecture, pp.2–11,December1993.

[5] M. S. Lam, “Software pipelining: An effective schedulingtech-
nique for VLIW machines,” in Proc. of the ACM SIGPLAN1988
ConferenceonProgrammingLanguage DesignandImplementation,
pp.318–328,June1988.

[6] B. R. Rau, “Iterative moduloscheduling,” InternationalJournal of
Parallel Processing, vol. 24,pp.3–64,February1996.

[7] J. C. Dehnert,P. Y. Hsu, andJ. P. Bratt, “Overlappedloop support
in the Cydra5,” in Proc. of the Third InternationalConferenceon
Architectural Supportfor ProgrammingLanguages and Operating
Systems, pp.26–38,April 1989.

[8] Intel Corporation, Intel IA-64 Architecture Software Developer’s
ManualVolume1: ApplicationArchitecture, Jan2000.

[9] G.-R.Uh, Y. Wang,D. Whalley, S. Jinturkar, C. Burns,andV. Cao,
“Effective exploitation of a zerooverheadloop buffer,” in Proc. of
the ACM SIGPLANWorkshopon Language, Compilers, and Tools
for EmbeddedSystems, May 1999.

[10] W. W. Hwu andM. C. Merten,Methodand Apparatusfor Modulo
ScheduledLoopExecutionin a ProcessorArchitecture. UnitedStates
PatentApplication,IMPACT Technologies,Inc., December1999.

[11] B. R. Rau,M. S. Schlansker, andP. P. Tirumalai, “Codegeneration
schemafor moduloscheduledloops,” in Proc.of the25thAnnualIn-
ternationalSymposiumon Microarchitecture, pp. 158–169,Decem-
ber1992.

[12] Texas Instruments,“TMS320C6000CPU and instructionset refer-
enceguide,” Tech.Rep.SPRU169D,Texas,March1999.

[13] D. M. Lavery, Modulo Scheduling for Control-IntensiveGeneral-
PurposePrograms. PhDthesis,Departmentof ElectricalandCom-
puterEngineering,Universityof Illinois, Urbana,IL, 1997.

[14] B. R. Rau,D. W. L. Yen, W. Yen, andR. A. Towle, “The Cydra5
departmentalsupercomputer,” IEEE Computer, vol. 22, pp. 12–35,
January1989.

[15] G. R. Beck, D. W. Yen, and T. L. Anderson,“The Cydra 5 min-
isupercomputer:Architectureandimplementation,” TheJournal of
Supercomputing, vol. 7, pp.143–180,January1993.

[16] K. W. Rudd, “Efficient exception handling techniquesfor high-
performanceprocessorarchitectures,” Tech.Rep.CSL-TR-97-732,
CoordinatedScienceLab,StanfordUniversity, October1997.

[17] W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M.
Lavery, G. E. Haab,J. C. Gyllenhaal,andD. I. August, “Compiler
technologyfor future microprocessors,” Proc. of the IEEE, vol. 83,
pp.1625–1995,December1995.

[18] C. Lee, M. Potkonjak, and W. Mangione-Smith,“Mediabench: A
tool for evaluatingandsynthesizingmultimediaandcommunications
systems,” in Proc. of the 30th Annual InternationalSymposiumon
Microarchitecture, pp.330–335,December1997.

[19] ETSI TC-SMG,“Digital cellularcommunicationssystem;enhanced
full rate(EFR) speechtranscoding(GSM 06.60),” Tech.Rep.ETS
300726,EuropeanTelecomm.StandardsInstitute,Mar. 1997.

[20] D. I. August,D. A. Connors,S.A. Mahlke,J.W. Sias,K. M. Crozier,
B. Cheng,P. R. Eaton,Q. B. Olaniran,andW. W. Hwu, “Integrated
predicatedandspeculative executionin theIMPACT EPICarchitec-
ture,” in Proc.of the25thInternationalSymposiumonComputerAr-
chitecture, pp.227–237,June1998.

