Modulo ScheduleBuffers

Matthen C. MertenandWen-meiW. Hwu
Centerfor ReliableandHigh-Performanc€omputing
Universityof lllinois, Urbana,lL 61801
{mertenhwu}@crhc.uiuc.edu

Abstract

AsVLIW/EPICprocessas are increasinglyusedin real-
time signal-piocessingandembeddedpplicationstheim-
portance of minimizing code size and reducing power is
growing This paperdescribesa new architectural med-
anism, called the Modulo ScheduleBuffers, that provides
an elegantinterfacefor the executionof moduloscheduled
loops. While the performanceis similar to that of kernel-
only modulosdceduling this medanismhas a numberof
advantgyes, including minimal code expansion. Rather
than geneating fully-scheduledkernels,the compilergen-
eratesa sequentiaform of themoduloscheduledoop body
Using the sequentiaform, the hardware internally synthe-
sizesthe prologue kernel,and epilogue In addition,while
loopscanbescdeduledwith fewer constaintsandfewer ex-
plicit prologues/epilguesthan with existing medanisms.
Becausehe hardware contmls loop execution,the burden
of moduloscheduleloop contmol is lifted fromthe predicate
registerfile, allowing for a lessrigorouspredicationimple-
mentation.Finally, hardware contmol limits theinterruptla-
tencywhenusingthe EQ explicit latencymodelto the exe-
cution latencyof oneiteration, rather than the wholeloop
invocation.

1. Intr oduction

Horizontal computerarchitectures,such as very long
instruction word (VLIW), superscalarand explicitly par-
allel instruction computing (EPIC) architectures,enable
rapid executionof applicationsby exploiting instruction-
level parallelism (ILP). Software pipelining is a class
of techniquesfor optimizing loop execution through-
put by exploiting the ILP presentacross loop itera-
tions[1], [2], [3], [4], [5]- Techniquesdn this classallow
instructionsfrom successie iterationsto executein paral-
lel with thoseof previousiterations effectively overlapping
loop iteration execution. Unlike loop unrolling-basecdbp-
timization, software pipelining techniqguesmaintainthe it-
erationoverlapthroughoutthe executionof the loop. Fur-
thermore by utilizing hardwarerotatingregisters,codeex-
pansioncanbe held to moderatdevelsascomparedo un-
rolling, which is animportantconsideratiorfor embedded
applications.Modulo scheduling[6] is a form of software

Execution

Region Code Layout Action
—— Flow —_—
iter 0 RE
Fill Stage A| iterl Il
Pipeline Stage B| stage A| 4 Prologue
Stage C| Stage B| Stage A
Steady
State ¢ Stage D| Stage C| Stage B| Stage A Kernel
Stage D| Stage C| Stage B
Drain Stage D| Stage C Epilogue
Pipeline iter n-2 | Stage D

iter n—-1

Figure 1. Generalized execution of modulo
scheduled loops with 4 overlapped iterations.

pipelining that initiates loop iterationsat a constantrate,
calledtheinitiation interval (I1).

Figurel depictsthegeneraktructureof amodulosched-
uledloop. Eachloop iterationis divided into stagesof ex-
ecutionof Il cycleseach,four stagesin the example, ef-
fectively pipelining the executionof eachiteration. There-
fore, a new loop iteration can be begin executionevery Il
cycles. At maximumutilization, a steady-stateondition,
calledthe kernel, is reachedvhereall loop stagesarecon-
currentlyexecutingon behalfof successieiterations.Once
the steady-stateonditionis reachedye-executingthe ker-
nel advanceseachactive loop iteration by one stage,end-
ing oneiterationandbeginning another The codeprior to
the kernel, called the prologue ramps-upthe pipeline by
executingselectve stages. Likewise, the epilogue ramps-
down the pipelinefrom the kernel,finishingthein-flight it-
erations.

Traditional implementationsof modulo schedulingre-
quirethattheprologue kernel,andepilogueregionsbhefully
specifiedin the code. Note that in the worst case,each
instructionin the loop body is replicatedn times (exclud-
ing ary necessaryersioning),wheren is the numberof
concurrentlyexecutingiterationsof the loop. Suchrepli-
cationcontributesto overall codegrowth, a seriousconcern
dueto tight constraintson instructionmemoryand cache
resourcesgspeciallyin embeddedapplications. In order
to overlaploop iterations,anti-dependencesiust often be
broken. Modulo variable expansion(MVE) [5] is a tech-

niguewhich canbe appliedthat createsseveral versionsof
the kernelusingdifferentregisters. This, too, candramati-
callyincreasecodesize.Kernel-onlymoduloschedulind7]

reducesthe specificationof the loop to just the kernel by
utilizing predicationto enableexecutionof selectkernelin-

structionsduring the prologueandepiloguephasesandro-
tating registersto eliminatethe needfor kernelversioning.
However, with all of thesetechniquesa numberof diffi-

cult issuesremainto be addressedFirst, kernel-onlymod-
ulo schedulingrequiresextensive instructionset architec-
ture (ISA) supportfor full predication,a featurethatmary

architectsare unwilling to implementbecauseof the addi-
tional designcomplexity.

Second kernel-onlymodulo schedulingof while loops
is more complicatedthan for countedloops. While loops
generallyconsistof several speculatie pipelinestageghat
arecontrolledby predicates However, without supportfor
block alterationof the predicateghat control prologueand
epiloguestages,a variety of extra schedulingconstraints
must be obsened, complicating the schedulingprocess.
Modulo schedulingon the Itanium Architecture[8], for ex-
ample,constrainsvhattypesof codeconstructanbe ex-
ecutedin the prologue. This problemwill be further dis-
cussedn Subsectior?.4.

Third, somearchitecturesitilize theequals(EQ) latengy
modelfor registerresultwrite back. Underthis model,the
resultsof operationsarenot writtento their destinatiorreg-
istersuntil their exactarchitectedateng hasexpired, and
never sooner By exploiting this feature,a single regis-
ter may hold severalin-flight valuessimultaneouslywhich
may reducethe needfor kernelversioning.A sideeffect of
exploiting the EQ modelin thisway is thatexecutionof the
loop cannotbe interruptedwithout storing eachof the in-
flight registervaluesandtheir associatedvrite-backtimes
atthepointof interruption.

Fourth, repeatedetching of a loop body from the in-
structioncacheor memoryunnecessarilyastesnegy. By
storinga moduloscheduledoop in a dedicatedcompiler
controlled buffer closeto the functional units, the fetch
mechanismcan be temporarily disabled,thus saving en-
ergy. Currently Zero-Overhead oop Buffers (ZOLB) [9]
areusedo reduceenegy for countedoops,but anextended
techniquecould be employed for both modulo scheduled
andwhile loops.

In orderto overcomethesedeficiencies,our proposed
solution, calledthe Modulo ScheduleBuffers (MSBs) [10],
employs ahardware-controlledmoduloschedulesxecution
mechanismandanalternatemethodfor expressingheloop
body to the hardware. Our mechanisnreadsa sequential
versionof the loop body (insteadof a kernelversion)and
internally generatesand issuesprologue, kernel, and epi-
logueinstructionsto the functionalunits. Full predication
for loop controlbecomesinnecessariy thismodelbecause
the active statusof loop body instructionsis maintainedn
the hardware througha seriesof statusregisters. Because
the hardware managedoop execution, it is free to ramp

Stages for Functional Unit
the First 012

Loop lteratio Intra—Stage Cycle Actual Executed Code
Cycle .

-

o

Stage 0

-1 1

2

Stage 1 3 Prologue

Stage 2 4
5

Stage 3 6

g Kernel

7
8 Kernel
9
10 .
1 Epilogue

@) (b) (©)
Figure 2. Modulo scheduled loop with Il of 2.

down the pipeline part way throughthe loop executionto
serviceaninterrupt,andthenrampup executionafterward.
Thislimits theinterruptlateny on EQ lateng/ hardwareto a
mereloopiterationinsteadf theremaindeiof theloop,and
freestheprogrammenf interruptlatengy concernsFurther
more,by generatingheloop componentsénternally, thein-
structionscanbelocatedin dedicateduffers,thusavoiding
repeatedaccesdo the entire instructionfetch mechanism.
While the compiler must still generatea correct modulo
schedulejt is free from generatingthe prologueand epi-
logue. Thus,it achievesa significantreductionin codesize
comparedo explicitly generateccode,andis comparable
to kernel-onlycodesize. This hardwareenhancedgcheme
achievesthe sameperformanceasthe fully-specifiedstan-
dardmethod.

1.1 Modulo Schedulingand Kernel-Only Code

Often timesan Il of 1 cycle is not achievable due to
schedulingor resourceconstraints. Figure 2(a) depictsan
exampleloop thathasan |l of 2, hencea new iteration of
theloopis startedonceevery two cycles. Thestagedor the
first iteration are labeled,and resourceusagedor eachof
the stagesare shadedblack for thefirst stage). While ex-
ecutingstage? of iterationl, stagel of iteration2 is also
executing. Furthermoreit is not a requirementthat only
1 instructionbe executedin eachcycle for a givenloop it-
eration. For example,two instructionsare executedin the
secondcycle of the first stage,both on behalfof the same
iteration. Lik ewise, no instructionsareexecutedn the sec-
ond cycle of the secondstage. Note that even thoughno
resourcesareusedfor this cycle in this stage the samecy-
cle in otherstagesnay be executinginstructionsfor other
iterations.Figure2(b) depictsthe total resourcausagedur-
ing thevariousregionsof loop execution.

Kernel-onlymoduloschedulind 7] utilizesa setof stage
predicatesto control the execution of the various loop
stages.This techniquerelieson the stagepredicatego dy-
namically activate the necessarnynstructionsto comprise

L1 Icache<— Fetch ' Loop . |
or Stage | Buffer == [:
Memory — i Control u ‘
n n !
Loop Buffer
Decode Stage
Registerg
‘ Execute Stage ‘
(a) Fetch stage loop buffer
[
Lllcache[=| petch i Loop Buffer
or Stage ! Control
Memory [—* i
n |
!
Fem e m e g o N T~ o
! | ! ! Decode
| } | | Stage
| (- aes ‘» ‘» LOOp
Buffers

Ny S

‘ Execute Stage

(b) Decode stage loop buffers

Figure 3. Loop buffer arrang ement.

the prologueandepiloguefrom the kernel,eliminatingthe

needfor anexplicit prologueor epilogue.For example each
of the similarly shadedblocksin figure will be predicated
on the samestagepredicate,so that only the kernel (Fig-

ure 2(c)) needbe expressedn the code. To performthis

task efficiently, extensve useof predicationandtherefore
afully predicatedISA) is required. Currently only a few

processorsupportthe level of predicationrequired,while

mary supporta smallsubset.Sometimeswith someclever

datalayout and instruction scheduling(specifically of the

loop backbranchinstruction),portionsof the prologueand

epiloguemay be simply eliminated,but this is not always

possible[11].

2. Architecture

In orderto overcomethe challengesmentionedin Sec-
tion 1, our proposedmechanismintegratesprologueand
epiloguecreationand loop iteration managemeninto the
architecturdtself. This is accomplishedy extendingand
enhancingthe conceptof a loop buffer presentin mary
DSPs,shown in Figure 3(a). In this traditional configura-
tion, the loop buffer, part of the fetch pipeline stage,acts
primarily like a compilercontrolled cacheof the instruc-
tion stream. This featurereducespower consumptionby
preventingfrequentredundanticcesse® the cacheandby
disablingportionsof the fetch mechanismwhenexecuting
from the buffer. For example,the Lucent DSP16000uti-
lizes a 31-instructionbuffer [9]. However, in an alternate

iter 0
Stage A| iterl
Stage B| Stage A
Stage C| Stage B| Stage A
Stage D| Stage C| Stage B| Stage A
Stage D| Stage C| Stage B| Stage A
Stage D| Stage C| Stage B
iter n—-3 | Stage D| Stage C
iter n-2 | Stage D

Fill Pipeline

Buffer Issued C‘
Steady State

Drain Pipeline

iter n-1

Issued to FUs from

D Read from instruction
buffers

stream, stored in buffer
and issued to FUs

Figure 4. Process of filling and executing from
the Modulo Schedule Buffers.

configurationthedispatchednstructionscould be buffered
in the decodestageof the pipeline, Figure 3(b). In this
configuration,instructionswould be bufferedin a location
associatedvith their functional unit and with their cycle
within theloop, asopposedo their locationin the instruc-
tion stream.This configurationenablesfficient supportfor
moduloscheduledcode,and may further reducepower by
allowing decoderso bedisabledjf decodednstructionsare
storedin the buffers.

Without loss of generality we will use Texas Instru-
ments’ TMS320C6000architectureas a baseto illustrate
the operationof our mechanism.In the original Tl 'C6x
architecture the dispatchstageof the pipeline consistsof
anetwork thatroutestheinstructionsin the fetch padket (8
alignedinstructions)to their correctfunctional units [12].
Thisnetwork links eachinstructiondispatchregisterto each
instructiondecoderegister, which is the beginning of the
pathto theassociatefunctionalunit. It is theresponsibility
of thecodegeneratoto insurethatthereis only asinglein-
structionin eachexecutepadket (subsetf the instructions
in the fetch paclet that can be issuedin parallel) for ary
functionalunit. In otherwords, within an executepaclet,
thereis no hardwarecontentionfor theroutingwiresor the
functional units. To keepthe fetch logic simple, execute
pacletsmay not crossfetch paclketboundaries.

Ratherthan specify the prologue,kernel, and epilogue
in the instructionstream,we proposeto include a sequen-
tial copy of theloop in the codeand usespecializedoop
buffersto collecttheinstructionsformingtheprologue ker-
nel, andepilogueat runtime. Figure4 depictsthis process.
Theshadedegionrepresentthesequentiaview of theloop
iteration, as storedin the instructionstream. As it is read
from the streami,it is issuedto the functional units on be-
half of the first iteration. Meanwhile, it is also storedin
the buffers, from wheresubsequenibop iterationswill be
issued. For example,while StageB is readandissuedfor
IterationO, StageA is issuedfrom the buffers on behalfof
Iteration1. The compilermustunderstandhat the execu-
tion of the loop iterationswill overlap and must properly
moduloscheduleheloop body.

Dispatch Stage Instruction Registers

Dispatch Stage

Modulo
Schedule -
Buffer

To FUO

Decode Stage Registersto FU7

Figure 5. Tl ‘C6x dispatc h pipeline stage with
the addition of the Modulo Schedule Buffers
and related contr ol logic.

2.1 Active Stagelssue

Figure 5 depicts a high-level view of the dispatch
pipeline stagewith the addition of the Modulo Schedule
Buffers. The systemconsistsof a MSB for eachfunctional
unit pipelineanda singlecontrolunit. Eachbuffer consists
of asmalltableindexedby thecurrentcycle of theexecuting
stagesasshown in centerbox of Figure6. Eachtableentry
consistsof a stagebit tag and an instruction. In steady-
state,the buffers containthe kernel of the modulo sched-
uledloop. Eachinstructionis storedin a buffer associated
with its functionalunit atanentrycorrespondingo its cycle
within thekernel.For EPICandVLIW machinesthe mod-
ulo schedulingalgorithm ensuredtherewas no contention
for functional units and resourcesand thereforethereis
no contentionfor MSB entriessincethereis a one-to-one
correspondencbetweenschedulelocation and buffer en-
try. During steady-stategxecutionprogresseshroughthe
bufferscycle-by-gscle,justlike it would progressycle-by-
cycle through a software-specifieckernel. The cycle de-
coderselectsthe currentcycle, andis driven by a counter
thatcountsfrom O to (11-1).

In orderto producea prologueandanepilogue,a mech-
anism is provided to selectvely issue instructionsfrom
within the buffers. Referringbackto Figure 2(b), the epi-
loguebeaginsimmediatelyfollowing the kernel. Notice that
in thebeginningof theepilogue only Stagedl to 3 execute,
but not Stage0. In this way, previously initiated iterations
areallowedto complete put no new iterationsarebegun. In
orderto generateheepiloguefrom within thehardware,se-
lectinstructionsmustbe deactvated. This is accomplished
by taggingtheindividual instructionswith their appropriate
stageand by maintaininga setof the active stagesin the
Active StagesBit Vector At the endof a stage,all of the

bits in the vectorareshiftedto the next sequentiabit to in-

dicatethat all of the active iterationshave movedto their
next stages.If the instructionstagetag storedin the buffer

is alsostoredasa bit vector thena simplelogic function
canbeusedto determindf theinstructionshouldbeissued.
If noneof thebitsin the Active Stage®Bit Vectormatchthe
bitsin theentry'stag,thenaNOPis issuedo thefunctional
unit becausehatentryis notactive in thatstage.Thevalue
filled into thefirst bit of the Active StageBit Vectorafter
the shift depend=on type and stateof the loop, which be
discussedn subsequergections.

2.2 Buffer Initialization

Prior to loop execution, all of the StageBit Tagsare
clearedo zero,indicatingthatno valid instructionsareheld
in the entries. As the first iteration of the loop progresses,
its instructionsareinsertedfrom the instructionstreaminto
the their appropriateentriesand are taggedwith their ap-
propriatestage. Theseinstructionsare alsoissueddirectly
to functionalunit pipelines.As otheriterationsareinitiated,
instructiondor thoseiterationsareall issuedrom the Mod-
ulo ScheduleBuffers, even asinstructionsfor later stages
of thefirst iterationareissuedandbeinginsertednto other
entries.The controlmechanisnthatdirectstheloadingand
issuingprocesss shavn in Figure7. Four values,shaded
grayatleft, arerequiredto properlyinitialize theloop hard-
ware. Thesevaluesare communicatedo the hardware by
writing into control registers,similar to the setupfor tra-
ditional countedloop support. First, the initiation interval
(1) is requiredto limit the CurrentCycle Counters range,
whichin turn cyclesthroughthe entriesin the buffers.

Second the total numberof stagesin the loop body is
requiredto control the loading of the buffers. Using this
counterandthe I, the controller fetchesexecutepaclets
from theinstructionstreamandstoregheminto themodulo
schedulébuffersuntil theentireloopis read(Il*NumStages
cycles). NOP instructionsthatsene asfiller in theinstruc-
tion streamarenot associateevith any particularfunctional
unitandarenotwrittento ary of thebuffers. TheBuffer Ac-
cessLogic, detailedin Figure6, enableghewrite of non-
NOP first iterationinstructionsinto the buffer. CurrentCy-
cle Counteris usedto selectthe correctentryin the buffer,
while the CurrentlstlterationStageCounteris usedto tag
eachinstructionwith its stage Whenall loop executepack-
etsareread,the first iteration of the loop is complete. In
fact, the next executepaclet waiting in the instructionde-
coderegisterscontainsthe first instructionsalong the fall-
through path of the loop back branch. At this point, the
fetchunit maybedisabled saving power, until all iterations
(which arecompletelydispatchedrom the Module Sched-
ule Buffers)arecomplete.

The number of epilogue stages(NumEpilogueStages)
senestwo purposesFirst,whenaloop exit conditionis de-
tected(loop backbranchconditionis falseor sideexit con-
dition is true) previous loop iterationsmay not have com-

Current 1st Current Current Current 1st Num
Active in Stage 1 Iter Stage Instruction Instruction Iter Stage Stages
| |
Stage i ¢ ¢ ¢ Buffer
. _ tBitTag (<] | Access
010...¢ Instruction Logic
Current Enable Write
Cycle Counter of Non-nop
—™ from Stream
Inactive into Table Valid 1st
Stage Iteration
Active Stages NOP Instruction
Bit Vector n Current
— Read Instruction| nstruction
—~“n bitwise AND from Table
stage stage stage
o 1 2
Y ToFU
Figure 6. The Modulo Schedule Buff er and the Buff er Access Logic.
! . .
! Dispatch Stage Instr. Reglste% $ “
I
(Curent 15t | | v
|:Num8ta os .| Current 1st | -
9 Iteration Stag§ }
‘ I
End of |
stage l ' Buffer
Fm \ Enable
urrent Lycle Curr cycle, write
m = Counter e . ~——{ Buffer
Otoll-1
Access
End of
y stage Logic Dispatch
> Active Stages Bit Vector Stage
stage| 0123 ... ' Read
NumLoop Iteration Active Stage ‘ inst
Iterations Counter Comparison

counted loops

y

shift right on end of stage

Apply mask| to bit vector
upon loop| exit condition

Exit Active Stages Mask ‘
NumEpiIogueStages} 0011..

Modulo Schedule Buffer Control

Figure 7. Detailed view of Modulo

pletedexecution.This registercontainsa countof the num-
berof furtherkerneliterationsghatmustbecompletedo fin-
ish the prior iterations. Secondthis valueenableghe pro-
ductionof an Exit Active StagesMask requiredto support
whileloops.Whileloop operatiorwill bediscussedh more
detailin Subsectior2.4. This parametecouldbe passedn
by the compiler, or it could be detectedat runtime. Since
modulo schedulingschemarequirethat all branchesoccur
in the samepipeline stage the hardwarecould monitor the
buffer fill procesdor ary branchinstruction. The number
of epiloguestagesanbethenbedeterminedy subtracting
thebranchs stagenumberfrom NumsStages.

Toru [

Modulo Schedule Buffer (1 per functional unit)

Schedule Buff er Contr ol unit.

Last, the total numberof loop iterations(NumLooplter
ations)canbe usedto supportefficient countedoops. This
valueis storedin a counterthatis decrementeéachtime a
loop iterationis initiated. Theiterationis initiated by shift-
ing a 1 bit into the Active StagesBit Vector Whentheloop
iteration counterreachesero, no more iterationsneedbe
initiated. This is accomplishedy shifting a 0 bit into the
Active StagesBit Vector for stage0. However, previous
iterationsmay have yet to complete(representedby 1 bits
remainingin thevector). NumEpilogueStagekernelitera-
tionswill be executedto completeprior iterations(shifting
in 0 bits atthe endof eachstage)beforeexecutionwill fall

throughto post-loopcode.For countedoops,no loop back
branchis requiredsincethe iteration length and iteration
countarepredeterminedalues.

In somecases,control will leave a modulo scheduled
loop, executeothercode,andthenreturnto theloop. This
is commonwhen the modulo scheduledoop is nestedin
an outerloop. In thesesituations,it is possibleto reini-
tialize the loop control registerswhile usingthe previously
bufferedloop, thusavoiding the repeatedill process.Ser-
eralalternatvesexist, including compilerdeterminedeuse
andrun-timedetectedeuse.

2.3 Operational Example

Figure8 depictsthe countedoop operationof the Mod-
ulo ScheduleBuffer system. In this example,threeitera-
tions of the loop are executedon a 4-issuemachine. The
loop body, asillustratedat the upperright cornerof thefig-
ure, consistsof two loads,one multiply, oneadd,andone
shift instruction. The loop is modulo schedulednto three
stages. Thus, eachiteration requires6 cyclesto execute,
with athroughputof oneiterationper two cycles. Thefig-
ure depictsthe contentsof eachfunctionalunit's MSBsfor
thetencyclesof theloop execution. Shadecouffer entries
indicatetheactive stageghatareissuedo the FUsfrom the
buffers,while theoutlinedandshadecentriesindicatethose
that arefilled into the buffers andissuedto the functional
unitsfrom theinstructionstream.Actions during selectcy-
clesaredescribedelow:

Initialization: Initialize NumStagego 3, NumLoopltera-
tionsto 3, Il to 2, NumEpilogueStaget 2, and Current
CycleCounterto 0. Asin TI's’C6x architecturetheinitial-
izationinstructionamayneedto bescheduledereralcycles
prior to theloop bodyin orderto overcomenitialization la-
teng. Assignmento the Il or NumStagesegisterscould
be usedto triggerfilling of the buffer sincethesefieldsare
requiredfor both countedandwhile loops.

Cycle 0: Loop executionbegins by shifting a 1 bit into
the stageO location of the Active StagesBit Vector This
initiates a new iteration and thus the Iteration Counteris
decrementedb 2. Thefirst executepacket containsa load
instruction. Sincethe Currentlst Iteration Stagecounter
is lessthanNumStagesa valid first iterationinstructionis
presentin the executepaclet. It is filled into the memory
unit’s buffer for cycle 0 and marked with stageO, andis-
suedto thememoryfunctionalunit.

Cycle 1: The CurrentCycle Counteris incrementedo 1.
The secondnstructionis alsoa valid first iterationinstruc-
tion. It is aload andis placedinto cycle 1 of the memory
unit’'s buffer andmarkedwith stage0.

Cycle 2: The CurrentCycle Counterequalsthell, soit is
resetto 0, andthe End of Stageconditionis raised. Since
thelterationCounteris non-zeroa new iterationis initiated
by shifting a 1 into the Active StagesBit Vector, activating
stage<0 andl1. The IterationCounteris decrementedo 1.
From the instructionstream,a nop is read,which is not a

usefulinstructionandis not written into ary buffer. The
nopis simply a placeholderto containthe cycle stopbit for
this empty cycle dueto the two-cycle lateny betweenthe
loadin cycle 1 andthe multiply in cycle 3. However, the
instructionin cycle 0 of the memoryunit is issuedbecause
its stagematchesanactive stage.

Cycle 5: Two instructionsin the executepaclet arefilled
into the buffersfor the ALU andshifterunitsatcycle 1.
Cycle 6: The CurrentCycle Counteris resetto 0. How-
ever, the lterationCounteris alreadyat zero,indicatingthat
no new iterationsshouldbe initiated. Thereforea 0 bit is
shiftedin, leaving only stagesl and2 active. The NumEpi-
logueStagesounteris decrementedinceexecutionis only
completingpreviously initiated iterations. Coincidentally
the Currentlst Iteration Stagehasalso exceededhe loop
body length. The next executepacket containspost-loop
code. Therefore,no new instructionswill be accumulated
into the buffers.

Cycle 10: The CurrentCycle Counteris resetto 0. Nu-
mEpilogueStagess also zero, indicating all epiloguesare
complete.Loop executionhasended.

2.4. Active StageManagement

In orderto supportwhile loops,iterationsmustbe initi-
atedspeculatrely, which requiresthat1 bits be shiftedinto
the Active StagesBit Vectorto enablethosestagegrior to
ary loop backdecision.However, whena while loop exits,
all speculatie iterationsmustbesquashefrom themodulo
schedulepipeline so their speculatie resultsdo not com-
mit. Considettheloopin Figure9(b) which consistof four
stageswith a sideexit andaloop backbranchin stagel.
Note thatiteration1 mustbe speculatiely initiated before
theloop backdecisionin iterationO is reached.Now sup-
posethatthe loop backconditionin iteration 1 fails. This
indicatesthatthe currentiteration(1) andall previousiter-
ations(0) shouldcomplete,but all future iterations(2 and
3) shouldbe squashedOncethe loop backbranchfails, a
0 will be shiftedinto the Active StagesBit Vectorso that
iteration3 is not initiated, andthe 1 bit (circled) for itera-
tion 2 mustbecleared.In generalizedoop execution,1 bits
mustbe shiftedin during the prologueandkernelregions,
speculatie stagebits mustbe clearedon an exit condition,
ando0 bits mustbe shiftedin duringthe epilogueregion.

Other architecturemechanismsave beenproposedto
supportkernel-onlyschedulingof while loopsthroughthe
useof arotating predicateregisterfile andspecialbranch-
ing instructions[11]. In thesearchitecturesthe rotating
predicatesene the samefunctionasthe Active StageBit
Vector however thereis no supportfor selectvely squash-
ing the predicatef speculatie iterationson anexit. Two
primary optionsexist to alleviate this problem. First, ex-
plicit epiloguesanbe generatedhatissuethe correctnon-
speculatie stageson an exit, while the rotating predicates
are usedto issuethe prologuefrom the kernel. However,
this mayrequireextraepiloguecodeat eachloop exit point.

Curr Num

Iter 1stlter Epi Active Stage Mem Unit Multiplier Unit ALU Shifter Unit
CycleCntr Stage Stages Stages Cycle Buffers Buffers Buffers Buffers
0 2 0 2 0 10 d 000 000 000 first iteration
000 000 000 000 instructions cycle stage
——————————————————————————— e T T e init
12 0 2 10d I 00d 00d 000) 0 1 o
1 10 1d 000 000 000 1 1
,,,,,,,,,,,,,,,,,,,,,,,,,,, —— T 2 nop 0 1
2 1 1 2 110 0 —®=100 Id 000 000 000 2 mul (1)
no
100 Id 000 00 000 5 add’;hl T 2
"""""""""""""" ——— 71— 0st-100|
3 1 1 2 110 100 Id 000 000 000 P P
1 —® 100 Id 01 mul 000 000
4 0 2 2 111 o —®100 Id 000 000 000 -
Operation| Latency
100 d 010 mul 000 000
,,,,,,,,,,,,,,,,,,,,,,,,,,, I S s load 2
5 o 2 2 104 Id 00d 00d 000 mul 2
1 —® 100 Id 010 mul 00 add 00 shl add 1
"""""""""""""" ———— 71— shift 1
6 0o x 1 o —»l10d 1 00d 00d 000 ——r
(all fully pipelined)
100 d 010 mul 001] add 001 shl
,,,,,,, Note: epilogue started, so stage 0 instruction no longer active [T
! 0 x ! 100 Id 000 000 000 [] Inactive buffer entry
1 —®100 Id 010 mul 001] add 001 shl
"""""""""""""" e Instruction issued and
8 0 X 0 0 —® 100 Id 000 000 000 filled from instruction strean
100 d 010 mul 001] add 001 shl D Instruction issued from
"""""""""""""" e Modulo Schedule Buffers
¢ 0 X 0 104 Id 00d 00d 000
1 —®100 Id 010 mul 001] add 001 shl

Figure 8. Example loop execution using the Module Schedule Buffers.

Secondtherotatingpredicatesnaybeusedto issuetheepi-
loguefrom thekernelwhile anexplicit prologueis provided.
In this schemep bits areinsteadshiftedinto the predicate
registersto disableunneededtagesn the epilogueregion.
Similarto this schemetheltanium Architecture[8] utilizes
the predicatedor the epilogue,but suggestghat specula-
tive stageshe generatedo that they canalwayssafely ex-
ecute,ratherthan specify an explicit prologue. However,
this placesanumberof restrictionson scheduling Consider
oneexamplefrom theshadedoopiterationin Figure10(a).
Normally, the predicatep5 could only be setwhen stage
1 is actually active, as controlled by stagepredicates 1,
andclearedotherwise(unconditional-typepredicatedefine
of p5). Thereforepredicatep5 actually containsthe log-
ical AND of the defining condition (cond) andthe stage
predicate. This predicatecanthenbe usedin placeof the
stagepredicateonthebranchin stage3. However, asshaovn
in Figure10(b),the speculatie stageso longerhave stage
predicatesand executeunguardedn the Itanium Architec-
ture. In thefirst cycle, stagel erroneouslyexecutespoten-
tially settingpredicatep5’ (p5’ is differentthanp5 due
to versioning,asdescribedn the next section).Sincep5’
maynow besetto truein cycle 0, thebranchin cycle 2 may
erroneouslyexecute. Therefore,predicatedefinitionsthat
controlnon-speculatieinstructionscannotbe speculatiely
generatedthus limiting the stagethey may be scheduled
in. To prevent this and other similar situations,a signifi-

cantnumberof extra dependencemustbe obeyed during
scheduling.

In our approachwe utilize an Exit Active StageMask
to disablespeculatie iterationson an exit, allowing usto
usethe Active StageBit Vectorfor both prologueand epi-
logue code. In the examplein Figure 9(b), the maskis
appliedto disablestagel of speculatie iteration2. Each
stageof the loop is classifiedas speculatie, exit, or non-
speculatie. After executionof the loop backbranch,only
the non-speculatie iterationsmust completetheir execu-
tion. Thereforethe maskconsistsof bits representinghe
non-speculatie stages.This maskis constructecasshavn
in Figure9(a). Figure9(c) depictsthe sameoop, only with
atakenearlysideexit. In thiscasetheremaindenf thecur
rentiterationshouldnot completeits execution. Therefore,
thesamemaskthatenablesonly the non-speculatie stages
canbeapplied. Whenasideexit is detectedexecutioncon-
tinuesin thekernelto completepreviousiterationswhile the
fetchunit beginsfetchingfrom the exit’ starget. Thetarget
instructionsarebufferedin dispatchregistersuntil the loop
hascompleted.

Lastly, aswith countedlioops,aloop backbranchis not
necessaryor while loops sincethe hardware controlsthe
iterationsof the kernel. However, aninstructionthatcom-
municatego the hardwarethe resultof theloop backcon-
dition is required. Similarly, side exit brancheslo not ac-
tually alter control flow, but rathernotify the hardware of

Active Stages

Bit Vector
0123 lter0
1000 |0
Shift Active Stages
Bit Vector
t end of st =
a.en (?sage 1100 1
Side exit - br
Loop back branch--»= Lbr ——
Stage Type Mask 1110 2
0 | Speculative 0
1 | Exits 0 Loop back fails= _ _ _\ _ __
2 |Non-speculative | 1 Apply mask - 0/0i 1 1
3 |Non-speculative | 1 v
Because theta=1
(the loop back branch 000 1
is in stage 1)
only stage 0 is
speculative —_—
. 00O00O
(a) Contruction of the
Exit Active Stages Mask
0000

(b) While loop with failed loop back branch

Iter 1

Active Stages

Bit Vector
012 3 ler0
1000
Iter 1
1100
Iter 2 Side Iter 2
0 exit 1 o |
when v 3 30 Y o T e
~ {0010
|| _Mter3__ Apply =2 % he = Iter 3
1 0 mask 000 1 2 1 0
br —— br ——=
[br ——= - L br ——=
2 1 0000 3 2 1
br —— br ——=
[Lbr —— - Lbr ——
3 2 0000 3 2
3 0000 3

(c) While loop with taken early exit

Figure 9. Four stage whileloop with loop back branch in stage 1.

Non-Existent Iterations

Non-Existent Iterations

stage preds stage pred
cycle s:0123 Iter -3 Iter -2 Iter -1 Iter O s:3 Iter -3 Iter -2 Iter -1 Iter O
- T T W - -7 W T T T T I [[[I
'3 "2 0l | 13 12 nlo-=o N
! " "1 if(s1&cond ! I 'vif(cond) ™
0 1000 1 (p5mypr —Lw " f 5‘*11‘ 0 ' (p5™)br —H—> 1 "\‘ts 952*,,1-4
! (s3)br ——H— :;esep5~¢01 1 (s3)br —— = I° eﬁs'«)l
e e A Rttt e e et
'3 [i1 3 | 11 D . .
i i 1| if(s1&cond | ! | ! if(cond) Desired stages of execution
1 0100 | (p5")br —H—= et 0 | (pS")br —— = Hesd® ™t
1 (s3)br ——H = | p5=-0 1 (s3)or—— = l P5=-0 i))
;,,,,,,,.‘_é,,,,,,.‘ 2 k”"fﬂ‘réﬁﬁﬁ‘\ 2 '+ Undesired stages of executic
| ! | \ -
2 0010 ! (p5)br — = 0 p5)br >
' (s3)br — 1 (s3)br———= Actual executed instructions
,,,,,,,,) 3 T 3
8 oool Es)pr ——= 1 p5)br ———>
(s3)br ——— s3)br =

(a) Kernel-only loop utilizing prologue stage predicates (b) Kernel-only loop utilizing no prologue stage predicates

Figure 10. Four stage whileloop with unpredicated speculative stages.

thesideexit conditionandreportthetargetaddressA con-
dition failure or ary taken side exit branchwill causethe
maskto beapplied. The hardwarewill automaticallyiterate
throughthe kernelfor NumEpilogueStagegjecrementing
thecounteratthetakensideexit condition(becaus¢he cur-
rentstageis now consideredn epiloguestagefor previous
iterations)andat the endof eachll.

2.5. RegisterVersioning

Many loop bodiescontain valuesthat have long life-
times.Whenavariableslifetime is greatethanll cycles,its
lifetime will overlapwith the lifetime of the samevariable
in thenext iteration.In orderto keepthevaluesfor eachiter-
ation separateregisterversioning(renaming)is employed.
In software, this techniqueis called Modulo Variable Ex-
pansion(MVE) [5], [11], [13]. MVE unrollstheloop body
andassignsa differentregisterfor eachiteration. Theloop
kernel then consistsof copy of eachversionof the loop
body, anditeratesthroughthe differentversions. Special-

ized epiloguesare required,onefor eachexit of eachver-
sion. However, thesetechniquesandramaticallyincrease
codesizeandcanbetricky to generate.

A rotating registerfile [14] canalsobe usedto support
versioning. This featuresprovidesa mechanisnsuchthat
usesof a particulararchitecturategisterin successieitera-
tionsactuallyutilize differentphysicalregisters.The phys-
ical registernumberis the sum of a rotating register base
with specifiedarchitectureegisternumbermodulothesize
of theregisterfile. At theendof eachll, therotatingregis-
terbases decrementeduchthatthenew iterationutilizesa
new physicalregister Notethattheregistermappingsn the
secondstageof thefirstiterationhave alsobeenaffectedby
the updateto the rotatingregisterbase. Therefore register
namesin subsequentoop stagesmustbe compensatedo
counteracthis effect. This techniquds proposedo handle
renamingwith the Modulo ScheduleBuffers.

EQ model EQ model w/ interrupt

after cycle 2 ri=-
cycle] RTL cycle| RTL las | -
0 -1 0 <-1 2 +,\ lat3
1 *5 1 *5)

@ st [r2],r1 r2++\
2/|(M<X3+8 2(|(<Xr}+8 .
3\ st[r @ st 9 3 @ 'st5o0r9 st[r2],r1
4 S rfir@ st5 4 @ 'st50r9

() (b) (©)

Figure 11. Data deliver y graph for code utiliz-
ing multipleassignmenon the result of a 3-cycle
multipl y instruction.

2.6. Interrupt Handling

Two primary schedulingmodelsexist for non-unitas-
sumedlatency (NUAL) architectures.The Tl ‘C6x is an
exampleof the equalsmodel (EQ), where eachoperation
executesfor exactly its specifiedlateng, and writes back
the resultexactly after that lateny hasexpired. Consider
the examplein Figure11(a). In cycle O, registerr 1 is ini-
tialized to a valueof 1. In cycle 1, the multiply operation
beginsusingthevalueof 1 for r 1. Becausedhe lateng of
themultiply is 3 cycles,theresultof themultiply will notbe
written backto r 1 until the endof cycle 4. Meanwhile,in
cycle 2, thevalueof r 1 is guaranteedo still be 1, andthe
addcompleteswriting avalueof 9tor 1. Thestoreof r 1
in cycle 3 is alsoguaranteedo be unafectedby the multi-
ply andwill correctlywrite to memoryavalueof 9. As can
be seenin this example,registerscaneffectively be reused
duringlong lateny operationspftenresultingin fewer reg-
istersneededor acomputation.TI callsthis particulartype
of reusemultiple assignment Similarly in Figure11(c), a
singleregistercanbeusedto supportversioningf theresult
is usedby the consumeshortlyit is available. Becausdhe
lateng of r 1 is threecycles,ther 1 for thesecondteration
will not prematurelyoverwrite the valuefor thefirst itera-
tion. Useof multiple assignmentan often reducethe re-
lianceon explicit versioning but rarely eliminatesthe need
for it.

The othermodelis calledthe lessthan or equalmodel
(LE). Under this model, the resultlateng is specifiedas
the maximumtime that a particularoperationmay take to
completeandwrite backits result.In otherwords,theresult
may be written backat ary time up until andincludingthe
cycle at which its lateng expires. Coding for this model
disallows the registerreuseallowed in the EQ model. Tl
callsthis typeof registerallocationsingleassignment

Clearly, when schedulingand registerallocatingfor an
LE machine,a single assignmenimethodologymust be
used.If aninstructionfinishesearlyandoverwritesa regis-
ter, anotherusageof thatregistermight readthe new value
ratherthan the old value. However, for an EQ machine,
eithersingleassignmenbr multiple assignmenscheduling

andallocationmaybeused.If theinstructionis guaranteed
to take a certainnumberof cycles,assuminghatit canfin-
ishedearlyis a safe,conserative assumption.

Thoughregisterscannotbe reusedduring long lateng
operationsinterrupthandlingin codescheduledor the LE
modelis muchsimpler Preciseinterruptsare maintained
by completingexecutionof codealreadyin the functional
unitsandsquashingodein the fetch or decodeunits. Af-
ter processinghe interrupt,executioncancontinuefrom a
single programcountervalue, the instructionimmediately
following the last one executed. Likewise, correctly han-
dling interruptsin the EQ modelundersingleassignmenis
simple, asall instructionsprior to the interruptcan be al-
lowedto finish. Sincethe scheduleassumedhatthey may
finish early, the computatiorwill be correct. However, in-
terrupthandlingin theEQ modelundermultiple assignment
is moredifficult. Consideithe situationwhenaninterruptis
taken immediatelyafter instruction2 in the example Fig-
urell(b).A precisenterruptcannotbetakenbecausehere
is no single programcountervalue whereall instructions
prior to the PC have beenexecutedandall after have not.
The multiply wasissuedprior to the interruptand hasnot
yet completed. Furthermorejf thatinstructionis allowed
to completebeforethe interruptis actuallytaken, thenthe
value of r1 would be prematurelyoverwrittenwith the re-
sult of themultiply. Hardwaretechniquessuchassnapshot
buffers [15] andreplaybuffers [16], have beenproposedo
save theresultandits relative write-backtime upona con-
text switch. Thesefeaturesare often costly to implement
andarenot presentn the Tl architectureTherefore,n the
Tl processorsnterruptsmustbe postponedluringany por-
tion of the codethatusesmultiple assignment.

However, by usingthe Modulo ScheduleBuffers, inter
ruptswill only have to wait until theendof the currentloop
iterationbeforethey canbe processedThis is a benefitof
having the control logic actually issuingiterationsof the
loop. Whenaninterruptoccurs new iterationswill stopbe-
ing issuedrom theMSBs, likewhenthelastiterationof the
loop hasbeenissued.After the epiloguesof previousitera-
tionshave completedthe interruptcanbe taken. Note that
the Iteration Counterregister containsthe numberof itera-
tionsthatremainin theloopandwill needto besavedacross
contet switches. Similarly, the instructionstreamaddress
of the begginning of the initialization codealsoneedsto be
savedin casehebuffersneedio bereloadeduponreturning.

At the end of eachiteration of the loop body, a setof
registersandmemorylocationsexist thatcommunicatestate
to the next iteration. Figure 12(a) depictsan exampleloop
bodywith sucha cross-iteratiorregisterlifetime r 1. This
lifetimeis liveinto theloop, butis notlive outalongthefall-
throughpath of the loop backbranch. Sincethe example
lifetime is notlive out, it maybe allocatedinto two rotating
registersr 3 andr 4. However, by delayingiteration 2 by
two stagesiueto theinterrupt(to allow iterationsO and1 to
complete)fwo additionalrotationshave beenperformedas
shavn in Figure12(b). This valuenow appearsive out the

113
cycle lter O

Iter 0! .
n Cross-iter flow

. 0 : ;
k r3 Rewind
| Mterl e 4 | lterl rotating
-l 2 -—r4 register
rl=— |---- Iter 2 3 3= |-y base by
< >) rotate N 7 \ —
! 4 T < (D)
r]—<— P 5 r3=— before_
N — % rotate < resumptior
R -l 6 }4\
r1=— 7 M
rotate _ _ _ - - - =T = = = = —_ - - —
8 r5.
— fotate 9no rotate_p. ter 2
10 o)
3.
rotalell A

-—1r4
r3—=—

(b) Rotating register versio
of the loop, with an interupt
between iterations 1 and 2

(a) Virtual register version of
loop with its flow dependences

Figure 12. Register allocation for interrupt tol-
erance of a sample loop body.

bottomof theloopin iteration1 asr 5 andlive into thetop
of iteration2 asr 3. In orderto maintaincorrectness;ross
iterationlifetimes mustbe allocatedasif they werelive in

andlive out of the loop, and uponrestartingthe loop, the
rotating register basemustbe rewoundby (II-1) stagesto

move thelive outvaluesto theirlive in locations.

2.7 DesignComplexity

The proposedViodulo ScheduleBuffer mechanisnhas
beendesignedas a setof componentsn orderto manage
compl«ity. Eachcomponentonsistsprimarily of asingle
counteror register(or tableof registers)with someattached
control logic. While the interconnecimay seemcomplex,
thereis clear flow of control information that originates
at the CurrentCycle Counterand flows to the Buffer Ac-
cessLogic, with minimal feedback. Becausethe Current
Cycle Countersimply countsfrom 0 to II-1, its behaior,
andthereforethe behaior of its dependentomponentsis
highly cyclic. This featurewould allow the controllogic to
berunslightly aheadof the buffersthemselesif cycletime
becamalimiting factor Theonly significantfeedbacKkoop
in the systemconcernghe detectionof exit conditionsand
thusapplicationof the Exit Active StagedMask. By thetime
anexit conditionis detectedoy a functionalunit attheend
of theexecutehardwarepipelinestagethe MSB systermrhas
alreadypreparedhe next setof instructionsfor execution.
Theseinstructionswereissuedbasedon whatis effectively
a speculativeActive StagesBit Vector, sincethe feedback
from the previously issuednstructionshasnot yetbeenap-
plied. It maybe possibleto nullify selectinstructionsbased
ontheupdatedit vector, but morelik ely, theexecutepaclet
mustbeflushedandreissued.

In termsof cycle time, minimal logic hasbeenaddedto
thedispatchpipelinestagein orderto write to or fetchfrom
theMSBswhenappropriate A multiplexor hasbeenadded
to the stageto selectandinstructionfrom eitherthe MSBs
from the fetch unit. The selectorogic for this multiplexor

mustcheckfor anincomingNOP from the fetch stageand
mustcheckfor avalid first iterationinstruction(which can
run ahead as previously mentioned). Essentially the crit-
ical paththroughthe dispatchstageis only increasedy a
few gates.

The size of the buffersis directly relatedto the maxi-
mumsupportedl, maximumnumberof stagesandnumber
of functionalunits. For example,an aggressie implemen-
tation could supporta maximumll of 32 anda maximum
stagecountof 16, with 8 functionalunits. Therefore,each
entry would containa 32-bit instructionanda 16-bit stage
tag. Eachbuffer would contain32 entriesfor atotal of 192
bytes. Therefore the total systemcouldrequire1536bytes
of storageplusa handfulof registersfor the controlunit.

3. Experimental Results

In orderto explore the effectivenesof our system,the
IMPACT Compiler[17] wasenhancedo generateodefor
kernel-onlymoduloschedulingandfor the Modulo Sched-
ule Buffersusinglterative Modulo Scheduling6]. Twelve
MediaBench[18] programs,a MP3 player and a GSM
codec[19] were emulatedto verify the correctnes®f our
systemwhile examiningloop characteristicsThesebench-
markswerecompiledusingthe IMPACT compilerto gener
ateaggressiely-optimizedsuperblockandhyperblockcode
for the IMPACT EPIC architecturd20]. Functioninlining
(to anestimated0%staticcodesizeincreasejvasalsoem-
ployedalongwith useof compilerintrinsicsto supporttyp-
ical DSPoperationdo broaderthe scopeof availableloops
for pipelining.

The baseprocessommodel is an 8-issue, single clus-
ter, EPIC architecturewith a functional unit mix andin-
structionlatenciessimilar to that of the Texas Instruments
TMS320C6700ine of processorgl2]. Table1l lists the
machinespecifications Large registerfiles werechoserto
emulatethe effects of multiple assignmenandto provide
ampleresourcefor aggressie modulo scheduling. These
experimentsaredesignedo provide insightinto the oppor
tunity availablefor utilizing moduloschedulingn DSPap-
plications.

For theseexperimentsyve limited themaximumll to 48
cycles. Very few moduloschedulabléoopswereobsened
thatwould exceedthis Il, evenwith moreaggressie predi-
cation.Obsenationsof mary of thesdargeloopsalsoindi-
cateminimal overlapof theiterations mitigatingthe poten-
tial benefitsof moduloscheduling.The costsof increasing
the size of the Modulo ScheduleBuffers to include these
largerloopsalsooftenout-weighsthe potentialbenefits.

Table2 shavsthe numberof issuedcyclesin eachof the
applicationsstudied(first datacolumn),alongwith the per
centageof thosecycles spentin modulo scheduledoops
(secondcolumn), and the percentspentexecuting solely
from the buffers (third column). The applicationsaverage
72% of their executionin moduloscheduledoops,indicat-
ing thatsignificantbenefitscanbe achiezed by maintaining

BenchmarksDescription:Input Number % Modulo| % MSB-only|| Kernel-Only, MSB||Kernel-Only| MSB
Cycleg Sched Issued| StaticOps StaticOps|| StaticOps| StaticOps

Cycles Cycleg| (ind.nops) (ind. nops)| (Multi-nop)| (Multi-nop)

adpcmdec |Adaptwe diff. pulsecodemod.[18]: 1.33M 99.9 99.6 456 464 432 432
adpcmenc |clinton.pcm 2.96M 99.9 99.7 480 504 464 464
epicdec Experimentaimagecodec[18]: 3.83M 64.4 51.7 7768 7880 7080 7080
epicenc testimage 32.37TM 40.6| 29.3] 10096 10272 9392 9400
g721ldec |[CCITT G.721voicecodec[18]: 86.19M 37.8 26.7 2872 2896 2776 2768
g72lenc |clinton.pcm 98.87M 35.4] 24.2 3008 3032 2936 2928
jpegdec IJPEGGroupimagecodec[18]: 1.23M 84.0 71.4 49368 49408 45488, 45464
jpegenc testimg.jpg 5.08M 46.1] 34.9 51952 52056 48208 48192
mpeg2dec |MPEG2videocodec[18]: 62.65M 84.9 65.5 17048 17328 16144 16176
mpeg2enc | meilév2.m2v 390.35M 90.2 68.8 29256 29512 27592 27560
pgpdec PrettyGoodPrivag/ coded[18]: 22.14M 82.1 72.5 99968 100192 96736 96720
pgpenc pgptest.plain 28.42M 80.3] 69.4] 105296 105552 101920 101848
g724dec |ETSIGSMO06.60speechranscoding19]: || 16.85M 82.7 65.4 6440 6640 6192 6184
g724enc | 363framesof speeclandnoise 107.57M 85.8 71.3 11600 12080 11320 11288
mpg123 MPEG-2Layer 3 audiodec:short.mp3 34.72M 73.2 54.8 29696 29936 27272, 27288
[average | [N/A] 72.4% 60.4%]| N/A](norm)+1.5%]| N/A](norm)-0.1%)

Table 2. Benchmark results for Modulo Schedule Buff er utilization.

[Name] Functionality [Num Units]|
L Logic/Int ALU/Fp ALU/Fp Corvert 2
S Branch/Shifter/Logic/InALU/Fp ALU 2
M Multiplier 2
D Memory/Basidnt ALU 2

[InstType [Lateng[[InstType [Lateng |
Int ALU 1 FpALU 3
Int Multiply 2 Fp Multiply 4
Int Divide 10 Fp Divide 15
Int Logic 1 FpReciprocal/Sqnt 2
Int Shift 1 Fp Corversion 4
Int Load 4 Branch 1
[Reg Type [NumAvailable] Max SubseRotating
Integer 128 64
Double/Floa 64 32
Predicate 128 128

Table 1. Emulated machine characteristics.

continuousoverlapof loop iterations. Of greaterinterestis
thattheapplicationdssueanaverageof 60%of their cycles
solelyoutof thebuffers. This percentagéirectly correlates
to a reductionin the numberof executepacketsthat must
be sened by theinstructioncacheandfetchunit. By issu-
ing from the buffersinsteadtheseportionsof the processor
canbe disabledthroughclock gatingor othermeansthus
saving enegy. Furthermorepy reusinga loop whenit is
alreadystoredin the MSBs, the percentagef MSB cycles
will likely grow towardthepercentagef moduloscheduled
cycles(its maximum).

Columnsfour andfive of Table2 shav the effectsof the
sequentiatepresentatioof themoduloscheduledoopson
codesize. The MSB scheduledtodesizesarecomparedo
ideal kernel-onlycodewithout prologuesor epilogues.To
takethe MSB codesizemeasurementye applieda greedy-
stylebundlerto the entireprogram packingexecutepaclets
into the 8-slot fetch paclets. The resultsindicatean aver-
agecodesizepercentagéncreaseof 1.5% dueto the extra
nops for cycle stopbits thatmustbe insertedto represent

emptycyclesin the sequentiatepresentationf the loops.
Becausedhe loop body instructionsare spreadover the en-
tire heightof aniteration,mary morenopcyclesarepresent
thanwhenspreadover Il cyclesin a kernel-onlyrepresen-
tation. The problemwas mostnoticeablein floating-point
codedueto the long lateng instructions.However, by us-
ing aspecialmul ti nop instructioncapableof represent-
ing several emptycycleswith oneinstruction,the codesize
increasebecomemegligible (columnssix and seven). In
fact,for pgpendandseveralotherbenchmarksphe sequen-
tial representatiorwas actually smaller By representing
the codesequentially the loop body consistsof more but
smaller executepaclets, thus making them easierto pack
into 8-slotfetchpacletswith lesswaste.

In orderto examinethe desirechumberof entriesfor the
MSBs, the fraction of eachbenchmarlexecutedin modulo
scheduledoopsof eachll wascalculated Figurel3depicts
thefractionof issuedmoduloschedulecyclesfor agivenll
for severalrepresentatie benchmarksThe normalizedav-
erageof all the benchmarksevealsthatanimplementation
thatsupportecan Il of 16 cyclescould achiese about70%
of thepotentiallymoduloschedulableycles.Clearly, asthe
Il is increasedeyond 32, thebenefitsarelesslik ely to out-
weighthe extra costsof largerModulo ScheduleBuffers.

4. Conclusionand Futur e Work

The mechanismpresentedn this paperhas beende-
signedto provide anelegantinterfacefor executingmodulo
scheduleccode. While it achievesthe sameperformance
as fully-specifiedand kernel-onlymethods,it hasa num-
ber of advantages.The mechanisnprovidesthe ability to
limit interruptlateng to a singleloop iterationratherthan
the remainderof the loop, and movesthe burdenof loop
controlto the dedicatechardware,thusallowing for a less
costly predicationschemes.It handlesall possiblepossi-
ble loop trip countscleanly unlike fully-specifiedmethods
whichrequireahandfulof differentepiloguesandmostim-

Cumulative Fraction of Modulo

1
0.9 - == All Benchmark
Average
0.8 I2
2 07 7|——|Z f / —A—mpeg2enc
20
>
O 0.6 A
pgpdec
205 1
=
S
2 —t+—g724enc
[$]
n
B—jpegdec
S —0—mpg123
o [aV] < © [ee] o (aV] < © [ce] o Al < © o] o (8]
— — — — — [aV) (aV] [aV) (aV] [aV) ™ (o0}
Maximum Il

Figure 13. Cumulative percentage of the modulo scheduled cycles for a given Il.

portantly handlesall forms of while loopswithout ary pro-
logueor epilogue.Futurework includesdevelopmentof an
integratedregister versioningmechanisnthat doesnot re-
quiretheexplicit useof rotatingregisters.

5. Acknowledgments

Specialthanksto Chris Shannon,John Sias, Hillery
Hunter, andthe rest of the IMPACT ResearchGroup for
their commentsandassistanceThis researclwaspursued
while the authorswerewith IMPACT Technologiesincor-
porated.

References

(1]

(2]

(3l

(4

(5]

6]
(7]

(8]

B. R. RauandC. D. Glaeser“Someschedulingtechniqguesandan
easilyschedulabléhorizontalarchitecturefor high performancesci-
entific computing, in Proc. of the 20th AnnualWbrkshopon Micro-
programmingand Microarchitectue, pp. 183-198October1981.

K. EbciogluandT. Nakatani,"A nenv compilationtechniquefor par
allelizing loops with unpredictableébrancheson a VLIW architec-
ture’ in Proc. of the SecondAbrkshopon Languaesand Compiles
for Parallel Computing pp.213-229,1989.

A. Aiken and A. Nicolau, “A realistic resource-constrainesloft-
warepipelining algorithm] in Advancesn Languayesand Compil-
ers for Parallel ProcessingA. Nicolau,D. Galernter T. Gross,and
D. Paduageds.),pp.274—290L ondon: Pitman/TheMIT Press1991.

M. RajagopalarandV. H. Allan, “Efficient schedulingof fine grain
parallelismin loops; in Proc. of the 26th International Symposium
on Microarchitectue, pp.2—-11,December993.

M. S. Lam, “Software pipelining: An effective schedulingtech-
nique for VLIW machine$, in Proc. of the ACM SIGPLAN1988
Confeenceon ProgrammingLanguae Designand Implementation
pp.318-328,Junel988.

B. R. Rau,“Iterative modulo scheduling, International Journal of
Parallel Processingvol. 24, pp. 3—-64,Februaryl 996.

J. C. Dehnert,P. Y. Hsu, andJ. P. Bratt, “Overlappedioop support
in the Cydra5," in Proc. of the Third International Confeenceon
Architectual Supportfor ProgrammingLanguaes and Opeiating
Systemgpp. 26—-38,April 1989.

Intel Corporation, Intel IA-64 Architectue Softwae Developers
ManualVolumel: ApplicationArchitectue, Jan2000.

9]

[10]

[11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

G.-R.Uh, Y. Wang,D. Whalley, S. Jinturkar C. Burns,andV. Cao,
“Effective exploitation of a zerooverheadloop buffer,” in Proc. of
the ACM SIGPLANWbrkshopon Languaye, Compiles, and Tools
for Embedde®ystemsaviay 1999.

W. W. Hwu andM. C. Merten, Methodand Appaiatus for Modulo
Sdeduled_oopExecutionin a Processorchitectue. UnitedStates
PatentApplication,IMPACT Technologiesinc., Decembef999.

B. R. Rau,M. S. Schlanskr, andP. P. Tirumalai, “Code generation
schemdor moduloscheduledoops; in Proc. of the25th Annualin-
ternational Symposiunon Microarchitectue, pp. 158—-169,Decem-
ber1992.

Texas Instruments, TMS320C6000CPU andinstructionsetrefer
enceguide’; Tech.Rep.SPRJ169D, Texas,March1999.

D. M. Lavery, Modulo Shedulingfor Contwol-IntensiveGeneal-
PurposePrograms PhD thesis,Departmenbf Electricaland Com-
puterEngineeringUniversity of Illinois, UrbanalL, 1997.

B. R. Rau,D. W. L. Yen,W. Yen,andR. A. Towle, “The Cydra5
departmentasupercomputér IEEE Computer vol. 22, pp. 12-35,
Januaryl989.

G. R. Beck, D. W. Yen, and T. L. Anderson,“The Cydra5 min-
isupercomputerArchitectureand implementatiori, The Journal of
Supecomputingvol. 7, pp. 143-180Januaryl 993.

K. W. Rudd, “Efficient exception handling techniquesfor high-
performanceprocessoiarchitecture$, Tech. Rep. CSL-TR-97-732,
CoordinatedSciencelLab, StanfordUniversity October1997.

W. W. Hwu, R. E. Hank, D. M. Gallagher S. A. Mahlke, D. M.
Lavery, G. E. Haab,J. C. Gyllenhaal,andD. |. August,“Compiler
technologyfor future microprocessors,Proc. of the IEEE, vol. 83,
pp.1625-1995Pecember995.

C. Lee, M. Potlonjak, and W. Mangione-Smith,"Mediabench: A
tool for evaluatingandsynthesizingnultimediaandcommunications
systems, in Proc. of the 30th Annual International Symposiunon
Microarchitectue, pp. 330—-335December997.

ETSITC-SMG, “Digital cellularcommunicationsystem;enhanced
full rate (EFR) speechtranscoding(GSM 06.60); Tech.Rep.ETS
300726, Europearilelecomm Standardsnstitute,Mar. 1997.

D.I. August,D. A. ConnorsS.A. Mahlke, J.W. Sias K. M. Croziey
B. Cheng,P. R. Eaton,Q. B. Olaniran,andW. W. Hwu, “Integrated
predicatecandspeculatie executionin the IMPACT EPIC architec-
ture} in Proc.of the 25thInternationalSymposiunon ComputerAr-
chitectue, pp.227-237 Junel998.

