Vacuum Packing: Extracting Hardware-DetectedProgram Phases
for Post-Link Optimization

RonaldD. Barnes

Erik M. Nystrom

Matthew C. Merten

Wen-meiW. Hwu
Centerfor ReliableandHigh-Performanc€omputing
Departmenbf ElecticalandComputerEngineering
Universityof Illinois at Urbana-Champaign
{rdbarnes,ystrom,merten,hwp@crhc.uiuc.edu

Abstract

This paper presentsVacuum Packing a new approadc to
profile-basedprogram optimization. Insteadof usingtraditional
aggregateor summarizeaxecutionprofile weights this appoad
usesa transpaent hardware profiler to automaticallydetectexe-
cutionphasesandrecod branch profile informationfor eac new
phase The codeextraction algorithm then producescode padk-
agesthatare speciallyformedfor their correspondingphasesThe
algorithm compensatefor the incompleteand often incoheent
brand profile informationthat arisesdueto the nature of hard-
ware profilers. Thetechniqueavoidsunnecessargodereplication
by focusingon hot code makingefficientconnectiondetweerthe
original codeand the new code linking codepadages at select
pointsto facilitate phasetransitions,and providing a platformfor
efficient optimization. We demonstate that using a conciseset
of profile informationfrom a hardware profiler, we can geneate
codepadages, specializedor eat phaseof execution,that cap-
ture more than 80% of the aveiage total program execution. W\e
further showthat the appmoad is veryeffectivein extractingcode
regionsthat captue the phasingbehaviorof programs, that the
codesizeincreaseis modeate, and that the coderegionsbenefit
fromsampleoptimizations.

1 Intr oduction

Moderncomputesystemsareincreasinglyrelianton op-
timization techniqueghat canbe appliedin the endusers
ervironment. For instance the CrusoeProcessof13] dy-
namically translatesand optimizesbinariesfrom one in-
structionsetto a different, underlyingarchitecture. Tools
suchasSpike [6] andVulcan[20] arestatic post-linkopti-
mizesthatcanstaticallyoptimizeapplicationbinariesin re-
sponsdo userinput anddatapatterns.Just-In-Time compi-
lationsystemssuchasJava[21], rely ondynamiccodegen-

tCurrentlywith Intel Corporationin Hillsboro, Oregon.

erationandoptimizationto producenative codesequences
that alleviate the burden of bytecodeemulation. All of
thesetechniquesmprove uponstaticcompilationby adapt-
ing applicationsin responsdo specificinformation about
the executionervironmentor usagepatterns. For exam-
ple, in the end user ervironment, the exact dynamically
linkedlibrariesbecomeavailable theexactprocessomodel
andfeaturesbecomeknown, andtheimportantcontrol-flov
pathscanbe discerned.Eachof thesecanbe exploited by
anoptimizer, leadingto furthercustomizedapplications.

In orderto effectively exploit this specificinformation,
theoptimizersrequireamechanisnfor gatheringheprofile
and ervironmentalinformation, a platform for transform-
ing the code,anda mechanisnfor deploying the code. An
applicationprofiler is a key componentbecausat identi-
fies importantcode segmentsand usagepatternsthat may
benefitfrom optimization. Clearly, heavily executedcode
must be selectedso that the potentialbenefitcan be real-
ized. Focusingon heavily executedcodealso helpscon-
trol the quantityof codeproducedsothatinstructioncache,
branchprediction,andpagingresourcesrenottaxed. Fur
thermore,instruction-level-parallelism(ILP) optimization
oftenfavorsoneusagepathattheexpenseof anotheywhich
placesa burdenon the codeprofiling andselectionmecha-
nismsto make wise choices.

The transformationplatform is also critical becausat
mustbe powerful enoughto enablebeneficialtransforma-
tions while limiting the time and resourcesequired. For
mary run-timesystemsthebenefitamustdirectly outweigh
the transformationcostsbecausehe processomay have
to stall the applicationitself to performthe transformation.
Many modernsystemsrely on instructiontrace-basedp-
proachedecausahey offer a platform that requireslittle
analysisand overheadandyet achiezesreasonablgerfor
mancegains. While thesesystemsllow for significantlo-
cal customizationthey lack thescopefor broaderoptimiza-
tions,suchasloop-level transformations.

Last, the optimized code segmentsmust be deployed.
Many modernrun-timeoptimizationsystemsleploy theop-
timizedcodeasamasscollectionof tracesgitherin ahard-
warestructureor in adedicatednemoryregion. Staticpost-
link optimizerstypically generatex new monolithicbinary.

This paperpresentsa new techniquefor detectingand
packagingregions of performance-criticalcode that in-
cludesaswift profiling mechanismanefficient platformfor
transformationanda phaseapproactio optimizedcodede-
ployment. The technique called VacuumPacking, is based
uponregion-baseaptimization[12] which enableshe op-
timizer to focus on only the hot code blocks, even when
control-flov crossedunction boundaries.Ratherthan us-
ing aggreyateprofile informationto form staticregions,as
is donewithin a traditional compiler, our stratgy formsa
small setof inter-proceduralregions, called padkages for
eachphaseof programactivity. Eachpackagecontainsthe
codethatis responsiblefor the particularactivities inside
a particularprogramphase. Using theseencapsulatede-
gions,anoptimizercanfocusonthe codethatis responsible
for avastmajority of executionduring eachphase Several
packagesnayin factcontaincopiesof the samesegmentof
codeif thesggmentis utilizedin severalphasesPhasesvith
overlappingpackagesrelinked togetherto facilitate tran-
sitioning betweerpackagesipona programphasechange.
Aggressve inlining, ILP optimization,and schedulingcan
beappliedto eachpackageo constructnew tight andmod-
ular codeunits. The stratgyy is animprovementover pre-
vious post-link optimizationsystemshecauset providesa
much larger scopefor optimization than thosethat oper
ateon tracesandexploits specificexecutioncharacteristics
presenin eachdistinctphase.

2 Relatedwork

The VacuumPackingtechniqueis designedo treatthe
codewithin a packagdgcodefrom asinglephasewnhich can
spanmultiple functions)asa single unit. Optimizationof
our padkage is analogougo the optimizationof regionsin
[12]. In away similarto Hot Cold Optimization(HCO)[7],
theheavily executedblocksareextractedandcolocatediur-
ing region formationandbecomethe focusof further opti-
mization. The original program,including the infrequent
(cold) blocks, is oftenleft largely untouchedandoff to the
side, reachableonly throughcold exits from the extracted
packages.By extractingthe packagef hot code,only a
very smallsubsebf the original codemustbe manipulated
(unliketypical compilerapproachewhichintegratethe op-
timized hot codewithin the original code).To form a pack-
age,a partial-functioninlining [23] techniques employed
to expandahotseedunctionby growing it to deeperalling
contets of hot calleefunctions.Packagesnay additionally
spanacrosdibrary-callboundarieso achiese abroadscope
without the explosive codegrowth of whole-functioninlin-

ing.

Systemghatemploy the VacuumPackingtechniquerely
on intensve profiling mechanismsin their efforts to form
densepackage®f codeto matchparticularphasesf pro-
gramexecution.VacuumPackinghasbeendesignedo ex-
ploit suchphasedy providing aggressiely optimizedcode
for eachpointin time of programexecution. A numberof
stratgies exist to analyzethe phasingpropertiesof appli-
cations,but mostrely on statisticalsamplingof executing
instructions. Thesesamplesare subsequentiyanalyzedin
softwareto determinephasecomposition. Hardware sam-
pling mechanismsre often usedto gatherlow-overhead
profiles, but generallydo not have the resolutionrequired
to separat@nephasdrom another They oftenrely onpro-
gram countersamplingover long periodsof time to pro-
ducewhole-ecutionaggreateprofiles[1], [2], [9]. Ba-
sic Block Distribution Analysis[19] combinesintense pe-
riodic sample-basegrofiling to determinethe composition
of repetitve phases.Typically, however, specializechard-
ware componentdiave beenproposedo accuratelydetect
arbitrary phases. Describedin Section3.1, the Hot Spot
Detector[17] (somavhatsimilarto the profile buffer [8]) is
utilized in this work to performintensive profiling andto
analyzethe detectedblocksfor stability. All of thesehard-
ware approacheshowever, arelossyin that the collected
datais incompletedue to the randomnes®f samplingor
thelimitations of hardwarestructures.

Recentwork examinedseveral units of optimizationfor
compleity andeffectivenessn dynamicoptimizationsys-
tems[5] and concludedthat loops provided the greatest
performanceopportunities followed by opportunitiespro-
vided by the muchsimplertraces.Regionsprovide a con-
venientplatform for nearglobal schedulingtechniquesby
focusing optimization efforts on a modestly sized code
basethat represents significantportion of execution,of-
tenanouterloop. Combinedwith efficient, globalschedul-
ing algorithms region-base@pproachem off-line systems
(whereoptimizationresourcesare more readily available)
arelikely to boostfuture performanceesultsof post-link
optimizationsystemseyondthatof currenttrace-baseda-
pabilities. Many systemsfrom off-line optimizerssuchas
Spike [6] andVulcan[20] to dynamicrun-time optimizers
suchasDynamo[3], Daisy[11], Crusog[13], ROAR [16],
rePLay[18] andUQDBT [22] couldall benefitfrom theen-
hancedfocusedscopeprovidedthroughthe VacuumPack-
ing method.

3 Hot regionidentification

The VacuumPackageregion formation processis de-
signedto identify importantcoderegions associatedvith
programphasesand extract themfor the purposeof code
optimization. As shovn in Figurel, the formationprocess
conceptuallyconsistsof threesteps. In the first step,pro-

Fn A Fn A Root Function Fn A Root Function
’ /-E Launch Point
l ’ ’ Region VA
B [T Prima
%_ ; ; Entry Blorgk
g T . /
= |FnB - Fnc FnB Fnc| | Extracted
© ’ ; Package
’ > From
\ Region Z
‘ \)
Fn D FnE ; FnF Fn D FnF Fn D FnE FnF
M HotBranch [Hot Region —® Hot Path Cold Path

(@ (b)

©

Figure 1. The Vacuum Packing region formation process overview for functions A-F, shown in call

tree order.

(a) Hot branc hes with hot and cold directions.

(b) Identified hot region named Z. (c)

Extracted and optimiz ed region Z with launc h points into the new region and cold side exit links back

to original code.

filing, a mechanisnmonitorsthe executionof a program
and assembles collection of static branchesreferredto
as hot spotbranchesas shovn in Figure 1(a). Thesein-
structionsarethe hot branchesassociatedvith the current
phaseof programexecution. Upon the detectionof a new
phasejnformationaccumulatedn this monitoringmecha-
nism,includinghotspotbranchexecutedandtakenweights,
is storedaway for future processing.

The profiled programcontinuego executeuntil another
phasds detectedatwhich pointtheinformationonanother
setof hot brancheswill be storedaway. For evaluationin
this paper the profiled programrunsto completionbefore
ary of the phasesare further processedy the software.
Themonitoringmechanisnis implementedn hardwareand
runsin the backgroundincurring minimal overheaduntil a
phaseransitionis detected.

At the completionof the profiled program,a software
mechanisnprocessethe storedhot branchinformation. In
the secondstep, the storedinformation is combinedwith
staticprogramrepresentatioto form theinputto theregion
identificationalgorithm. The algorithm mapsthe hot spot
detectioninformation to the codeto selectinclusion into
the hot region and canleveragethe branchinformationto
generateestimatedxecutionfrequencie®f all instructions
in theregion. Oftenthesehot regionsspanfunctionbound-
aries;in Figurel(b),thehotregion spangunctionsA, B, C,
D, E, andF.

In the third step, an extraction algorithm assembles
piecesof the hot region into a new, localized code pack-
agethatcanbe corvenientlyhandledby anoptimizer One
physicalregion is identified for eachprogramphasefrom

which multiple packagesnaybe constructedControltran-
sitions are establishedbetweenthe original programand
the extractedpackagesFinally, controltransitionsarealso
establishecbetweenthe packageshemseles. The new
code packagesare structuredmuch like a function body
so that optimization algorithms can easily processthem.
Unimportantcodearoundthe hot region is excludedfrom
the extractedpackagewhich canthenbe tightly optimized
andscheduled.For this reasonthe presentedechniqueis
known asVacuumPacking.

3.1 Stepl: Program phasedetection

During thefirst stepof the VacuumPackingprocessthe
Hot SpotDetector{HSD),asshavn in Figure2, is themon-
itoring mechanisnmesponsibléor detectiorof hotbranches
in eachof thephase®f execution17]. TheHot SpotDetec-
tor consistof two componentsthe BranchBehavior Buffer
(BBB) whichis atablefor profiling the executingbranches,
andthe Hot SpotDetectionCounter(HDC) whichis a sim-
ple countingmechanisnthatprovidesanon-the-flyanalysis
of theexecutioncoverageprovidedby the branchedracked
in theBBB. As abranchretiresfrom theprocessararecord
of its executionis passedo the detector The staticaddress
of the branchis usedto locatea table entry whereits dy-
namicbehavior is tabulated. The detailsof the operationof
theHSD arefoundin [17].

Upon the detectionof a hot spot, the BBB contains
the setof hot spotbranchesand their executedand taken
counts. The countstogetherminimally provide the taken
fraction for the branchduring the detectionprocess. The
executedweightscanalsobe usedto comparethe relative
significanceof differentbrancheswithin the samehot spot.

Branch Behavior Buffer Hot Spot Detection Counter

BranchExec Taken Candidate

RefreshTime} Addr Cntr Cntr Flag

Branch Address

Saturating Adder

R EE—

At Zero:
Hot Spot
Detected

T

=

Figure 2. The Hot Spot Detector .

However, contentionfor table entriesmay force a static
branchto begin profiling laterin the detectionprocessThis
scenariomay causeartificially lower weightscomparedo
otherbranchesn the hot spot, andin the worst case,pre-
ventthe branchfrom beingtrackedat all [17]. In addition,
the hardware counterstracking eachbranchsaturatewhen
the executecountreachests maximumvalue. However, at
saturationthetakenfractionfor the branchis presered.

Figure3illustratesthe hot region identificationprocess.
Theprofiled programconsistof two functions,asshovnin
Figure3(b). Basicblocks A; through A, belongin func-
tion A andbasichlocks B; throughBg belongin function
B. Figure 3(a) shaws the resultof hot spotdetection. For
the purposeof this examplea very small, four entry BBB
is used. Sincethe working setof branchesn the phaseis
muchlargerthanthe sizeof the BBB, only a portion of the
branchesare captured. In a realistic design,the captured
executionof a phasewould be expectedto be muchhigher

After the branchinformationis stored,the executionof
the profiled programresumesunderthe watch of the hot
spotdetector Without any othersupportthe samehot spot
would be repeatedlydetectedand recordeduntil a phase
transitionoccurs. While the detectionitself haslittle over-
head therecordingof theresultantprofile is comparatiely
expensve. Recordinghot spotprofilesonly atphasebound-
arieseliminatesconsecutie recordingof the samehot spot.

Enhancement® the BBB, asdescribedn [4], provide
a history of onehot spotandrecordsa phaseonly whenit
is differentthanthe previous phase. This history could be
extendedto morethanoneto greatlyreducethe numberof
hot spotsrecordedby not rerecordinghot spotsheld within
the history window. Working setsignature410] could be
extendedto hot spotsignaturedo allow inexpensve com-
parisonsbetweena detectedhot spotand a history of pre-
viously recordedhot spots. Whenthe hot spotrecordsare
processea@t optimizationtime, additionalfiltering canalso
be doneto furtherremove redundanhot spots.For this pa-
per we assumesoftware filtering eliminatesall redundant
hot spotdetections sincethis work focuseson taking ad-
vantageof the hot spotsratherthanminimizing theamount
of datatransferrecat detectiortime.

In determiningthe similarity betweertwo hot spots two
criteriaareused. First, given a hot spotA and hot spotB,
if 30% or moreof A’'s branchesremissingfrom B (or vice
versa)then A and B are differenthot spots. Second,if a
singlebiasedbranchthatis commonto both A andB hasa
differentbias (takenvs. not-talen) betweenA andB, then
A andB aredifferenthot spots. As describedn [4], the
thresholdof varying biasedbranchesould be increasedo
morethanone,yielding fewer uniquehotspots.

3.2 Step2: Regionidentification

The secondstepof the hot region formation algorithm
identifiesthe hot instructionsof eachphasebasedon the
branchprofile information provided by the BBB. The pro-
file informationavailableat this point consistonly of a set
of branchescapturedduring the detectedphaseof execu-
tion alongwith their executedandtakencounts.Thisis the
only informationusedto selecta region’s instructionsand
canalsobe usedto determineprofile weightsfor control-
flow within the region. In an attemptto provide an opti-
mized pieceof codefor eachimportantphaseof program
execution,eachhot spotdetecteds consideredseparately
During theidentificationandgrowth of aregion, a control-
flow graph(CFG)for eachfunctionin theregionis marked
with the hot andcold information. A call graphrepresent-
ing functioncall relationshipswithin theregionis alsocon-
structed Eachregionis thenexpandedo includeadditional
blocksandtheir correspondingontrol-flow arcsfor several
reasons:

e Eventhoughexits from aregioninferredfrom the Hot
Spot Detectorare infrequentlytraversed,we want to
minimize the numberof themby opportunisticallyin-
cluding infrequentpathswheninclusionis associated
with little or no cost.

e A hot path may diverge into several pathswhich do
not individually meetthe thresholdfor beinghot. If
thesepathdaterconvergebackinto hotblocks,includ-
ing themwill improve the connectvity of ourregions.

¢ Techniquesusing hardware counter$ to determine
profile weightsprovide only an approximationof the
actualprofile. We musttoleratea certainamountof
missinginformation.

3.2.1 Hot spotblock and branch identification

To identify theregion of codefor VacuumPacking,the CFG
is constructedwith instructionsdivided into basicblocks,
whereeachblock containano morethanonebranchor sub-
routinecall, whichis alwaysthelastinstructionin theblock.
Eachblock andarcin the CFG is augmentedvith weight

1Similar problemsalsoarisewhenusingsoftwaresampling.

Region

ion Package

—> Known hot branch direction i
— = —» Known cold branch directions

— Unknown frequency directions

. Known hot blocks
. Known cold blocks

D Unknown frequency blocks

Blocks Ending in Branches
A2 A3 A4 A5 A6 A9 B2 B4

BBB
A2 - BR - Not Taken|
A4 - JSR
B4 - BR - Taken
A9 - BR - Taken

(@) (b) ©

Figure 3. Region identification example functions.
superimposed on a contr ol-flo w graph.

(c) After propagation of the cold arc information.

(d) (e)

(a) Branc h Behavior Buffer profile. (b) Profile
(d) After

propagation of the hot arc and block information. (e) Resultant Package.

andtempeaturefields,alongwith anadditionaltakenprob-
ability field for eachblock endingin abranch.

At hot spotdetectiontime, the HSD storesrecordsfor
all hot spotbranchescontainingtheir taken and executed
counts,which providesan outline of the particularexecu-
tion phase.Eachbasicblock containinga hot spotbranch
is assigneda weight correspondingo the executedcount
of the hot spotbranchand is assignedhe Hot tempera-
ture. Eachblock is additionallyassigneda taken probabil-
ity equalto fekesount ol is ot ol hranch | The CFG
arcsthatcorrespondo thetakenandfall-throughdirections
of eachhot spotbranchareassigned weightbasedon the
takenandexecutedcountersof thatbranch.Eacharcis as-
signedthe Hot temperaturéf that direction accountsfor
eithera minimum of 25% of the branchs flow of control
or if it hasaweightgreaterthanthe HSD’s hot spotbranch
executionthreshold. If a directionaccountsfor a smaller
amountof a branchs flow of control, thatarcis giventhe
Col d temperatureAfter thisinitialization,blockscanhave
a temperaturehat is either Hot or Unknown, while the
temperaturef CFGarcscanbeHot , Col d, or Unknown.

3.2.2 Block and arc temperatureinference

Onceregion selectionis initialized, the region is expanded
by inferring additionalHot (and Col d) blocks usingthe
algorithm presentedn Figure 4. The temperaturdanfer-
enceprocessseeksto add blocks which shouldhave been
includedin the hot spot,but eitherdo not containbranches,
or containbrancheghatweremissingfrom theHSD at de-
tectiontime. By iteratingover the CFG, the algorithmap-
pliesthe inferencerulesto blocksandarcs,asdepictedin
the examplein Figure5. For instance Statemen8 of Fig-

ure4 employsinferencerule a of Figure5 which stateshat
a block canbe inferredto have a Col d temperaturef all
control-flow arcsinto or out of thatblockhave a Col d tem-
perature Similarly, rule d of Figure5 is performedoy State-
ment6 of Figure4 to setthe temperatureof all incoming
andoutgoingcontrol-flow arcsof a Col d block to Col d.
Finally, Statemen® of Figure4 providesfor the inference
of a Hot temperaturdor the target block of a subroutine
call from a Hot block. Onceno additionalinferencescan
be applied,someblockswill remainUnknown if thealgo-
rithm wasunableto propagatea temperaturef eitherHot
or Col d to them. SomeUnknown blockswill be added
to the regionsby the heuristicgrowth processexplainedin
Section3.2.3.

3.2.3 Heuristic hot regiongrowth

For reasongreviously detailedjmportantblocksmight not
be initially selectedusing hot spot block identificationor
inference.In orderto additionallyreducethe frequeny of
transitionsfrom our optimized codeto the original code,
two additionalstepsof heuristicexpansionof the selected
regionareperformed First,any arcwith anUnknown tem-
peraturédetweertwo Hot blocksis includedin theselected
region. Sincenothingis known aboutthe arc andsinceits
targetis alreadyselectedas part of the region, it is elimi-
natedasanexit. Col d temperaturarcsbetweenwo Hot
blockscontinueto be excludedfrom the region in keeping
with thegoalof producingcodepackagespecializedo the
behaior of a phase. Second,in an attemptto find a sin-
gle launchpoint for eachpackage the selectedregion is
expandednto adjacenpredecessdnlocksfrom eachentry
blockuntil anotheHot temperaturdlockis reachedSuch

1. lterate through blocks in CFG to attempt to solve
unknown temperatures:
Propagate control-flow arc temperatures to blocks
Set block temperature to Cold if all arcs in or ou
have known, Cold temperature
4, Set block temperature to Hot if any one arc in or
out has a Hot temperature
Propagate block temperatures to control-flows arc
Set temperature of all arcs in and out of blocks
with Cold temperature to Cold
7. Set temperature of arc in or out of a Hot block if
all other arcs in or out (respectively) of block
have a known, Cold temperature
Propagate temperature through Hot calls:
Set temperature of callee’s prologue block to Hc

w N

oo

©

Figure 4. Algorithm for inferring additional hot
blocks.

Propagation to Blocks

Propagation to Arcs
* ﬁ m ?

%x% |

(@) (d) (e) f)

‘D‘l
Dl

'\ '\

Figure 5. Inference Rules; Legend in Figure 3.
(a)-(c) Propagation to Bloc ks. (d)-(f) Propaga-
tion to Flows.

growth avoids all Col d arcsandblocks, andis limited to
MAX _BLOCKS additionalblocks. Sincewe wish to limit
thesizeof the selectedegionsMAX _BLOCKS shouldbe
choserasa smallnumberof blocks. For the experimentsn
thiswork, MAX BLOCKS is choserto be1l.

3.2.4 Regionidentification example

In Figure 3(a), the profile informationfor the detectedhot
spotcoversonly four of the eighthot brancheslueto lim-
ited numberof BBB entries.A realdesignwould notdetect
sucha small percentagef hot spot brancheshowever, a
very large programmight have a working setof branches
thatexceedshe availableentries. Thus,to be effective our
algorithmmustbe tolerantof somebranchesnissingfrom
thebuffer.

In Figure 3, information about several additional
brancheganbederivedfrom the HSD branchprofile using
thealgorithmin Figure4. SinceA.’sbranchis stronglynot-
taken,theflow to A~ is identifiedasCol d. Theflow from
Ag to Ayq is similarly identifiedas Col d. Sincethe flow

from A5 to A7 is Col d, block A7 mustbeCol d (Statement
3). In Figure3, the propagatiorof Col d andHot blocksis
shavn separatedh (c) and(d). Someadditionalflows can
be positively identifiedasHot basedon the HSD profile.
SinceA; is Hot andis alsostronglynot-taken,the flow to
Az is Hot . Thetemperatureof this flow is propagatedo
block A3 by Statemen# eventhoughit wasmissingfrom
the hot branchprofile. Thefactthat B4 is Hot impliesthat
By andBg areHot (Statementg and4).

The algorithmidentifiesthe hot basicblocks from this
programphasen spiteof thelack of profile informationfor
half of the branches.The resultis shavn in Figure 3(d).
Note that in general,however, therewill be Hot blocks
and Col d blocksthat cannotbe positively identified due
to incompleteprofile information. In thosecasesheuristic
growth will berelieduponto determinewhetheror notthe
blocksareincludedin theregion.

3.3 Step 3: Packageconstruction and optimiza-
tion support

Oncea hotregion of codehasbeendetectedjdentified,
andgrown, the packageconstructiorandoptimizationstep
begins. A padkage is a connectedpiece of codederived
from a region that may include instructionsfrom multiple
functionsand may have multiple entrancesand exits. A
single region would potentially generatemultiple disjoint
packages.

3.3.1 Function pruning and maintaining data-flow

For eachhot region, copiesof the markedfunctionsarere-

ducedto includeonly the blocksand control-flow arcsde-
claredimportant(Hot) for thatregion. This caneliminate
a large fraction of the blocksandflows within a function,
particularlyeliminatingmege pointsbetweerhotandcold

paths.However, control-flov pathsfrom hotto cold blocks
cannotbe ignoredas they may occasionallybe traversed,
transferringexecutionout of the packageTheliveregisters
attheseexit pointsaremaintainedn the optimizerby creat-
ing a new basicblock, calledanexit block, alongeachexit

pathandby placingdummyconsumeinstructionsfor each
registerthatis live acrosghe exit. This allows the removal

of the cold instructionswithout corruptingor complicating
theformal data-flav analysisprocess.Figure6(a) shovs a
sequencef hotinstructionswith a branchto a sequencef

cold instructions. The resultof extractingthe hot instruc-
tions andinsertinga representatie exit block is shovn in

Figure6(b).

3.3.2 Locating root functions and entry blocks

Thecall graphfor theregionis examinedto find root func-
tions. Theseootfunctionswill seneasseeddgor thepartial
inlining processandwill bethecontainerdor thegenerated

HOT

11d rl=

2 add r2=r3+r]

3 mov r5=r4 COLD

4 br 41=0 7 lIsr r2=r3, 2|

5 st [rd]=r2 8 br r2<16 {9 mov r4=rl

(@)

EXTRACTED HOT
11d rn=
2 add r2=r3+r]
3 mov r3=r4 EXIT
4 br r4!=0 use r3
5 st [r4]=r2 use rl

(b)

Figure 6. Maintaining data-flow. (a) Original
code sequence. (b) After hot instructions
have been extracted.

packages.A function will be chosenasa root for one of
threereasonsFirst, any functionwithout ary callersin the
region (ignoringbackedgesn thecall graph)will bearoot
sinceit will be encounteredirst during execution.Second,
ary functionthatwill notbeinlinedinto ary callerswill be
marked a root function. Section3.3.3 describeshow this
canoccurwhenthe hot partsof a functionlack a prologue,
epilogue,or a pathin betweenthe prologueand epilogue.
Last, ary self-recursie function will be chosenas a root
andasinglecopy will beallowedto bepartiallyinlinedinto
itself. This providesa packageinto which recursve calls
canenterif their call depthgoesbeyondwhatwasexplicitly
inlined.

In a similar fashion,entry blodks within the root func-
tionsareselectedasedntheirrelationshipsvith thefunc-
tion’s CFG. Ignoring back edgeswithin the CFG, entry
blocksareoneswithoutary predecessord.heentryblocks
arethe solepointsof entryfrom original codeinto thefinal
packagesThe original codelocationsthat transfercontrol
into packageentry blocks are called launch points This
canbeseenin Figure7(a)wherebranchAO canjumpto the
block containingbranchAl. Theblock containingAlis an
entryblock of root function A andwill beincludedinto the
constructeghackagesAOis alaunchpointandresidesonly
within the original code. In the figure, function B is not a
root function but will be partially inlined into the package
rootedat function A.

3.3.3 Partial inlining

The inlining processsuccessiely progresseshroughroot
functionsof the call graphproducingindividual packages
for theregionandis partial inlining becaus¢he partsof the
calleeswerediscardedn Section3.3.1.It proceeddy find-

ing anout-goingarcin the call graphfrom therootfunction
to anotherfunctionwithin the sameregion. Partial inlining
of a calleewill notbe performedunlessthe calleecontains
a prologueandan epiloguewith a pathbetweerthem. In-
lining of a calleethatfails to meettheseconditionswould
separatehe region into two piecesthe partthatmakesthe
call andthe partafterthe calleereturns.Thereforeinlining
of suchdisjoint calleess skipped.

When partial inlining is performed,the blocks of the
calleereachablegrom the prologueare inlined as normal
into the caller while ary other disjoint sggmentsare dis-
cardedo avoid creatingsideentranceinto theinlineefrom
unknown contexts. Finally, the calleefunction’s out-going
call grapharcsaremergedin with the root function’s arcs,
andthe calleefunction is removed from the out-goingarc
setof the root function. Theinlining procesontinuesor
this root functionuntil its out-goingarcsareexhausted.

3.3.4 Packagetransitions

Programphasingmay leadto a situationwherea particu-
lar functionis the root function for several differentphase
regions. Considera perl interpreterwhere the command
executionloop may sene as the root function for differ-
entpackageshatarespecializedor differenttypesof com-
mandssuchasstringor numericprocessingSincealaunch
pointcanonly pointto a singlepackagea meandor trans-
ferring controlto thepackagehatcorrespondso thecurrent
phasds necessaryTheexamplein Figure7 will beusedto
demonstratanary of the packageentranceand transition
featuresof VacuumPacking. Figure 7(a) depictsan origi-
nal codefragmentin which threedifferentexecutionphases
weredetectedIn thefigure,only the branchesredepicted
for clarity (AlthroughA4 andB1). Thethreephasesause
theformationof threepackageshavn symbolicallyin Fig-
ure7(b). For all of thepackagesfunctionA is therootfunc-
tion andthelaunchpointis from AOto theentryblock con-
taining Al. Eachpackages designedo containall of the
hot codeneedfor the executionof its phase.As described
in Section3.3.3partialinlining is usedto includecustomiz-
ablecopiesof codeinto thepackagesAlong with copiesof
theselectegiecesof calleefunctions,selectegiecesof the
root functionarealsoreplicatedinto eachpackageIn Fig-
ure7(b)U (unbiased)F (biasedall through),andT (biased
taken) mark the biasfor a particularbranchduring the re-
spectve phaseandimply the contentsof the corresponding
package For example,A2 is biasedfall throughin phasel
andthusits packageskipsthesecondtall to B. A2is biased
taken for phase®? and 3 andthusthesepackagesnalke a
seconctall to B. For phased and2, branchAlis unbiased,
U, taking andfalling throughroughly equallyandthusthe
packagescludecodealongbothdirections.

If all packagesave disjoint root functions,thena one-
to-one mapping exists betweenlaunch points and entry

CA0 Function A . Function B
: (root function) : :
: (Iggi':]?\. B1 : Phase

X
m T CiF
R B e
_|

(entry :
A block) | T 2 3
< > s : Al F
T F ¥ f ' F
Call B’ : 5 A2
A2 : g B1” F
T : QA3 [T u
F CallB 3 Al T
T A3 | ®)
oo
T A4 3 T = Taken hot (biased)

> : F = Fall-through hot (biased)
F

() U = Both hot (unbiased)

Linking Order Examples

AO\ 2 1 3 AO\ 3 2 1 AO\ 3 1 2
""" u<u m F>U U F>U U
""" F F F F F F F F F
""" T>F2T T T™F) T>FT
""" F F F F F F
""" T T—* usET 1O UusET 1O
""" T T T

i .2 2 3 4 1 2 3 3 1
Weights -5 5§ 6 5 5 6 5 5
Rank = 0.64 Rank =0.84 Rank = 0.86
() (d) (e)

Figure 7. Package construction and linking example .

blocks. However, it is not uncommonfor multiple pack-
agesto have the sameroot function. Thus, theremay be
no definitive location in the original codeto launchinto
eachdistinctpackageThisclearlyoccursin Figure7 where
thereis only a singleentry block, Al, andcorrespondingly
only onelaunchpoint, AQ. Sincethereasinglelaunchpoint,
only oneof the packagesanbe enterednto directly from
theoriginal code.

Packagdinking providespathsto selectvely reachalter
natepackagesootedat the samepoint by retaigetingcold
(exit) pathsin onepackageo theirtargetblocksthatarehot
in anotherpackage.Anothersolutionwould have beento
dynamicallymodify thelaunchpoint branchto pointto the
expectedbestpackage However, amechanisnwould need
to bein placeto make themodification.While amonitoring
codesnippetcouldbeintroducedalongthe exit pathto feed
adynamicpredictor aneasystaticsolutionis to simply link
thesideexit from onepackagédo the correspondingointin
theother

Cautionmustbe exercisedo ensurehatthecalling con-
texts from the root function to the link siteswithin both
packagesare identical otherwiseexecutioncould traverse
into incorrectfunctions. This is shavn in Figure7 in that
branchB1 from function B occurstwice in the packages
formedfor phase® and3. For thesephaseghefunctionis
partially inlined twice, onceat callB’ andoncefor call B”.
EventhoughB1' andB1” originatefrom the samebranch
B1, they arefrom differentcontexts. A link betweera B1’
andaB1” would clearly beincorrectsinceit would bethe
sameascreatinga pathfrom call B’ directly to call B” (or
vice versa)in the original code. Thusin Figure7(b), B1’
andB1” arelistedin differentrows andtreatedasincom-
patiblebranches.

Figures 7(c-e) shavs three (of six possible)different
ordering options betweenthe packages. Looking at Fig-
ure7(c)in detailshavstheentrancanto phase2’s package
thatlinks from phase2’s A2 biasedT to phasel’s A2 biased

F. This meansthat when phase2’s branchfalls throughit
jumpsto phasel’s versionof the fall-through code. For
linking, an F canconnectto a T andto a U, while a T
canconnectto anF andto a U. Giventhe overlappingen-
try points and the different formationsof the three pack-
agesmary linking optionsexist. For ourimplementationa
link is alwaysformedto thefirst compatiblepackageo the
“right” wrappingaroundthe endto thefirst package.Ad-
ditionally, the “left-most” packagen the orderingis given
precedencéor entry pointswhensharedentry pointsexist.
Thesetwo rules corvert the linking probleminto a pack-
ageorderingproblem,thoughthey do not allow for atruly
exhaustie searcthof all linking possibilities.Now the pack-
agesmust be orderedin a way that provides the highest
reachabilityto the availablepackages.

While not necessarilyoptimal, the following methodis
usedto ranka givenpackageordering,wherea higherrank
is better For eachpackagethe numberof incominglinks
is divided by the numberof packagebranchego yield a
weight. This rank is shovn belonv eachcolumnin Fig-
ures7(c-e). The ratio representshe numberof ways of
enteringthe packagehroughlinks to the size of the pack-
age. Using Figure 7(c), therankis calculatedby usingthe
first packages (phase2'’s) ratio of 2/5 to initialize both an
accumulatoendaweightvariable. Theweightis thenmul-
tiplied by the secondratio of 2/5 andaddedto theaccumu-
lator. Similarly, the weightis againmultiplied by the third
ratio of 3/6 and addedto the accumulatoryielding a final
resultof 0.64. Theranksprovide aroughcomparisorof the
likelihood of stayingin the packagedormed. The order
ing andlinks shaovn in Figure7(e)would be pickedfor this
example.

4 Experimental setup

Listed in Table 1 are benchmarkgepresentinga wide
variety of applicationtypes selectedfrom SPECCPU95,
SPECCPU200Q(includingshortenedeferencenputsfrom

Table 1. Benchmarks and inputs used in
experiments.

Benchmark ‘ Input ‘ # of Inst‘ Benchmarl# Input ‘# of Inst

099.go A: SPEC Train 338M A:SPEC Train1 | 1512M
124.m88ksin| A: SPEC Train gowm | 134perl | B:SPECTrain2 | 28M
C: SPEC Train 3 8M

A: SPEC Train 122M -
130.li B: 6 Queens 32M A:UMN_sm_red 63M

362M | 255.vortex| B: UMN_md_red 315M
C: UMN_Ig_red 886M

C: Reduced Ref
A: SPEC Train 1094M

132.ijpeg B: Custom Faces 57M | 197.parser| A: UMN_sm_red 178M
C: Custom Scenery 320M | 300.twolf | A: UMN_sm_red 167M

164.gzip A: SPEC Train 1902M | mpeg2dec | A: Media Train 99M

175.vpr A: SPEC Test 1012M

181.mcf A: SPEC Test 105M

Table 2. Simulated EPIC machine model.

Parameter [Value [Parameter [Value
Instruction issue | 8 units LD/ST buffer size (each) 8 entry
Integer ALU 5 units BBB associativity 4-way
Floating point unit | 3 units Num BBB sets 512 set
Memory unit 3 units Candidate branch threshold| 16
Branch unit 3 units Refresh timer interval 8192 br
LI data cache 64 KB Clear timer interval 65526 b

Unified L2 cache |64 KB Hot spot detection cntr size | 13 bits
LI instruction cache 512 KB Hot spot detection cntrinc | 2
RAS size 32 entry | Hot spot detection cntr dec | 1
BTB size 1024 entry Exec and taken counter size 9 bits
Branch resolution | 7 cycles

Branch predictor | 10-bit history gshare, 3 predictions per cycle

the University of Minnesota(UMN) [14]), and Media-
Bench[15] to testthe performanceof our region formation
and packageextraction stratgies. The benchmarksvere
eachcompiledwith the IMPACT compiler using control-
flow profiling information,inlining, classicaloptimization,
pointer aliasing analysis,and instruction schedulingwith

controlspeculationDatawascollectedacrosghecomplete
run of eachbenchmarkandinput. The numberof instruc-
tionsexecuteds alsolisted.

The performancemeasurementseportedin this work
were generatedby a customsoftware emulatorthat per
forms cycle-by-g/cle full-pipeline simulation of eachin-
struction. The architecturemodeledconsistsof a ten stage
EPIC pipelinecontainingfive functionalunit types(Integer
ALU, FPR Long Latenyy FR Memory, and Control). The
simulationsalso include a multi-level memory hierarchy
andbranchandreturn-addresgredictor Theemulatorfully
accountsfor the affects of branchprediction,wrong path
execution,cacheutilization andpollution, varyingmemory
latengy, interlocking, and bypassing. Table 2 reflectsthe
architecturaparametershoserfor the evaluationsystem.

5 Experimental evaluation

5.1 Executioncoverage

A primary concernfor a post-link optimizer is the
amountof programexecutionspentin the optimizedcode.

This principleis evenmoreimportantfor systemshatgen-
eratecodeat run time sinceperformanceagainsdueto exe-
cutionin optimizedcodemustovercomehelossesncurred
performingthe optimization. For VacuumPacking, higher
quality packagedeadto a greaterpercentagef execution
from within the optimizedcoderegions. Our emulatortab-
ulatedthe numberof dynamicinstructionsexecutedin the
packagesndin original codeandcomputedhe percentage
spentin the packageswhichis showvn in Figure8. The ex-
periments/arytheuseof hotblockinferencegSection3.2.3)
andinter-packageordering(Section3.3.4). Four barsare
listed for eachbenchmarkinput, one without inferenceor
linking, one without inferencebut with linking, one with
inferencebut without linking, andonewith bothinference
andlinking.

Turning off hotblock inferencemakestheregion identi-
fication procesdreatthe branchdatarecordedoy the HSD
ascomplete.Whenturnedoff, additionalinferenceis only
performedto blocksthat do not containa branch,but the
remainderof the formation algorithmis usedin full. In-
ferencehelpsif a packagds missingbrancheslueto con-
flicts within the BBB but is unlikely to have ary effect if
a programs phaseregionsare very small. Thoughit does
not greatly effect the average,individual benchmarkdik e
175.vprand300.twolfbenefitnoticeably Missingbranches
can,in somecasesactuallyaid coveragdf they aremissing
from the root function. In this situation,additionallaunch
points may be createdthat provide more opportunitiesfor
executionto transitioninto the packagesalthoughthe op-
timization potentialmay be reduceddueto the partitioned
region.

As previously described inking provides a meansfor
executioncontrol to reachmultiple packagesven if they
have overlappingaunchpoints. For example, 124.m88ksim
hastwo phasedor loading a binary, eachwith the same
launch point. Without linking, asis shavn in the first
andthird barsof Figure 8, both packagesan not always
be reached,thus preventing executionfrom reachingthe
matchingoptimizedcoderegion. However, someoverlap-
ping package$ave launchpointsthat do not overlapwith
ary otherpackagesvhile still othershave uniquerootfunc-
tions. In bothcaseghey arereachablavithoutlinking. This
mitigatessomeof the losswhenlinking is turnedoff. De-
spitethis, 124.m88ksinl81.mcf197.paser, and300.twolf
all shaw largegainsin coveragefrom linking.

The benchmarkl30.li exhibits aninterestingcharacter
istic wherea few weakly executedcallerscall animportant
callee.Only onecalleris hotenoughto be detectecandthe
calleegetsinlinedinto it. This preventsthe calleefrom be-
ing arootfunctionandthus10%of theexecutionis missed.

5.2 Codeexpansion

Thepackageonstructiorprocessausegodeexpansion
dueto partial duplicationof root functionsandsuccessie

m No Inference, No Linking 0 No Inference, Linking

Inference, No Linking m Inference, Linking

100

90

80

biasin directionare further subdvided into thosethat ex-
hibit significantswingsin their expecteddirection. Those
thatvary betweerphaseg> 70%) arecategorizedasMulti
High, thosewith more moderateswings, between(40%)
and(70%), areMulti Low, while all otherbiasedbranches
areMulti Same.Any Multi brancheghatnever shav abias
arecatgyorizedasMulti No Bias. For example,the bench-
mark 099.gohasabout3% of its dynamicbranchesvhose
staticbranchis sharedn multiple phasesvith alargeswing
in its behavior betweenthephasegMulti High). Aggressie

A A
099 124
Figure 8. Percent of dynamic instructions from within packages.
Table 3. Code Expansion
Bench[% Incr| % Staticinst| | Bench| % Incr| % Staticinst
in size| selected in size| selected
099A[374 101 Al 79 42
T24A| 3.9 25 132B[76 44
A 174 72 c[94 5.7
130B[122 72 T64A| 9.2 58
c[174 72 T75A| 6.0 27
Al 36 T4 Al 15.0 30
134B[38 14 255B[15.7 32
c[38 13 c[167 31
T8IA| 23.9 77 300A[72 2.0
T97A| 19.7 35 mpgA| 5.8 36

inlining of heavily executedcalleefunctionsinto multiple
packages.Table 3 shavs the percentageyrowth of static
instructionsdueto packageconstructiorandaveragesl2%
(with alargenumberof benchmarksubstantiallybelow the
average).In spiteof the specializatiorrequiredfor individ-

ual phases12% growth covered81% of the dynamically
executedinstructions. Table 3 additionally shows the per

centageof staticinstructionshatwereselectedo be apart
of at leastone package. An averageof 4.5% of instruc-
tions were selectedyielding an averagereplicationfactor
for theseinstructionsof approximately2.6.

5.3 Branch categorization

To explorethevalueaddeddueto phase-sensite profil-
ing over traditionalaggreyateprofiling, we cateyorizedthe
dynamicbranchesn our experiments. First, the branches
wereseparatednto two groups,thosewhosestaticbranch
appearsn only a single phase(Unique) and thosewhose
staticbranchappearsn multiple phasegMulti), asshaovn
in Figure9. The uniquebranchesverethendivided into
biasedandunbiasedypes,andnotablyweremostlybiased.
Thebiasedranchesreespeciallybeneficiakincethecom-
piler can aggressiely assumea particulardirection with-
out muchrisk to performance Multi brancheghatshov a

staticcompilersmay performpoorly on functionscontain-
ing suchbranchesasthe aggreateprofile may differ sub-
stantiallyfrom thebehavior seenin eachphaseln addition,
it is evidentthat a significantportion of executionis seen
in instructionswhich occurin multiple phases.The Multi
High and Low instructionsrepresentour opportunity for
customizingan applicationfor its phasesy exploiting the
differing behaior in eachphase While only differing by a
few percent,the Multi High andLow have significantim-
pactbecausehey now allow theoptimizerto wisely choose
pathswhere an ambiguousaggrejate profile hampersthe
decision.

5.4 |Initial speedupexperiments

Giventhathigh coveragepackagesave beenformed,a
numberof experimentsivereconductedo examinethe po-
tential for performancebenefitachieved by VacuumPack-
ing. After forming the packagesadditional code layout
andschedulingpassesvereapplied. Using the methodde-
scribedin [4], block and control-flov arc profile weights
were calculatedusingthe taken probabilitiesof eachblock
in the CFG.For run-timesystemssuchacalculationmaybe
too computationallyexpensve anda simplerapproximate-
weight propagationmethodmay suffice. While not per
formed in this study variousclassic,ILP, and loop opti-
mizationscould alsobe appliedto furtherimprove the ap-

[s]
c
z
o

nique @ Unique No

ias ® Multi Same

o
<

Ui High m Mutti Low @ Multi No Bias ‘

100% -

80% -

o
)
V. 777/

60% -

)

l////A
2z |

]

40% +

T

7 77 A |

20% -

—

0%

iz
v]
V /7222
7/
i
Y|

T/ M

alelc]

|
> |

>

AVG

>
>
>
w
(@]

-
~
()]
—_
[ee]
prg
-

97

N
o

5! 300

mpeg

Figure 9. Categorization of hot spot branc h behavior across benc hmarks.

plication’s performance.Theseoptimizationsmay provide
significantbenefitsincethe elimination of cold pathsmay
increaseblock scopeby eliminating side entrances. Fur-
ther compactionof the codeschedulemay be achieved by
aredundang-eliminationoptimizationthat movescold in-
structions(thosewhoseresultsarenot consumeadvithin the
hot package}o the sideexit block.

Figure 10 shows the resultantprogramspeedupdue to
packageelayoutandreschedulindgor eachbenchmarkand
input. The samefour configurationavereexaminedaswith
the coverageexperiments. The averagespeedupforms a
patternof improvementover the four experimentshatcor-
relatesto theimprovementsn coveragealthoughthereare
afew differencedor individual benchmarksTheincreased
coveragedueto linking in 197.paser allows executionto
reachmore specializedcoderegions, resultingin an addi-
tional 8% performanceémprovement. While the coverage
for 255.vortex wasnot very differentacrossconfigurations,
the performanceshavs thatbothinferenceandlinking pro-
vide for moreefficient executionof thecode.

6 Conclusion

The VacuumPackingtechniquehasthe potentialto sig-
nificantly improve the stratgyy employed by a wide variety
of post-link optimizersanddynamiccodegeneratorsVac-
uum Packing statically exploits naturalexecutionbehaior
that is characteristicof mary programsin orderto create
broadbut targetedcoderegionsthat will sene asthe unit
of optimization. This improvementwill enableoptimizers
to have a muchlarger scopeand more manageablestruc-
tureddeploymentmethodthancurrenttrace-basedystems
while maintainingthe adaptve, focusedbenefitof dynamic
systems.Futuresoftware systemswill continueto grow in
sizeandcompleity requiringthat optimizersanddynamic
codegeneratorsninimizetheamountof alteredcodealong
with the numberof alterationsto keepthe overheadof the

transformationsn check.

Specifically this work exploits a hardware profiling
mechanisnfor low overheadprofiling which identifiesthe
hotbranchegor eachspecificexecutionpattern or phaseof
programactiity. While hardwaremechanismsor profiling
incur minimal overheadthe resultantprofiles often suffer
from decreasedccuray comparedto completesoftware
instrumentation.VacuumPacking overcomeghis inaccu-
ragy by applyinga seriesof inferencesandheuristicgrowth
rulesto identify thetrue coreinstructionsfor eachprogram
phase Theresultingcodepackageseachtargetedtowarda
specificphase represenfibout81% of programexecution
andexpandthe scopeof post-link optimizationfrom traces
to anentirephaseof execution.

In addition,we demonstrat¢hatthe phasenatureof pro-
gramscanbeexploitedevenby a staticoptimization.Based
on phase-sensite information, VacuumPacking performs
partialinlining of functionsinto their correspondinghase
regions. Suchpartialinlining would be difficult for a static
compilerwith only anaggreyateprofile of programbehar-
ior. Furthermore packagedor differentphaseshat share
commonroot codecanbe be exploited statically by recog-
nizing control-flow differencesetweerthe phasesaindus-
ing thesedifferencedo allow executionto selectthe proper
package.

Acknowledgments

This research has been supported by the
MARCO/DARPA Center for Circuits, Systems and
Software under contract 2001-CF888 and gifts from
Hewlett-Packard AdvancedMicro Devices,andMicrosoft.
Erik NystromandMatthev Mertenwerealsosupportedy
Intel Graduatéd-ellowships.

References

[1] G. Ammons,T. Ball, andJ. R. Larus. Exploiting hardware
performanceounterswith flow andcontet sensitve profil-

@ No Inference, No Linking O No Inference, Linking @ Inference, No Linking ® Inference, Linking

A ‘ A|B|C A

T A T
300 ‘ mpeg ‘ AVG

197 255

Figure 10. Performance speedup from basic rescheduling of packages.

ing. In Proceeding®fthe ACM SIGPLAN97 Confeenceon
ProgrammingLanguae Designand Implementationpages
85-96,Junel997.

[2] J.Andersonl. M. Berc,J.Dean,S. Ghemavat, M. R. Hen-
zinger S. Leung, R. L. Sites, M. T. Vandeoorde, C. A.
Waldspuger, andW. E. Weihl. Continuousprofiling: Where
have all the cyclesgone? In Proceedingof the 16th ACM
Symposiunof Opemting SystemsPrinciples pagesl-14,
October1997.

[3] V. Bala, E. Duestervald, and S. Banerjia. Dynamo: A
transparentlynamicoptimizationsystem.In Proceeding®f
the ACM SIGPLAN2000Confeenceon ProgrammingLan-
guage Designand Implementationpagesl—12,June2000.

[4] R.D.Barnes.Extractinghardware-detectegrogramphases
for post-linkoptimization.Masters thesis University of llli-
nois,UrbanalL, 2002.

[5] D. BrueningandE. Duestervald. Exploring optimal com-
pilation unit shapedor an embeddedust-in-time compiler
In Proceedingf the Third ACM Workshopon Feedbak-
Directedand DynamicOptimization pagesl3-20,Decem-
ber2000.

[6] R.S.Cohn,D. W. Goodwin,andP. G. Lowney. Optimiz-
ing Alpha executableson Windows NT with Spike. Digital
Tedchnical Journal, 9(4):3-19,1997.

[7] R.S.CohnandP. G.Lowney. Hot cold optimizationof large
Windows/NT applications. In Proceedingsof the 29th In-
ternational Symposiunon Microarchitectue, pages80-89,
Decemberl996.

[8] T.M. ConteK. N. MenezesandM. A. Hirsch.Accurateand
practicalprofile-driven compilationusingthe profile buffer.
In Proceeding®f the 29th Annualinternational Symposium
on Microarchitectule, pages36—45,Decemberl 996.

[9] J.Dean,J. E. Hicks, C. A. Waldspuger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware supportfor instruction-
level profiling on out-of-orderprocessorsin Proceeding®f
the 30th Annualinternational Symposiunon Microarchitec-
ture, page92-302Decembe997.

[10] A. S. Dhodapkarand J. E. Smith. Managing multi-
configuratiorhardwarevia dynamicworking setanalysis.In
Proceeding®f the29th AnnualinternationalSymposiunon
ComputerArchitectue, pages233-244May 2002.

[11] K. Ebcioglu,E. Altman, M. Gschwind,andS. Sathaye Dy-
namic binary translationand compilation. IEEE Transac-
tionson Computes, 50(6):529-548June2001.

[12] R.E.Hank,W.W. Hwu, andB. R. Rau. Region-basedom-
pilation: An introductionandmotivation. In Proceedingof

the28th Annualinternational Symposiunon Microarchitec-
ture, pagesl58—-168 December995.

[13] A. Klaiber. The technology behind Crusoé™ pro-
cessors. Technical report, Transmeta Corporation,
http://www.transmeta.conanuary2000.

[14] AJKleinOsavskiandD. J.Lilja. MinneSPECA nen SPEC
2000 benchmarkworkload for simulation-baseadomputer
architectureresearch. ComputerArchitectue Letters, Vol-
umel, May 2002.

[15] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
bench: A tool for evaluatingand synthesizingmultimedia
andcommunicationsystemsin Proceeding®fthe30thAn-
nual International Symposiunon Microarchitectue, pages
330-335Decemben997.

[16] M. C. Merten,A. R. Trick, R. D. Barnes,E. M. Nystrom,
C. N. Geoge, J. C. Gyllenhaal,andW. W. Hwu. An archi-
tecturalframework for runtimeoptimization.|[EEE Transac-
tionson Computes, 50(6):567-589June2001.

[17] M. C. Merten,A. R. Trick, C. N. Geoge, J. C. Gyllenhaal,
andW. W. Hwu. A hardware-drizen profiling schemefor
identifying programhot spotsto supportruntime optimiza-
tion. In Proceeding®f the 26thInternationalSymposiunon
ComputerArchitecture, pagesl36—147 May 1999.

[18] S.J.PatelandS.S.Lumetta.rePLay:A hardwareframenork
for dynamicoptimization.|lEEE Transaction®n Computes,
50(6):590-608June2001.

[19] T.Sherwod,E. PerelmanandB. Calder Basicblockdistri-
bution analysisto find periodicbehaior andsimulation. In
Proceeding®f the 2001 International Confeenceon Paral-
lel Architectules and Compilation Techniques pages3-14,
SeptembeR001.

[20] A. Srivastaa,A. Edwards,andH. Vo. Vulcan: Binarytrans-
lationin adistributedervironment. TechnicalReportMSR-
TR-2001-50Microsoft ResearchApril 2001.

[21] SunMicrosystems. The Java HotSpot™™ virtual machine.
Technical report, Sun Microsystems, http://java.sun.com,
2001.

[22] D.UngandC. Cifuentes.Optimisinghot pathsin adynamic
binary translator In Proceeding®f the 2000 Workshopon
Binary Translation pages55-65.ACM ComputerArchitec-
ture News, March2001.

[23] T. Way andL. L. Pollock. A region-basedartial inlining
algorithmfor an ILP optimizing compiler In Proceedings
of the International Confeenceon Parallel and Distributed
ProcessingTechniquesand Applications pages552-556,
June2002.

