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Abstract

This paper presentsVacuum Packing, a new approach to
profile-basedprogram optimization. Insteadof using traditional
aggregateor summarizedexecutionprofile weights,thisapproach
usesa transparent hardware profiler to automaticallydetectexe-
cutionphasesandrecord branch profile informationfor each new
phase. Thecodeextraction algorithm thenproducescodepack-
agesthatarespeciallyformedfor their correspondingphases.The
algorithm compensatesfor the incompleteand often incoherent
branch profile informationthat arisesdueto the nature of hard-
wareprofilers. Thetechniqueavoidsunnecessarycodereplication
by focusingonhotcode, makingefficientconnectionsbetweenthe
original codeand the new code, linking codepackagesat select
pointsto facilitate phasetransitions,andproviding a platformfor
efficient optimization. We demonstrate that using a conciseset
of profile informationfrom a hardware profiler, we can generate
codepackages,specializedfor each phaseof execution,that cap-
ture more than 80% of the average total program execution. We
furthershowthat theapproach is veryeffectivein extractingcode
regions that capture the phasingbehaviorof programs,that the
codesizeincreaseis moderate, and that the coderegionsbenefit
fromsampleoptimizations.

1 Intr oduction

Moderncomputersystemsareincreasinglyreliantonop-
timization techniquesthat canbe appliedin the enduser’s
environment. For instance,the CrusoeProcessor[13] dy-
namically translatesand optimizesbinariesfrom one in-
structionset to a different,underlyingarchitecture.Tools
suchasSpike [6] andVulcan[20] arestaticpost-linkopti-
mizers thatcanstaticallyoptimizeapplicationbinariesin re-
sponseto userinputanddatapatterns.Just-In-Timecompi-
lationsystems,suchasJava[21], rely ondynamiccodegen-�
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erationandoptimizationto producenative codesequences
that alleviate the burden of bytecodeemulation. All of
thesetechniquesimproveuponstaticcompilationby adapt-
ing applicationsin responseto specificinformationabout
the executionenvironmentor usagepatterns. For exam-
ple, in the end user environment, the exact dynamically
linkedlibrariesbecomeavailable,theexactprocessormodel
andfeaturesbecomeknown,andtheimportantcontrol-flow
pathscanbe discerned.Eachof thesecanbe exploited by
anoptimizer, leadingto furthercustomizedapplications.

In order to effectively exploit this specificinformation,
theoptimizersrequireamechanismfor gatheringtheprofile
and environmentalinformation, a platform for transform-
ing thecode,anda mechanismfor deploying thecode.An
applicationprofiler is a key componentbecauseit identi-
fies importantcodesegmentsandusagepatternsthat may
benefitfrom optimization. Clearly, heavily executedcode
mustbe selectedso that the potentialbenefitcanbe real-
ized. Focusingon heavily executedcodealso helpscon-
trol thequantityof codeproducedsothatinstructioncache,
branchprediction,andpagingresourcesarenot taxed.Fur-
thermore,instruction-level-parallelism(ILP) optimization
oftenfavorsoneusagepathattheexpenseof another, which
placesa burdenon thecodeprofiling andselectionmecha-
nismsto makewisechoices.

The transformationplatform is also critical becauseit
mustbe powerful enoughto enablebeneficialtransforma-
tions while limiting the time and resourcesrequired. For
many run-timesystems,thebenefitsmustdirectlyoutweigh
the transformationcostsbecausethe processormay have
to stall theapplicationitself to performthetransformation.
Many modernsystemsrely on instructiontrace-basedap-
proachesbecausethey offer a platform that requireslittle
analysisandoverheadandyet achievesreasonableperfor-
mancegains.While thesesystemsallow for significantlo-
calcustomization,they lackthescopefor broaderoptimiza-
tions,suchasloop-level transformations.



Last, the optimized codesegmentsmust be deployed.
Many modernrun-timeoptimizationsystemsdeploy theop-
timizedcodeasamasscollectionof traces,eitherin ahard-
warestructureor in adedicatedmemoryregion. Staticpost-
link optimizerstypically generatea new monolithicbinary.

This paperpresentsa new techniquefor detectingand
packagingregions of performance-criticalcode that in-
cludesaswift profiling mechanism,anefficientplatformfor
transformation,andaphaseapproachto optimizedcodede-
ployment.Thetechnique,calledVacuumPacking, is based
uponregion-basedoptimization[12] which enablestheop-
timizer to focus on only the hot codeblocks, even when
control-flow crossesfunction boundaries.Ratherthanus-
ing aggregateprofile informationto form staticregions,as
is donewithin a traditionalcompiler, our strategy forms a
small setof inter-proceduralregions,calledpackages, for
eachphaseof programactivity. Eachpackagecontainsthe
codethat is responsiblefor the particularactivities inside
a particularprogramphase. Using theseencapsulatedre-
gions,anoptimizercanfocusonthecodethatis responsible
for a vastmajority of executionduringeachphase.Several
packagesmayin factcontaincopiesof thesamesegmentof
codeif thesegmentisutilizedin severalphases.Phaseswith
overlappingpackagesarelinked togetherto facilitatetran-
sitioningbetweenpackagesupona programphasechange.
Aggressive inlining, ILP optimization,andschedulingcan
beappliedto eachpackageto constructnew tight andmod-
ular codeunits. The strategy is an improvementover pre-
viouspost-link optimizationsystemsbecauseit providesa
much larger scopefor optimization than thosethat oper-
ateon tracesandexploits specificexecutioncharacteristics
presentin eachdistinctphase.

2 Relatedwork

The VacuumPackingtechniqueis designedto treatthe
codewithin apackage(codefrom asinglephasewhichcan
spanmultiple functions)asa singleunit. Optimizationof
our package is analogousto the optimizationof regions in
[12]. In awaysimilar to Hot ColdOptimization(HCO) [7],
theheavily executedblocksareextractedandcolocateddur-
ing region formationandbecomethe focusof furtheropti-
mization. The original program,including the infrequent
(cold) blocks,is often left largely untouchedandoff to the
side,reachableonly throughcold exits from the extracted
packages.By extractingthe packagesof hot code,only a
very smallsubsetof theoriginal codemustbemanipulated
(unliketypicalcompilerapproacheswhich integratetheop-
timizedhot codewithin theoriginal code).To form a pack-
age,a partial-functioninlining [23] techniqueis employed
to expandahotseedfunctionbygrowing it to deepercalling
contextsof hotcalleefunctions.Packagesmayadditionally
spanacrosslibrary-callboundariesto achieveabroadscope
without theexplosivecodegrowth of whole-functioninlin-

ing.
Systemsthatemploy theVacuumPackingtechniquerely

on intensive profiling mechanisms,in their efforts to form
densepackagesof codeto matchparticularphasesof pro-
gramexecution.VacuumPackinghasbeendesignedto ex-
ploit suchphasesby providing aggressively optimizedcode
for eachpoint in time of programexecution.A numberof
strategiesexist to analyzethe phasingpropertiesof appli-
cations,but most rely on statisticalsamplingof executing
instructions. Thesesamplesaresubsequentlyanalyzedin
softwareto determinephasecomposition.Hardwaresam-
pling mechanismsare often usedto gatherlow-overhead
profiles,but generallydo not have the resolutionrequired
to separateonephasefrom another. They oftenrely onpro-
gram countersamplingover long periodsof time to pro-
ducewhole-executionaggregateprofiles [1], [2], [9]. Ba-
sic Block Distribution Analysis[19] combinesintense,pe-
riodic sample-basedprofiling to determinethecomposition
of repetitive phases.Typically, however, specializedhard-
warecomponentshave beenproposedto accuratelydetect
arbitrary phases.Describedin Section3.1, the Hot Spot
Detector[17] (somewhatsimilar to theprofilebuffer [8]) is
utilized in this work to perform intensive profiling and to
analyzethedetectedblocksfor stability. All of thesehard-
ware approaches,however, are lossy in that the collected
datais incompletedue to the randomnessof samplingor
thelimitationsof hardwarestructures.

Recentwork examinedseveralunitsof optimizationfor
complexity andeffectivenessin dynamicoptimizationsys-
tems [5] and concludedthat loops provided the greatest
performanceopportunities,followed by opportunitiespro-
videdby the muchsimplertraces.Regionsprovide a con-
venientplatform for near-global schedulingtechniquesby
focusing optimization efforts on a modestly sized code
basethat representsa significantportion of execution,of-
tenanouterloop. Combinedwith efficient,globalschedul-
ing algorithms,region-basedapproachesin off-line systems
(whereoptimizationresourcesaremore readily available)
are likely to boostfuture performanceresultsof post-link
optimizationsystemsbeyondthatof currenttrace-basedca-
pabilities. Many systems,from off-line optimizerssuchas
Spike [6] andVulcan[20] to dynamicrun-timeoptimizers
suchasDynamo[3], Daisy [11], Crusoe[13], ROAR [16],
rePLay[18] andUQDBT [22] couldall benefitfrom theen-
hanced,focusedscopeprovidedthroughtheVacuumPack-
ing method.

3 Hot regionidentification

The VacuumPackageregion formation processis de-
signedto identify importantcoderegions associatedwith
programphasesandextract themfor the purposeof code
optimization.As shown in Figure1, theformationprocess
conceptuallyconsistsof threesteps. In the first step,pro-
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filing, a mechanismmonitorsthe executionof a program
and assemblesa collection of static branchesreferredto
as hot spot branchesas shown in Figure 1(a). Thesein-
structionsarethe hot branchesassociatedwith the current
phaseof programexecution. Upon the detectionof a new
phase,informationaccumulatedin this monitoringmecha-
nism,includinghotspotbranchexecutedandtakenweights,
is storedaway for futureprocessing.

Theprofiledprogramcontinuesto executeuntil another
phaseis detected,atwhichpoint theinformationonanother
setof hot brancheswill be storedaway. For evaluationin
this paper, the profiled programrunsto completionbefore
any of the phasesare further processedby the software.
Themonitoringmechanismis implementedin hardwareand
runsin thebackground,incurringminimal overheaduntil a
phasetransitionis detected.

At the completionof the profiled program,a software
mechanismprocessesthestoredhot branchinformation.In
the secondstep, the storedinformation is combinedwith
staticprogramrepresentationto form theinput to theregion
identificationalgorithm. The algorithmmapsthe hot spot
detectioninformation to the codeto selectinclusion into
the hot region andcanleveragethe branchinformationto
generateestimatedexecutionfrequenciesof all instructions
in theregion. Oftenthesehot regionsspanfunctionbound-
aries;in Figure1(b), thehot regionspansfunctionsA, B, C,
D, E, andF.

In the third step, an extraction algorithm assembles
piecesof the hot region into a new, localizedcodepack-
agethatcanbeconvenientlyhandledby anoptimizer. One
physicalregion is identified for eachprogramphasefrom

whichmultiple packagesmaybeconstructed.Controltran-
sitions are establishedbetweenthe original programand
theextractedpackages.Finally, control transitionsarealso
establishedbetweenthe packagesthemselves. The new
code packagesare structuredmuch like a function body
so that optimization algorithmscan easily processthem.
Unimportantcodearoundthe hot region is excludedfrom
the extractedpackagewhich canthenbe tightly optimized
andscheduled.For this reason,the presentedtechniqueis
known asVacuumPacking.

3.1 Step1: Program phasedetection

During thefirst stepof theVacuumPackingprocess,the
Hot SpotDetector(HSD),asshown in Figure2, is themon-
itoring mechanismresponsiblefor detectionof hotbranches
in eachof thephasesof execution[17]. TheHot SpotDetec-
tor consistsof two components:theBranchBehavior Buffer
(BBB) which is a tablefor profiling theexecutingbranches,
andtheHot SpotDetectionCounter(HDC) which is a sim-
plecountingmechanismthatprovidesanon-the-flyanalysis
of theexecutioncoverageprovidedby thebranchestracked
in theBBB. As abranchretiresfrom theprocessor, a record
of its executionis passedto thedetector. Thestaticaddress
of the branchis usedto locatea tableentry whereits dy-
namicbehavior is tabulated.Thedetailsof theoperationof
theHSD arefoundin [17].

Upon the detectionof a hot spot, the BBB contains
the setof hot spot branchesand their executedand taken
counts. The countstogetherminimally provide the taken
fraction for the branchduring the detectionprocess.The
executedweightscanalsobe usedto comparethe relative
significanceof differentbrancheswithin thesamehot spot.
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However, contentionfor table entriesmay force a static
branchto begin profiling laterin thedetectionprocess.This
scenariomay causeartificially lower weightscomparedto
otherbranchesin the hot spot,andin the worst case,pre-
vent thebranchfrom beingtrackedat all [17]. In addition,
the hardwarecounterstrackingeachbranchsaturatewhen
theexecutecountreachesits maximumvalue.However, at
saturation,thetakenfractionfor thebranchis preserved.

Figure3 illustratesthehot region identificationprocess.
Theprofiledprogramconsistsof two functions,asshown in
Figure3(b). Basicblocks ��� through ���	� belongin func-
tion A andbasicblocks 
�� through 

� belongin function
B. Figure3(a) shows the resultof hot spotdetection. For
the purposeof this examplea very small, four entry BBB
is used. Sincethe working setof branchesin the phaseis
muchlargerthanthesizeof theBBB, only a portionof the
branchesare captured. In a realistic design,the captured
executionof aphasewouldbeexpectedto bemuchhigher.

After the branchinformationis stored,theexecutionof
the profiled programresumesunderthe watch of the hot
spotdetector. Without any othersupport,thesamehot spot
would be repeatedlydetectedand recordeduntil a phase
transitionoccurs.While thedetectionitself haslittle over-
head,therecordingof theresultantprofile is comparatively
expensive.Recordinghotspotprofilesonly atphasebound-
arieseliminatesconsecutiverecordingof thesamehotspot.

Enhancementsto the BBB, asdescribedin [4], provide
a historyof onehot spotandrecordsa phaseonly whenit
is differentthanthe previousphase.This historycould be
extendedto morethanoneto greatlyreducethenumberof
hot spotsrecordedby not rerecordinghot spotsheldwithin
the history window. Working setsignatures[10] could be
extendedto hot spotsignaturesto allow inexpensive com-
parisonsbetweena detectedhot spotanda history of pre-
viously recordedhot spots.Whenthe hot spotrecordsare
processedat optimizationtime,additionalfiltering canalso
bedoneto furtherremoveredundanthot spots.For this pa-
per we assumesoftware filtering eliminatesall redundant
hot spotdetections,sincethis work focuseson taking ad-
vantageof thehot spotsratherthanminimizing theamount
of datatransferredat detectiontime.

In determiningthesimilarity betweentwo hotspots,two
criteria areused. First, given a hot spotA andhot spotB,
if 30%or moreof A’s branchesaremissingfrom B (or vice
versa)then A and B are different hot spots. Second,if a
singlebiasedbranchthat is commonto bothA andB hasa
differentbias(taken vs. not-taken)betweenA andB, then
A andB aredifferenthot spots. As describedin [4], the
thresholdof varyingbiasedbranchescouldbe increasedto
morethanone,yielding feweruniquehotspots.

3.2 Step2: Regionidentification

The secondstepof the hot region formationalgorithm
identifiesthe hot instructionsof eachphasebasedon the
branchprofile informationprovidedby the BBB. Thepro-
file informationavailableat this point consistsonly of a set
of branchescapturedduring the detectedphaseof execu-
tion alongwith their executedandtakencounts.This is the
only informationusedto selecta region’s instructionsand
canalsobe usedto determineprofile weightsfor control-
flow within the region. In an attemptto provide an opti-
mizedpieceof codefor eachimportantphaseof program
execution,eachhot spotdetectedis consideredseparately.
During theidentificationandgrowth of a region,a control-
flow graph(CFG)for eachfunctionin theregion is marked
with the hot andcold information. A call graphrepresent-
ing functioncall relationshipswithin theregion is alsocon-
structed.Eachregionis thenexpandedto includeadditional
blocksandtheircorrespondingcontrol-flow arcsfor several
reasons:

� Eventhoughexits from a region inferredfrom theHot
SpotDetectorare infrequentlytraversed,we want to
minimizethenumberof themby opportunisticallyin-
cluding infrequentpathswheninclusionis associated
with little or no cost.

� A hot path may diverge into several pathswhich do
not individually meetthe thresholdfor beinghot. If
thesepathslaterconvergebackinto hotblocks,includ-
ing themwill improvetheconnectivity of our regions.

� Techniquesusing hardware counters1 to determine
profile weightsprovide only an approximationof the
actualprofile. We must toleratea certainamountof
missinginformation.

3.2.1 Hot spot block and branch identification

To identify theregionof codefor VacuumPacking,theCFG
is constructedwith instructionsdivided into basicblocks,
whereeachblockcontainsnomorethanonebranchor sub-
routinecall,whichis alwaysthelastinstructionin theblock.
Eachblock andarc in the CFG is augmentedwith weight

1Similar problemsalsoarisewhenusingsoftwaresampling.
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andtemperaturefields,alongwith anadditionaltakenprob-
ability field for eachblock endingin abranch.

At hot spotdetectiontime, the HSD storesrecordsfor
all hot spot branchescontainingtheir taken and executed
counts,which providesan outline of the particularexecu-
tion phase.Eachbasicblock containinga hot spotbranch
is assigneda weight correspondingto the executedcount
of the hot spot branchand is assignedthe Hot tempera-
ture. Eachblock is additionallyassigneda takenprobabil-
ity equalto ���������������������! #"$��%'&����(%*)+���(,.-!���/��&�*01�*�������*23���������(�� 
"$��%4&1����%*)+���(,.-!���/��& . The CFG
arcsthatcorrespondto thetakenandfall-throughdirections
of eachhot spotbranchareassigneda weightbasedon the
takenandexecutedcountersof thatbranch.Eacharc is as-
signedthe Hot temperatureif that direction accountsfor
eithera minimum of 25% of the branch’s flow of control
or if it hasa weightgreaterthantheHSD’s hot spotbranch
executionthreshold. If a directionaccountsfor a smaller
amountof a branch’s flow of control, that arc is given the
Cold temperature.After this initialization,blockscanhave
a temperaturethat is eitherHot or Unknown, while the
temperatureof CFGarcscanbeHot, Cold, or Unknown.

3.2.2 Block and arc temperature inference

Onceregion selectionis initialized, the region is expanded
by inferring additionalHot (andCold) blocks using the
algorithm presentedin Figure 4. The temperatureinfer-
enceprocessseeksto addblockswhich shouldhave been
includedin thehot spot,but eitherdo not containbranches,
or containbranchesthatweremissingfrom theHSD at de-
tectiontime. By iteratingover the CFG,the algorithmap-
plies the inferencerulesto blocksandarcs,asdepictedin
theexamplein Figure5. For instance,Statement3 of Fig-

ure4 employs inferencerule a of Figure5 whichstatesthat
a block canbe inferredto have a Cold temperatureif all
control-flow arcsinto or outof thatblockhaveaCold tem-
perature.Similarly, ruled of Figure5 is performedby State-
ment6 of Figure4 to set the temperatureof all incoming
andoutgoingcontrol-flow arcsof a Cold block to Cold.
Finally, Statement9 of Figure4 providesfor the inference
of a Hot temperaturefor the target block of a subroutine
call from a Hot block. Onceno additionalinferencescan
beapplied,someblockswill remainUnknown if thealgo-
rithm wasunableto propagatea temperatureof eitherHot
or Cold to them. SomeUnknown blocks will be added
to the regionsby theheuristicgrowth processexplainedin
Section3.2.3.

3.2.3 Heuristic hot regiongrowth

For reasonspreviouslydetailed,importantblocksmightnot
be initially selectedusing hot spot block identificationor
inference.In orderto additionallyreducethe frequency of
transitionsfrom our optimizedcodeto the original code,
two additionalstepsof heuristicexpansionof the selected
regionareperformed.First,any arcwith anUnknown tem-
peraturebetweentwoHot blocksis includedin theselected
region. Sincenothingis known aboutthearc andsinceits
target is alreadyselectedaspart of the region, it is elimi-
natedasanexit. Cold temperaturearcsbetweentwo Hot
blockscontinueto beexcludedfrom theregion in keeping
with thegoalof producingcodepackagesspecializedto the
behavior of a phase. Second,in an attemptto find a sin-
gle launchpoint for eachpackage,the selectedregion is
expandedinto adjacentpredecessorblocksfrom eachentry
blockuntil anotherHot temperatureblockis reached.Such



9.        Set temperature of callee’s prologue block to Hot

2.    Propagate control−flow arc temperatures to blocks:

1. Iterate through blocks in CFG to attempt to solve

3.        Set block temperature to Cold if all arcs in or out
             have known, Cold temperature

             out has a Hot temperature

8.    Propagate temperature through Hot calls:

4.        Set block temperature to Hot if any one arc in or

             all other arcs in or out (respectively) of block

      unknown temperatures:

5.    Propagate block temperatures to control−flows arcs:

             with Cold temperature to Cold
6.        Set temperature of all arcs in and out of blocks

7.        Set temperature of arc in or out of a Hot block if

             have a known, Cold temperature

Figure 4. Algorithm for inf erring additional hot
bloc ks.

Propagation to Arcs

(d) (e)(a) (b) (c) (f)

?
?

Propagation to Blocks

?

Figure 5. Inference Rules; Legend in Figure 3.
(a)-(c) Propagation to Bloc ks. (d)-(f) Propaga-
tion to Flows.

growth avoids all Cold arcsandblocks,andis limited to
MAX BLOCKS additionalblocks.Sincewe wish to limit
thesizeof theselectedregionsMAX BLOCKS shouldbe
chosenasasmallnumberof blocks.For theexperimentsin
thiswork, MAX BLOCKS is chosento be1.

3.2.4 Regionidentification example

In Figure3(a), the profile informationfor the detectedhot
spotcoversonly four of theeighthot branchesdueto lim-
itednumberof BBB entries.A realdesignwouldnotdetect
sucha small percentageof hot spot branches,however, a
very large programmight have a working setof branches
thatexceedstheavailableentries.Thus,to beeffective our
algorithmmustbe tolerantof somebranchesmissingfrom
thebuffer.

In Figure 3, information about several additional
branchescanbederivedfrom theHSDbranchprofileusing
thealgorithmin Figure4. Since�65 ’sbranchis stronglynot-
taken,theflow to �87 is identifiedasCold. Theflow from�69 to ���:� is similarly identifiedasCold. Sincethe flow

from � 5 to �87 isCold, block �67 mustbeCold (Statement
3). In Figure3, thepropagationof Cold andHot blocksis
shown separatedin (c) and(d). Someadditionalflows can
be positively identifiedasHot basedon the HSD profile.
Since �85 is Hot andis alsostronglynot-taken,theflow to�6; is Hot. The temperatureof this flow is propagatedto
block �6; by Statement4 even thoughit wasmissingfrom
thehot branchprofile. Thefactthat 

< is Hot impliesthat
 5 and 

� areHot (Statements7 and4).

The algorithm identifiesthe hot basicblocks from this
programphasein spiteof thelackof profile informationfor
half of the branches.The result is shown in Figure 3(d).
Note that in general,however, therewill be Hot blocks
andCold blocks that cannotbe positively identified due
to incompleteprofile information. In thosecases,heuristic
growth will berelieduponto determinewhetheror not the
blocksareincludedin theregion.

3.3 Step 3: Packageconstruction and optimiza-
tion support

Oncea hot region of codehasbeendetected,identified,
andgrown, thepackageconstructionandoptimizationstep
begins. A package is a connectedpieceof codederived
from a region that may includeinstructionsfrom multiple
functionsand may have multiple entrancesand exits. A
single region would potentially generatemultiple disjoint
packages.

3.3.1 Function pruning and maintaining data-flow

For eachhot region, copiesof themarkedfunctionsarere-
ducedto includeonly the blocksandcontrol-flow arcsde-
claredimportant(Hot) for that region. This caneliminate
a large fraction of the blocksandflows within a function,
particularlyeliminatingmergepointsbetweenhot andcold
paths.However, control-flow pathsfrom hot to cold blocks
cannotbe ignoredas they may occasionallybe traversed,
transferringexecutionoutof thepackage.Theliveregisters
at theseexit pointsaremaintainedin theoptimizerby creat-
ing a new basicblock, calledanexit block, alongeachexit
pathandby placingdummyconsumerinstructionsfor each
registerthat is live acrosstheexit. This allows theremoval
of thecold instructionswithout corruptingor complicating
theformal data-flow analysisprocess.Figure6(a)shows a
sequenceof hot instructionswith a branchto a sequenceof
cold instructions. The resultof extractingthe hot instruc-
tions andinsertinga representative exit block is shown in
Figure6(b).

3.3.2 Locating root functions and entry blocks

Thecall graphfor theregion is examinedto find root func-
tions. Theserootfunctionswill serveasseedsfor thepartial
inlining processandwill bethecontainersfor thegenerated



7  lsr   r2 = r3, 2
8  br    r2 < 16 9  mov   r4 = r1

use   r1
use   r3

EXTRACTED HOT

HOT

2  add   r2 = r3 + r1
1  ld      r1 = 

3  mov  r5 = r4
4  br      r4 != 0
5  st    [r4] = r2

COLD

(a)

(b)

2  add   r2 = r3 + r1
1  ld      r1 = 

3  mov  r3 = r4
4  br      r4 != 0
5  st    [r4] = r2

EXIT

Figure 6. Maintaining data-flo w. (a) Original
code sequence . (b) After hot instructions
have been extracted.

packages.A function will be chosenasa root for oneof
threereasons.First, any functionwithout any callersin the
region(ignoringbackedgesin thecall graph)will bea root
sinceit will beencounteredfirst duringexecution.Second,
any functionthatwill not beinlined into any callerswill be
marked a root function. Section3.3.3 describeshow this
canoccurwhenthehot partsof a functionlack a prologue,
epilogue,or a path in betweenthe prologueandepilogue.
Last, any self-recursive function will be chosenas a root
andasinglecopy will beallowedto bepartially inlinedinto
itself. This providesa packageinto which recursive calls
canenterif theircall depthgoesbeyondwhatwasexplicitly
inlined.

In a similar fashion,entry blocks within the root func-
tionsareselectedbasedontheir relationshipswith thefunc-
tion’s CFG. Ignoring back edgeswithin the CFG, entry
blocksareoneswithoutany predecessors.Theentryblocks
arethesolepointsof entryfrom original codeinto thefinal
packages.Theoriginal codelocationsthat transfercontrol
into packageentry blocks are called launch points. This
canbeseenin Figure7(a)wherebranchA0canjumpto the
block containingbranchA1. Theblock containingA1 is an
entryblock of root functionA andwill beincludedinto the
constructedpackages.A0 is a launchpointandresidesonly
within the original code. In the figure, function B is not a
root function but will be partially inlined into the package
rootedat functionA.

3.3.3 Partial inlining

The inlining processsuccessively progressesthroughroot
functionsof the call graphproducingindividual packages
for theregionandis partial inlining becausethepartsof the
calleeswerediscardedin Section3.3.1.It proceedsby find-

ing anout-goingarcin thecall graphfrom theroot function
to anotherfunctionwithin thesameregion. Partial inlining
of a calleewill not beperformedunlessthecalleecontains
a prologueandan epiloguewith a pathbetweenthem. In-
lining of a calleethat fails to meettheseconditionswould
separatetheregion into two pieces,thepart thatmakesthe
call andthepartafter thecalleereturns.Thereforeinlining
of suchdisjoint calleesis skipped.

When partial inlining is performed,the blocks of the
calleereachablefrom the prologueare inlined as normal
into the caller while any other disjoint segmentsare dis-
cardedto avoid creatingsideentrancesinto theinlineefrom
unknown contexts. Finally, the calleefunction’s out-going
call grapharcsaremergedin with the root function’s arcs,
andthe calleefunction is removed from the out-goingarc
setof the root function. Theinlining processcontinuesfor
this root functionuntil its out-goingarcsareexhausted.

3.3.4 Packagetransitions

Programphasingmay leadto a situationwherea particu-
lar function is the root function for several differentphase
regions. Considera perl interpreterwhere the command
executionloop may serve as the root function for differ-
entpackagesthatarespecializedfor differenttypesof com-
mands,suchasstringor numericprocessing.Sincealaunch
point canonly point to a singlepackage,a meansfor trans-
ferringcontrolto thepackagethatcorrespondsto thecurrent
phaseis necessary. Theexamplein Figure7 will beusedto
demonstratemany of the packageentranceand transition
featuresof VacuumPacking. Figure7(a) depictsan origi-
nalcodefragmentin which threedifferentexecutionphases
weredetected.In thefigure,only thebranchesaredepicted
for clarity (A1 throughA4 andB1). Thethreephasescause
theformationof threepackagesshown symbolicallyin Fig-
ure7(b). For all of thepackages,functionA is therootfunc-
tion andthelaunchpoint is from A0 to theentryblockcon-
tainingA1. Eachpackageis designedto containall of the
hot codeneedfor theexecutionof its phase.As described
in Section3.3.3partialinlining is usedto includecustomiz-
ablecopiesof codeinto thepackages.Along with copiesof
theselectedpiecesof calleefunctions,selectedpiecesof the
root functionarealsoreplicatedinto eachpackage.In Fig-
ure7(b)U (unbiased),F (biasedfall through),andT (biased
taken) mark the biasfor a particularbranchduring the re-
spectivephaseandimply thecontentsof thecorresponding
package.For example,A2 is biasedfall throughin phase1
andthusits packageskipsthesecondcall to B. A2 is biased
taken for phases2 and3 and thus thesepackagesmake a
secondcall to B. For phases1 and2, branchA1 is unbiased,
U, takingandfalling throughroughlyequallyandthusthe
packagesincludecodealongbothdirections.

If all packageshave disjoint root functions,thena one-
to-one mapping exists betweenlaunch points and entry
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Figure 7. Package construction and linking example .

blocks. However, it is not uncommonfor multiple pack-
agesto have the sameroot function. Thus, theremay be
no definitive location in the original code to launch into
eachdistinctpackage.Thisclearlyoccursin Figure7 where
thereis only a singleentryblock, A1, andcorrespondingly
only onelaunchpoint,A0. Sincethereasinglelaunchpoint,
only oneof thepackagescanbeenteredinto directly from
theoriginal code.

Packagelinking providespathsto selectively reachalter-
natepackagesrootedat the samepoint by retargetingcold
(exit) pathsin onepackageto their targetblocksthatarehot
in anotherpackage.Anothersolutionwould have beento
dynamicallymodify thelaunchpoint branchto point to the
expectedbestpackage.However, a mechanismwould need
to bein placeto makethemodification.While amonitoring
codesnippetcouldbeintroducedalongtheexit pathto feed
adynamicpredictor, aneasy, staticsolutionis to simplylink
thesideexit from onepackageto thecorrespondingpoint in
theother.

Cautionmustbeexercisedto ensurethatthecallingcon-
texts from the root function to the link siteswithin both
packagesare identical otherwiseexecutioncould traverse
into incorrectfunctions. This is shown in Figure7 in that
branchB1 from function B occurstwice in the packages
formedfor phases2 and3. For thesephasesthefunctionis
partially inlined twice, onceat callB’ andoncefor call B” .
Even thoughB1’ andB1” originatefrom the samebranch
B1, they arefrom differentcontexts. A link betweena B1’
anda B1” would clearlybe incorrectsinceit would bethe
sameascreatinga pathfrom call B’ directly to call B” (or
vice versa)in the original code. Thus in Figure7(b), B1’
andB1” are listed in differentrows andtreatedasincom-
patiblebranches.

Figures7(c-e) shows three (of six possible)different
orderingoptionsbetweenthe packages.Looking at Fig-
ure7(c) in detailshows theentranceinto phase2’spackage
thatlinks from phase2’sA2biasedT to phase1’sA2biased

F. This meansthat whenphase2’s branchfalls throughit
jumps to phase1’s versionof the fall-throughcode. For
linking, an F can connectto a T and to a U, while a T
canconnectto an F andto a U. Giventhe overlappingen-
try points and the different formationsof the threepack-
agesmany linking optionsexist. For our implementation,a
link is alwaysformedto thefirst compatiblepackageto the
“right” wrappingaroundthe endto the first package.Ad-
ditionally, the “left-most” packagein the orderingis given
precedencefor entrypointswhensharedentrypointsexist.
Thesetwo rules convert the linking probleminto a pack-
ageorderingproblem,thoughthey do not allow for a truly
exhaustivesearchof all linking possibilities.Now thepack-
agesmust be orderedin a way that provides the highest
reachabilityto theavailablepackages.

While not necessarilyoptimal, the following methodis
usedto ranka givenpackageordering,wherea higherrank
is better. For eachpackage,the numberof incominglinks
is divided by the numberof packagebranchesto yield a
weight. This rank is shown below eachcolumn in Fig-
ures7(c-e). The ratio representsthe numberof ways of
enteringthe packagethroughlinks to thesizeof the pack-
age.UsingFigure7(c), therank is calculatedby usingthe
first package’s (phase2’s) ratio of 2/5 to initialize both an
accumulatorandaweightvariable.Theweightis thenmul-
tiplied by thesecondratio of 2/5 andaddedto theaccumu-
lator. Similarly, theweight is againmultiplied by the third
ratio of 3/6 andaddedto the accumulatoryielding a final
resultof 0.64.Theranksprovidearoughcomparisonof the
likelihoodof stayingin the packagesformed. The order-
ing andlinks shown in Figure7(e)wouldbepickedfor this
example.

4 Experimental setup

Listed in Table 1 are benchmarksrepresentinga wide
variety of applicationtypesselectedfrom SPECCPU95,
SPECCPU2000(includingshortenedreferenceinputsfrom



Table 1. Benc hmarks and inputs used in
experiments.

89M

338M

32M
362M

1094M
57M

320M

1902M

1012M

105M

A: SPEC Train

A: SPEC Train

A: SPEC Train

A: SPEC Train
B: Custom Faces
C: Custom Scenery

B: 6 Queens
C: Reduced Ref

A: SPEC Test

A: SPEC Test

A: SPEC Train

122M

167M

99M

255.vortex

197.parser

300.twolf

134.perl

mpeg2dec

B: UMN_md_red
A: UMN_sm_red

C: UMN_lg_red

C: SPEC Train 3
B: SPEC Train 2
A: SPEC Train 1

A: UMN_sm_red

A: UMN_sm_red

A: Media Train

099.go

124.m88ksim

130.li

132.ijpeg

164.gzip

175.vpr

181.mcf

1512M
28M
8M

63M
315M
886M

178M

Input # of InstBenchmark Input# of InstBenchmark

Table 2. Simulated EPIC machine model.

4−way
Num BBB sets 512 set
Candidate branch threshold 16
Refresh timer interval 8192 br
Clear timer interval 65526 br
Hot spot detection cntr size 13 bits
Hot spot detection cntr inc 2

1Hot spot detection cntr dec

BBB associativity

Exec and taken counter size 9 bits

Instruction issue
5 units

3 units
3 units

3 units

1024 entry
32 entry

7 cycles
10−bit history gshare, 3 predictions per cycle

64 KB
64 KB
512 KB

Integer ALU
Floating point unit
Memory unit
Branch unit

Branch predictor
Branch resolution

RAS size
BTB size

LI instruction cache
Unified L2 cache
LI data cache

LD/ST buffer size (each) 8 entry8 units

Parameter Value Parameter Value

the University of Minnesota(UMN) [14]), and Media-
Bench[15] to testtheperformanceof our region formation
and packageextraction strategies. The benchmarkswere
eachcompiledwith the IMPACT compiler using control-
flow profiling information,inlining, classicaloptimization,
pointer aliasinganalysis,and instructionschedulingwith
controlspeculation.Datawascollectedacrossthecomplete
run of eachbenchmarkandinput. The numberof instruc-
tionsexecutedis alsolisted.

The performancemeasurementsreportedin this work
were generatedby a customsoftware emulatorthat per-
forms cycle-by-cycle full-pipeline simulation of eachin-
struction.Thearchitecturemodeledconsistsof a tenstage
EPICpipelinecontainingfive functionalunit types(Integer
ALU, FP, Long Latency FP, Memory, and Control). The
simulationsalso include a multi-level memoryhierarchy,
andbranchandreturn-addresspredictor. Theemulatorfully
accountsfor the affects of branchprediction,wrong path
execution,cacheutilization andpollution,varyingmemory
latency, interlocking, and bypassing. Table 2 reflectsthe
architecturalparameterschosenfor theevaluationsystem.

5 Experimental evaluation

5.1 Execution coverage

A primary concern for a post-link optimizer is the
amountof programexecutionspentin theoptimizedcode.

This principleis evenmoreimportantfor systemsthatgen-
eratecodeat run time sinceperformancegainsdueto exe-
cutionin optimizedcodemustovercomethelossesincurred
performingthe optimization. For VacuumPacking,higher
quality packagesleadto a greaterpercentageof execution
from within theoptimizedcoderegions.Our emulatortab-
ulatedthe numberof dynamicinstructionsexecutedin the
packagesandin originalcodeandcomputedthepercentage
spentin thepackages,which is shown in Figure8. Theex-
perimentsvarytheuseof hotblockinference(Section3.2.3)
and inter-packageordering(Section3.3.4). Four barsare
listed for eachbenchmarkinput, onewithout inferenceor
linking, one without inferencebut with linking, one with
inferencebut without linking, andonewith both inference
andlinking.

Turningoff hot block inferencemakestheregion identi-
ficationprocesstreatthebranchdatarecordedby theHSD
ascomplete.Whenturnedoff, additionalinferenceis only
performedto blocks that do not containa branch,but the
remainderof the formation algorithm is usedin full. In-
ferencehelpsif a packageis missingbranchesdueto con-
flicts within the BBB but is unlikely to have any effect if
a program’s phaseregionsarevery small. Thoughit does
not greatlyeffect the average,individual benchmarkslike
175.vprand300.twolfbenefitnoticeably. Missingbranches
can,in somecases,actuallyaidcoverageif they aremissing
from the root function. In this situation,additionallaunch
pointsmay be createdthat provide moreopportunitiesfor
executionto transitioninto the packages,althoughthe op-
timization potentialmay be reduceddueto the partitioned
region.

As previously described,linking provides a meansfor
executioncontrol to reachmultiple packageseven if they
haveoverlappinglaunchpoints.For example,124.m88ksim
hastwo phasesfor loading a binary, eachwith the same
launch point. Without linking, as is shown in the first
and third barsof Figure 8, both packagescan not always
be reached,thus preventing execution from reachingthe
matchingoptimizedcoderegion. However, someoverlap-
ping packageshave launchpointsthatdo not overlapwith
any otherpackageswhile still othershaveuniqueroot func-
tions. In bothcasesthey arereachablewithout linking. This
mitigatessomeof the losswhenlinking is turnedoff. De-
spitethis,124.m88ksim, 181.mcf, 197.parser, and300.twolf
all show largegainsin coveragefrom linking.

The benchmark130.li exhibits an interestingcharacter-
istic wherea few weaklyexecutedcallerscall animportant
callee.Only onecalleris hot enoughto bedetectedandthe
calleegetsinlined into it. This preventsthecalleefrom be-
ing aroot functionandthus10%of theexecutionis missed.

5.2 Codeexpansion

Thepackageconstructionprocesscausescodeexpansion
dueto partial duplicationof root functionsandsuccessive
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Figure 8. Percent of dynamic instructions from within packages.

Table 3. Code Expansion

Bench % Incr % Staticinst Bench % Incr % Staticinst
in size selected in size selected

099A 37.4 10.1 A 7.9 4.2
124A 3.9 2.5 132B 7.6 4.4

A 17.4 7.2 C 9.4 5.7
130B 12.2 7.2 164A 9.2 5.8

C 17.4 7.2 175A 6.0 2.7
A 3.6 1.4 A 15.0 3.0

134B 3.8 1.4 255B 15.7 3.2
C 3.8 1.3 C 16.7 3.1

181A 23.9 7.7 300A 7.2 4.0
197A 19.7 3.5 mpgA 5.8 3.6

inlining of heavily executedcalleefunctionsinto multiple
packages.Table 3 shows the percentagegrowth of static
instructionsdueto packageconstructionandaverages12%
(with alargenumberof benchmarkssubstantiallybelow the
average).In spiteof thespecializationrequiredfor individ-
ual phases,12% growth covered81% of the dynamically
executedinstructions.Table3 additionallyshows the per-
centageof staticinstructionsthatwereselectedto bea part
of at leastone package. An averageof 4.5% of instruc-
tions wereselected,yielding an averagereplicationfactor
for theseinstructionsof approximately2.6.

5.3 Branch categorization

To explorethevalueaddeddueto phase-sensitiveprofil-
ing over traditionalaggregateprofiling, we categorizedthe
dynamicbranchesin our experiments.First, the branches
wereseparatedinto two groups,thosewhosestaticbranch
appearsin only a single phase(Unique) and thosewhose
staticbranchappearsin multiple phases(Multi), asshown
in Figure 9. The uniquebrancheswere thendivided into
biasedandunbiasedtypes,andnotablyweremostlybiased.
Thebiasedbranchesareespeciallybeneficialsincethecom-
piler can aggressively assumea particulardirection with-
out muchrisk to performance.Multi branchesthat show a

bias in directionare further subdivided into thosethat ex-
hibit significantswingsin their expecteddirection. Those
thatvary betweenphases( åçæ�èêé ) arecategorizedasMulti
High, thosewith more moderateswings, between(ë/èêé )
and( æ�èêé ), areMulti Low, while all otherbiasedbranches
areMulti Same.Any Multi branchesthatnevershow abias
arecategorizedasMulti No Bias. For example,thebench-
mark099.gohasabout3% of its dynamicbrancheswhose
staticbranchis sharedin multiplephaseswith alargeswing
in its behavior betweenthephases(Multi High). Aggressive
staticcompilersmayperformpoorly on functionscontain-
ing suchbranchesasthe aggregateprofile may differ sub-
stantiallyfrom thebehavior seenin eachphase.In addition,
it is evident that a significantportion of executionis seen
in instructionswhich occur in multiple phases.The Multi
High and Low instructionsrepresentour opportunity for
customizinganapplicationfor its phasesby exploiting the
differingbehavior in eachphase.While only differing by a
few percent,the Multi High andLow have significantim-
pactbecausethey now allow theoptimizerto wiselychoose
pathswherean ambiguousaggregateprofile hampersthe
decision.

5.4 Initial speedupexperiments

Giventhathigh coveragepackageshave beenformed,a
numberof experimentswereconductedto examinethepo-
tential for performancebenefitachievedby VacuumPack-
ing. After forming the packages,additional code layout
andschedulingpasseswereapplied.Usingthemethodde-
scribedin [4], block and control-flow arc profile weights
werecalculatedusingthetakenprobabilitiesof eachblock
in theCFG.For run-timesystems,suchacalculationmaybe
too computationallyexpensive anda simplerapproximate-
weight propagationmethodmay suffice. While not per-
formed in this study, variousclassic,ILP, and loop opti-
mizationscouldalsobe appliedto further improve the ap-



ì:í
î�ï:ð
ñ�ò:ó
ô	õ:ö
÷	ø:ù
ú$û	ü:ý

þ ÿ ����� ���	� 
���
 � � � � ����� � �

����� �����  �!#" $�%�& ')(#* +-,�. /-0#1 2)354 687:9 ;�<#= >#?�@ ACB�D�EGFIHKJ

L�M)N O-P-Q R#S)T U-V8WYX�Z\[�] ^8_ `ba-c d egf�h�ikj lnm)o p qsr�t u�v wnx)y z {}|s~)� �b��� � �����\�#� ���

Figure 9. Categorization of hot spot branc h behavior across benc hmarks.

plication’s performance.Theseoptimizationsmayprovide
significantbenefitsincethe eliminationof cold pathsmay
increaseblock scopeby eliminating side entrances.Fur-
ther compactionof the codeschedulemay be achievedby
a redundancy-eliminationoptimizationthatmovescold in-
structions(thosewhoseresultsarenotconsumedwithin the
hotpackage)to thesideexit block.

Figure 10 shows the resultantprogramspeedupdue to
packagerelayoutandreschedulingfor eachbenchmarkand
input. Thesamefour configurationswereexaminedaswith
the coverageexperiments. The averagespeedupforms a
patternof improvementover thefour experimentsthatcor-
relatesto theimprovementsin coverage,althoughthereare
a few differencesfor individualbenchmarks.Theincreased
coveragedueto linking in 197.parser allows executionto
reachmorespecializedcoderegions,resultingin an addi-
tional 8% performanceimprovement. While the coverage
for 255.vortex wasnot very differentacrossconfigurations,
theperformanceshows thatbothinferenceandlinking pro-
vide for moreefficientexecutionof thecode.

6 Conclusion

TheVacuumPackingtechniquehasthepotentialto sig-
nificantly improve thestrategy employedby a wide variety
of post-linkoptimizersanddynamiccodegenerators.Vac-
uumPackingstaticallyexploits naturalexecutionbehavior
that is characteristicof many programsin order to create
broadbut targetedcoderegionsthat will serve as the unit
of optimization. This improvementwill enableoptimizers
to have a muchlarger scopeandmoremanageable,struc-
tureddeploymentmethodthancurrenttrace-basedsystems
while maintainingtheadaptive,focusedbenefitof dynamic
systems.Futuresoftwaresystemswill continueto grow in
sizeandcomplexity requiringthatoptimizersanddynamic
codegeneratorsminimizetheamountof alteredcodealong
with the numberof alterationsto keepthe overheadof the

transformationsin check.
Specifically, this work exploits a hardware profiling

mechanismfor low overheadprofiling which identifiesthe
hotbranchesfor eachspecificexecutionpattern,orphase,of
programactivity. While hardwaremechanismsfor profiling
incur minimal overhead,the resultantprofilesoften suffer
from decreasedaccuracy comparedto completesoftware
instrumentation.VacuumPackingovercomesthis inaccu-
racy by applyingaseriesof inferencesandheuristicgrowth
rulesto identify thetruecoreinstructionsfor eachprogram
phase.Theresultingcodepackages,eachtargetedtowarda
specificphase,representabout81% of programexecution
andexpandthescopeof post-linkoptimizationfrom traces
to anentirephaseof execution.

In addition,wedemonstratethatthephasenatureof pro-
gramscanbeexploitedevenby astaticoptimization.Based
on phase-sensitive information,VacuumPackingperforms
partial inlining of functionsinto their correspondingphase
regions.Suchpartial inlining would bedifficult for a static
compilerwith only anaggregateprofile of programbehav-
ior. Furthermore,packagesfor differentphasesthat share
commonroot codecanbebeexploitedstaticallyby recog-
nizing control-flow differencesbetweenthephasesandus-
ing thesedifferencesto allow executionto selecttheproper
package.
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