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Abstract

As microprocessor designs become increasingly power-
and complexity-conscious, future microarchitectures must
decrease their reliance on expensive dynamic scheduling
structures. While compilers have generally proven adept
at planning useful static instruction-level parallelism, rely-
ing solely on the compiler’s instruction execution arrange-
ment performs poorly when cache misses occur, because
variable latency is not well tolerated. This paper pro-
poses a new microarchitectural model, multipass pipelin-
ing, that exploits meticulous compile-time scheduling on
simple in-order hardware while achieving excellent cache
miss tolerance through persistent advance preexecution be-
yond otherwise stalled instructions. The pipeline systemat-
ically makes multiple passes through instructions that fol-
low a stalled instruction. Each pass increases the speed
and energy efficiency of the subsequent ones by preserving
computed results. The concept of multiple passes and suc-
cessive improvement of efficiency across passes in a sin-
gle pipeline distinguishes multipass pipelining from other
runahead schemes. Simulation results show that the multi-
pass technique achieves 77% of the cycle reduction of ag-
gressive out-of-order execution relative to in-order execu-
tion. In addition, microarchitectural-level power simula-
tion indicates that benefits of multipass are achieved at a
fraction of the power overhead of full dynamic scheduling.

1 Introduction

Out-of-order execution is a common microarchitectural
strategy that allows the processor to determine how to effi-
ciently order instruction execution. Under this model, the
cost of long latency operations can be hidden by the con-

∗In American football, the flea-flicker offense tries to catch the de-
fense off guard with the addition of a forward pass to a lateral pass play.
Defenders covering the ball carrier thus miss the tackle and, hopefully, the
ensuing play. Multiple-pass pipelining utilizes two (or more) passes of
pre-execution/execution to achieve its performance efficacy.

current execution of other instructions. Furthermore, since
this selection is dynamic, the ordering of instruction ex-
ecution can adapt to run-time conditions. Primarily be-
cause of this ability to adapt to run-time events, in particu-
lar data-cache misses, out-of-order execution is used in the
majority of contemporary high-performance microproces-
sors [12, 13, 14].

However, the out-of-order execution mechanisms repli-
cate, at great expense, much work which can be done ef-
fectively at compile time. Aggressive register renaming
eliminates output- and anti-dependences that restrict the
motion of instructions. This duplicates much of the ef-
fort of compile-time register allocation. Dynamic schedul-
ing relies on complex scheduling queues and large instruc-
tion windows to find ready instructions, and, in choosing
the order of instruction execution, repeats the work of the
compile-time scheduler. These mechanisms incur signifi-
cant power consumption and add instruction pipeline com-
plexity.

A static, in-order execution model avoids this expense
by executing strictly according to the compiler’s specified
plan of execution. While compilers can be successful at
planning useful static instruction-level parallelism (ILP) for
in-order microarchitectures, the efficient accommodation
of unanticipable latencies, like those of load instructions,
remains a vexing problem [20].

This paper introduces multipass pipelining, a microar-
chitectural technique that exploits compile-time schedul-
ing while providing for persistent, advance execution of in-
structions otherwise blocked behind data-cache-interlocked
instructions. Its performance approaches that of an ideal
out-of-order execution design while incurring only a frac-
tion of the power and complexity overhead. This is accom-
plished by taking multiple, carefully controlled in-order
passes through instructions following what would normally
be an interlock. Each pass increases the speed and energy
efficiency of the subsequent passes with its valid execution
results preserved in a low-complexity result buffer. These
results are used to break dependences during subsequent
passes, allowing instruction grouping logic to form larger
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Figure 1. Execution and memory access timeline for four different instruction issue models.

issue groups without reordering instructions. During each
pass, instructions with valid, persistent results from previ-
ous passes do not require further reexecution.

One important contribution of the multipass design is
its ability to balance (within the same physical pipeline)
the need for long-range advance execution to overlap more
cache misses with the need for making multiple shorter-
range advance execution passes to exploit newly-arrived,
advance, shorter-latency-load miss results. This is accom-
plished through a mechanism that initiates the next pass
when continuing the current advance execution path is un-
likely to be productive. This unique ability, as we will show
in the next section, helps multipass pipeline to efficiently
close the performance gap between in-order execution and
ideal out-of-order execution.

2 Motivation and Related Work

Figure 1 shows an example timeline repeated for several
different models of execution. For each model, the exe-
cution activity is divided into actual instruction execution
(EXE) and the handling of data cache misses caused by
executing load instructions (MEM). In each example, the
EXE line represents many executing instructions. A few
instructions of interest are shown as lettered (A -F ) points
on the timeline. Instructions A , C and E are load instruc-
tions that miss in the data cache. Two types of misses are
shown in Figure 1: relatively long misses (L2 MISS) and
relatively short misses (L1 MISS). Data dependences be-
tween these instructions are shown as arrows to the depen-
dent instruction.

Figure 1(a) demonstrates the problem that accompanies
in-order processors – instructions can become artificially
stalled behind consumers of load instructions which missed

in the cache. When instruction A misses in the data cache,
instructions that are independent of A continue to execute,
causing desirable overlap between EXE and MEM activi-
ties. A stall-on-use occurs when instruction B , the first con-
sumer of load A , is reached. For the remaining duration of
A ’s miss, the in-order processor is stalled, represented in
the gap in the EXE timeline before instruction B . Similar
gaps in execution are also triggered by D and F , the con-
sumers of loads C and E that miss in cache. Performance
can be improved by shrinking the EXE gaps (via overlap
of cache misses) and/or speeding up the EXE segments be-
tween gaps, as we will demonstrate in the rest of Figure 1.

The original runahead preexecution approach by Dundas
and Mudge [8] reduces the execution gaps by increasing the
overlap between cache miss handling of independent mem-
ory loads, as illustrated in Figure 1(b). When B attempts
to use the result of A before the cache miss handling com-
pletes, rather than stalling B and all the subsequent instruc-
tions, the runahead approach allows execution to continue
in a speculative manner. This is shown as a faint continu-
ation of the EXE line, marked as ”advance execution,” in
the timeline beyond instruction b’ .

During speculative execution, b’ cannot compute any
valid result. The execution of b’ is feigned, and it bypasses
and writes its specially marked non-result to its consumers
and destination. Execution continuing past b’ reaches in-
dependent instruction C’ which can thus begin its memory
access, overlapping its access with that of A . This overlap
of cache miss handling of independent loads is the main
source of performance improvement of the Dundas-Mudge
approach and is represented in Figure 1(b) by the overlap-
ping bold lines in the MEM component of the timeline.

Two limitations are evident from Figure 1(b). The first is
that once an instruction’s execution is skipped during runa-
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Figure 2. Integer multipass pipeline.
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Figure 3. Three modes of multi-
pass operation

head execution, it will not be considered again until normal
execution begins again. In Figure 1(b), e’ is skipped dur-
ing runahead execution. When cache miss handling for C’
completes, e’ has already missed its opportunity for ex-
ecution. Therefore cache miss handling for E cannot be
overlapped with that for A and C’ .

The second limitation is that none of the valid computa-
tion results from runahead execution are persistent because
this is only a prefetching technique. In Figure 1(b), the
pipeline still has to execute instructions B through F af-
ter the cache miss handling for A completes. This effec-
tively serializes the EXE and MEM timelines and results
in longer overall execution time. Furthermore, each instruc-
tion can consume execution energy multiple times. Both
limitations will be addressed by the next two schemes.

Figure 1(c) shows the example timeline for an ideal out-
of-order execution model. While the cache miss caused by
instruction A is being handled, the wake up logic in the
dynamic instruction scheduling mechanism allows execu-
tion of all subsequent instructions in the program’s instruc-
tion stream as their operands become ready. In Figure 1(c),
this allows the overlap of C ’s miss with that of A . Unlike
Dundas-Mudge runahead, the execution of E occurs im-
mediately after the miss handling for C completes. This
leads to a major benefit: the miss handling for E is now
overlapped with that for A , addressing the first limitation
of the Dundas-Mudge approach. Another benefit over the
Dundas-Mudge approach is that instructions C through E
do not need to be reexecuted after the cache miss handling
for A completes. This can save substantial execution time
and energy after a long-latency cache miss.

A large instruction window equipped with potentially
very large scheduling tables, reorder buffers, and load-store
queues are needed to achieve the benefits of the ideal out-
of-order execution model. These benefits come at great
power and complexity cost. Because of practical limita-
tions, contemporary out-of-order processors realize only
a fraction of the potential benefit. Mutlu et al. present

a practical approach to tolerating long cache miss laten-
cies by adding runahead support into a contemporary out-
of-order pipeline with a modestly sized instruction win-
dow [16]. The prefetching effect of this kind of runa-
head execution captures similar overlap of cache-missing
accesses as ideal out-of-order execution [5]. Instead, we
propose multipass pipelining, with a set of enhancements to
the Dundas-Mudge approach, to allow an in-order pipeline
to achieve the majority of the benefits of an ideal out-of-
order pipeline.

Figure 1(d) shows the execution timeline of multipass
pipelining. The behavior of the multipass approach has two
important differences from the Dundas-Mudge runahead
model. First, the pipeline can make multiple passes through
the instructions subsequent to the consumer of a missing
load. During advance execution, as instructions are sup-
pressed because of unavailable source operands, the spec-
ulative state may become so contaminated that continued
advance execution is fruitless. Rather than wasting execu-
tion effort further down the instruction stream, the advance
execution is restarted at the consumer instruction that trig-
gered the advance execution. In Figure 1(d), the multipass
pipeline restarts the advance execution at b’’ shortly af-
ter instruction f’ . During the second pass, the short cache
miss handling for C’ has completed. Therefore, E’’ in
the second pass can now trigger its cache miss handling be-
fore the miss handling for A completes, addressing the first
limitation of the Dundas and Mudge runahead model. The
mechanism for triggering the restart of the advance execu-
tion will be discussed in the following section.

The multipass pipeline restarts the runahead execution
at the original consumer instruction B , although it is not
yet ready for execution. This shows an important differ-
ence between the multipass pipeline and an ideal out-of-
order pipeline, where the wake-up logic would have used
the C load result to select D and E for execution. Such ac-
curate wake-up logic would be costly in power. Instead,
the multipass pipelining model simply restarts the advance



execution, hoping to find additional instructions, such as
D’’ and E’’ , whose input operands have become ready
between pass one and pass two.

The second difference is that the multipass pipeline pre-
serves valid execution results during advance execution and
uses them to reduce power consumption and speed up exe-
cution during subsequent execution. When advance restart
occurs, the preserved results are used to avoid executing
speculative instructions like c’’ again. This also allows
the second pass in Figure 1(d) to reach E’’ more rapidly,
since the instructions with preserved execution results no
longer have data flow dependence on other instructions.
When the processor returns to normal execution, the pre-
served results for C and d are used to speed up the pro-
cessing of these instructions while saving energy. This ad-
dresses the second limitation of the Dundas-Mudge runa-
head model. A previous approach, flea-flicker two-pass
pipelining [2], also reused preexecution results, but re-
quired replication of the execution pipelines and did not
support the restart of advance execution.

3 Microarchitecture

The multipass pipelining scheme is designed to allow
the productive processing of independent instructions dur-
ing the memory stall cycles left exposed in traditional in-
order pipelines. We will illustrate its design by adapting
a contemporary in-order pipeline design, that of the Ita-
nium 2 [15], as shown in Figure 2. Multipass additions
to the pipeline are darkened.

In an in-order processor, fetched instructions are often
buffered to decouple instruction fetch from execution. One
implementation of the Itanium 2 processor has a buffer that
holds up to 24 instructions or at least four cycles worth of
instructions. The multipass pipeline extends such an in-
struction buffer in size and purpose while maintaining its
simplicity as a FIFO buffer. To accommodate the longer de-
lay of a larger buffer, two new stages that enqueue (ENQ)
and dequeue (DEQ) (or peek at (PEEK)) instructions in
the buffer are shown in Figure 2. A third stage is added to
perform instruction regrouping (REGROUP), as described
in Section 3.2.

3.1 Overview of multipass operation

Multipass pipelining performs persistent, advance ex-
ecution when an in-order processor would be otherwise
stalled. Because both normal and advance execution oc-
cur on the same physical pipeline at different times, this
pipeline operates in different modes, shown in Figure 3.
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Figure 4. Multipass pipelining operation.

3.1.1 Architectural execution

Initially, the pipeline enters the architectural mode when
the execution of a program starts. In the absence of run-
time stalls, instructions are released from the instruction
buffer using the DEQ pointer. The release and execution of
these instructions resembles that of conventional in-order
execution pipelines. During architectural mode, the struc-
tures specific to multipass pipelining are unused and can be
clock gated for power efficiency.

3.1.2 Advance execution

Multipass advance preexecution begins with the failure of
an instruction to receive a valid operand. For example,
in Figure 4(a), load B misses in cache, causing depen-
dence checking logic in the REG stage to detect an unready
operand for instruction C . At this point, the pipeline enters
advance mode. All in-flight instructions from the triggering
instruction back to the instruction queue (C to H ) are latched
at their respective stages, for reasons discussed later in the
section. The DEQ pointer is also preserved and subsequent
instructions are released from the instruction buffer using a
PEEK pointer. These proceed through the pipeline as ad-
vance instructions.

During advance mode, any instructions failing to receive
valid input operands are simply suppressed. An invalid (I)
tag is attached to their output values to indicate that these
instructions were deferred. This in turn suppresses con-
sumers of the suppressed instructions’ result. The multi-
pass pipeline in advance mode selectively executes only the
advance stream instructions that receive valid input data.



Advance stream instructions are not allowed to write
their results into the architectural register file (ARF). In-
stead, their results are redirected to the speculative register
file (SRF), which stores the speculative state for the current
pass of advance preexecution. When the pipeline enters ad-
vance mode, SRF does not contain any valid information;
advance stream instructions initially access ARF for their
input operands. As advance stream instructions write into
SRF, the consumers of their results need to be redirected to
this file for input operands. This redirection is realized with
a bit vector, shown as A in Figure 2. Each advance bit (A-
bit) indicates that future accesses to its associated register
entry should be redirected to SRF.

During architectural mode, the A-bits are clear, and all
instructions read operands from the ARF. In advance mode,
each instruction sets the A-bits associated with its des-
tination register(s), directing their subsequent consumers
to fetch from SRF. Each SRF entry contains an I-bit that
marks invalid values written by suppressed advance stream
instructions. Advance instructions reading a register with
a set I-bit are suppressed. The logic for bypassing be-
tween in-flight advance stream instructions is detailed in
Section 3.4. Advance instructions are also not allowed to
change the memory state; Section 3.6 explains a simple
advance store cache to enforce memory dependences and
forward memory values.

An important feature of the advance mode is that results
of the correctly executed advance stream instructions are
preserved in an result store (RS). The RS is written in addi-
tion to the SRF by advance instructions. There is a one-to-
one correspondence between instruction buffer and RS en-
tries. The RS entries corresponding to suppressed advance
stream instructions are simply marked as empty with an E-
bit. In Figure 2, the E-bit vector with entries corresponding
to the RS is read in the REG stage.

During advance mode, the advance restart mechanism,
explained in Section 3.3, determines if advance mode exe-
cution should be returned to the instruction that originally
triggered the current advance mode execution, e.g. instruc-
tion C in Figure 4(b). At this point, all A-bits are cleared,
effectively clearing the SRF.

During advance mode restart, the contents of the instruc-
tion queue and the result store (RS) remain preserved. The
RS contents are used to speed up the processing of advance
instructions if these instructions have been successfully ex-
ecuted in a previous pass of advance mode. The E-bits are
used by the regrouping logic to determine the instructions
that no longer have flow- or anti-dependences due to the
availability of their result value. The reduced dependences
allow the regrouping logic to form larger issue groups with-
out reordering these instructions, thus allowing the pipeline
to process the same instruction stream faster. The result
store has two other benefits: first, the pipeline does not have
to spend the energy to execute an instruction whose results

are available from prior advance-mode execution; second,
long-latency instructions, such as multiply instructions, are
effectively converted into single cycle instructions with this
feature, further reducing potential stalls in rally mode.

3.1.3 Rally Mode

During advance mode, the availability of the input operand
of the instruction that triggered advance mode is monitored.
When its input operand becomes available for bypass in the
REG stage, the pipeline switches to rally mode wherein
architecture-stream instructions resume execution. The
latched instructions are unlatched and displace the advance-
mode instructions in their respective stages. Unlike ad-
vance restart, the contents of the latches are not maintained.
As was the case of a restart of the advance mode, the rally
mode uses RS contents and the A-bits to speed up the exe-
cution of architecture-stream instructions that have already
been correctly preexecuted in advance mode.

If any architecture-stream instruction receives an in-
valid operand bypass value at the REG stage, the pipeline
switches to advance mode again. Alternatively, if the
DEQ pointer reaches the farthest point of the preserved
PEEK pointer while in the rally mode, then the architec-
ture stream has caught up with the farthest point of pre-
execution. This indicates that there are no longer any in-
structions deferred on pending cache misses. The pipeline
can now switch back to architectural mode, shutting off the
multipass-specific structures.

In Figure 4(c), architectural execution has resumed with
the in-order dequeuing of instructions. Instructions that
were correctly preexecuted simply read their result from the
RS rather than reexecuting. When earlier preexecution con-
sisted of cache misses (or other long-latency operations) as
in the example in Figure 1, architectural execution is likely
accelerated by the elimination of future stalls.

3.2 Instruction regrouping

Because of the persistent execution performed during
advance mode, much of rally mode execution consists of
merely merging precomputed instruction results into the
processor state. Because the results of precomputed in-
structions are not recomputed (with the exception of data-
speculative loads as detailed in Section 3.6), such instruc-
tions can be considered to no longer be dependent on the
original producers of their source operands. This elimina-
tion of input dependences permits an optimization called
issue regrouping. New issue groups can be formed without
changing the compiler-specified instruction order.

Instruction regrouping is done by checking dependences
on an instruction-by-instruction basis in the REGROUP
stage (as would be done in a dependency check stage in
a non-EPIC in-order processor). Preexecuted instructions,



marked with their corresponding E-bits, are independent
of all other instructions, thus allowing a dynamic schedule
compaction beyond what was possible at compile time.

3.3 Advance execution restart

As advance execution proceeds, often a point is reached
where little fruitful forward advance execution can be per-
formed because the vast majority of subsequent instruc-
tions are dependent upon cache-missing loads or deferred
instructions. At the same time, instructions which have pre-
viously been deferred because of an unready operand may
now represent an opportunity for productive preexecution.
The general wakeup mechanisms of out-of-order execution
allow such instructions to execute as soon as their operands
are ready. Multipass pipelining achieves the same benefit
by relying on the systematic restart of advance execution.

A very simplified notion of critical instructions [19, 21]
is used to control advance restart. Restart may be desir-
able if a deferred instruction will cause the vast majority of
subsequent preexecution to be deferred. For the results pre-
sented in this work, RESTART instructions are explicitly
inserted by the compiler to direct advance restart.1 Dur-
ing compile time, strongly connected components (SCCs)
of the data-flow graph are found: these components rep-
resent loop-carried data flow. If an SCC precedes a much
larger number of multiple-cycle or variable-latency (such
as load) instructions than the SCC succeeds in the data-
flow graph, the loads in the SCC are considered critical. A
RESTART is inserted after every load in the SCC, consum-
ing the load’s destination. When the RESTART ’s operand
is unready, advance restart occurs, otherwise the instruction
has no effect. The A-bit vector and advance store cache
are cleared, latched instructions in the DEQ, DISP, RE-
GROUP and REG stages are unlatched (but preserved for
future restart).2

3.4 Disseminating advance values

The multipass pipelining model must accommodate ar-
chitectural and advance streams in a single pipeline without
co-mingling their values in an undesired fashion. This in-
volves preventing spurious bypasses and respecting certain
output dependences. Bypasses between advance and archi-
tectural mode instructions are easily prevented through the
addition of the A-bit to each register identifier in the by-
pass network, indicating whether an advance or architec-
tural instruction generated the value being bypassed. Ad-
vance instructions set the A-bit of their destinations in the

1A hardware mechanism could also have been used to detect these sit-
uations.

2Alternatively a microarchitectural mechanism could be used to redi-
rect PEEK to the initial advance instruction early, so that the instruction
arrives at the REG stage at the same time as its input.

EXE stage denoting that advance preexecution supersedes
the value stored in the ARF for that register. The A-bit
of each instruction operand is read during advance mode
in the REGROUP stage, dictating to an instruction which
register file to later read in the REG stage. Some advance
instructions may read stale values from the ARF if the pro-
ducer of their operand has yet to write the A-bit vector, but
the appropriate advance value will be provided later via the
bypass network. Advance instructions accept the bypass
of the most recently executed instruction; architectural in-
structions ignore bypasses marked with the A-bit.

3.5 Handling write-after-write dependences

In an EPIC implementation such as the Itanium 2, all
instructions are issued strictly in-order, but variable-latency
instructions might complete out-of-order, since a shorter-
latency writer might follow a longer-latency writer of the
same operand. Out-of-order instruction completions cannot
be allowed to cause inconsistent register state. Since EPIC
processors do not dynamically rename register operands,
variable-cycle latency instructions (in particular loads) are
scoreboarded to force output dependent instructions to stall.

Similarly, the architectural stream of execution stalls
when write-after-write (WAW) dependencies present them-
selves. However, an alternate approach is preferred for
the execution of advance instructions. Dynamic WAW de-
pendencies are reached frequently in loops, as dynamic in-
stances of the same static instruction are obviously output
dependent. Additionally, when a WAW is reached in ad-
vance execution, all consumers of the first write have al-
ready been processed (and deferred) so there is no reason
to stall on these writes. The simplest alternative approach,
proposed here, is for none of the advance load instructions
that miss in the first level cache to write back to the specu-
lative register file and avoid WAW concerns entirely. These
loads will eventually write their results to the RS, but all
consumers of missing loads will be deferred until a subse-
quent pass. Alternative solutions (requiring more complex-
ity) would suppress the register file write back of loads only
once a WAW occurs.

3.6 Handling advance memory instructions

A multipass-pipelined system maintains an underlying
in-order execution model. Advance-stream instructions,
since they are processed out of program order from the ar-
chitecture stream, are speculative and their processing must
not directly affect architectural state. The purely specula-
tive processing of non-memory instructions is handled sim-
ply with the addition of the SRF. Memory instructions re-
quire additional treatment.

All load and store instructions are allocated entries in
an address table at the time of instruction dispersal. Pre-
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Figure 5. Multipass memory consistency
structures.

executing (but not deferred) memory instructions enter the
address of their access in the speculative memory address
queue (SMAQ), shown in Figure 5. The SMAQ is used
by advance stream memory instructions to avoid rereading
their address operands in rally mode. An advance store’s
data operand is also preserved in the RS and reused in
a similar manner. Though they do not reread their in-
put operands, preexecuted stores and dynamically data-
speculative loads perform memory accesses in rally mode
as described later in this section. Therefore, the SMAQ and
RS together allow instruction regrouping to place preexe-
cuted memory instructions in the same execution cycle as
their address or data calculation instructions.

Traditionally, store buffers are used to support forward-
ing data that is not yet visible in the data cache from store
instructions to load instructions. However, in-order proces-
sors have little need for large store buffers. To support a
much wider window of in-flight stores and loads in a mul-
tipass pipeline, the advance store cache (ASC) is a low-
associativity cache structure to nominally forward data dur-
ing advance mode. Figure 5(b) shows the ASC and outlines
its function.

At the beginning of each pass of advance execution, the
ASC is cleared. Load instructions access the main cache
hierarchy for their data. As advance stores execute, they de-
posit their data into the ASC (not to the traditional cache).
Subsequent advance loads access both traditional cache and
ASC, with hits in the ASC overriding those from the tradi-
tional cache, As long as advance store values can be for-
warded through the ASC, a consistent memory interface
is maintained. For example, if a store has an invalid data
operand, the result of a load to the same location is also
invalid. However, advance stores may be deferred due to
an unavailable target address. Out-of-order processors [14]
tend to use content-addressable load-store queues for de-
tecting when a load is dynamically reordered with a con-
flicting store. This approach could be used by multipass
pipelining, but its unnecessary hardware complexity lim-
its the reorderable window of instructions. Replacement in
the ASC and the ASC’s low associativity allow it to sup-
port a large window of instructions while communicating
to subsequent loads values that are either correct, invalid,

or data speculative (because of replacement). Exploiting
the fact that advance-mode instructions will be processed
again after they are dequeued in future passes, multipass
pipelining takes a value-based approach [17] to preserving
memory consistency. This approach is made possible by
the fact that each instruction will be processed in-order in
rally mode exactly once.

If a store instruction is deferred because of an unknown
address operand, all future load instructions (and their de-
pendents) are data speculative. Similarly, advance load in-
structions that miss from ASC sets that have undergone re-
placement are treated as data speculative. When such load
instructions are processed in advance mode, their results
are marked data-speculative with a set S-bit corresponding
to that instruction’s RS entry. When these data speculative
instructions are reprocessed in rally mode, they will reper-
form their memory accesses, using their addresses from the
SMAQ. If the value loaded is not the same as the value that
was loaded during advance mode, a pipeline flush is per-
formed.

4 Evaluating the cost of multipass execution

Justifying the overhead of the multipass pipelining re-
quires not only examination of the performance potential
demonstrated in the next section, but also a detailed eval-
uation of the additional hardware complexity and power.
Because the more conventional approach to tolerating dy-
namic memory latency is through out-of-order execution,
multipass pipelining will be compared to the complexity
of an out-of-order design. The relative expense of analo-
gous structures and estimations for structures unique to the
particular designs can provide insight into the relative com-
plexity of these implementations.

A comparison of the multipass and out-of-order hard-
ware structures was performed using microarchitectural
power models adapted from Wattch [3]. Wattch-supplied
technology parameter estimates for a 100nm process were
chosen to approximate device characteristics of a contem-
porary high-performance microprocessor using a Vdd of
1.2V and a frequency of 2GHz. In the evaluated archi-
tecture, 128 integer, 128 floating point, and 64 predicate
registers are visible to the instruction set. Data and mem-
ory addresses are 32 bits wide and data is associated with
an additional NaT bit [15] for compiler speculation support.
Decoded instructions are 41 bits wide and 6 instructions can
be issued per cycle. Table 1 shows the ratio of the power
of structures specific to out-of-order execution in compar-
ison to multipass structures which serve similar purposes:
a ratio greater than 1 indicates higher out-of-order power.
The peak power ratio assumes maximum switching activ-
ity. The average power ratio is based on simulated results
and Wattch’s linear clock gating model: it was measured by



Table 1. Power Ratios of Out-of-Order to Multipass Structures in a 100nm process.
Out-of-Order Structures Multipass Structures Peak Power Ratio Average Power Ratio

Combined Architectural & Renamed Register File Architectural & Speculative Register Files
(512 registers, 12R/8W ports) (each 256 registers, 12R/8W ports) 0.993 1.20

Register Alias Table (array: 256 entries, Result Store (2-banked array: 256 entries,
9 bits, 12R/6W ports) 1 wide-read & 1 wide-write & 2 single-write ports)

Instruction Wakeup (wired-OR resource Instruction Queue
dependence matrix: 128 entries, 329 bits) (2-banked array: 256 entries, 10.28 7.15

Instruction Issue (128 entries, 19 bits, 6R/6W ports) 1 wide-read & 1 wide-write port)
Load Buffer Speculative Memory Address Queue (SMAQ)

(CAM: 48 entries, 2R/2W ports) (2-banked array, 128 entries, 2R/2W ports) 3.21 9.79
Store Buffer Advance Store Cache (ASC)

(CAM: 32 entries, 2R/2W ports) (2-way set associative cache, 64 entries, 2R/2W ports)

incorporating the relevant Wattch component models into
the cycle-by-cycle simulator used for performance results.

The Wattch component power models consist primar-
ily of array components: decoders, wordlines, bitlines, and
senseamps. For these structures, power is expected to scale
nearly linearly with the number of ports. An additional ef-
fect is encountered due to the increase in cell size because
of the additional wordlines and bitlines needed for access.
Since content-addressable memories (CAMs) must read out
their entire contents and match them, they are far more
costly in power than indexed arrays. The primary sources
of multipass power savings are the avoidance of CAMs
and the reduction in the number of ports due to always-
sequential execution. Table 1 is only meant to illustrate
the degree of disparity between out-of-order and multipass
structures, and not to represent the power consumption of
any physical implementation.

4.1 The cost of out-of-order execution

The structures central to out-of-order design can be very
expensive. For example, in the Alpha 21264 processor,
the out-of-order logic consumes 18% of the total power–
almost as much as all of its integer and floating point exe-
cution units combined [11]. While aggressive out-of-order
implementations are desired to find more independent in-
structions and thus maximize the tolerance of cache miss
latency, power concerns are driving more conservative im-
plementations of out-of-order processors [10]. In order
to conservatively show the favorable power advantages of
multipass pipelining, we chose structures with lower power
cost when possible and neglect several potentially expen-
sive aspects of out-of-order execution. A model similar to
that of the Pentium III [12] is assumed, but any register
copy cost that would be incurred in the reorder buffer is
ignored. We have also omitted the renaming hardware for
predicate registers: because the architecture is capable of
writing 12 predicate registers per cycle, conventional out-
of-order mechanisms are likely to be impractical.

Decomposing the costs of out-of-order execution, a
3The 0.99 power ratio requires double the register file accesses that the

architecture can actually incur; it is an intentionally conservative estimate.
Under architectural constraints the peak power would be 1.92.

typical out-of-order implementation consists of three pro-
cesses: register renaming, dynamic scheduling, and in-
struction reordering for retirement. To eliminate false de-
pendences created because the reuse of the same architec-
tural register names, register renaming is needed to make
dynamic scheduling effective. With dynamic scheduling,
the processor itself decides the order of instruction execu-
tion, issuing instructions when their data-flow dependences
are met. Lastly, to insure that instruction execution af-
fects architectural state in a way consistent with the original
program, the results of instruction execution are buffered
for incorporation in program order. Conventional imple-
mentation of these functionalities requires CAMs and other
many-ported structures to implement, which impacts cycle
time and incurs a large power cost [18].

4.2 Overhead of multipass pipelining

Multipass pipelining requires a second register file for
advance execution. However, instructions issuing in the
single physical pipeline read either the advance or the ar-
chitectural register file for each of their operands. Thus,
ports can be shared for both the advance and architectural
register storage. In a recently announced Itanium 2 proces-
sor, a similar register file with storage for two register val-
ues for every architectural register has been implemented
to support simultaneous multithreading, with only a 15%
increase in area [9]. For the power evaluation we conser-
vatively assume two separate register files of 256 registers
each, which is the reason multipass peak power is slightly
worse than out-of-order (with its equal capacity monolithic
file) for the register/data structures.

The result store needs to only support a single wide-read
port that is as wide as the issue width. Since RS writes
are not always aligned on specific 6-instruction boundaries,
individually-qualified wordlines are necessary for each re-
sult (bitlines can be shared due to sequentiality). Because
some results return with non-unit latency, the result store
must also support individual write ports for these results.

The multipass instruction queue (IQ) is a large but sim-
ple queue. It requires only one wide-read port for dequeu-
ing and peeking and one wide-write port for enqueueing,
and is significantly simpler than the general scheduling ta-



ble required by dynamic scheduling. The scheduling table
supports the selection and reading of any general instruc-
tion in the table, and needs a port for every instruction is-
sued simultaneously in a given cycle. A CAM-based sched-
uler was also tried and found to have higher power con-
sumption. Additionally, while instruction dequeuing (or
peeking) occurs strictly in-order from the queue, conven-
tional scheduling tables perform tag comparisons between
every register destination generated by execution and every
register source of instructions awaiting issue.

The overhead of insuring the proper semantic order-
ing of memory loads and stores is greatly reduced in the
implementations proposed for multipass pipelining. In-
stead of the load/store ordering queue used in out-of-order
execution, multipass pipelining allows the reordering of
loads and stores by verifying that the value loaded by data-
speculative loads is correct. The hardware structures re-
quired for this are the SMAQ and ASC, which have lower
peak power compared to the out-of-order CAMs despite
having more entries. The results in Section 5 demonstrate
that performance stalls are not significantly impacted by
the pipeline flushes caused by the maintenance of seman-
tic memory ordering since conflicts between the loads and
stores were rarely observed in our models.

5 Experimental Results

A number of experiments were conducted to test the ef-
fectiveness of multipass pipelining. While the technique
is applicable across in-order microarchitectures, an EPIC
platform based loosely on the Itanium 2 architecture was
chosen for these studies.

5.1 Evaluation Setup

Twelve C-language benchmarks were selected from
SPEC CPU2000 to test the performance of multipass
pipelining. These represent a wide variety of application
types; the remaining CINT2000 benchmarks were excluded
due to compilation issues. Each application was compiled
through the OpenIMPACT compiler [23] using the SPEC-
distributed training inputs to generate basic block profile
information. Interprocedural points-to analysis was used
to determine independence of load and store instructions,
enabling aggressive code reordering during optimizations.
Optimizations performed include aggressive inlining, hy-
perblock formation, control speculation, modulo schedul-
ing, and acyclic intra-hyperblock instruction scheduling.
OpenIMPACT does not perform optimizations specifically
targeting floating point applications. Results in this work
reflect rigorously sampled [25], complete runs of SPEC ref-
erence inputs.

To evaluate the multipass pipelining paradigm, an in-
order model, a multipass model and an idealized out-of-

Table 2. Experimental machine configuration.

Feature Parameters

Functional Units 6-issue, Itanium 2 FU distribution
Data model ILP32 (integer, long,

and pointer are 32 bits)
L1I Cache 1 cycle, 16KB, 4-way, 64B lines
L1D Cache 1 cycle, 16KB, 4-way, 64B lines
L2 Cache 5 cycles, 256KB, 8-way, 128B lines
L3 Cache 12 cycles, 3MB, 12-way, 128B lines
Max Outstanding Misses 16
Main Memory 145 cycles
Branch Predictor 1024-entry gshare
Multipass Instruction Queue 256 entry
Out-of-Order Scheduling Window 128 entry
Out-of-Order Reorder Buffer 256 entry
Out-of-Order Scheduling 3 additional stages
and Renaming Stages
Out-of-Order Predicated Renaming ideal

order simulation model were developed. Table 2 shows the
relevant machine parameters derived from the Intel Itanium
2 design. This contemporary cache hierarchy was chosen
to model an achievable near-term design; forward looking
cache parameters are also examined in Section 5.3. Re-
sults in this work assumed a model using 32-bit pointers;
the use of 64-bit pointers would increase the data footprint,
increasing the number of cache misses and furnishing more
opportunity for cache-miss tolerance.

The out-of-order model used for comparison with multi-
pass pipelining was constructed to give an idealized indica-
tion of the performance opportunities from dynamically or-
dering instructions. Some of the performance limiting over-
heads of out-of-order execution mentioned in Section 4.1
were excluded from the model to demonstrate the relatively
ideal performance potential from dynamic scheduling. One
example is that scheduling and register file read are per-
formed in the REG stage, eliminating the need for specula-
tive wakeup of instructions as in modern implementations.
Another is an ideal register renamer, which ignores the is-
sues of register renaming in the presence of predicated code
and avoids the performance cost of a realistic implementa-
tion as described in [24].

5.2 Multipass Pipelining Performance

Benchmark execution cycle counts are shown in Fig-
ure 6 for baseline inorder (inorder), multipass pipelin-
ing (MP) and out-of-order (OOO) models, normalized to
the number of cycles in the baseline machine. Within each
bar, execution cycles are attributed to four categories: ex-
ecution, in which instructions are issuing without delay;
front-end, stalls including branch misprediction flushes and
instruction cache misses; other, stalls on multiplies, di-
vides, floating-point arithmetic and other non-unit-latency
instructions, and stalls on resource conflicts; and load,
stalls on consumption of unready load results. For multi-
pass pipelining in advance mode, cycles when no new in-
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Figure 6. Normalized execution cycles; baseline (base), multipass (MP) and out-of-order (OOO).

struction executions occur (as opposed to merges or defer-
rals) are attributed to the unsatisfied latency that initiated
advance mode. Analogously, cycles when out-of-order ex-
ecution does not execute a single instruction are attributed
to the cause of the stall of its oldest instruction (or as a
front-end stall in the case of an empty instruction queue).

A significant number of memory stall cycles are elim-
inated through multipass pipelining for each benchmark.
For example, mcf, the CINT2000 benchmark with the worst
cache-miss behavior shows a 56% reduction in memory
stall cycles and a 47% reduction in overall stall cycles. In
some cases, such as in bzip2, the reduction in cache-miss
stalls is partially offset by other stalls (such as those on
non-unit latency instructions) that are exposed while toler-
ating the misses. In other benchmarks, a slight reduction in
total execution cycles is achieved through preexecution of
branch instructions. For example, in twolf, a 29% reduction
in front-end stall cycles is achieved.

The average reduction in total stall cycles (both load and
non-load) due to application of multipass pipelining is 49%,
yielding a 1.36× average speedup. Overall, ideal out-of-
order execution only achieves an additional 1.14× speedup
over a multipass pipelined system from its ability to find
ILP by reordering instruction executions and its more gen-
eral tolerance of run-time latency.

The out-of-order model evaluated is very aggressive, so
a model using decentralized scheduling tables for memory,
floating point and integer instructions with 16 entries each
was also examined. Using the methodology of Section 4
the relative power of these issue queues was still found to
be larger, but on the same order of magnitude as that of the
multipass issue queue. Because of the reduced parallelism
achieved with the more quickly filled scheduling resources
of this out-of-order model, multipass pipelining achieves a
speedup of 1.05× over this model.

5.3 Performance with Other Cache Hierarchies

Figure 7 demonstrates the performance impact of chang-
ing the cache hierarchy from the aggressive, contemporary
model shown in Table 2. High-performance in-order pro-
cessors address their intolerance of cache misses through
large, fast caches. As processor speeds increase, the relative
speed to main memory will also likely increase. Addition-
ally, because of power constraints, very large, low-latency
caches will be increasingly difficult to implement. Three
cache hierarchies are evaluated, with increasing cycle la-
tency and decreasing cache sizes. The speedup over an in-
order processor is shown for both the multipass and out-of-
order model. In general, as the average latency of a memory
access is increased due to the less-effective caching hierar-
chies, the latency tolerance effectiveness of both multipass
pipelining and out-of-order execution vary across bench-
marks but remain the same on average. However, the differ-
ence between multipass and out-of-order performance nar-
rows with the more restrictive hierarchies.

5.4 Evaluating instruction regrouping and ad-
vance restart

Figure 8 shows the percent of the full multipass speedup
achieved without one or the other of the key elements of
multipass pipelining. Figure 8 shows that for all bench-
marks except for mcf, instruction regrouping is responsi-
ble for a considerable amount of the speedup of the mul-
tipass approach. Advance restart is responsible for a sig-
nificant component of the speedup of bzip2, gap and mcf,
but little performance is lost by not performing instruction
restart on the remaining benchmarks. These benchmarks
both have fewer chained cache misses (in particular in the
CFP2000 benchmarks) and fewer misses that comprise im-
portant strongly-connected components used to drive the
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Figure 7. Speedup of multipass pipelin-
ing and out-of-order execution with varying
cache sizes and latencies: base, config1
(base with 200 cycle main memory) and con-
fig2 (1 cycle 8KB L1/7 cycle 128KB L2/16 cy-
cle 1.5MB L3/200 cycle MM)

advance restart described in Section 3.3. Other mecha-
nisms for initiating advanced restart might provide bene-
fit in applications that suffer from a mix of short and long
misses, but lack the behavior identified with critical instruc-
tions. Dundas-Mudge runahead was simulated separately
from results shown in Figure 6, but only reduced half as
many cycles as multipass relative to in-order.

6 Additional Related Work

This work is not alone in proposing a mechanism for
improving the tolerance of variable-latency instructions
through preexecution of the running program. Dundas and
Mudge [8] proposed an in-order preexecution implemen-
tation, and Mutlu et al. [16] presented an implementation
called runahead execution that targets long-latency misses
in out-of-order machines. Both approaches used preexe-
cution purely as a prefetching technique. Preexecuted re-
sults independent of cache misses were discarded. Multu
et al. found the benefit of the reuse of results in an out-
of-order execution runahead implementation to be insignif-
icant, largely because the amount of reuse in this approach
was small. This runahead execution only occurs after the
reorder buffer-limited instruction window was full–a small
percentage of overall time.

Continual flow pipelines [22] use an approach to out-
of-order execution that subsumes runahead execution.
Through the use of nonblocking dynamic scheduling simi-
lar to that of the Pentium 4 [12] and reorder buffer check-
pointing [1], a very large instruction window is achieved
with an implementable scheduling table and register file.
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Figure 8. Relative speedups of multipass
pipelining without instruction regrouping or
advance restart.

While continual flow pipelines achieve the large instruction
window of runahead approaches while performing only
persistent execution, they require the complexity of dy-
namic scheduling and register renaming.

In addition to runahead approaches, several thread-
based approaches [4, 6, 7, 26] perform preexecution of
(a subset of) application code to achieve similar benefits.
However, these techniques require software thread genera-
tion, dynamic microthread formation or slice extraction for
individual loads and thus do not address the more diffuse,
occasional misses tolerated through multipass pipelining.

7 Conclusions

Because of the disparity between processor logic and
memory speed, tolerating cache misses through dynamic
scheduling has become almost an ubiquitous characteris-
tic of modern high-performance processors. While out-
of-program-order execution can tolerate variable memory-
instruction latency, it adds hardware components that are
problematic for power-conscious design and whose com-
plexity limits the practical ability to reorder instructions.

Multipass pipelining tolerates long latencies (in par-
ticular unanticipated data-cache memory latency) without
the overhead associated with dynamic scheduling or reg-
ister renaming. Unlike most preexecution schemes, mul-
tipass pipelining provides for the persistence of valid ad-
vance execution results. Reusing these results increases
efficiency, hides the latency of multiple-cycle instructions
and, through a novel mechanism, accelerates in-order exe-
cution. A notion of instruction criticality further enhances
the handling of miss latencies and reduces fruitless spec-
ulative execution by indicating when there is little oppor-
tunity for advance execution. Ideal out-of-order execution



achieves only a 1.14× speedup over multipass pipelining
with significantly more hardware complexity. When com-
pared with a more realistic out-of-order execution imple-
mentation, multipass achieves superior performance while
maintaining major power advantages.
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