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Abstract

This paper examines two alternative approaches to sup-
porting code scheduling for multiple-instruction-issue pro-
cessors. One is to provide a set of non-trapping instruc-
tions so that the compiler can perform aggressive static
code scheduling. The application of this approach to ex-
isting commercial architectures typically requires extend-
ing the instruction set. The other approach is to support
out-of-order execution in the microarchitecture so that the
hardware can perform aggressive dynamic code schedul-
ing. This approach usually does not require modifying the
instruction set but requires complex hardware support.
In this paper, we analyze the performance of the two

alternative approaches using a set of important non-
numerical C benchmark programs. A distinguishing fea-
ture of the experiment is that the code for the dynamic
approach has been optimized and scheduled as much as
allowed by the architecture. The hardware is only respon-
sible for the additional reordering that cannot be per-
formed by the compiler. The overall result is that the
dynamic and static approaches are comparable in perfor-
mance. When applied to a four-instruction-issue proces-
sor, both methods achieve more than two times speedup
over a high performance single-instruction-issue proces-
sor. However, the performance of each scheme varies
among the benchmark programs. To explain this vari-
ation, we have identi�ed the conditions in these programs
that make one approach perform better than the other.

1 Introduction

Instruction pipelining has become a standard feature
for improving the performance of commercial proces-
sors [Kogge 81] [Kane 87] [Intel 89] [IBM 90] [Amd]
[Sparc 87]. A natural extension to instruction pipelining
is to provide parallel data-paths in order to fetch, decode,
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and execute several operations per cycle. Such processors
have been referred to as multiple-instruction-issue proces-
sors in recent literature [Smith 89].

A critical issue regarding the design of multiple-
instruction-issue processors is code scheduling. Code
scheduling methods ensure that control dependencies,
data dependencies, and resource limitations are properly
handled during concurrent execution. The goal is to pro-
duce a code schedule that minimizes the execution time
in addition to enforcing the correctness of execution.

Code scheduling can be done at compile time (static
scheduling) [Fisher 81] [Hennessy 83] and/or at run
time (dynamic scheduling) [Tomasulo 67] [Thornton 70]
[Patt 85]. Static scheduling requires intelligent compila-
tion support whereas dynamic scheduling requires sophis-
ticated hardware support. In practice, dynamic schedul-
ing is assisted by static scheduling to improve performance
and to reduce hardware cost. On the other hand, static
scheduling is often assisted by hardware interlocking to
enforce the correctness of execution.

Code scheduling decisions can have a major im-
pact on the performance of multiple-instruction-issue
processors. Therefore, many dynamic and static
techniques for multiple-instruction-issue processors have
been studied [Fisher 81] [Rau 81] [Fisher 83] [Nicolau 85]
[Patt 85] [Ellis 86] [Hwu 86] [Colwell 87] [Howland 87]
[Weiss 87] [Cohn 89] [Jouppi 89] [Rau 89] [Smith 89]
[Sohi 89] [Golumbic 90] [Warren 90] [Smith 90].

Hardware concurrency detection and scheduling al-
gorithms have been used in early high-end machines
such as the IBM 360-91 [Tomasulo 67] and CDC 6600
[Thornton 70]. Weiss and Smith have compared Thorn-
ton's Scoreboarding Algorithm and Tomasulo's Algorithm
[Weiss 87]. Sohi has proposed an extension to the Toma-
sulo's Algorithm to support precise interrupts [Sohi 87].
Acosta, Kjelstrup, and Torng have described a dispatched
stack hardware scheme [Acosta 86]. These studies have
been mostly based on numerical applications and loop
kernels. The results presented in this paper are based on
non-numerical programs.

Patt and Hwu have adapted Tomasulo's Algorithm to
a class of multiple-instruction-issue processors called HPS
[Patt 85] [Hwu 86]. They have analyzed the performance
of this multiple-instruction-issue processor with limited
compilation support. Smith, Johnson, and Horowitz have
used trace-based simulations to determine that dynamic
scheduling can achieve an execution rate of about two op-
erations per cycle [Smith 89]. These works focus on the
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performance of dynamic code scheduling. Our work dif-
fers from these previous works in two important ways.
First, we have provided static code scheduling for our dy-
namic scheduling experiments. Second, we characterize
important tradeo�s between static and dynamic schedul-
ing.
Fisher demonstrated that trace scheduling can �nd suf-

�cient instruction-level parallelism to exploit VLIW ar-
chitectures [Fisher 81]. Code scheduling and resource al-
location for VLIW machines are done at compile-time
[Fisher 81] [Ellis 86] [Colwell 87]. Rau has designed the
ESL Polycyclic processor [Rau 81] and the Cydra 5 su-
percomputer [Rau 89]. He has also studied code schedul-
ing techniques for those machines. Cohn, Gross, Lam,
and Tseng have studied the architecture and compiler
tradeo�s in the design of iWarp which is capable of spec-
ifying up to nine operations in an instruction [Cohn 89].
Lam has applied software pipelining to a Systolic Array
compiler [Lam 88]. Weiss and Smith have shown that
loop unrolling and software pipelining are e�ective in in-
creasing parallelism [Weiss 87]. Hwu and Chang have
studied the ability of a code generator to exploit vari-
ous multiple-instruction-issue processors [Hwu 88]. Uht,
Polychronopoulos, and Kolen show that a combination of
compiler and hardware techniques is most e�ective for ex-
ploiting parallelism [Uht 87]. These studies have focused
mainly on numerical kernels and applications. Our appli-
cation domain is non-numerical programs.
Jouppi and Wall have measured the instruction-level

parallelism of some non-numerical Modula-2 and C pro-
grams using an optimizing compiler that performs local
code scheduling. Assuming unit-time operation delay,
they reported that there are between 1.6 and 2.1 con-
currently executable operations per cycle [Jouppi 89]. In
this paper, we have implemented more aggressive static
scheduling techniques, and have considered non-unit-time
operation delays.
Smith, Lam, and Horowitz have proposed and stud-

ied a static scheduling scheme called instruction boosting
that allows operations to be moved across a preceding
conditional branch [Smith 90]. The hardware support re-
lieves the compiler from the �rst restriction described in
Section 2.3. They concluded that static scheduling sup-
ported by instruction boosting can be comparable in per-
formance with dynamic scheduling. Our work has two im-
portant di�erences from their work in instruction boost-
ing. First, we provide more powerful compiler optimiza-
tions beyond trace scheduling. They have only assumed
local code scheduling for their dynamic scheduling results.
As a result, we have achieved a higher performance level.
Second, our static scheduling model requires only a set
of non-trapping instructions whereas theirs needs shadow
register and write bu�er structures to implement instruc-
tion boosting.

1.1 Our Approach and Contribution

The objective of this work is to study two alternative
approaches to supporting code scheduling for multiple-
instruction-issue processors. One approach is to extend
the architecture with a set of non-trapping instructions
so that the compiler can perform aggressive static code
scheduling. The other is to provide out-of-order execution
support in the microarchitecture so that the hardware can
perform dynamic code scheduling on top of static schedul-

ing. The question is how much performance improvement
can each approach produce for real programs.
Using the IMPACT-I C compiler, we generate opti-

mized machine code for each approach. For the static
approach, the compiler performs aggressive global code
motion using non-trapping instructions. For the dynamic
approach, the compiler performs as much global code mo-
tion as allowed by the instruction set architecture speci�-
cation. Both approaches receive full-scale advanced com-
pilation support which allow them to achieve higher per-
formance for non-numerical C programs than previously
reported by other researchers.
Our experimental results show that both approaches

have achieved more than two times speedup over a good
base architecture. Overall, the two approaches are com-
parable in performance. However, the relative perfor-
mance varies among the individual benchmark programs.
To explain this variation, we have identi�ed the condi-
tions in these programs that make one approach perform
better than the other. These results lead to further un-
derstanding of both dynamic and static code scheduling
techniques.

2 Compilation Support

2.1 Base Compiler Technology

It is important to evaluate processor architectures using
highly optimized code. Naive code may contain redun-
dant operations which show deceptive parallelism. Also,
unnecessary operations could introduce arti�cial depen-
dencies which restrict the e�ectiveness of static schedul-
ing. The IMPACT-I C compiler generates code for sev-
eral machines, including MIPS-R2000 [Kane 87], SPARC
[Sparc 87], AMD 29K [Amd], Intel i860 [Intel 89], and a
family of multiple-instruction-issue processors within the
IMPACT architectural framework. To calibrate the qual-
ity of the code generated by the IMPACT-I C compiler,
we have compared the execution time of its output code
with those of a leading commercial compiler (MIPS CC
release 2.1) and a leading public domain compiler (GNU
CC release 1.37.1) on the DEC 3100 workstation. Table 1
shows the output code execution time ratio of the MIPS
C compiler and the GNU C compiler over the IMPACT-I
C compiler. For the benchmark programs used in this pa-
per, our compiler achieves an average of 1.04 speedup with
a standard deviation of 0.04 over the MIPS C compiler
using the (-O4) option. Therefore, the speedup numbers
that we record for multiple-instruction-issue architectures
are based on very e�cient sequential code.

2.2 Multiple-Instruction-Issue

Optimizations

The scope of static code scheduling is generally small
for integer C programs because of the high frequency of
branches. To enlarge the scope of static scheduling, we
have added several code transformations to the IMPACT-
I C compiler, including function inline expansion, instruc-
tion placement, branch target expansion, loop unrolling,
loop peeling, and superblock formation [Chang 90]. To
reduce the depth of critical paths, we have incorporated
register renaming, global variable migration to registers,
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name IMPACT -O5 MIPS -O4 GNU -O

cccp 1.00 1.08 1.09
cmp 1.00 1.05 1.05
compress 1.00 1.02 1.06
eqn 1.00 1.15 1.15
eqntott 1.00 1.04 1.33
espresso 1.00 1.02 1.15
grep 1.00 1.03 1.24
lex 1.00 1.01 1.04
qsort 1.00 1.01 1.08
tbl 1.00 1.02 1.07
wc 1.00 1.04 1.15
yacc 1.00 1.00 1.11

Table 1: Execution time comparison.

operation combining, operation folding, and memory dis-
ambiguation [Chang 90].

Function inline expansion expands frequently called
functions into the calling function. Instruction placement
groups instructions that tend to execute in sequence into
sequential memory locations. Branch target expansion
copies the target basic block of a frequently taken branch
into its fall-through path. Loop peeling fully unrolls loops
with small number of iterations. Memory disambiguation
determines non-conicting memory addresses for memory
load/store operations. Superblock formation increases
code optimization and scheduling freedom by duplicating
frequently executed code sections.

2.3 Static Code Scheduling

In the IMPACT-I C compiler, static code scheduling is
done twice, before and after register allocation. Our
code scheduler moves code both upward and downward
across branch operations. Moving operations from above
a branch operation to below is always safe. On the other
hand, moving operations from below a branch to above
is not always safe. There are two major restrictions on
upward code motion.

1. The moved operation must not destroy a value that
is needed when the branch is taken.

2. The moved operation must not cause an exception
that may terminate the program execution.

For example, it is not safe to move a memory load opera-
tion above a branch because of the possibility of memory
access violation. We have implemented a code scheduling
algorithm that enforces the above two restrictions. We
refer to this algorithm as restricted code percolation.

It is possible to free the code scheduler from the second
restriction if the division operation and the memory load
operation do not cause exceptions. Instead of trapping
on divide by zero or illegal memory access, a magic value
is returned. Page faults can be handled as they occur.
We refer to this code scheduling model as general code
percolation.

3 Hardware Scheduling

The instruction pipeline model assumed in this paper is
partitioned into several stages: instruction fetch, instruc-
tion decode and register operand fetch, instruction issue,
instruction execute, and result distribution. Given two
operations opA and opB, such that opB depends on the
result of opA, and opA takes n cycles to execute, static
code scheduling inserts independent operations between
opA and opB so that opA and opB are fetched by the pro-
cessor at least n cycles apart. In practice, the compiler
may not be able to �nd enough independent operations
to execute between opA and opB. With in-order execu-
tion, the instruction fetch and decode stages are stalled
until the result of opA becomes available. Dynamic code
scheduling alleviates this problem by allowing subsequent
operations, that are independent of opA and opB, to pro-
ceed to the function units while opB waits for opA.
We have identi�ed three major cases where dynamic

scheduling can improve performance on top of static code
scheduling.
Load Bypassing: Memory load operations often re-

side on the critical path of program execution. Therefore,
allowing memory load operations to bypass memory store
operations may improve performance by making the load
results available early. This is referred to as load bypass-
ing . Load bypassing can be performed by the static code
scheduler and/or the dynamic code scheduler. To enforce
the correctness of execution, a memory load operation is
allowed to bypass an earlier store if their addresses do not
conict. Because the compiler does not know the address
of some memory access operations, a static code scheduler
may not be able to take advantage of all opportunities for
load bypassing. At run-time, a dynamic code scheduler
can detect opportunities missed by the static code sched-
uler.
Loop Iteration Overlapping: Within a big loop or

any outer loop, loop optimizations, such as loop unrolling
and loop peeling, are turned o� to control code size expan-
sion. Thus, with only static scheduling, operations from
di�erent iterations cannot execute concurrently. With
out-of-order execution, the next iteration of the loop can
proceed, and overlap its execution with that of the previ-
ous iteration.
Tolerance To Data Cache Miss Delay: For static

scheduling, the instruction pipeline is stalled on a data
cache miss. With out-of-order execution, the hardware al-
lows independent operations to bypass the waiting mem-
ory operations. Therefore, the delay due to cache miss
may be hidden.

4 Experiments and Analysis

Experiments have been conducted to evaluate the per-
formance of static and dynamic code scheduling. The
scheduling methods examined are restricted code perco-
lation with in-order execution, general code percolation
with in-order execution, and restricted code percolation
with out-of-order execution. For each scheduling ap-
proach, we show the speedup achieved with instruction
issue rates of one, two, four, and eight. Based on the
experimental results and on the details of the benchmark
programs, we discuss the strengths and limitations of each
scheduling method.
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name description

cccp GNU C preprocessor
cmp compare �les
compress compress �les
eqn typeset mathematical formulas for tro�
eqntott boolean minimization
espresso boolean minimization
grep string search
lex lexical analysis program generator
qsort quick sort
tbl format tables for tro�
wc word count
yacc parsing program generator

Table 2: Benchmarks.

4.1 Benchmark Programs

We have collected C application programs from several
domains, including text processing, CAD design, and
UNIX utilities. Table 2 shows the benchmark programs
that are used in this paper. The name column shows
the names of the benchmark programs. The description
column briey describes the nature of the benchmark pro-
gram.

4.2 Base Architecture

A single-instruction-issue in-order processor supporting
the restricted code percolation model is used as the base
architecture. The instruction set architecture is a su-
perset of the MIPS R2000 architecture with extensions
in register �le size, branch semantics, and oating point
unit pipelining. The base architecture includes a 64-entry
integer register bank and a 32-entry oating-point reg-
ister bank. The architecture uses a squashing branch
scheme and pro�led-based branch prediction. One branch
slot (one instruction) is allocated for each predict-taken
branch. All function units are fully pipelined with de-
terministic delays. Table 3 shows the operation delays.
Asynchronous events such as cache misses stall the pro-
cessor pipeline.
The compiler performs all optimizations and restricted

code percolation for the base architecture. On the aver-
age, the base architecture executes more than 0.9 opera-
tions per cycle.

4.3 Multiple-Instruction-Issue Architectures

Three multiple-instruction-issue architectures are evalu-
ated. Each supports a di�erent code scheduling method.
All three architectures duplicate hardware resources of
the base architecture. Additional access ports to the reg-
ister �le and the cache memory are provided to satisfy the
increased demands due to multiple-instruction-issue. All
operation delays remain the same as in Table 3.
The �rst architecture supports restricted code percola-

tion and in-order execution. We refer to this architecture

function base

integer alu 1
barrel shifter 1
integer mult 3
integer div 25
load 2
store -
FP alu 3
FP conv 3
FP mult 4
FP div 25

Table 3: Operation delays.

as restricted in-order execution . The second architecture
supports restricted code percolation and out-of-order exe-
cution. This architecture is referred to as restricted out-of-
order execution . The third architecture supports general
code percolation and in-order execution. This architec-
ture is derived from the �rst architecture by adding non-
trapping instructions. This last architecture is referred to
as general in-order execution .
For the �rst and third architecture, which imple-

ment in-order execution, cache misses stall the processor
pipeline. In addition to their individual code schedul-
ing algorithms, the compiler performs full-scale code op-
timizations for all three architectures.

4.4 Measurement Tools

To analyze the performance of in-order execution archi-
tectures, we have implemented a pro�ler to record the ex-
ecution count of every instruction and the branch statis-
tics. Because all operation delays are deterministic, we
can derive the best and worst case execution times for
the benchmark programs. The worst case is due to long
operation delays that protrude from one basic block to an
o�-trace basic block. For the benchmark programs used
in this paper, the di�erence between the best and worst
case execution times is negligible. We will use the worst
case execution time.
To measure the performance of out-of-order execution,

we have implemented a trace generator and a trace ana-
lyzer.

Trace Generator: The code generator has been modi-
�ed to insert probes into the user program. Executing the
modi�ed program with sample input data produces an
instruction trace.1 The instruction traces are then pro-
cessed by a trace analyzer which simulates out-of-order
execution hardware.

Trace Analyzer: The trace analyzer uses entire in-
struction traces. The trace analyzer simulates a simple
dynamic code scheduling model that has an in�nite num-
ber of function units and an in�nite number of reservation

1For all benchmark programs, the length of the instruction
traces accurately matches the estimationmade by the pro�ling
tool that has been described earlier.
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station entries for each function unit. The control unit
fetches one instruction (N operations) per cycle, except
when an incorrectly predicted branch operation causes the
control unit to re�ll the pipeline. After an instruction has
been decoded, operations that do not have both source
operands are placed into the reservation stations. Oth-
erwise, operations are directly submitted to the function
units. An operation is moved from a reservation station
to a function unit as soon as its source operands are avail-
able.
Memory load operations are allowed to bypass preced-

ing memory store operations if the memory addresses do
not conict. Cache misses do not stall the instruction
pipeline. When a data cache miss occurs, the processor
can continue to execute independent operations. This al-
lows the dynamic scheduler to overlap data cache re�ll
with the execution of other operations.
A two-level direct-mapped cache model is assumed in

the simulation. We simulated three di�erent �rst level
cache sizes: in�nite, 8KB, and 16KB. A miss from the
�rst level cache adds four cycles to the access. The sim-
ulation assumes a 128KB second level cache. The miss
ratio for the second level cache is negligible for all bench-
marks used.
A branch operation that has been decoded but not

yet executed is called a pending branch . The trace an-
alyzer allows instructions to bypass an in�nite number
of pending branch operations. This feature is especially
useful when the static code scheduler is limited by the
restricted percolation model. Allowing operations to by-
pass branches is also useful when loops are not unrolled
at compile-time due to code size and register constraints.
It increases the overlap between the execution of adjacent
loop iterations.

4.5 Results and Analysis

Figures 1 through 3 show the performance of multiple-
instruction-issue processors. Each data point represents
the harmonic mean of speedup over the base architec-
ture for all benchmark programs. The speedup of a ma-
chine con�guration over the base architecture for individ-
ual benchmark programs are listed in Tables 4 through 6
that are attached to the end of this paper. Each column of
Tables 4 through 6 is labeled XY Z, where X is the issue
rate, Y indicates either restricted (r) or general (g) code
percolation, and Z indicates in-order (i) or out-of-order
(o) execution.

Ideal Cache Results

Figure 1 and Table 4 present speedup results for an in�-
nite �rst level data cache. Overall, restricted out-of-order
execution performs slightly better than general in-order
execution. They both achieve substantial improvement
over the restricted in-order execution model.
A closer look at the benchmark programs show that

load bypassing is the most bene�cial feature of dynamic
code scheduling. Lex and qsort are examples where gen-
eral in-order execution is severely limited by memory de-
pendencies. For these programs, load bypassing at run
time allows memory load operations on the critical path
to execute early. This resulted in the clear performance
advantage of restricted out-of-order execution for lex and
qsort (see Table 4).
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Figure 1: Speedup for Ideal Cache.

The ability to examine a large section of code to make
scheduling decisions gives static code scheduling most of
its performance advantage. With general code percola-
tion support, the static code scheduler can concurrently
execute instructions from di�erent iterations of a loop.
Wc and compress are examples where general in-order
execution works better than restricted out-of-order exe-
cution. The bodies of several important loops in these
programs start with memory load operations. With loop
unrolling and general code percolation support, the static
code scheduler is able to concurrently execute operations
from di�erent iterations to improve performance. In the
restricted code percolation model, however, the static
code scheduler does not allow the load operations to per-
colate into previous iterations. Therefore, the iterations
are fetched sequentially from memory. By the time the
operations from one iteration are fetched, it is already too
late to execute them in parallel with the operations from
the previous iteration. As a result, general in-order exe-
cution has a clear performance advantage over restricted
out-of-order execution for wc and compress.

Small Cache Results

Figure 2 and Table 5 present speedup results for an 8KB
data cache. Cache misses degrade the performance of all
architectures. Restricted out-of-order execution tolerate
the cache misses better than the in-order execution mod-
els. The e�ect is most visible for compress (compare Ta-
bles 4 and 5). From more detailed measurements, we
found that compress has a large number of cache misses
whose delay can be hidden by the dynamic code scheduler.
Figure 3 and Table 6 present speedup results for a 16KB

data cache. The performance of the in-order execution
models in Figure 3 is slightly better than in Figure 2.
On the other hand, the performance of restricted out-
of-order execution were virtually identical in both cases.
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This shows that the performance of restricted out-of-order
execution is less sensitive to cache size than in-order exe-
cution models.

5 Conclusion

This paper addresses a seemingly simple question:
how should one support code scheduling for multiple-
instruction-issue processors. To give useful answers to
this question, we provide full-scale compilation support
for each method under study. Only by doing so can
one be sure that experimental results are reproducible
in real product development. With the completion of
the IMPACT-I C compiler, we have satis�ed this impor-
tant requirement. With code generators for MIPS R2000,
SPARC, Intel i860, and AMD 29K, the results reported in
this paper readily apply to the multiple-instruction-issue
implementations of these commercial architectures.
We focused on two promising code scheduling candi-

dates: general in-order execution and restricted out-of-
order execution. For a set of important non-numerical
programs, four-instruction-issue processors supporting
both methods have achieved more than two times speedup
over a high-performance single-instruction-issue proces-
sor. Both of them perform substantially better than re-
stricted in-order execution.
General in-order execution is especially attractive be-

cause it only requires a set of non-trapping instructions.
These instructions can be added to most existing commer-
cial architectures in an upward compatible manner. On
the other hand, restricted out-of-order execution should
be considered if speeding up existing binary code is the
major objective. Therefore, architecture compatibility re-
quirements and hardware design complexity are the two
major decision factors for choosing between these two
methods.
In general, restricted out-of-order execution has bet-

ter tolerance against data cache misses than in-order exe-
cution models. By examining the benchmark programs
in detail, we have identi�ed conditions that make one
method more preferable than the other. Load bypassing is
the most important feature that allows restricted out-of-
order execution to perform better than general in-order
execution for two benchmarks. The ability to schedule
memory load operations across many loop iterations is
the most important feature that allows general in-order
execution to outperform restricted out-of-order execution
for another two of the benchmarks.
Combining general code percolation with dynamic code

scheduling has the potential to further improve perfor-
mance beyond each individual approach. We intend to
study the performance and tradeo�s of this combination
in our future research.
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con�g 1ri 2ri 4ri 8ri 1ro 2ro 4ro 8ro 1gi 2gi 4gi 8gi

cccp 1.00 1.42 1.63 1.65 1.03 1.56 1.83 1.89 1.03 1.55 1.74 1.83
cmp 1.00 1.29 1.48 1.48 1.15 1.66 2.12 2.24 1.14 1.98 2.23 2.23

compress 1.00 1.61 1.90 1.92 1.03 1.73 2.24 2.33 0.99 1.82 2.70 3.05
eqn 1.00 1.41 1.61 1.63 1.17 1.80 2.24 2.30 1.13 1.74 1.98 2.02

eqntott 1.00 1.47 1.57 1.58 1.03 1.61 1.88 1.92 1.00 1.47 1.58 1.59
espresso 1.00 1.45 1.68 1.71 1.04 1.59 1.94 2.02 0.99 1.53 1.85 1.91
grep 1.00 1.72 2.34 2.68 1.02 1.93 3.17 4.19 1.01 1.93 2.86 4.00
lex 1.00 1.53 2.02 2.03 1.03 1.80 2.80 3.02 1.01 1.61 2.19 2.27
qsort 1.00 1.67 2.25 2.66 1.00 1.68 2.29 3.22 1.00 1.66 2.22 2.61
tbl 1.00 1.44 1.63 1.70 1.04 1.65 2.11 2.30 1.02 1.64 2.22 2.46
wc 1.00 1.40 1.61 1.64 1.23 1.88 2.33 2.40 1.21 2.08 2.94 3.38
yacc 1.00 1.39 1.62 1.64 1.06 1.60 2.04 2.15 1.00 1.65 2.11 2.29

Table 4: Ideal Speedup.

con�g 1ri 2ri 4ri 8ri 1ro 2ro 4ro 8ro 1gi 2gi 4gi 8gi

cccp 1.00 1.40 1.59 1.61 1.06 1.57 1.83 1.88 1.03 1.52 1.69 1.78
cmp 1.00 1.28 1.47 1.47 1.17 1.69 2.15 2.27 1.13 1.95 2.19 2.19

compress 1.00 1.46 1.64 1.65 1.20 1.77 2.08 2.15 0.99 1.60 2.08 2.25
eqn 1.00 1.39 1.58 1.59 1.20 1.83 2.23 2.27 1.12 1.69 1.91 1.94

eqntott 1.00 1.44 1.54 1.54 1.07 1.65 1.92 1.94 1.00 1.44 1.54 1.55
espresso 1.00 1.43 1.64 1.67 1.07 1.63 1.96 2.04 0.99 1.51 1.80 1.85
grep 1.00 1.72 2.33 2.68 1.02 1.94 3.17 4.20 1.01 1.93 2.85 3.97
lex 1.00 1.52 1.98 1.99 1.05 1.80 2.75 2.95 1.01 1.59 2.14 2.21
qsort 1.00 1.54 1.94 2.19 1.12 1.78 2.33 2.91 1.00 1.53 1.92 2.16
tbl 1.00 1.43 1.60 1.66 1.09 1.69 2.10 2.26 1.02 1.61 2.12 2.33
wc 1.00 1.39 1.60 1.64 1.40 1.89 2.33 2.40 1.21 2.07 2.92 3.35
yacc 1.00 1.38 1.60 1.62 1.08 1.63 2.05 2.16 1.00 1.62 2.05 2.22

Table 5: Speedup With 8K Cache Miss.

con�g 1ri 2ri 4ri 8ri 1ro 2ro 4ro 8ro 1gi 2gi 4gi 8gi

cccp 1.00 1.40 1.60 1.62 1.05 1.56 1.82 1.88 1.03 1.52 1.70 1.79
cmp 1.00 1.29 1.47 1.47 1.16 1.67 2.14 2.25 1.14 1.96 2.21 2.21

compress 1.00 1.50 1.71 1.72 1.14 1.78 2.17 2.24 0.99 1.66 2.24 2.45
eqn 1.00 1.41 1.60 1.62 1.18 1.81 2.23 2.30 1.13 1.72 1.96 2.00

eqntott 1.00 1.45 1.55 1.55 1.06 1.63 1.91 1.94 1.00 1.45 1.56 1.56
espresso 1.00 1.44 1.66 1.68 1.05 1.60 1.93 2.01 0.99 1.52 1.82 1.88
grep 1.00 1.72 2.33 2.68 1.02 1.93 3.17 4.20 1.01 1.93 2.86 3.99
lex 1.00 1.52 1.99 2.01 1.04 1.80 2.78 2.98 1.01 1.59 2.16 2.23
qsort 1.00 1.58 2.03 2.33 1.07 1.73 2.31 3.01 1.00 1.57 2.01 2.30
tbl 1.00 1.43 1.62 1.69 1.05 1.65 2.10 2.29 1.02 1.63 2.19 2.43
wc 1.00 1.39 1.61 1.64 1.23 1.89 2.33 2.40 1.21 2.07 2.93 3.38
yacc 1.00 1.38 1.61 1.63 1.06 1.62 2.05 2.16 1.00 1.63 2.09 2.26

Table 6: Speedup With 16K Cache Miss.


