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Abstract

The performance of superscalar processors is more sensi-
tive to the memory system delay than their single-issue
predecessors. This paper examines alternative data ac-
cess microarchitectures that e�ectively support compiler-
assisted data prefetching in superscalar processors. In
particular, a prefetch bu�er is shown to be more e�ective
than increasing the cache dimension in solving the cache
pollution problem. All in all, we show that a small data
cache with compiler-assisted data prefetching can achieve
a performance level close to that of an ideal cache.

1 Introduction

Superscalar processors can potentially deliver more than
�ve times speedup over conventional single-issue proces-
sors [1]. With the total execution cycle count dramati-
cally reduced, each cycle becomes more signi�cant to the
overall performance. Because each data cache miss can
introduce many extra execution cycles, a superscalar pro-
cessor can easily lose the majority of its performance to
the memory hierarchy.
Out-of-order execution can partially hide the miss

penalty [2]. However, its performance is limited by the
instruction window size. A sophisticated compiler can in-
crease the distance between a memory load and the usage
of its result via code optimization and scheduling. The
problem is that the movement of memory operations is
limited by the e�ectiveness of memory disambiguation.
In general, neither method can e�ectively eliminate the
performance degradation due to data cache misses.
In a compiler-assisted data prefetching scheme, an in-

telligent compiler inserts data memory prefetch opera-
tions many cycles before their corresponding memory ac-
cesses. Each data memory prefetch operation performs
a memory load to a data cache block or a prefetch

0

bu�er entry instead of a register. By making intelli-
gent decisions as where to insert a prefetch operation,
the appropriate data will be available in the cache or
prefetch bu�er when the corresponding memory opera-
tion is executed. Compiler-assisted data prefetching does
not depend on accurate memory disambiguation because
prefetching changes the cache states rather than the reg-
ister values. Therefore, compiler-assisted prefetching can
be much more aggressive in hiding cache miss penalty
than code scheduling.
Researchers have concentrated on compiler-assisted

data prefetching in the loop domain for single-issue pro-
cessors. Callahan, Kennedy, and Porter�eld have exam-
ined the e�ect of inserting speci�c prefetch operations
for subscripted variables one loop iteration ahead at the
source code level [3]. Klaiber and Levy have gone further
by performing loop-based data prefetching at the assem-
bly code level. A �x-sized prefetch bu�er is used to hold
the prefetched data [4].
In this paper, we focus on the design of data access

microarchitectures to support data prefetching. More
speci�cally, we address the problem of cache pollution
due to data prefetching. Cache pollution can translate
into cache misses, which in turn defeats the purpose of
prefetching. The ability to minimize the degrading ef-
fect of cache pollution by increasing the cache dimension
(cache size and/or set associativity) is compared against
that of a separate prefetch bu�er. Hardware issues con-
cerning both approaches are discussed. The ability of dif-
ferent issue rates to hide the data prefetching overhead
will be judged in terms of the net processor speedup.

2 Compiler Issues

The main concept behind compiler-assisted data prefetch-
ing is to utilize the compiler to insert prefetch operations
in advance so that the needed datum will be available in
the data cache when the actual memory operation is ex-
ecuted. By performing data prefetching at the assembly
level instead of at the source code level, estimating the
execution-time of program segments can be more accu-
rate. If the memory latency is L cycles, then a prefetch
operation must be inserted at least L cycles ahead in
the execution stream. For higher operation issue rates,
more operations have to be bypassed in order to insert
the prefetch operation. Address calculations may have to
be duplicated and placed before the prefetch operation.
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L: r1 <- mem(r2)

r3 <- r3 + 1

r2 <- r2 + 4

if (r3 != r1) goto L

Figure 1: An example with no data prefetch.

memory latency = 2 memory latency = 8

prefetch(r2)

......

L: r1 <- mem(r2)

r2 <- r2 + 4

prefetch(r2)

r3 <- r3 + 1

if (r3!=r1) goto L

prefetch(r2)

......

r4 <- r2 + 4

prefetch(r4)

L: r4 <- r4 + 4

prefetch(r4)

r1 <- mem(r2)

r2 <- r2 + 4

r3 <- r3 + 1

if (r3!=r1) goto L

Figure 2: Example code segment with data prefetching.

Destination registers of the duplicated operations are re-
named to avoid con
ict with the original code.
If the address calculations can all be duplicated, then

there are no di�culties involved in inserting the prefetch
operation for that particular memory operation. We can
illustrate this by an example where all operations are as-
sumed to require one cycle to execute. Figure 1 presents
a loop with one memory load operation. With di�erent
memory latencies, the compiler will produce di�erent data
prefetching code as shown in Figure 2. For higher mem-
ory latencies, the register usage increases due to the dupli-
cated address calculation. Since many of the operations
are independent, they can be executed concurrently by
high issue-rate processors.
Since loops do not dominate the execution time of many

scalar programs, we consider data prefetching for both
loop and non-loop segments. For both types of code seg-
ments, each prefetch operation and the associated address
calculations must be placed in all program paths to satisfy
the L cycles requirement. To insert a prefetch operation
for a memory operation from a code segment, care has
to be taken as not to consider a loop if this loop does
not contain the code segment. By inserting a prefetch
operation into a wrong loop, not only do we waste mem-
ory bandwidth prefetching useless data and cause memory
pollution, but we may also increase the actual execution
cycles. For memory operations within a loop segment,
we have to consider adding the prefetch operation within
the loop and outside the loop. Prefetch operations out-
side the loop correspond to the �rst few loop iterations.
Prefetch operations within the loop are for the later loop
iterations.
Sometimes there are constraints that will not allow the

compiler to insert the prefetch operation as far ahead as
desired. This is because the address of many memory
operations are dependent on other memory load opera-
tions. We refer to the memory operation that uses the
loaded address (by an address load) as a dependent mem-
ory operation. Figure 3 shows the commonly used getc

r1 <- mem(r2 +4)

r3 <- r1 + 1

mem(r2 + 4) <- r3

r4 <- mem(r1)

prefetch(r2 + 4)

......

r1 <- mem(r2 + 4)

prefetch(r1)

r3 <- r1 + 1

mem(r2 + 4) <- r3

r4 <- mem(r1)

Figure 3: Example code segment with a dependent mem-
ory operation.

function in C to illustrate this point. Since the address
contained in register r1 is the result of another memory
load, the value in r1 will not be available until the �rst
memory load completes its execution. Therefore, the ear-
liest point to insert the prefetch operation is right after
the �rst memory load operation. The resulting code with
data prefetching is shown in Figure 3.
Due to address loads, the cycles between the prefetch

operation and the corresponding memory operation can
be smaller than L. In this case, prefetching cannot com-
pletely hide the cache miss penalty. But since the data
cache re�ll has been initiated by a prefetch operation, the
penalty cycles are reduced.

3 Hardware Issues

Several issues and tradeo�s must be considered when deal-
ing with the hardware architecture. First, addresses for
the prefetch operations may cause exceptions, and non-
trapping hardware must be available to ensure continuing
execution of the program. A prefetch operation which in-
duces a fault will be simply discarded. Colwell et al. have
already implemented an architecture with non-trapping
supports [5]. Second, prefetch operations must be non-
blocking so the hardware does not stall by a miss caused
by a prefetch operation. The design of a non-blocking
cache for superscalar processors has been considered re-
cently by Sohi and Franklin [7]. Multiple outstanding
requests can be handled by the method discussed by
Kroft [6]. Third, the problem concerning where to place
the prefetched data must be examined. In this paper, we
will concentrate on the study of the third issue. For the
remaining of this section, considerations for the design of
a prefetch data cache and the design of a separate prefetch
bu�er are discussed.
Prefetched data can be directly placed into the

data cache. Because of di�erent execution paths, the
prefetched data are not guaranteed to be useful in the
near future, while the replaced block may be accessed
during this time interval. We can reduce this e�ect of
cache pollution by either increasing the cache size, the set
associativity, or both. Increasing the cache size and/or
the set associativity of the cache can reduce the chance of
replacing a useful block. Still, we are introducing many
useless entries into the data cache, and the pollution prob-
lem remains, although at a reduced level.
The data bandwidth is a problem for the prefetch cache.

If we wish to maintain the same cache bandwidth, then
the CPU will always have priority over the prefetch activ-
ities in cache access. The prefetched data will be placed
into the cache after the cache has serviced the CPU. This
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general

program issue 2 issue 4 issue 8

eqntott 30.3% 38.8% 47.7%
espresso 37.5% 39.1% 39.2%
tbl 16.8% 19.0% 19.8%
xlisp 41.4% 44.7% 45.0%
yacc 18.9% 19.8% 21.3%

Table 1: Percentage of dependent memory operations.

may decrease the e�ectiveness of data prefetching. On the
other hand, if we wish the data cache to service both the
memory operations and the prefetch operations simulta-
neously, the bandwidth of the cache will have to increase
to keep up with the service rate. The datapath to the
cache, therefore, must be duplicated to perform simulta-
neous reads and writes to/from the cache.
Prefetched data can be placed into a separate prefetch

bu�er with block size the same as that of the data
cache [4]. When a memory operation is executed, both
the data cache and the prefetch bu�er are checked. The
CPU will retrieve the proper entry from the data cache
�rst before the prefetch bu�er. If the entry is not in the
cache and is in the prefetch bu�er, the data is forwarded
to both the CPU and the data cache. If a miss occurs
in both the cache and the prefetch bu�er, a cache miss is
assumed and is handled normally. If a load hits in both
the cache and the prefetch bu�er, the datum from the
data cache and the prefetch bu�er is multiplexed to give
priority to the data cache 1. For all stores that hit in
the data cache, the corresponding bu�er entries are inval-
idated. Otherwise, the prefetched block is transferred to
the data cache before the invalidation of the bu�er entry.
The data cache does not have to be non-blocking, but the
prefetch bu�er must be able to handle multiple outstand-
ing memory requests. The bandwidth of the data cache
remains the same. An extra communication channel is
needed between the data cache and the prefetch bu�er
for data transfer. Since the prefetch bu�er is concur-
rently accessed along with the data cache by the CPU,
the prefetch bu�er su�ers the same bandwidth problem
as the prefetch cache. The di�erence is that the prefetch
bu�er has no dirty-block state, and thus it does not have
to worry about the simultaneous stores from both the
memory and prefetch operations. Therefore, the prefetch
bu�er states are simpler than those of the prefetch cache.
With a prefetch bu�er, we can guarantee that all data

entering the cache will be used at least once. In compar-
ison, for prefetching into the data cache, the cache size
and/or associativity could be increased to reduce the de-
grading e�ect of pollution, however, useless data cannot
be prevented from entering the cache.

4 Simulation Environment

Table 1 lists the 5 benchmark programs used in this
paper. The measurement results are generated by trace

1Since the data cache has a much lower set-associativity
than the prefetch bu�er, the cache can access the data faster.

Assuming higher percentage of hits than misses, data access
time is usually that of the faster cache instead that of the
slower prefetch bu�er.
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Figure 4: Eqntott and espresso prefetch distance.

driven simulation. The traces consists of the IMPACT
assembly instructions, LCODE, which is a superset to
the MIPS R2000 assembly language. The trace analyzer
consumes the entire instruction trace while the bench-
mark program executes. The architecture used assumes
in-order execution with register inter-locking and renam-
ing, and uniform function units for all issue rates. The
issue rate is the maximum number of operations that can
be dispatched per cycle. The basic processing element has
deterministic operation latencies. All integer operations
have a 1 cycle latency with the exception of multiply (3
cycles) and divide (25 cycles). The memory load latency
is 2 cycles. Finally, all 
oating point operations have a
3 cycle latency with the exception of multiply (4 cycles)
and divide (25 cycles). Since prefetching may cause ex-
ceptions, non-trapping hardware is assumed. The trace
analyzer can simulate the e�ect of prefetching data either
into the data cache or into the prefetch bu�er. All caches
have 32-byte blocks, and the cache repair time is assumed
to be 10 cycles. The prefetch bu�er is a fully-associative
FIFO queue with the same block size as the data cache.
For conventional commercial processors, the restricted

code percolation model is used. With a complete set
of non-trapping operations, general code percolation can
move independent loads, divides, and 
oating point op-
erations above branches to further increase the processor
performance (restricted code percolation does not allow
operations which may cause traps to be moved above
branch operations) [8]. We will compare the prefetch-
ing results between restricted code percolation model and
general code percolation model. A trap caused by a
prefetch operation is handled the same as a trap caused by
a memory operation within the general code percolation
model.

5 Address Loads

Since address loads a�ect the performance of data
prefetching by limiting the prefetch distance, we wish
to study the characteristics of the address loads within
the benchmark programs using the general code percola-
tion model. Table 1 lists the dynamic percentage of ad-
dress loads that are detected within the prefetching range
(which is 10 cycles in this case). The remaining memory
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Figure 5: Tbl, yacc, and xlisp prefetch distance.

operations (e.g. 1 - x% of the memory operations from
Table 1) have no constraints in upward code motion, and
their prefetch distance is always the maximum allowable.
Figures 4 and 5 show the actual distribution of the

distance between address loads and dependent memory
operations for di�erent issue rates. This is the maximum
prefetch distance for the dependent memory operations
since we do not allow movement beyond a address load.
For our scheduling model, we have already scheduled the
address loads as much as possible. The basic distribution
can be separated into two categories. The average result
for eqntott and espresso is shown in Figure 4. The av-
erage result for tbl, xlisp, and yacc is similarly shown in
Figure 5. The main disparity between the two Figures
is that for eqntott and espresso, the maximum prefetch
distances tend to be evenly distributed across the entire
spectrum. For the other three benchmarks, the maximum
prefetch distance is concentrated at distances of 3 or less.
The e�ectiveness of the prefetching approach used in

this paper is limited by the constraints of the address
loads. For example, we can see that xlisp has a high per-
centge of memory operations that require the use of an
address resulting from another memory load (Table 1). In
conjunction with the results from Figure 5 (where prefetch
distances are small), we can expect prefetching to be less
e�ective for xlisp as opposed to a lesser constrained pro-
gram such as espresso. This behavior is indeed observed
for xlisp.

6 Hardware Tradeo�s

Since data prefetching has the potential to increase cache
pollution, we wish to minimize the degrading e�ect of
cache pollution through di�erent data access considera-
tions. Figures 6 and 7 show the degree of e�ectiveness of
increasing cache size and/or set associativity versus us-
ing a prefetch bu�er. The use of several con�gurations of
prefetch bu�er is evaluated in comparison with the case of
a perfect cache (indicated by per in each �gure), and the
case of a 1K direct mapped data cache with no prefetch-
ing (indicated by 1dX in each �gure). The �rst number in
each of the con�guration represents the cache size in 210

bytes. The second letter represents the cache associativity
(e.g. d is for direct mapped, and 2 is for 2-way associa-

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 3 4 5 6 7 8 9 10 11

S
P
E
E
D
U
P

ISSUE RATE

per 3

3

3
3

1d5 +

+

+
+

1d4 2

2

2
2

22n �

�

�
�

1d3 4
4

4 4

2dn ??

? ?

1dn
1dX

Figure 6: Prefetch results (restricted).

tive). The third letter represents the prefetch bu�er size
in 2x entries (e.g. n is for prefetch into the cache, and a
3 is for a 23 entry bu�er).
We plot speedup versus the issue rates of 2, 4, and 8.

Each data point represents the average of the 5 bench-
marks given in Table 1. The base architecture for all
speedup calculations has an issue rate of 1, a 1K direct
mapped cache, no prefetching, and uses the restricted
code percolation model. For all results of data prefetching
with a prefetch bu�er, a 1K direct mapped cache is used.
Since close to ideal speedup can be achieved by utilizing
data prefetching and a 32 entry prefetch bu�er on top
of the base architecture, the use of a 1K direct mapped
cache is justi�ed for all our results.
From Figures 6 and 7, it can be seen that superscalar

processors can indeed lose a majority of their performance
to data cache misses. However, data prefetching can be
used to e�ectively alleviate most of the performance loss.
It is shown that most con�gurations with data prefetch-
ing perform better than the con�gurations without data
prefetching. There is no noticeable performance degrada-
tion due to the extra overhead incurred by the prefetch
operations and the address calculations for the issue rates
shown.
Prefetching improves the performance more than in-

creased issue rate. Increasing the issue rate requires the
duplication of data path and function units. Prefetching
requires the use of non-trapping and non-blocking hard-
ware. In comparison, performing prefetching achieves a
higher performance with lower hardware cost. For the
small sized caches, we can conclude that it makes more
sense to perform data prefetching before an increase in
the issue rate.
It is clearly indicated that a 1K direct mapped cache

with a 32 entry prefetch bu�er performs best for all bench-
marks. For a direct mapped cache, increasing the cache
size is not as useful as adding an 8 entry prefetch bu�er.
Increasing the associativity of the cache decreases data
con
icts within the cache and removes some e�ects of
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Figure 7: Prefetch results (general).

cache pollution. For restricted code percolation model,
22n, 1d4, and 1d5 exhibit similar behavior, but the curve
for 1d5 noticeably out performs 22n and 1d4 under the
general code percolation model.
The general percolated code gives noticeable perfor-

mance gain over the code with restricted percolation.
However, without data prefetching, the processor perfor-
mance for the general code percolation model su�ers a
greater loss than restricted code percolation model. From
this, we conclude that there is a greater need to perform
data prefetching for general code percolation model.

7 Conclusions

Superscalar processors can lose the majority of their
performance to data cache misses, but we have shown
that compiler-assisted data prefetching signi�cantly re-
duces the penalties associated with data cache misses.
We achieve higher performance by performing compiler-
assisted data prefetching than by increasing the issue rate.
From the data shown, we see a very strong need to per-
form compiler-assisted data prefetching for superscalar
processors to achieve its potential performance limit.
Over all the benchmark programs examined, the addi-

tion of a prefetch bu�er is preferred over an increase in
cache dimensions. For the benchmark programs exam-
ined, a 32 entry prefetch bu�er seems to be enough to
capture most of the prefetched data. There is no signi�-
cant performance degradation due to the extra overhead
incurred by the prefetch operations and the address cal-
culations for the issue rates of 2, 4, and 8.
General code percolation signi�cantly increases the pro-

cessor performance, but the degrading e�ect of data cache
misses is also greater than restricted code percolation
model. Since the non-trapping hardware is already avail-
able for the prefetch operations, at a modest increase of
the instruction set, we can increase the processor per-
formance by utilizing both the compiler-assisted data

prefetching and the general code percolation model.
Finally, in this paper we have focused on the e�ects

of compiler-assisted data prefetching on a set of scalar
programs. Currently we are using programs with larger
cache requirements to evaluate the e�ects of prefetching
on larger data caches.
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