
Code Scheduling for VLIW/Superscalar Processors

with Limited Register Files

Tokuzo Kiyohara John C. Gyllenhaal

Media Research Laboratory Coordinated Science Laboratory

Matsushita Electric Industrial Co., Ltd. University of Illinois, Urbana-Champaign

Kadoma-shi, Osaka, 571 Japan Urbana, IL 61801

Abstract

Moderate size register �les can limit the perfor-

mance of loop unrolling on multiple issue processors.

With current scheduling heuristics, a breadth-�rst

scheduling of iterations occurs, increasing register

pressure and generating excessive spill code.

A heuristic is proposed that causes a more depth-

�rst scheduling of unrolled iterations. This heuristic

reduces the overlapping of the unrolled iterations and

as a result, reduces register pressure. The experimen-

tal evaluation shows increased performance on proces-

sors with 32 or 64 registers. In addition, the perfor-

mance of dependency removing optimizations is stabi-

lized, so that applying additional optimizations is more

likely to increase performance.

1 Introduction

In multiple instruction issue processors, such as

VLIW and superscalar processors, scheduling code

for e�cient usage of their function units requires

many independent instruction sequences. Loop un-

rolling, combined with techniques to minimize or re-

move dependencies, has been shown to improve per-

formance [1]. But with the current prescheduling

heuristics and limited register �le sizes, increasing the

amount a loop is unrolled or using more advanced op-

timizations can decrease performance due to increased

spill code.

This paper presents a new heuristic for use in the

prescheduling of unrolled loops for processors with

limited register �le sizes. The heuristic reduces spill

code which stabilizes the performance of loop unrolling

and dependence removing optimizations.

In previous work, Hwu and Chang [2] showed that

a prescheduling, register allocation, postscheduling se-

LD

ADD

ST

2 cycles

3 cycles

original
sequence

a)

LD1

ADD1

ST1

LD2

ADD2

ST2

LD3

ADD3

ST3

LD4

ADD4

ST4

LD5

ADD5

ST5

original
unrolled
sequence

(25 cycles)

b)

LD1

LD2

LD3

LD4

LD5

ADD1

ADD2

ADD3

ADD4

ADD5

ST1

ST2

ST3

ST4

ST5

Breadth-first
schedule

(15 cycles)

c)

LD1

LD2

ADD1

ADD2

LD3

ST1

ST2

ADD3

LD4

LD5

ST3

ADD4

ADD5

-

ST4

ST5

Depth-first
schedule

(16 cycles)

d)

Figure 1: Breadth-�rst and depth-�rst scheduling of

an unrolled loop

quence extracts more performance than postschedul-

ing alone. Goodman and Hsu [3] showed that a

prepass scheduler can avoid introducing excessive spill

code by switching between two scheduling algorithms

when the number of available registers passes a thresh-

old. A promising alternative to the above, used by

Multiow [4], is to combine register allocation and

code scheduling by treating registers as a resource.

For this paper, the proposed heuristic is applied to

the scheduler described by Hwu and Chang, but is

also applicable to any other list scheduling [5] based

system (such as Goodman and Hsu's scheduler).

2 Scheduling to Reduce Spilling

Current scheduling algorithms, for a k-issue pro-

cessor, choose the k highest priority instructions from

those available each scheduled cycle (referred to as



original
sequence

a)

r1 <- r1 + 1

r2 <- r2 + 1

r3 <- r3 + 1

r4 <- r4 + 1

(2 cycles)

b)

ADD1 ADD2

ADD3 ADD4

no regs are
spilled

(4 cycles)

c)

LD3 LD4

ST3 ST4

ADD1 ADD2

ADD3 ADD4

r3,r4 are
spilled

(8 cycles)

d)

LD1 LD2

ST1 ST2

ADD1 ADD2

ADD3 ADD4

LD4LD3

ST3 ST4

--

--

all regs are
spilled

spill registers:

Latencies:
load
add

2 cycles
1 cycle

2 regs reserved

Figure 2: E�ect of spilling registers

the breadth-�rst algorithm). The dominant heuris-

tic measure for the priority is the instruction's height,

which is de�ned as the length, in cycles, of the longest

code sequence dependent on that instruction [6, 7].

Register pressure is proportional to how many times

the loop is unrolled (since all iterations tend to be

overlapped to some degree) and how much the iter-

ations can be overlapped (which depends on the de-

pendences between iterations). As a result, the perfor-

mance of this algorithm with a limited register �le is

extremely sensitive to the amount the loop is unrolled

and the dependence removing optimizations applied

to the loop.

This paper proposes the use of the followingdepth-

�rst algorithm that tends to reduce spill code by bi-

asing the iteration's priorities so less overlap occurs.

In each unrolled iteration, all the operation priorities

(generated by the breadth-�rst algorithm) are biased

(increased) by

(num of iterations � iteration num) � bias value

The bias value is chosen so large that there is no over-

lap in priority values between the iterations.

The e�ect of this heuristic is illustrated in Figure

1 on the unrolled body (Figure 1b) of a DOALL loop

(Figure 1a). The breadth-�rst algorithm (Figure 1c)

overlaps more iterations than the depth-�rst algorithm

(Figure 1d). This overlap can result in a more compact

schedule since it increases the number of instructions

ready to schedule each cycle. It also increases the

register pressure, and if this increases spilling during

register allocation, the spill overhead can negate the

bene�ts of the more compact schedule.

3 Hiding Spill Code Overhead

Three factors make hiding spill code overhead dif-

�cult: the spill code's occupation of instruction slots,

Instruction Latency Instruction Latency

INT ALU 1 FP ALU 3

INT multiply 3 FP conversion 3

INT divide 10 FP multiply 3

branch 1/1-slot FP divide 10

memory load 2 memory store 1

Table 1: Instruction latencies

the need to hide the latency of the spill loads, and

the scheduling restrictions caused by dependencies be-

tween spill registers.

The e�ect of spill code is illustrated in Figure 2.

The fragment is prescheduled and register allocated

for a two issue, in-order execution processor. In Figure

2b, all the virtual registers are allocated into physical

registers. In Figure 2c, r3 and r4 are spilled out. The

latency of the loads are hidden by moving the loads

above the adds and the 2-cycle overhead is caused

solely by the need for extra instruction slots. In Figure

2d, all the virtual registers are spilled out. LD3 and

LD4 cannot be moved above ST1 and ST2 because

only two spill registers are available. This results in

the introduction of idle slots. It's possible that the

idle slots could be �lled, but the arti�cial dependencies

caused by register allocation limits code movement.

In practice, when the ratio of spill code to total

code size is small, most of the spill code can be moved

into idle slots, and latencies hidden by code move-

ment. But after some threshold, it becomes extremely

di�cult to hide the spill code overhead and that is

when performance degrades severely. As issue rate in-

creases, this threshold lowers because it becomes more

di�cult to hide the latency of the spill code.

4 Evaluation Methodology

The performance analysis is done using 29 unrolled

loop nests (only inner loop unrolled) drawn from the

PERFECT club benchmark suite [1]. They were com-

piled and scheduled using the IMPACT-I compiler [7].

Scheduling consists of a prescheduling (using either

the breadth-�rst or depth-�rst algorithm), register al-

location, postscheduling (always using the depth-�rst

algorithm) sequence. Note that only prescheduling is

varied because only it can e�ect register usage.

The underlying microarchitecture is assumed to

have homogeneous function units, deterministic in-

struction latencies (Table 1), CRAY-1 style interlock-

ing, and in-order execution. The instruction set is a

RISC assembly language similar to the MIPS R2000



Level Optimizations

Level 1 loop unrolling and conventional scalar

processor optimizations

Level 2 register renaming and operation migration

(+ Level 1)

Level 3 operation combining, strength reduction,

and height reduction (+ Level 2)

Level 4 induction and accumulator variable

expansion (+ Level 3)

Table 2: De�nition of optimization levels

instruction set. The execution time of each loop

nest, assuming a 100% cache hit rate, is derived using

execution-driven simulation.

This study varies the processor's issue rate (2, 4

and 8 issue), oating point register �le size (32[/16],

64[/32], 128[/64] or an unlimited number of sin-

gle[/double] precision oating point registers), and the

optimization level (Table 2) [1]. The register allocator

uses a graph coloring algorithm that utilizes pro�le

information in its priority calculations. For all reg-

ister �le sizes, 8 single [4 double] precision oating

point registers are reserved as spill registers. They are

allocated in a round robin fashion and a peephole op-

timization removes redundant spill loads and stores.

The integer register �le size is �xed at 64 registers.

5 Results

Since the performance of the depth-�rst algorithm

comes from reducing spill code, the loops are broken

up into the following two groups: Group-1, made up

of 19 loops, where moderate amounts of spill code is

generated by the breadth-�rst algorithm and Group-2,

containing 10 loops, where large amounts of spill code

is generated.

Figure 3 shows the percentage increase in code size

due to spill code for the loops optimized at level 4 and

scheduled with both algorithms. This �gure shows

that the depth-�rst algorithm successfully reduces reg-

ister pressure (therefore spill code) in unrolled loops.

The spill code generated by the breadth-�rst algo-

rithm is independent of issue-rate because it maxi-

mizes iteration overlap even when less slots need to be

�lled.

Register presure can also be reduced by applying

fewer dependence removing optimizations. For exam-

ple, if the optimization level is reduced to 1, less than

20% spill code is generated for the group-2, 32 regis-

ters case, and much less for larger register �le sizes.

a) All Loops

0%

50%

100%

32 64 128 32 64 128 32 64 128

Depth-first

Breadth-first

2-issue 4-issue 8-issue

[reg]

b) Group-1

0%

50%

100%

32 64 128 32 64 128 32 64 128

Depth-first

Breadth-first

2-issue 4-issue 8-issue

[reg]

c) Group-2

0%

50%

100%

150%

32 64 128 32 64 128 32 64 128

Depth-first

Breadth-first

2-issue 4-issue 8-issue

[reg]

Figure 3: Percentage increase in code size at optimiza-

tion level 4 due to spill code

This yields a speedup of approximately 1.7 for issue 2,

and 1.9 for issue 4 and 8 (for all register �le sizes).

The e�ect of varying the optimization level is pre-

sented in Figure 4. The vertical bars indicate the per-

centage of loop nests that achieve at least 95% of the

performance achievable by the best optimization level

(for each loop nest and processor con�guration) if the

indicated optimization level is used. This �gure shows

the lack of stability in the optimizations performance

when the number of registers are limited. For the

breadth-�rst algorithm, there is no clear choice about

what optimization level to use in the 128 or less regis-

ter cases. For the depth-�rst algorithm, although the

choice is still not clear, average performance is maxi-

mized by choosing optimization level 4. A exception is

the group-2, 32 register case, where the extreme reg-

ister pressure (code size almost doubles due to spill



a) All Loops

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

32-reg 64-reg 128-reg unlimited-reg

2-issue

4-issue

8-issue

b) Group-1

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

32-reg 64-reg 128-reg unlimited-reg

2-issue

4-issue

8-issue

c) Group-2

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

0%

100%

0%

100%

0%

100%

1 2 3 4

1 2 3 4

1 2 3 4

32-reg 64-reg 128-reg unlimited-reg

2-issue

4-issue

8-issue

Depth-first Breadth-first

1,2,3,4 refers to optimization level

Figure 4: Percentage of loop nests that achieve at least

95% of the performance achievable by the best opti-

mization level (for each loop nest and processor con-

�guration) if the indicated optimization level is used

code) causes severe performance degradation at opti-

mization levels above 1.

In Figure 5, the shaded bars show the speedup of

the loops using optimization level 4 for various register

�le sizes and issue rates. In addition, the white bars

indicate the speedup if, for each loop, the optimiza-

tion level that yielded the best performance was cho-

sen (as Figure 4 indicated, this is not always the high-

est optimization level). The base con�guration for the

speedup calculations is a single issue processor with

an unlimited number of registers using conventional

scalar processor optimizations. As expected, group-1

does not bene�t from depth-�rst scheduling (-5% to

4% improvement for 64 registers) because spill code

does not signi�cantly degrade performance. However,

group-2 bene�ts greatly (69% to 111% improvement

for 64 registers) due to the spill code reduction. This

averages out to an overall performance improvement

ranging from 14% to 18% for 64 registers. Similar

results occur with 32 registers with the overall per-

formance improvement ranging from 8% to 38% (the

8% coming from the 8-issue model with 32 registers

which is not realistic). The white bars show that when

breadth-�rst scheduling is given too much scheduling

freedom (from dependence removing optimizations),

performance is often lost due to excessive spill code.

The depth-�rst algorithm is more stable, so that ap-

plying additional dependence removing optimizations

usually yields improved performance.

6 Conclusion

Moderate size register �les can limit the perfor-

mance of loop unrolling. This is partially due to the

current scheduling heuristics interweaving of unrolled

iterations. This breadth-�rst scheduling of iterations

increases register pressure and generates excessive spill

code when the number of registers is limited.

In order to reduce the performance degradation, a

heuristic was proposed that causes a more depth-�rst

scheduling of unrolled iterations. This reduces the

overlapping of the unrolled iterations, which decreases

the register pressure. But it also tends to produce a

less e�cient schedule for unlimited or large register

�les.

The experimental evaluation shows that this heuris-

tic increases performance on processors with 32 or 64

registers. In addition, scheduling with this heuristic is

more stable, so that applying additional dependence

removing optimizations is less likely to decrease per-

formance. Both of these features make this heuristic



a) All Loops

1.0

2.0

3.0

4.0

5.0

0.0

32 64 128

8

32 64 128

8

32 64 128

8

Depth-first (level 4)

Breadth-first (level 4)

2-issue 4-issue 8-issue

6.0

7.0

[reg]

Improvement from choosing
best optimization level

b) Group-1

1.0

2.0

3.0

4.0

5.0

0.0

32 64 128

8

32 64 128
8

32 64 128

8

Depth-first (level 4)

Breadth-first (level 4)

2-issue 4-issue 8-issue

6.0

7.0

[reg]

Improvement from choosing
best optimization level

c) Group-2

1.0

2.0

3.0

4.0

5.0

0.0

32 64 128

8

32 64 128

8

32 64 128

8

Depth-first (level 4)

Breadth-first (level 4)

2-issue 4-issue 8-issue

6.0

7.0

8.0

9.0

[reg]

Improvement from choosing
best optimization level

Figure 5: Speedup (shaded bars) from using the high-

est optimization level (level 4) and the improvement

(white bars) from using the best optimization level for

each loop

valuable for multiple issue processors with limited reg-

ister �les.

Acknowledgements

The authors would like to thank Wen-mei Hwu

and all members of the IMPACT research group for

their comments and suggestions. Special thanks to the

anonymous referees whose comments and suggestions

helped to improve the quality of this paper signi�-

cantly.

John Gyllenhaal was supported by a NSF fellow-

ship.

References

[1] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal,

W. W. Hwu, P. P. Chang, and T. Kiyohara, \Com-

piler code transformations for superscalar-based high-
performance systems," in Proceedings of Supercomput-

ing 92, November 1992.

[2] W. W. Hwu and P. P. Chang, \Exploiting Parallel Mi-

croprocessor Microarchitectures with a Compiler Code

Generator," in Proceedings of the 15th Annual Interna-

tional Symposium on Computer Architecture, pp. 45{

53, June 1988.

[3] J. R. Goodman and W. C. Hsu, \Code Scheduling and

Register Allocation in Large Basic Blocks," in Proceed-

ings of the 1988 International Conference on Super-

computing, pp. 442{452, July 1988.

[4] Freudenberger, S. and Ruttenberg, J., \Phase Order-
ing of Register Allocation and Instruction Scheduling,"

in Code Generation - Concepts, Tools, Techniques,

Dagstuhl, Germany, May 1991.

[5] Edward G. Co�man, Jr., ed., Computer and Job=Shop
Scheduling Theory. John Wiley & Sons, 1976.

[6] J. R. Ellis, Bulldog: a compiler for VLIW architectures.
Combridge, MA: The MIT Press, 1986.

[7] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,
and W. W. Hwu, \IMPACT: An architectural frame-

work for multiple-instruction-issue processors," in Pro-

ceedings of the 18th International Symposium on Com-

puter Architecture, pp. 266{275, May 1991.


