
To appear in MICRO-25 Conference Proceedings, December 1992 1

Enhanced Modulo Scheduling for Loops with Conditional Branches

Nancy J. Warter Grant E. Haab � John W. Bockhaus

Krishna Subramanian

Coordinated Science Laboratory Hewlett-Packard

University of Illinois Systems Technology Division

Urbana, IL 61801 Fort Collins, CO 80525

Abstract

Loops with conditional branches have multiple execution

paths which are di�cult to software pipeline. The mod-
ulo scheduling technique for software pipelining addresses

this problem by converting loops with conditional branches

into straight-line code before scheduling. In this paper we
present an Enhanced Modulo Scheduling (EMS) technique

that can achieve a lower minimum Initiation Interval than

modulo scheduling techniques that rely on either Hierarchi-
cal Reduction or If-conversion with Predicated Execution.

These three modulo scheduling techniques have been imple-

mented in a prototype compiler. We show that for exist-
ing architectures which support one branch per cycle, EMS

performs approximately 18% better than Hierarchical Re-

duction. We also show that If-conversion with Predicated
Execution outperforms EMS assuming one branch per cy-

cle. However, with hardware support for multiple branches

per cycle, EMS should perform as well as or better than
If-conversion with Predicated Execution.

1 Introduction

Software pipelining has been shown to be an e�ective
technique for scheduling loop intensive programs on VLIW
and superscalar processors [1] [2] [3] [4]. The principle be-
hind software pipelining is to overlap or pipeline di�erent
iterations of the loop body in order to expose su�cient
operation-level parallelism to exploit the underlying par-
allel hardware. The resulting software pipeline schedule
consists of a prologue, a kernel, and an epilogue. The pro-
logue initiates the �rst p iterations. After the �rst p � II
cycles, where II is the Initiation Interval, a steady state
is reached. In the steady state or kernel, one iteration is
completed every II cycles. After the kernel �nishes exe-
cution, the epilogue completes the last p iterations. For
loops with large trip counts, most of the execution time
is spent executing the kernel. Thus, the goal of software
pipelining techniques is to �nd the smallest possible kernel,
or equivalently, II.

�Supported by a Fannie and John Hertz Foundation Gradu-
ate Fellowship.

The two basic approaches to software pipelining dif-
fer in the way that the operations are scheduled and
resource constraints are applied. The �rst approach is
based on global code compaction which schedules an op-
eration as early as possible and enforces resource con-
straints after a steady state is found. Techniques which
utilize this approach are Perfect Pipelining [5], Enhanced
Pipeline Scheduling [6], and GURPR* [7]. The second
approach, Modulo Scheduling, uses the resource and re-
currence constraints to determine a tight lower bound
on II and delays operations in order to resolve re-
source conicts [8] [9] [10] [11]. For loops without condi-
tional branches and cross-iteration dependences, Rau and
Glaeser have proven that Modulo Scheduling will yield an
optimal schedule for certain resource constraints [9]. Fur-
thermore, for loops without conditional branches, Modulo
Scheduling should perform better than the global com-
paction approaches, which may misschedule the resources.
Jones and Allan empirically showed that Modulo Schedul-
ing performs better than Enhanced Pipeline Scheduling for
single basic block loops [12].

These two approaches also di�er in the way that loops
with conditional branches are handled. Loops with con-
ditional branches are di�cult to software pipeline because
there are multiple paths of execution to schedule. The
global code compaction approach uses Fisher's code mo-
tion rules [13] to guarantee that operations are scheduled
properly in the presence of conditional branches. The
Modulo Scheduling approach avoids the need for such op-
erations by transforming the loop into straight-line code
before scheduling.

Two techniques, Hierarchical Reduction [3] and If-
conversion with Predicated Execution [14] [15], have been
proposed to convert loops with conditional branches into
straight-line code. Hierarchical Reduction collapses condi-
tional constructs (e.g. if-then-else) into pseudo-operations
by list scheduling both paths of the conditional construct
and merging them into one path by taking the union of
the resource usages along each path [3] [10]. Hierarchi-
cal Reduction does not assume special hardware support.
Thus, after modulo scheduling, the code is regenerated by
expanding the pseudo-operations and copying other op-

To appear in MICRO-25 Conference Proceedings, December 1992 2

erations scheduled during the same cycle to both paths
of execution. If-conversion removes conditional branches
by computing a condition for the execution of each op-
eration [16] [17]. Predicated Execution is an architecture
feature that supports conditional execution by providing
predicate registers that hold the condition for execution
of the operations. A predicate register is speci�ed for
each operation, and predicate de�ne operations are used
to set the predicate registers based on the appropriate con-
dition [14] [15].

The Modulo Scheduling technique �rst determines a
tight lower bound on II based on the resource usages and
cross-iteration dependence cycles. In this paper, minimum
II refers to this lower bound. In the presence of conditional
branches, the minimum II due to resource usages is deter-
mined by the most heavily used resource along any execu-
tion path. Both Hierarchical Reduction and If-conversion
with Predicated Execution place restrictions on the op-
eration scheduling that may prevent Modulo Scheduling
from achieving this II. If-conversion with Predicated Ex-
ecution schedules operations along all execution paths to-
gether. Thus, the minimum II for Predicated Execution
is constrained by the sum of the resource usages of all loop
operations rather than those along the most constrained
execution path. Although Hierarchical Reduction takes
the union of the resource usages along both paths of a con-
ditional construct, it restricts the code schedule by �rst list
scheduling the operations along both paths. This creates
pseudo-operations with complicated resource usage pat-
terns. These pseudo-operations are more likely to have
resource conicts which prevent �nding a schedule for the
minimum II.

In this paper we present an Enhanced Modulo Schedul-
ing (EMS) technique that schedules loops with conditional
branches in such a way that the minimum II can be ob-
tained. Essentially, EMS uses If-conversion with no addi-
tional hardware support for conditional execution. Thus,
like Hierarchical Reduction, the code must be regenerated
by inserting conditional branches after modulo scheduling.
EMS combines the bene�ts of both previous techniques,
since If-conversion eliminates the need for prescheduling
conditional constructs, and regeneration eliminates the
need to sum the resource constraints from all execution
paths. Also, like Modulo Scheduling with Hierarchical Re-
duction [3], EMS does not require special hardware sup-
port. Therefore, it can be used on existing processors
which do not provide hardware support for predicated ex-
ecution.

In this paper we present the EMS algorithm and com-
pare the performance of the three Modulo Scheduling tech-
niques: EMS, Hierarchical Reduction, and Predicated Ex-
ecution. In addition, we compare the performance of the
Modulo Scheduling techniques against a global code com-
paction technique, GURPR* [7]. We also discuss the �xed-
II limitation [18] of these techniques and some of the possi-
ble solutions currently being explored. Although the meth-
ods discussed in this paper can be used for both VLIW and

superscalar processors, we will use VLIW terminology to
clarify the discussion. Thus, an instruction refers to a very
long instruction word which contains multiple operations.

2 Enhanced Modulo Scheduling

The EMS algorithm consists of �ve steps:

1. Apply If-conversion to convert the loop body into
straight-line predicated code.

2. Generate the data dependence graph.

3. Modulo schedule the loop body.

4. Generate the software pipeline stages using modulo
variable expansion to rename overlapping register life-
times.

5. Regenerate the explicit control structure of the code
by inserting conditional branch operations.

While the EMS algorithm can handle more complicated
control ow graphs1, due to space limitations, the algo-
rithm presented in this paper applies to loops with struc-
tured control ow graphs. The more general EMS algo-
rithm is presented in [19].

2.1 If-conversion

Before modulo scheduling can be performed, the code
must be converted into straight-line code by removing
conditional branches and thus control dependences. If-
conversion is a technique to convert control dependences
into data dependences by computing a condition for the
execution of each operation [16] [17]. To support If-
conversion, EMS uses an internal predicated representa-
tion similar to the one used in the compiler for the Cy-
dra 5 processor, which has explicit hardware support for
Predicated Execution [14] [15]. Additional features have
been added to the representation to account for the fact
that there is no explicit hardware support [19].

The RK algorithm, developed by Park and Schlansker,
is used to perform If-conversion using predicates [20]. Con-
ditional branches are replaced by predicate de�ne opera-
tions, and the basic blocks are assigned the appropriate
predicates. Each basic block is assigned only one predi-
cate, which is de�ned for all the operations in the block.
Each predicate has both a true and a false form. For the
conditional branch in a simple if-then-else construct, the
fall-through basic block is assigned the false predicate and
the branch-target basic block is assigned the true predi-
cate. The predicate de�ne operation sets the true (false)
predicate and clears the false (true) predicate if the branch
condition is true (false).

Figure 1 shows an example loop control ow graph and
Figure 2 shows how the RK algorithm would predicate this

1This is another bene�t of If-conversion over Hierarchical

Reduction, the application of which is limited to if-then-else
constructs.

To appear in MICRO-25 Conference Proceedings, December 1992 3

A:

bne r1, 0, C

B: C:

D:

bne r1, max, A

jump D

r3 <- r2 + c1 r3 <- r2 * c2

label_A(r1) <- r3

r1 <- r1 + 8

r2 <- label_A(r1)

Figure 1: Example loop before If-conversion.

A:

p <- pred_define(r1!=0)

<0, T>

<0, T>

r3 <- r2 + c1 <p, F>

r3 <- r2 * c2 <p, T>

bne r1, max, A

<0, T>

<0, T>

<0, T>

B:

C:

D:

A’:

<0, T>

r1 <- r1 + 8

r2 <- label_A(r1)

pred_merge {p}

label_A(r1) <- r3

(add)

(ld)

(pd)

(fadd)

(fmul)

(pm)

(st)

(br)

Figure 2: Example loop after If-conversion.

graph. Each node in Figure 1 represents a basic block. In
Figure 2, predicate de�ne operations have been inserted
into the basic blocks, and the basic blocks have been as-
signed the correct predicates. A predicate has an id and
type, represented as < id; type >. For example, basic
block B has a predicate with id = p and type = F (false)
and basic block C has a predicate < p;T >. The predi-
cate de�ne operation in basic block A will set (clear) the
predicate < p;T > (< p;F >) if r1 != 0 and clear (set)
the predicate < p;T > (< p;F >) if r1 == 0. Note that
basic blocks A and D have the default predicate < 0;T >,
which is always set. After predication, all the basic blocks
can be merged into one basic block, A0.

To �nd the tightest software pipeline schedule, all op-
erations should be available during modulo scheduling.
Adding operations after scheduling may unnecessarily in-
crease the size of the kernel (II). Thus, operations re-
quired for code regeneration should be explicit.

During code regeneration, predicate de�ne operations
are replaced by the corresponding conditional branches
which create two paths. Separate paths are only needed
for the lifetime of the predicate. Once the predicate is no
longer live (i.e., there are no further uses of the predicate),
its paths can be merged. Although correct code can be gen-
erated without merging, this causes unnecessary code ex-
pansion. Alternatively, this information can be determined
during code regeneration by performing live-variable anal-
ysis [21] and inserting a jump operation once the predi-
cate is no longer live. However, this prevents scheduling
the jump operation during modulo scheduling. Thus, a
predicate merge operation is used that has the schedul-
ing attributes of a jump operation. During predication, a
predicate merge operation is inserted at the beginning of
a basic block if the basic block has multiple predecessors,
and it post-dominates [21] all of its predecessors. A predi-
cate merge operation is inserted at the beginning of basic
block D since D post-dominates both B and C. The pred-
icates being merged are those of the post-dominated basic
blocks. In the example, the predicate merge operation in
D merges predicate p.

2.2 Dependence Graph Generation

Only operations which have a control path between
them can be dependent on one another. In the original
loop body, operations along di�erent control paths are in
di�erent basic blocks with no path of control connecting
them. After If-conversion, the loop body is reduced to one
basic block. Thus, predicates need to be used to determine
whether there is a control path between two operations in
one iteration. There is always a control path between two
operations from di�erent iterations. A Predicate Graph is
used to determine if there is a control path between two
operations within one iteration [22].

After determining that there is a control path between
two operations, the dependence relation (ow, anti, out-
put) is determined [21]. The dependences arising from the
predicate operations are determined by the following rules:
There is a ow dependence between predicate de�ne oper-
ations and the operations that are assigned that predicate.
There is an output dependence between the predicate de-
�ne operation and predicate merge operation for a given
predicate. There is an anti dependence between operations
assigned a predicate and the respective predicate merge.

Figure 3 shows the dependence graph for the exam-
ple in Figure 2. The arcs are labeled with the tuple
< type; distance; latency >. The type is either ow (f),
anti (a), or output (o). The distance is the number of iter-
ations the dependence spans. The latency is the minimum
number of cycles needed to satisfy the dependence (with
respect to issue times). For this example we assume that
the fadd and fmul have a two cycle latency, and ld opera-
tions have a three cycle latency. The remaining operations
have a single cycle latency. Note that there is no output
dependence between the fadd and fmul since there is no

To appear in MICRO-25 Conference Proceedings, December 1992 4

<f,1,1>

<f,0,1>

<f,0,1>

<o,0,1>

<a,0,0>

<f,0,2>

<f,0,3>

add

ld

pd

fadd

fmul

pm

st

br

Figure 3: Simple example loop dependence graph.

control path between predicates < p;F > and < p;T >.
Also note that the predicate merge operation (pm) is out-
put dependent on pd and anti dependent on fadd and fmul.
Cross-iteration anti dependences are not shown in Figure 3
since they are removed by register renaming during mod-
ulo variable expansion.

2.3 Modulo Scheduling

In a modulo-scheduled software pipeline, a loop itera-
tion is initiated every II cycles, where II is the Initiation
Interval [9] [3] [11] [23]. The II is constrained by the most
heavily utilized resource and the worst-case recurrence for
the loop. These constraints each form a lower bound for II.
The minimum II is the maximum of these lower bounds.
In the EMS approach, the minimum II due to resource
constraints is determined by the most heavily utilized re-
source along any execution path. If an execution path p

uses a resource r for cpr cycles and there are nr copies of
this resource, then the minimum II due to resource con-
straints, RII, is

RII = max
p2P

�
max
r2R

l
cpr

nr

m�
;

where P is the set of all execution paths and R is the set
of all resources.

Cross-iteration dependences can cause recurrences that
force a maximum latency for the operations on the recur-
rence path or dependence cycle. If a dependence edge, e, in
a cycle has latency le and connects operations that are de
iterations apart, then the minimum II due to dependence

cycles, CII, is

CII = max
c2C

2
66666

X
e2Ec

le

X
e2Ec

de

3
77777
;

where C is the set of all dependence cycles and Ec is the
set of edges in dependence cycle c.

Once the minimum II has been determined, operations
are scheduled using the basic algorithm outlined by Rau
and Glaeser [9] with improvements from the Cydra 5 com-
piler implementation [23]. Before any operations are sched-
uled, the loop-back branch is �xed in the last cycle of the
schedule (assuming no branch delay slots). The remaining
operations are scheduled according to their priority and
dependence constraints, such that all higher-priority oper-
ations are scheduled before lower-priority operations. The
scheduling priorities are assigned such that the most con-
strained operations have the highest priority and the least
constrained have the lowest priority. Thus, the operations
in a dependence cycle have the highest priority. Opera-
tions that have predecessors and successors which are in
a dependence cycle have the next highest priority. The
remaining operations have the lowest priority. Operations
involved in dependence cycles and operations constrained
from above and below by operations in dependence cycles
are scheduled using heuristics developed for the Cydra 5
compiler [23]. Once an operation is ready to schedule, it
is scheduled at the earliest start time2 unless there is a
resource conict. If there is a resource conict, it is sched-
uled in the next available slot as discussed below.

If a schedule cannot be found for the minimum II, II is
incremented and the scheduling process is repeated. This
iterative scheduling process proceeds until the II reaches
a predetermined upper limit, at which time the loop is
considered to be un�t for software pipelining.

During scheduling, resource conicts are identi�ed us-
ing a modulo resource reservation table [3]. Figure 4 shows
the modulo resource reservation table after the operations
in the example of Figure 2 have been scheduled. For this
example, the processor has two uniform functional units
with the exception that only FU2 has a branch unit. That
is, any operation except a branch operation can be ex-
ecuted in either functional unit. The minimum II due
to resources, RII, is the maximum of the uniform re-
source constraints and the branch constraint. That is,
RII = max(

�
7

2

�
;
�
3

1

�
) = 4. Since the only recurrence is

for the add operation, which has a self-ow dependence
with unit distance and unit latency, CII = 1. Thus,
II = max(RII;CII) = 4. There are II rows in the mod-
ulo resource reservation table and a column for each func-
tional unit. In order to schedule an operation that uses a

2When scheduling forward (backwards), i.e. after all prede-
cessors (successors) have been scheduled, an operation is sched-

uled at the earliest (latest) start time. For brevity, we use ear-
liest start time throughout this paper.

To appear in MICRO-25 Conference Proceedings, December 1992 5

fadd <p,F> / fmul <p,T>
s = 4

s = 6

s = 3

s = 1
pm

pd

br

FU2

s = 0

s = 1

s = 6

add

ld

st

FU1
(no branch) (w/ branch)Cycle Mod II

0

1

2

3

Figure 4: Modulo resource reservation table of exam-
ple loop. s is the start time of the operation in cycles.

functional unit i at time tj, there must not be a resource
conict at row tj mod II and column FUi.

There are three possible states for each slot in the reser-
vation table: empty, no-conict, and full. A slot is empty
if no resources have been scheduled in that slot. A no-
conict slot occurs when there is no control path between
the operation being scheduled and operations that have
already reserved the slot. For instance, operations from
one iteration that are from di�erent paths of a conditional
branch can be scheduled in the same slot. In Figure 4,
the fadd and fmul operations do not conict since they
are from the same iteration (i.e., they have the same start
time) and they have complimentary predicates. A slot is
full with respect to the operation being scheduled if there
is a control path between the operation and the operations
that have already reserved the slot.

To �nd the tightest schedule, �rst determine if there are
any no-conict slots in the modulo resource reservation ta-
ble for this operation. If there are, select the earliest avail-
able slot with respect to the earliest start time for that
operation. Otherwise, schedule the operations in the ear-
liest available empty slot. Note in Figure 4 that operation
pm is ready to be scheduled in cycle 5. However, there is a
resource conict, and thus, it must be delayed until cycle
6. This delaying of operations to satisfy resource conicts
is the essence of Modulo Scheduling.

EMS has more scheduling freedom than other Mod-
ulo Scheduling techniques. Hierarchical Reduction will
list schedule the if-construct to form a pseudo-operation.
For example, in Figure 1, the conditional branch in ba-
sic block A and the operations in basic blocks B and
C are list scheduled to form a pseudo-operation that is
then modulo scheduled with the other operations in the
loop. Pseudo nodes tend to have more complicated re-
source patterns than individual operations causing more
resource conicts. Since EMS does not preschedule the
operations before modulo scheduling, there are fewer re-
source conicts.

With Predicated Execution, all operations in the loop
are fetched, and those with their predicates set complete
execution. Thus, whereas both Hierarchical Reduction and

EMS can schedule two operations from di�erent control
paths in the same slot, Predicated Execution only allows
one operation per slot. For this reason, fadd and fmul

cannot be scheduled in the same slot as they are in Fig-
ure 4. Compared to EMS, Predicated Execution has a
larger number of operations along the critical path3.

2.4 Software Pipeline Generation with
Modulo Variable Expansion

At this point, the steady state or kernel of the software
pipeline has been scheduled. It consists of one II. Be-
fore generating the rest of the software pipeline, we have
to determine if the kernel needs to be unrolled to avoid
overlapping register lifetimes. Since one loop iteration can
span multiple II's, the lifetime of a register can overlap
itself. To guarantee that a value in a register is not over-
written, the loop body must be unrolled enough times to
satisfy the longest register lifetime. Then the overlapping
registers are renamed. This optimization is called modulo
variable expansion [3]. The lifetime of a predicate variable
may also overlap itself. Although these variables do not
map to physical registers, they are also renamed in order
to regenerate the code properly[19].

After renaming, the kernel has been unrolled u times.
Next, the stages of the prologue and epilogue are gener-
ated, where each stage has II cycles. The number of stages
in the prologue (and epilogue), p, is

�
latest issue time

II

�
� 1,

where the latest issue time is de�ned by the modulo sched-
ule over all operations in the loop.

After all stages are created, the loop back branch is
removed from all but the last stage in the kernel. Allowing
early exits from the loop requires special epilogues for each
stage in the prologue and kernel, which increases the code
generation complexity and code expansion considerably.
With only one exit from the loop, the software pipelined
loop must execute p + k � u times, where k is an integer
greater than or equal to one. A non-software pipelined
version of the loop is required to execute the remaining
number of iterations. If the loop trip count is greater than
p+ u, the remaining number of iterations is (trip count�

p) mod u. If the trip count is less than p + u, only the
non-software pipelined loop is executed. If the trip count
is known to be less than p+u at compile time, the software
pipeline is not generated.

2.5 Code Regeneration

Once each stage of the pipeline has been generated and
the registers have been renamed, the basic block repre-
sentation must be regenerated by replacing the predicate
de�ne operations with conditional branches.

3EMS does require additional jump instructions that are not
needed for Predicate Execution. However, Predicate Execution

may require additional operations such as predicate clears that
are not needed for EMS.

To appear in MICRO-25 Conference Proceedings, December 1992 6

r4 <- r5 + 8

r2 <- label_A(r4) bne r4, 0, L1

r3 <- r2 + c1r5 <- r4 + 8

r2 <- label_A(r5)

L2:

bne r5, 0, L4

L1:

r3 <- r2 * c2r5 <- r4 + 8

r2 <- label_A(r5)

L3:

bne r5, 0, L5

label_A(r4) <- r3L4:

label_A(r4) <- r3 jump L6

label_A(r4) <- r3L5:

label_A(r4) <- r3 jump L7

r3 <- r2 + c1r4 <- r5 + 8

r2 <- label_A(r4)

L6:

bne r4, 0, L8

r3 <- r2 * c2r4 <- r5 + 8

r2 <- label_A(r4)

L7:

bne r4, 0, L9

label_A(r5) <- r3L8:

label_A(r5) <- r3 jump L10

label_A(r5) <- r3L9:

label_A(r5) <- r3 jump L11

bne r4, max, L2L10: bne r4, max, L3L11:

L12:

r3 <- r2 + c1

label_A(r4) <- r3 jump L12

r3 <- r2 * c2

label_A(r4) <- r3

Figure 5: The software pipelined loop after regenera-
tion.

The regeneration of the software pipeline for the exam-
ple loop is shown in Figure 5. Each node is a basic block,
and each row in a node is a VLIW instruction. Note that
the kernel must be unrolled two times since the longest
register lifetime modulo II is two. Register r1 is the only
register that must be renamed. For a VLIW processor
without interlocking, the empty operation slots are �lled
with no-op's. For a VLIW processor with interlocking, in-
structions which consist of only empty slots are deleted.
For partially full instructions, the empty operation slots
are �lled with no-op's4.

3 Experimental Results

3.1 Compiler Support

The three Modulo Scheduling techniques, referred to as
EMS, Hierarchical Reduction, and Predicated Execution,
have been implemented in the IMPACT C compiler. In or-
der to compare Modulo Scheduling against another �xed-II
software pipelining technique, GURPR* [7] has also been
implemented in the IMPACT compiler [24]. Like EMS and

4For a superscalar processor, the empty slots can be ignored.

Hierarchical Reduction, GURPR* does not require addi-
tional hardware support.

In the GURPR* algorithm, the loop body is compacted
and pipelined assuming a minimum II determined by the
inter-body dependence distance. From this intermediate
pipeline representation, II is determined as the shortest
interval that contains all operations in the loop. Once this
interval is determined, it may contain multiple copies of an
operation. Any redundant operations are deleted so that
exactly one iteration is completed within one II. In our
implementation of GURPR* no global code compaction
is performed. We found that techniques such as trace
scheduling and code percolation tend to increase both the
longest path and the resource conicts, thereby increasing
II. It is possible that some heuristics could be applied to
these code compaction techniques to improve the perfor-
mance of GURPR*.

For each technique, scheduling is applied to the ap-
propriate loops after performing classical code optimiza-
tions [21] and after translation into the target machine
assembly code but before register allocation. In our cur-
rent implementation, we apply software pipelining to inner
loops that do not have function calls or early exits from
the loop (e.g., return statements).

3.2 Machine Model

The machine model for these experiments is a VLIW
processor with no interlocking. There are uniform resource
constraints with the exception that only one branch can
be issued per cycle. Other than the branch operation, we
use the instruction set and operation latencies of the Intel
i8605. Most integer operations take 1 cycle except for the
integer load which takes 2 cycles. The integer multiply and
divide and the oating point divide are implemented using
approximation algorithms [25]. The oating point load,
ALU, and single-precision multiply take 3 cycles, and the
double precision multiply takes 4 cycles. For the branch
operation we assume that the compare and branch are per-
formed in 1 cycle. Thus, there are no branch delay slots.
There are four basic kinds of compare and branch oper-
ations: equal, not equal, greater than, and greater than
or equal. For each kind there are three types: integer,
single-precision oating point, and double-precision oat-
ing point. There are also signed and unsigned versions of
the integer greater than and greater than or equal opera-
tions. In total, there are 14 types of branch and compare
operations.

Likewise, for the Predicated Execution model, there are
14 predicate de�ne operations and a predicate clear oper-
ation to reset the predicates. These operations have one
cycle latency. The architecture support for Predicated Ex-
ecution is similar to the model used in the Cydra 5 [15].
There is a predicate register �le and hardware to prevent
the write back of results for operations whose predicate is

5We assume that the load and oating point pipelines are
automatically advanced.

To appear in MICRO-25 Conference Proceedings, December 1992 7

cleared in the predicate register �le. Each operation in a
VLIW instruction has a predicate register speci�er.

The base processor for these experiments is a RISC pro-
cessor with an in�nite register �le and ideal cache. For the
predicated execution model, the predicate register �le size
is unlimited. The base schedule is a basic block sched-
ule. The experiments were performed using machines with
instruction widths or issue rates of 2, 4, and 8.

3.3 Benchmarks

The focus of this study is to analyze the relative per-
formance of conditional branch handling techniques. To
run our experiments, we collected a set of 26 loops with
conditional branches from the Perfect benchmarks. All
conditional constructs are structured and non-nested. Of
the 26 loops considered, 18 have one conditional construct,
7 have two constructs, and 1 has three constructs. Only
DOALL loops (loops without cross-iteration memory de-
pendencies) were included in the test suite.

3.4 Results

Performance

Given equivalent resource constraints, EMS should per-
form better than both Predicated Execution and Hierar-
chical Reduction since Predicated Execution needs to fetch
operations from every execution path through the loop
and Hierarchical Reduction has pseudo-operations with
complicated resource usage patterns. Figure 6 shows the
speedup of the four techniques for issue 2, 4, and 8, where
each point is the harmonic mean of the speedup of the in-
dividual loops. EMS performs 18%, 17%, and 19% better
than Hierarchical Reduction for issue rates 2, 4, and 8,
respectively. Due to the one branch per cycle restriction
for EMS, Predicated Execution performs 2%, 6% and 27%
better than EMS for issue rates 2, 4, and 8, respectively.

The GURPR* technique may have redundant oper-
ations that are removed after II has been determined.
Thus, the resource constraints are not entirely known
while the loops are being overlapped. As shown in Fig-
ure 6, GURPR* tends to have a larger II than the Modulo
Scheduling techniques which apply the exact resource con-
straints.

Figure 7 shows the arithmetic mean of RII and the
achieved II for the four techniques. Since loops without
cross-iteration memory dependences were used, the mini-
mum II is always RII6. The graph shows the number of
cycles per II, and thus, the size of the bar is inversely pro-
portional to the performance of the technique. Figure 7
illustrates why EMS performs better than both Hierarchi-
cal Reduction and GURPR* and not as well as Predicated
Execution.

6An optimization, induction variable reversal [26] is per-

formed to transform induction variable recurrences into self-
recurrences. Thus, CII is one for the loops used in this paper.

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8

Speedup

Issue Rate

Predicated Execution 2

2

2

2

Enhanced Modulo Sched 4

4

4

4

Hierarchical Reduction �

�

�

�

GURPR* ?

?

?

?

Figure 6: Speedup of the three Modulo Scheduling
techniques and GURPR*.

Hierarchical
Reduction

Enhanced
Modulo

Scheduling

Predicated
Execution

10

20

30

40

2 4 8 2 4 8 2 4 8

Cycles

2 4 8
GURPR*

27.2

____13.7

12.4
____8.1
6.9

II

RII

____24.0
24.0

____23.8
23.8

____12.1
12.1

____6.2
6.2

____12.4
12.4

____6.9
6.9

40.8
24.0

____23.9
12.4

____15.0
6.9

24.0

Figure 7: Average minimum II (RII) versus achieved
II.

For EMS, RII is determined by the most heavily uti-
lized resource along any execution path. This minimum II

may not be achieved if operations from di�erent execution
paths have start times from di�erent II's, which prevent
them from using the same resource. In the worst case, the
resource usages are summed as in Predicated Execution.
Our results indicate that EMS almost always achieves its
minimum II. Although the precision in Figure 7 does not
show the di�erences, the average II is 0.1% and 0.3% per-
cent larger than the the average RII for issue rates 2 and
4, respectively.

For Hierarchical Reduction, RII is determined after
the operations in the conditional construct have been list
scheduled and the pseudo-operations have been formed by
taking the union of the resource usages along both paths.
The union of the resource usages after list scheduling is
always greater than or equal to the most constrained re-

To appear in MICRO-25 Conference Proceedings, December 1992 8

source along either path. Figure 7 shows that, on average,
RII is larger for Hierarchical Reduction than for EMS.
In addition to having a larger average RII, Hierarchical
Reduction often cannot achieve this minimum due to the
complex resource usage patterns of the pseudo-operations.

Note that RII for EMS is larger than RII for Predi-
cated Execution. This is because the one branch per cycle
constraint often limits the minimum II for EMS (espe-
cially for issue-8 machines). If the underlying architecture
supports multiple branches per cycle, EMS should perform
as well as or better than Predicated Execution since EMS
almost always achieves its minimum II.

While GURPR* does not use RII to determine the min-
imum II during the pipelining stage, it does represent a
lower bound for the achieved II. EMS and GURPR* have
the same minimum II since neither has hardware support
and neither creates pseudo-operations that may increase
RII. However, due to the insertion of cycles when a re-
source conict arises, GURPR* rarely achieves this mini-
mum II.

Code Expansion

The disadvantage of EMS and other techniques that re-
quire explicit conditional branches is that there may be
multiple copies of an operation, each on a di�erent control
path. Furthermore, after software pipelining, a conditional
construct can overlap itself. If it overlaps itself n times,
there can be order 2n times code expansion. Figure 8 shows
the arithmetic mean of the code expansion of the four tech-
niques. The code expansion is determined by the number
of instructions in the software pipeline (after code regen-
eration for EMS, Hierarchical Reduction, and GURPR*)
divided by the number of instructions in the basic block
schedule. The code expansion due to the additional non-
software pipelined loop is not included. However, this will
add the same number of instructions for all techniques.
Also, for Predicated Execution, the code expansion due to
the predicate register speci�ers has not been included since
it is implementation dependent.

As expected, the code expansion for EMS is larger
than for Predicated Execution due to code regeneration
and larger than for Hierarchical Reduction since forming a
tighter schedule will overlap more conditional constructs.
The code expansion for EMS is 52%, 60%, and 105% larger
than for Hierarchical Reduction and is 75%, 103%, and
257% larger than for Predicated Execution for issue 2,
4, and 8 respectively. If the underlying architecture sup-
ported multiple branches per cycle, the code expansion for
EMS would be even larger.

Even though GURPR* does not perform as well as the
other techniques, it has the largest code expansion. This
is because the original II is equal to one for loops without
cross-iteration memory dependences and after induction
variable reversal. Thus, many iterations are overlapped
during the pipelining phase before the �nal II is deter-
mined [24]. This increases the overlap of the conditional

0

20

40

60

80

100

120

2 3 4 5 6 7 8

Code
Expand
(%)

Issue Rate

GURPR* ?

?

?

?
Enhanced Modulo Sched 4

4

4

4Hierarchical Reduction �

�

�

�

Predicated Execution 2

2

2

2

Figure 8: Code Expansion of the three Modulo
Scheduling techniques and GURPR*.

#FP-Ops #Branches #Ops

Avg. 1.85 1.35 52.62
padec 6 1 166

wcont 1 1 15

Table 1: Benchmark loop characteristics before soft-
ware pipelining.

constructs resulting in larger code expansion.

Tables 1 and 2 are provided to add insight into how the
loop characteristics and scheduling parameters a�ect code
expansion. In these tables, data for the loops are presented
which correspond to the worst case (padec) and best case
(wcont) code expansion (with respect to EMS) as well as
for the average over all loops. In Table 1, #FP-Ops is the
number of oating point operations in the longest path of
a conditional construct, #Branches refers to the number of
conditional branches within the loop body (not including
the loop-back branch), and #Ops refers to the number of
operations in the loop. In Table 2, four scheduling param-
eters are presented: the number of stages in the prologue,
the number of times the kernel is unrolled, the number of
VLIW instructions (assuming no interlocking), and II.

With hardware support for predicated execution, the
number of VLIW instructions assuming no interlock is
(2 � Stages + Unroll) � II. Without hardware support,
the number of VLIW instructions cannot be directly cal-
culated since it depends on the degree of overlapping of the
conditional constructs. The code expansion for the tech-
niques that use regeneration can be determined by com-
paring their scheduling parameters against those of Pred-
icated Execution. For example, considering EMS for the
worst case loop (padec), although Stages and Unroll are
identical and II is similar, VLIW for EMS is 31% larger
than VLIW for Predicated Execution.

To appear in MICRO-25 Conference Proceedings, December 1992 9

Technique Param. Avg. padec wcont

Stages 4.50 7 3
Hierarch. Unroll 5.76 8 4
Reduction VLIW 301.88 1202 47

II 13.73 41 4

Stages 5.46 6 3
Predicated Unroll 6.88 8 4
Execution VLIW 235.62 840 40

II 12.08 42 4
Enhanced Stages 5.34 6 3
Modulo Unroll 6.50 8 4
Scheduling VLIW 416.77 1100 47

II 12.42 41 4
Stages 3.27 4 3

GURPR* Unroll 4.27 5 4
VLIW 397.69 1360 57
II 23.85 88 5

Table 2: Scheduling parameters for the four software
pipelining techniques.

4 Future Work

In this paper we have introduced the EMS technique
and shown how EMS can produce a tighter schedule than
Modulo Scheduling with either Hierarchical Reduction or
Predicated Execution. However, more work is required
to complete the analysis of the three Modulo Scheduling
techniques. We are currently expanding the regeneration
algorithm to handle architectures which support multiple
branches per cycle. Furthermore, we are analyzing the
performance impact of code expansion using a non-ideal
instruction cache. Finally, we are studying the e�ect of a
�nite register �le using the �rst-�t allocation with conict-
ordering register allocation technique proposed by Rau et.
al. [27].

There is a limitation of the �xed-II techniques that
variable-II techniques [6] do not encounter [18]. Fixed-II
techniques create gaps in the schedule for execution paths
not constrained by the minimum II. We are currently in-
vestigating several solutions to this problem. One possible
solution is to perform global code compaction after mod-
ulo scheduling. This will also remove gaps formed after
unrolling for modulo variable expansion such as those cre-
ated by removing the loop-back branch from all but the
last stage in the kernel. Another possible solution is to
use pro�ling information to identify the most frequently
executed path, which is then software pipelined [28]. This
solution is particularly bene�cial for loops in which the
most frequently executed path is much shorter than the
other paths. In the loops we have studied, this is often
the case since the longer paths often correspond to excep-
tion handling code or code which calculates a boundary
condition.

5 Conclusion

In this paper we have presented a new technique for
modulo scheduling that converts loops with conditional
branches into straight line code by applying If-conversion
assuming no conditional execution hardware support. This
technique, Enhanced Modulo Scheduling (EMS), combines
the bene�ts of the previous Modulo Scheduling techniques,
If-conversion with Predicated Execution and Hierarchical
Reduction, to remove the limitations of each technique. If-
conversion eliminates the need for prescheduling the paths
of the conditional construct, which is essential to Hierar-
chical Reduction. Code regeneration eliminates the need
to sum the resource usages from all execution paths as
required in If-conversion with Predicated Execution.

All three Modulo Scheduling techniques and GURPR*
have been implemented in a prototype compiler. For exist-
ing architectures which support one branch per cycle, EMS
performs approximately 18% better than Modulo Schedul-
ing with Hierarchical Reduction. For future architectures,
EMS with hardware support for multiple branches per cy-
cle should perform as well as or slightly better than Modulo
Scheduling with Predicated Execution. Given the approxi-
mately equivalent performance of these two techniques, fu-
ture designers can determine the more cost-e�ective hard-
ware implementation.

Acknowledgements

The authors would like to thank Wen-mei Hwu, Paul
Ryan, Je� Baxter, and all members of the IMPACT re-
search group for their comments and suggestions. The au-
thors would also like to acknowledge Scott Mahlke, David
Lin, and William Chen for their contributions of com-
piler support for predicated execution. Special thanks to
the anonymous referees whose comments and suggestions
helped to improve the quality of this paper signi�cantly.

This research has been supported by the Joint Services
Engineering Programs (JSEP) under Contract N00014-90-
J-1270, Dr. Lee Hoevel at NCR, the AMD 29K Advanced
Processor Development Division, Matsushita Electric In-
dustrial Corporation Ltd., Hewlett-Packard, and the Na-
tional Aeronautics and Space Administration (NASA) un-
der Contract NASA NAG 1-613 in cooperation with the
Illinois Computer Laboratory for Aerospace Systems and
Software (ICLASS).

References

[1] A. Charlesworth, \An approach to scienti�c array
processing: The architectural design of the AP-
120B/FPS-164 family," in IEEE Computer, Septem-
ber 1981.

[2] R. Touzeau, \A Fortran compiler for the FPS-164 Sci-
enti�c Computer," in Proceedings of the SIGPLAN

'84 Symposium on Compiler Construction, June 1984.

To appear in MICRO-25 Conference Proceedings, December 1992 10

[3] M. S. Lam, \Software pipelining: An e�ective
scheduling technique for VLIW machines," in Pro-

ceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation,
pp. 318{328, June 1988.

[4] R. L. Lee, A. Kwok, and F. Briggs, \The oating
point performance of a superscalar SPARC proces-
sor," in Proceedings of the 4th International Confer-
ence on Architecture Support for Programming Lan-

guages and Operating Systems, pp. 28{37, April 1989.

[5] A. Aiken and A. Nicolau, \Optimal loop paralleliza-
tion," in Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and

Implementation, pp. 308{317, June 1988.

[6] K. Ebcioglu and T. Nakatani, \A new compilation
technique for parallelizing loops with unpredictable
branches on a VLIW architecture," in Second Work-

shop on Languages and Compilers for Parallel Com-

puting, August 1989.

[7] B. Su and J. Wang, \GURPR*: A new global software
pipelining algorithm," in Proceedings of the 24th An-

nual Workshop on Microprogramming and Microar-

chitecture, pp. 212{216, November 1991.

[8] J. H. Patel and E. S. Davidson, \Improving the
throughput of a pipeline by insertion of delays," in
Proceedings of the 3rd International Symposium on

Computer Architecture, pp. 159{164, 1976.

[9] B. R. Rau and C. D. Glaeser, \Some scheduling tech-
niques and an easily schedulable horizontal architec-
ture for high performance scienti�c computing," in
Proceedings of the 20th Annual Workshop on Micro-

programming and Microarchitecture, pp. 183{198, Oc-
tober 1981.

[10] M. Lam, A Systolic Array Optimizing Compiler. PhD
thesis, Carnegie Mellon University, Pittsburg, PA,
1987.

[11] C. Eisenbeis, \Optimization of horizontal microcode
generation for loop structures," in International Con-

ference on Supercomputing, pp. 453{465, July 1988.

[12] R. B. Jones and V. H. Allan, \Software pipelining:
An evaluation of Enhanced Pipelining," in Proceed-
ings of the 24th International Workshop on Micropro-

gramming and Microarchitecture, pp. 82{92, Novem-
ber 1991.

[13] J. A. Fisher, \Trace scheduling: A technique for
global microcode compaction," IEEE Transactions on
Computers, vol. c-30, pp. 478{490, July 1981.

[14] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle,
\The Cydra 5 departmental supercomputer," IEEE

Computer, pp. 12{35, January 1989.

[15] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, \Over-
lapped loop support in the Cydra 5," in Proceedings of
the Third International Conference on Architectural

Support for Programming Languages and Operating
Systems, pp. 26{38, April 1989.

[16] R. Towle, Control and Data Dependence for Program

Transformations. PhD thesis, Department of Com-
puter Science, University of Illinois, Urbana, IL, 1976.

[17] J. R. Allen, K. Kennedy, C. Porter�eld, and J. War-
ren, \Conversion of control dependence to data de-
pendence," in Proceedings of the 10th ACM Sym-

posium on Principles of Programming Languages,
pp. 177{189, January 1983.

[18] F. Gasperoni, \Compilation techniques for VLIW
architectures," Tech. Rep. 66741, IBM Research
Division, T.J. Watson Research Center, Yorktown
Heights, NY 10598, August 1989.

[19] N. J. Warter and W. W. Hwu, \Enhanced modulo
scheduling," Tech. Rep. CRHC-92-11, Center for Re-
liable and High-Performance Computing, University
of Illinois, Urbana, IL, November 1992.

[20] J. C. H. Park and M. Schlansker, \On Predicated
Execution," Tech. Rep. HPL-91-58, Hewlett Packard
Software Systems Laboratory, May 1991.

[21] A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-
ples, Techniques, and Tools. Reading, MA: Addison-
Wesley, 1986.

[22] D. C. Lin, \Compiler support for predicated execution
in superscalar processors," Master's thesis, Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Illinois, Urbana, IL, 1992.

[23] P. Tirumalai, M. Lee, and M. Schlansker, \Paralleliza-
tion of loops with exits on pipelined architectures," in
Supercomputing, November 1990.

[24] J. W. Bockhaus, \An implementation of GURPR*: A
software pipelining algorithm," Master's thesis, De-
partment of Electrical and Computer Engineering,
University of Illinois, Urbana, IL, 1992.

[25] Intel, i860 64-Bit Microprocessor. Santa Clara, CA,
1989.

[26] N. J. Warter, D. M. Lavery, and W. W. Hwu, \The
bene�t of Predicated Execution for software pipelin-
ing," in Proceedings of the 23rd Hawaii International

Conference on System Sciences, to appear January
1993.

[27] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S.
Schlansker, \Register allocation for software pipelined
loops," in Proceedings of the ACM SIGPLAN 92 Con-

ference on Programming Language Design and Imple-

mentation, pp. 283{299, June 1992.

[28] W. Y. Chen, S. A. Mahlke, N. J. Warter, and W. W.
Hwu, \Using pro�le information to assist advanced
compiler optimization and scheduling," in Proceedings
of the Fifth Workshop on Languages and Compilers

for Parallel Computing, August 1992.

