
Speculative Execution Exception Recovery

using

Write-back Suppression

Roger A. Bringmann Scott A. Mahlke Richard E. Hank

John C. Gyllenhaal Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana, IL 61801

Correspondent: Roger A. Bringmann

Tel: (415)-336-4729

Email: roger@crhc.uiuc.edu

Abstract

Compiler-controlled speculative execution has been shown to be e�ective in increasing the
available instruction level parallelism (ILP) found in non-numeric programs. An important prob-
lem with compiler-controlled speculative execution is to accurately report and handle exceptions
caused by speculatively executed instructions. Previous solutions to this problem incur either
excessive hardware overhead or extra register pressure. This paper introduces a new architecture
scheme referred to as write-back suppression. This scheme systematically suppresses register �le
updates for subsequent speculative instructions after an exception condition is detected for a
speculatively executed instruction. We show that with a modest amount of hardware, write-
back suppression supports accurate reporting and handling of exceptions for compiler-controlled
speculative execution without adding to the register pressure. Experiments based on a prototype
compiler implementation and hardware simulation indicate that ensuring accurate handling of
exceptions with write-back suppression incurs very little run-time performance overhead.

Index terms - exception detection, exception recovery, scheduling, speculative execution, VLIW,
superscalar

1



1 Introduction

Compiler-controlled speculative execution is a technique that allows instructions to be scheduled

above conditional branches that determine their execution in the original program order. When an

instruction is speculatively scheduled above a conditional branch, it is executed regardless of the

direction taken by the conditional branch. Therefore, speculative execution trades o� execution

e�ciency for more scheduling opportunity across basic blocks. This technique is important since

insu�cient parallelism has been shown to exist in basic blocks of non-numeric benchmarks to keep

the functional units busy for wide issue superscalar and VLIW architectures [4, 5, 6]. Global

scheduling techniques such as trace scheduling [7] and superblock scheduling [8] take advantage of

speculative execution to increase the available instruction level parallelism found in programs.

To ensure correct program execution, the compiler must not alter the program behavior with

speculative instruction scheduling. One requirement is that speculative instructions from one path

of a conditional branch should not corrupt the source operands of instructions on the other path of

the branch. This can be achieved by renaming the destination operands of the speculative instruc-

tions [8]. A more di�cult requirement is that if the compiler speculates a potentially excepting

instruction (PEI) from one path of a conditional branch, the resolution of its exception must not

alter the program state if the branch chooses the other path. In particular, the exception conditions

from speculatively executed instructions must not terminate the execution of the program unless

their execution is con�rmed by the subsequent branches.

The general percolation model [6] poses one solution to resolving exceptions for speculated

potentially excepting instructions (SPEIs). This model adds a non-trapping instruction to the in-

struction set for each of the PEIs that it permits to speculate. Whenever a PEI is to be speculatively

scheduled, it is changed into its non-trapping counterpart. During run time, the hardware ignores

most of the exception conditions for the non-trapping instructions. However, page faults and TLB

misses due to speculatively executed instructions will still have to be handled immediately, which

can potentially increase the number of page faults and TLB misses during execution. This model is

2



easy to implement and can accomplish high performance with minimal changes to the architecture.

Unfortunately, it permits some exception conditions that would be detected in the original program

execution to go undetected.

In this paper, a set of architectural features, collectively referred to as Write-back Suppression

(WBS) is introduced. WBS provides an e�ective support for compiler-controlled speculative ex-

ecution without excessive hardware overhead. We show that WBS incurs very little performance

overhead while allowing accurate detection and reporting of exceptions that occur for speculatively

executed instructions.

The next section provides background for compiler-controlled speculative execution. Section 3

introduces write-back suppression and the compiler algorithms to take advantage of it. Section 4

presents experimental results. Concluding remarks are given in Section 5.

2 Background

2.1 Problem Statement

Figure 1a illustrates the basic problems that compiler-controlled speculative execution schemes

must address to accurately report and handle exceptions. In this example, instruction I1 guards

against an invalid memory access by I2. Under normal situations, the address for I2 is valid. Thus

the branch is usually not taken. Instruction I3 uses the contents of the memory location contained

in r5 to perform a computation. Assume that the compiler has renamed the destination registers

of I2 and I3 so that these instructions cannot corrupt the source operands of instructions on the

taken path of the branch instruction. Assuming that the branch has a one cycle latency, the load

has a 2 cycle latency and the add has a 1 cycle latency, the shortest latency possible for these three

instructions is 4 cycles. However, since the branch is usually not taken, it is feasible to speculate I1

above I2 producing the schedule shown in Figure 1b (an instruction denoted by (S) is speculated).

This new schedule has a 3 cycles latency and would be a more desirable schedule.

For the schedule in Figure 1b to be legal, it must not alter the program behavior regardless of

3



beq r5,0,L1
ld r7,mem(r5)
add r6,r6,r7

(a)

1
2
3

I Instruction

beq r5,0,L1
add r6,r6,r7

ld r7,mem(r5) (S)

(b)

2
1
3

I Instruction

beq r5,0,L1
add r6,r6,r7 (S)
ld r7,mem(r5) (S)

(c)

2
3
1

I Instruction

Figure 1: (a) un-scheduled code, (b) one speculated instruction, (c) two speculated instructions.

the direction the branch takes at run time. If the contents of r5 in I2 is zero, the load will cause

an invalid memory access exception. If the exception is permitted to occur, an error that I1 was

designed to prevent will be falsely reported. One solution to this problem is to delay the exception

until the direction of the branch is known. This requires that the knowledge of the exception must

be maintained for later use.

A slightly di�erent problem occurs if the exception caused by I1 was not an invalid memory

access but instead was a page fault. If we delay the exception until after the branch direction is

known, we must be able to determine that I1 caused the exception. Once we know that the branch

is not taken, we must re-execute I1 and permit the exception to occur. This allows the exception

to be resolved naturally.

The problem becomes even more complicated if the scheduler decided to also move I3 above I1

as shown in Figure 1c. If I3 is permitted to update r6, after an exception by I2, it will be corrupted.

If we re-execute I3 after the exception from I2 is resolved in hopes of correcting the error, r6 will

still be corrupted. Therefore, we have reached an unrecoverable state.

This example has shown the four problems that must be solved in order for the compiler to

accurately report and handle exceptions for SPEIs: detecting a delayed exception, determining the

instruction that caused the exception, protecting source operands until the exception is resolved

and recovering from the exception.

4



2.2 Instruction Boosting

Instruction boosting has been proposed for handling exceptions with compiler-controlled speculative

execution [1] [3]. The four problems associated with exception detection and recovery are handled

with a combination of hardware support (shadow register �les) and compiler generated recovery

blocks. Detecting delayed exceptions is handled by recording an exception condition raised by

a speculative instruction in the appropriate shadow register �le. At the excepting instruction's

commit point, the contents of the shadow register �le are examined to determine if an exception

condition exists. The excepting instruction is identi�ed by sequentially re-executing all speculative

instructions which are committed by the same branch instruction. The exception condition is

therefore regenerated in a sequential processor state. Operands of speculative instructions are

preserved by ensuring that speculative instructions do not update the architectural register �le until

they are committed. Therefore, a speculative instruction may always be re-executed by retrieving its

operands from the architectural register �le. Finally, recovery is handled with traditional exception

recovery techniques since the exception is regenerated in a sequential processor state.

Although boosting provides good support for accurate detection and handling of exceptions for

SPEIs, it does so with excessive hardware overhead. The scheme requires multiple copies of register

�les to implement the shadow registers. The fact that exception recovery requires recovery code

blocks also increases code size by about two times, which adds signi�cantly to the pressure on the

memory system [3]. We will demonstrate in Section 3 that WBS solves the same problems without

incurring either excessive hardware overhead or large code expansion.

2.3 Sentinel Scheduling

An alternative scheme to enable exception detection and recovery with compiler-controlled specu-

lative execution is sentinel scheduling [2]. Sentinel scheduling is a compiler based technique that

requires few changes to the processor architecture. The four problems associated with exception

detection and recovery are handled using exception tags added to each architectural register and

5



add v3,v2,v4

Instruction Block
Current

Distance
Speculation

Block
Home

0 0 0
add v1,v2,4 0 0 0

0 0 0beq v1,0,L1

v5,mem(v1) 1 0 1
1 0 1
1 0 1
1
1

0
0

1
1

store
load

mem(v5),v2
div v6,v4,v7
add v8,v0,v6
bne v8,v2,L2

load v9,mem(v8) 2 0 2
2
2

0 2
0 2

add
store

v9,v9,4
mem(v9),v2

I

1
2
3

4
5
6
7
8

9
10
11

Figure 2: Original code segment.

Instruction Block
Current

Distance
Speculation

Block
Home

add v3,v2,v4 0 0 0

add v1,v2,4 0 0 0

0 0 0beq v1,0,L1

v5,mem(v1) 1load

1div

1add v8,v0,v6

load v9,mem(v8) 2

2add

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

v6,v4,v76
1
7
2
9
4
10
3

I

v10,v9,4

1 0 1store mem(v5),v2
1 0 1bne v8,v2,L2

5
8

02 2
2 0 2store11

mov v9,v1012
mem(v10),v2

Figure 3: Code segment after sentinel scheduling, before register allocation.

Instruction Block
Current

Distance
Speculation

Block
Home

add 0 0 0

add 0 0 0

0 0 0beq

1load

1div

1add

load 2

2add

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

6
1
7
2
9
4
10
3

I

r9,r2,r6
r5,r4,r2
r7,r0,r9
r3,r4,4
r8,mem(r7)
r1,mem(r3)
r10,r8,4
r3,0,L1

1 0 1store
1 0 1bne

5
8

02 2
2 0 2store11

mov

mem(r1),r4
r7,r4,L2

mem(r10),r4
r8,r1012

Figure 4: Code segment after sentinel scheduling and register allocation.

6



compiler scheduling and register allocation support. Delayed exceptions are detected by marking

exception conditions in the destination register of excepting speculative instructions. The PC of the

speculative instruction is also placed in the destination register. Subsequent speculative instruc-

tions which use the result of an excepting speculative instruction propagate the PC and exception

tag to their destination. A subsequent non-speculative indirect use of the excepting speculative

instruction's destination register signals any exception conditions that are present. The excepting

instruction is identi�ed by the PC contained in the corresponding register whose exception tag is

set.

Source operands for speculative instructions are preserved by ensuring the scheduler and register

allocator do not allow any instruction to overwrite a speculative instruction's source operands before

a non-speculative instruction checks the exception condition of the speculative instruction. Finally,

recovery is performed by setting the PC to the excepting instruction's PC and re-executing all

speculative instructions until the check instruction is reached.

An example code segment to illustrate speculative execution with sentinel scheduling is shown

in Figure 2. The example consists of three basic blocks in which the compiler expects control

ow to be sequential through the blocks. Furthermore, load and div instructions are assumed to

be potentially excepting. The code segment after scheduling is shown in Figure 3. Speculative

instructions are denoted by (S) and the number of branches they moved above is speci�ed by their

speculative distance. With sentinel scheduling, the scheduler ensures that there is a non-speculative

instruction to check the exception tag of each PEI in the PEI's home block. For example, I8 checks

if an exception occurred for I6.
1 In order to protect the source operands, the lifetimes of all source

operands for speculative instructions are extended to the non-speculative checking instruction. For

example, the lifetimes of v4 and v7 (source operands of I6) are extended to I8. Also, the scheduler

must not schedule any instructions which overwrite a speculative instruction's source operands.

Therefore, the destination of I10 must be renamed to v10 to prevent v9 from being overwritten.

1An exception condition for I6 will mark an exception in v6. I7 will propagate the exception to its destination,

v8, since it is also a speculative instruction. Finally, the use of v8 by I8 will detect the exception condition

7



The code segment after register allocation is shown in Figure 4. In this example, a total of

11 physical registers are required to ensure exception detection and recovery are possible for all

speculative instructions.

3 Write-back Suppression Scheduling

In this section, an architecture support for compiler-controlled speculative execution referred to as

write-back suppression is introduced. Write-back suppression makes use of static program infor-

mation and a set of architectural features to accurately detect and report exceptions for compiler-

scheduled speculative instructions. This technique is based on two main concepts: delay the ex-

ception for a SPEI until the direction of the branch is known, and prevent corruption of the source

operands of instructions by systematically suppressing updates to the register �le after an exception

from a SPEI.

3.1 Overview

A few key terms will be introduced using the examples in Figures 2 and 5. The home block of

an instruction is the basic block where the instruction was located prior to scheduling. Thus,

instructions I1 through I3 belong to home block 0, I4 through I8 belong to home block 1 and I9

through I11 belong to home block 2. The current block of an instruction is the block the instruction

is located in after scheduling. As Figure 5 shows, I6 has been speculated into current block 0. The

Speculation distance of an instruction is the number of branches that an instruction was speculated

beyond during scheduling. As the �gure shows, I6 has a speculation distance of 1.

The instruction schedule shown in Figure 5 contains only minor modi�cations from the schedule

in Figure 3 that was generated by sentinel scheduling. This example introduces a new instruction

called check which con�rms and reports the delayed exceptions from SPEIs. As the �gure shows,

only one check instruction needs to be placed in a home block even though multiple PEIs were

speculated from that block (I12 will report the exception for both I6 and I4). No check instructions

8



Instruction Block
Current

Distance
Speculation

Block
Home

add v3,v2,v4 0 0 0

add v1,v2,4 0 0 0

0 0 0beq v1,0,L1

v5,mem(v1) 1load

1 0 1store mem(v5),v2

1div v6,v4,v7

1add v8,v0,v6

1 0 1bne v8,v2,L2

load v9,mem(v8) 2

2add v9,v9,4

2 0 2store mem(v9),v2

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

check 1 0 1

check 02 2

I

6
1
7
2
9
4
10
3

12
5
8

13
11

Figure 5: Code segment after WBS scheduling, before register allocation.

are required for a home block that has had no PEIs speculated from it. If an exception occurs

to either I6 or I4, it will be recorded at a location unique to I12 along with the PC of the appro-

priate excepting instruction. Subsequently I12 will verify the existence of an exception, report the

exception for the excepting instruction, and begin recovery.

As discussed in Section 2.1, in order for the delayed excepting instruction to accurately recover

to the correct processor state, the source operands of speculated instructions must be protected

during the exception. In WBS, the home block of the excepting instruction is used to suppress

register �le updates for any subsequent instructions from the same or later home blocks. In Figure 5,

if I6 excepts, it will prevent I7, I9, I4 and I10 from updating the register �le. Instructions I1, I2

and I3 will be permitted to execute normally to produce the correct processor state if the branch

at I3 is taken. If the branch I3 is not taken, its check instruction (I12) will make sure that the

exception from I6 is reported and then re-execute I6, I7, I9, I4 and I10 as part of the recovery phase.

In addition to suppressing the updates to the register �le of speculated instructions, exceptions

will also be suppressed. Thus, if I9 or I4 were to also except after I6, their exceptions would be

suppressed until the recovery phase of I6.

If I9 and I4 were to both except when no other exceptions are pending, we will have nested

exceptions. This occurs because I9 (from home block 2) can only suppress I10 (from home block 2)

9



Instruction Block
Current

Distance
Speculation

Block
Home

add 0 0 0

add 0 0 0

0 0 0beq

1load

1 0 1store

1div

1add

1 0 1bne

load 2

2add

2 0 2store

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

check 1 0 1

check 02 2

r5,r6,r2
r1,r2,r1

r1,r0,r1
r4,r6,4
r3,mem(r1)
r2,mem(r4)
r3,r3,4
r4,0,L1

mem(r2),r6
r1,r6,L2

mem(r3),r6

I

6
1
7
2
9
4
10
3

12
5
8

13
11

Figure 6: Code segment after WBS scheduling and register allocation.

and will not suppress I4 (from home block 1). Instruction I4 also suppresses I10 and will ultimately

enter its recovery phase via I12. However, one can no longer simply re-execute I4 and I10 to recover

from an exception for I4. Recall that there was a nested exception condition; re-executing I10 during

I4's recovery phase will produce an undesirable program state since the exception for I9 also wants

to suppress the register �le update for I10. This correct suppression of updates can be accomplished

by re-executing only those instructions that belong to I4's suppression set of instructions but do not

belong to I9's suppression set of instructions. In this example, no instructions will be re-executed

at this point. When the check instruction I13 is encountered, it will report the exception for I9.

The recovery will be done by re-executing I9 and all the instructions in its suppression set, namely,

I10.

This example demonstrates the hierarchy of delayed exception handling in WBS. The instruction

from the earliest home block will always be resolved �rst. Multiple exceptions from the same home

block will be handled based upon their static order in the scheduled program. All exceptions are

handled from earliest home block to latest home block.

Suppressing the updates to the register �le has several bene�ts. First, it eliminates the need

for special hardware to maintain the history of the state for the source operands. It also provides

the ability to re-use registers amongst speculated instructions. As Figure 6, shows, I6 is able to

10



overwrite one of its own source operands and still recovery correctly. WBS ensures that if an

exception occurs, the source operand will not be corrupted. This is not possible with sentinel

scheduling since it must maintain a history of the state of all source operands until the sentinel

instruction is reached. WBS is able to correctly execute the program segment in Figure 6 using

only 7 registers while sentinel scheduling requires 11 registers. As this example shows WBS can

reduce the register pressure which will result in less spill code.

3.2 Compiler Support

This section outlines the changes made to the scheduler and the register allocator to support WBS.

3.2.1 Scheduler Extensions

There are two major steps for scheduling in IMPACT - the dependence graph construction and list

scheduling. After the dependence graph is built and reduced [2], a check instruction is inserted into

each basic block of a Superblock (excluding the �rst). Control dependences are added from the

branches surrounding the check instruction to prevent it from being moved outside of its home block.

Next, dependences are added between the check instruction and any PEIs belong to the same home

block of the check. Finally, dependences are added from the check instruction downward to any

PEI exactly K home blocks after the home block of the check instruction, where K is the maximal

speculation distance de�ned in Section 3.3. As described in Section 3.3, a PEI from K home blocks

later will report its exception to the same recovery array location as a PEI from the home block

of the check instruction. This would cause an erroneous recovery condition. These dependences

ensure that after scheduling any of these PEIs will be located after the check instruction.

The list scheduler has been modi�ed to add additional information to speculated PEIs to permit

correct register allocation. The live ranges of the source operands of SPEIs are extended down to

the last instruction that is from a home block earlier than the home block of the SPEI (the bene�ts

of this will be discussed in the Section 3.2.2).

The list scheduler will eliminate a check instruction if no PEIs are actually speculated out of

11



its home block. This is accomplished by removing the checks input dependencies as its source

instructions are scheduled. If the none of the input dependences for a check have been removed

when the branch prior to the check instruction is scheduled, the check can be deleted.

Figure 5 shows that I12 was added by the scheduler to check for an exception caused by I6 or

I4. The check instructions are provided a slightly higher priority to push them earlier in their home

block to minimize the number of instructions re-executed during recovery.

3.2.2 Register Allocator Extensions

Register allocation in our compiler is done using a global graph coloring approach [9]. The register

allocator assumes that all allocatable operands reside within virtual registers. For each of these

virtual registers it constructs a live range which consists of the set of instructions where the operand

is live. Allocation then proceeds by coloring the interference graph constructed from these live

ranges. This basic register allocator has been modi�ed in two ways to ensure that the resulting

allocation will allow proper recovery in the event of an exception. These modi�cations prevent the

register allocator from destroying the source operands of an SPEI. This can occur if the register

allocator reuses a register allocated to a source operand of an SPEI for the destination operand of

an instruction from a home block above that of the SPEI.

This �rst modi�cation involves live range construction. The live range of a source operand of an

SPEI must be extended so that the constructed interference graph will prevent the above situation

from occurring. The live range is extended by using information provided by the scheduler. The

scheduler annotates each SPEI with the last instruction from a home block that is above the SPEI's

home block. The register allocator adds instructions to the live range that lies between the SPEI

and the instruction indicated by the scheduler and that originate from home block above the SPEI.

For example, consider the code sequence before register allocation shown in Figure 5. Instruction

I6 is an SPEI, from home block 1. Its source operands, v4 and v7, must not be modi�ed by

any instruction from home block < 1. The scheduler indicates that the last instruction with a

destination from a home block < 1 is instruction I2. Thus the register allocator adds instructions

12



I1 and I2 to the live range of the each source operand of instruction I6, since they both have

home blocks < 1. Adding these two instructions to the live range will prevent the destinations

of instructions I1 and I2 from being allocated to the same physical register as v4 and v7, while

allowing the destination of instruction I6 or I7 to do so. Figure 6 contains the same code sequence

after register allocation. Note that the destinations of instructions I6 and I7 were both allocated

to physical register r1, while the destinations of instructions I1 and I2 were allocated to di�erent

registers. In the event of an exception, WBS will ensure correct recovery.

The second modi�cation involves the handling of operand spilling. When the register allocator

is unable to allocate an operand of an SPEI, to a register, the register allocator un-speculates

the SPEI to reduce the register pressure. The speculated instructions responsible for the increase

in register pressure are moved downward one block at a time until one of two events occurs. If

the live range of the destination of the speculated instruction becomes allocatable, the downward

code motion ceases. The downward code motion also stops once the speculated instruction has

been moved below the last instruction from a home block above that of the SPEI indicated by the

scheduler. At this point if the destination operand is not allocatable, the register allocator spills the

operand without a�ecting recovery. By incrementally un-speculating the instructions responsible

for the increased register pressure, the register allocator allows as much speculation as is possible

for a given number of available registers while introducing as little spill code as possible.

3.3 Architectural Extensions

In order to support write-back suppression scheduling, several extensions are required to the archi-

tecture. These extensions are broken down into three groups, instruction set extensions, extensions

to support suppression of register �le updates, and extensions to support recovery from delayed

exceptions. Each of these extensions will be discussed in light of how they support the requirements

of WBS as described in Section 3.1.

Each instruction opcode will be augmented with a k-bit �eld speculation distance specifying

the number of branches that an instruction has been speculated above. A value of zero in this

13



�eld indicates that an instruction is not speculated. This �eld is used by the scheduler to convey

the static home block numbers of each instruction to the suppression circuit. A k-bit speculation

distance will permit an instruction to be speculated above K=2k-1 branches. The value for k was

chosen after analyzing a series of speculatively scheduled benchmarks. This will be outlined in

detail in Section 4.2.1.

The check instruction is added to the instruction set as a means of reporting and initiating

recovery for an exception from a SPEI. This instruction uses its home block number to determine

if a SPEI has generated an exception.

When a branch instruction retires, it increments the current block register. If the branch is

taken, it causes the suppression hardware and recovery hardware to reset to prevent an exception

from propagating into another superblock.

Figure 7 depicts the hardware extensions required by a processor to suppress register �le updates

during the retire stage of an out-of-order completion architecture. The suppression hardware is

inserted between the reorder bu�er and the register �le to control the write-enable ag of the register

�le. The suppression circuit shown is a k-bit comparator with some additional combinatorial logic.

This circuit is responsible for determining if the instruction currently being retired is allowed to

update the register �le.

A CHECK ag and a SPECULATED ag have been added to the ags �eld of each reorder

bu�er entry. These ags along with the EXCEPTION ag make the suppression circuit switch

between the normal state, suppression state, and the recovery state. The normal state allows all

instructions to update the register �le. The suppression state is entered from the normal state when

the SPECULATED and EXCEPTION ags are set for the instruction currently being retired. The

recovery state is entered when the CHECK ag is set for an instruction and there is a delayed

exception existing for its home block. These states are maintained in the block state at the top of

the �gure.

The adder above the reorder bu�er is used to compute the home block of the retiring instruction

every cycle. It takes the speculated distance �eld from the reorder bu�er and adds it to the

14



current_block

Register

File

flags

spec
dist

register

data

adder

...

Suppression
Circuit

excepting HB

index

state

current HB

...

enable

S
up

pr
es

si
on

S
ta

ck

data
pc

index

register

write enable
read enable

Reorder Buffer

. . .

...

In
st

ru
ct

io
ns

Figure 7: Write-back suppression hardware.

current block register.

Starting in the normal state, an instruction whose SPECULATED and EXCEPTION ags are

set will put the suppression hardware into the suppression state, push the computed home block

onto the top of the suppression stack and place its PC into the recovery array at the entry indexed

by its home block (Figure 8). Its update to the register �le will then be suppressed.

While in the suppression state, the computed home block of each retiring instruction and the

excepting home block on the top of the suppression stack will be provided to the suppression circuit

to determine if an instruction should update the register �le. The suppression circuit will set the

write enable line for the register �le if the computed home block is less than the entry on the top

of the stack, otherwise the write will be disabled. This protects the source operands as required by

WBS.

As mentioned in Section 3.1, a nested exception occurs when an excepting SPEI retires with

a computed home block earlier than the current excepting home block. This is maintained by

pushing the new higher priority exception onto the top of the suppression stack.

A check instruction is permitted to initiate recovery if its respective entry in the recovery array

is valid. This allows WBS to determine that there is a delayed exception. Figure 8 shows the

15



...
...

valid Excepting PC

Recovery Array

adder
current_block E

xc
ep

tio
n 

C
on

di
tio

n
&

 E
xc

ep
tio

n 
P

C

flags

pc

enable
spec
dist

data

register

current HB

data

. . .

In
st

ru
ct

io
ns

Reorder Buffer

...

Figure 8: Delayed exception recovery hardware.

hardware designed to permit recovery from the delayed exception. The only way for an exception

to be recorded is when the speculated excepting instruction retires. Since the instruction has been

released from the reorder bu�er, the recovery array is used to keep track of the address of the

excepting instruction until its check is encountered. The home block of the check instruction is

used to index into the recovery array to determine the address to begin recovery. The excepting PC

from the array is provided to the fetch stage of the processor. When the this excepting instruction

retires the second time, it is permitted to except.

After the excepting instruction resolves its exception, suppression hardware transitions into the

recovery state. During this state, all retiring instructions whose computed home block is less than

the excepting home block on the top of the suppression stack will be inhibited from updating the

register �le. Any retiring instructions whose computed home block is greater than or equal to the

home block of the excepting home block in the second entry of the suppression stack will also be

inhibited from updating the register �le. All other instructions will be permitted to update the

register �le. The use of excepting home blocks found in the top two entries of the suppression stack

ensures the correct nested recovery requirements described earlier. Once recovery is complete,

the top-most entry of the suppression stack will be popped. If the suppression stack is empty,

the suppression state will transition to the normal state, otherwise it will transition back to the

16



suppression state.

4 Experimental Evaluation

In this section, the e�ectiveness of WBS is analyzed for a set of non-numeric benchmarks. The

performance of WBS is compared with general percolation and sentinel scheduling.

4.1 Methodology

Compiler support for WBS has been implemented in the IMPACT-I C compiler. The IMPACT-

I compiler is a prototype optimizing compiler designed to generate e�cient code for VLIW and

superscalar processors [6]. The benchmarks used in this study are the 14 non-numeric programs

shown in Table 1. The benchmarks consist of 5 non-numeric programs from the SPECint92 suite

and 9 other commonly used non-numeric programs.

Benchmark Benchmark Description

cccp GNU C preprocessor
cmp compare �les
compress compress �les
eqn format math formulas for tro�
eqntott boolean equation minimization
espresso truth table minimization
grep string search
lex lexical analyzer generator
li lisp interpreter
qsort quick sort
tbl format tables for tro�
sc spreadsheet
wc word count
yacc parser generator

Table 1: Benchmarks

The processor model used in this study is a in-order issue superscalar processor with register

interlocking. The processor is assumed to have uniform function units, 1 branch delay slot, and

the instruction set of the HP PA-RISC processor. The instruction latencies assumed are those of

the HP PA-RISC 7100 (see Table 2). The processor is assumed to trap on exceptions for memory

load, memory store, and all oating point instructions.

17



Function Latency Function Latency

Int ALU 1 FP ALU 2
memory load 2 FP multiply 2
memory store 1 FP divide(SGL) 8
branch 1 / 1 slot FP divide(DBL) 15

Table 2: Instruction latencies.

For each machine con�guration, the program execution time, assuming 100% cache hit rate is

derived using execution-driven simulation. For the experiments the issue rate of the processor is

varied from 1 to 8 and the number of integer and oating point registers from 32 to 64.

4.2 Results

4.2.1 Selection of the Maximum Speculation Distance

The general percolation model was used to schedule all of the benchmarks for a 4-issue and 8-

issue processor using a register �le size of 64 integer registers, 64 oating point registers. Each

instruction was then tagged with the number of branches that it was speculated above. The

benchmarks were traced to get actual execution frequencies for all instructions. The weighted

execution frequency of each SPEI was then used to build the graph in Figure 9. Considering that a

speculation limit of 2k-1 branches is possible given the addition of k bits to the instruction opcode,

viable speculation distances are 3, 7, 15 and 31. A speculation limit of 7 branches was chosen for

subsequent experiments since it permitted speculation of 97.7 percent of the PEIs with a 4-issue

architecture and 96.4 percent of the PEIs with an 8-issue architecture. The addition of one more

bit in the opcode would only increase the percentage of speculated instructions by 2 percent for

the 4-issue architecture and 3 percent for the 8-issue architecture.

4.2.2 Comparison of WBS and General Percolation

The performance results of the WBS scheduling model and general percolation scheduling are

shown in Figures 10 through 13. All numbers are shown as a percentage of the the performance,

de�ned as one over cycle count, of general percolation. The �gures show a general improvement

18



Branches

P
er

ce
nt

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 issue

8 issue

Figure 9: Weighted speculation distances for PEIs.

in performance from the single issue to the eight issue architectures. This is expected because the

check instructions inserted for WBS have fewer free slots available with lower issue rates. One

exception to the trend is shown in Figure 13 by grep which is the most parallel benchmark in the

experiments. The additional check instructions increase the number of issue slots required and

therefore increases the cycle count.

The second trend to note is that WBS shows about the same (within 2 percent) or slightly

higher performance with 64 registers than with 32 registers. One notable exception is compress

shown in Figure 12 which shows a decrease in the performance from 32 to 64 registers. The schedule

generated for compress using general percolation su�ers from a great deal of register pressure with

only 32 integer registers. However, the register allocator will not spill any live ranges for SPEI

using WBS since this would open the potential for an unrecoverable exception. Instead, the register

allocator demotes the SPEI until the register pressure is eliminated. The spill code inserted for

the compress using general percolation increases the cycle count and therefore penalizes compress

which arti�cially improves the relative performance for WBS.2 As a side e�ect, compress with 64

registers with WBS appear to perform worse.

2The register allocator will be modi�ed for the �nal draft of the paper to demote a live range of a speculated

excepting instruction instead of spilling them in order to remedy this problem.

19



Benchmark

P
er

ce
nt

80

82

84

86

88

90

92

94

96

98

100

es
pr

es
so

li

eq
nt

ot
t

co
m

p
re

ss sc

c
c

c
p

c
m

p

e
q

n

gr
ep lex

qs
or

t tb
l

w
c

y
a

c
c

32 Registers 64 Registers

Figure 10: Performance results of WBS relative to general percolation using an issue 1 processor.

Benchmark

P
er

ce
nt

80

82

84

86

88

90

92

94

96

98

100

es
pr

es
so

li

eq
nt

ot
t

co
m

p
re

ss sc

c
c

c
p

c
m

p

e
q

n

gr
ep lex

qs
or

t tb
l

w
c

y
a

c
c

32 Registers 64 Registers

Figure 11: Performance results of WBS relative to general percolation using an issue 2 processor.

Benchmark

P
er

ce
nt

80

82

84

86

88

90

92

94

96

98

100

es
pr

es
so

li

eq
nt

ot
t

co
m

p
re

ss sc

c
c

c
p

c
m

p

e
q

n

gr
ep lex

qs
or

t tb
l

w
c

y
a

c
c

32 Registers 64 Registers

Figure 12: Performance results of WBS relative to general percolation using an issue 4 processor.

20



Benchmark

P
er

ce
nt

80

82

84

86

88

90

92

94

96

98

100

es
pr

es
so

li

eq
nt

ot
t

co
m

p
re

ss sc

c
c

c
p

c
m

p

e
q

n

gr
ep lex

qs
or

t tb
l

w
c

y
a

c
c

32 Registers 64 Registers

Figure 13: Performance results of WBS relative to general percolation using an issue 8 processor.

4.2.3 Comparison of WBS and Sentinel Scheduling

These numbers were unavailable at the time of submission. They will be included in the �nal draft

of the paper.

5 Conclusion

This paper has introduced a new architecture scheme referred to as write-back suppression (WBS).

This scheme systematically suppresses register �le updates for subsequent speculative instructions.

We have shown that with a modest amount of hardware, WBS supports accurate reporting and

handling of exceptions for compiler-controlled speculative execution without adding to the register

pressure.

Experiments using a prototype compiler implementation and hardware simulation indicate that

ensuring accurate handling of exceptions with WBS incurs very little run-time performance over-

head. In particular, experimental results from a series of non-numeric benchmarks indicate that

WBS can achieve from 88 to 100 percent of the performance gains of general percolation scheduling

and still ensure correct execution under all conditions.

Future research will study the bene�ts of WBS scheduling with existing instruction set archi-

tectures by adding a few new instructions to the instruction set instead of extending each opcode

21



to include the speculation distance. The bene�ts of WBS scheduling will also be studied for archi-

tectures with non-uniform functional units. Finally, the cache e�ects of WBS scheduling will be

studied using recovery blocks and the in-line recovery method discussed in this paper.

References

[1] M. D. Smith, M. S. Lam, and M. A. Horowitz, \Boosting beyond static scheduling in a super-
scalar processor," in Proceedings of the 17th International Symposium on Computer Architec-

ture, pp. 344{354, May 1990.

[2] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. S. ansker, \Sentinel schedul-
ing for VLIW and superscalar processors," in Proceedings of 5th International Conference on

Architectural Support for Programming Languages and Operating Systems, October 1992.

[3] M. D. Smith, M. A. Horowitz, and M. S. Lam, \E�cient superscalar performance through
boosting," in Proceedings of the Fifth International Conference on Architecture Support for

Programming Languages and Operating Systems (ASPLOS-V), pp. 248{259, October 1992.

[4] E. M. Riseman and C. C. Foster, \The inhibition of potential parallelism by conditional jumps,"
IEEE Transactions on Computers, vol. c-21, pp. 1405{1411, December 1972.

[5] M. D. Smith, M. Johnson, and M. A. Horowitz, \Limits on multiple instruction issue," in Pro-

ceedings of the 3rd International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pp. 290{302, April 1989.

[6] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An
architectural framework for multiple-instruction-issue processors," in Proceedings of the 18th

International Symposium on Computer Architecture, pp. 266{275, May 1991.

[7] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE Trans-

actions on Computers, vol. c-30, pp. 478{490, July 1981.

[8] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, \The superblock:
An e�ective structure for VLIW and superscalar compilation," tech. rep., Center for Reliable
and High-Performance Computing, University of Illinois, Urbana, IL, February 1992.

[9] R. E. Hank, \Machine independent register allocation for the IMPACT-I C compiler," Master's
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1993.

22


